
HAL Id: hal-04198068
https://hal.science/hal-04198068

Preprint submitted on 6 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards a Publicly Available Framework to Process
Traceroutes with MetaTrace

Matthieu Gouel, Maxime Mouchet, Omar Darwich, Kevin Vermeulen

To cite this version:
Matthieu Gouel, Maxime Mouchet, Omar Darwich, Kevin Vermeulen. Towards a Publicly Available
Framework to Process Traceroutes with MetaTrace. 2023. �hal-04198068�

https://hal.science/hal-04198068
https://hal.archives-ouvertes.fr

Towards a Publicly Available Framework to Process
Traceroutes with MetaTrace

Matthieu Gouel
Sorbonne Université

Omar Darwich
LAAS-CNRS

Maxime Mouchet
Unaffiliated

Kevin Vermeulen
LAAS-CNRS

ABSTRACT
Various platforms, such as Ark, RIPE Atlas, and M-Lab, con-
duct millions of traceroutes daily and make them publicly
accessible to researchers and operators. While these mea-
surements are easily obtainable, the processing of such data
poses challenges. Currently, there is no publicly available
general framework designed specifically for storing and
querying traceroutes. The conventional method of loading all
traceroutes into memory becomes inadequate or necessitates
costly hardware as the volume of traceroutes increases sig-
nificantly. This research paper introduces an innovative uti-
lization of the ClickHouse database, referred to as MetaTrace,
and demonstrates its efficiency in querying and analyzing
a dataset of 200 million traceroutes enriched with metadata
within just 11 seconds, using a single server equipped with
reasonably available resources. By making MetaTrace freely
accessible as an open-source tool for the community, we aim
to establish it as a significant stride toward standardizing
traceroute processing. This standardization would enhance
the replicability and reproducibility of research outcomes in
this domain.

1 INTRODUCTION
Today, measurement platforms such as Ark [6], RIPE Atlas
[24] and M-Lab [20] perform millions of traceroutes each
day and make them publicly share them with the commu-
nity. These abundant traceroute measurements hold great
potential for Internet measurement researchers and opera-
tors, However, their processing poses significant challenges.
Currently, no publicly available framework exists to store
and query these traceroutes. Beyond the technical challenge
of having multiple traceroute formats such as JSON (RIPE
Atlas), Warts (Ark), or CSV (M-Lab), millions of traceroutes
can quickly require powerful servers to be analyzed. Thus,
one generally decides to use a database, but finding the right
database and how to optimize it is hard and time consuming,
especially as there is no specific solution for traceroute data
and metadata, for instance for querying traceroutes going
through a specific AS or country.
In this paper, we propose a retrospective on why we

choose and how we fine tuned the ClickHouse database

to process and query large scale traceroute datasets enriched
with metadata. We call this fine tuned version of ClickHouse
MetaTrace. Carefully tuning a database for a particular pro-
cessing is not straightforward, and we considered it worth
sharing the approach and questions that lead us to use partic-
ular features of ClickHouse for different use cases: What pro-
cessing do we want to perform? Which database to choose?
How do we store the traceroutes? How to optimize the
queries? How to add metadata on them?

Our contributions include: (1) sharing the ideas and think-
ing process behind building MetaTrace, which efficiently
utilizes ClickHouse features for traceroute processing; and
(2) providing an open-source implementation of MetaTrace1.

We evaluated MetaTrace using two types of queries: pred-
icate queries for filtering traceroutes based on conditions,
and aggregate queries for computing metrics on traceroutes.
Our results show that MetaTrace is significantly faster

compared to alternative solutions. For predicate queries, it
outperforms amultiprocessed Rust solution by a factor of 552
and is 3.4 times faster than ClickHouse without MetaTrace
optimizations. For aggregate queries, MetaTrace processes
202 million traceroutes in 11 seconds, with its performance
scaling linearly with traceroute volume. Notably, on a single
server, MetaTrace can perform a predicate query on a 6-year
dataset of 6 billion traceroutes in just 240 seconds.
Furthermore, MetaTrace is resource-efficient, making it

accessible for research groups with limited resources to con-
duct Internet-scale traceroute studies.

2 MOTIVATION
The objective of this research is to contribute towards the
development of an open-source framework for processing
large-scale traceroute datasets. By providing such a frame-
work, we aim to benefit the community by saving time in
everyday traceroute analysis and enabling the design of new
scalable reactive measurements [4], where prior traceroute
measurements are leveraged to make informed decisions for
future ones [18, 27].
It is important to clarify that our goal is not to surpass

proprietary solutions like BigQuery, which are utilized by

1https://github.com/dioptra-io/metatrace
1

https://github.com/dioptra-io/metatrace

Matthieu Gouel, Omar Darwich, Maxime Mouchet, and Kevin Vermeulen

CDNs for processing billions of traceroutes [14, 20]. These
proprietary solutions are not freely accessible to the public,
whereas our focus is on creating an open and freely available
framework for the wider community.

3 METHODOLOGY
When we faced the problem of storing and processing the
traceroutes, we found no guidelines or standard solution in
the literature. In this section we describe the questions that
we asked ourselves to come up with a solution, MetaTrace,
which is a smart usage of the different ClickHouse features
to answer the questions.

3.1 Which processing do we want to
perform?

The initial consideration before selecting a database was
determining the common computations we performed on
traceroutes. Our use-cases aligns with previous studies
[12, 15, 27] that focuses on computing aggregated statistics,
such as the source-to-destination RTT, or converting IP-level
paths from traceroutes into AS-level paths and analyze
specific ASes like Tier 1s or CDNs.
The common use cases can be categorized into two gen-

eral query types: aggregate queries and predicate queries. An
aggregate query calculates summarized information about
the data, such as the minimum RTT among a set of tracer-
outes. On the other hand, a predicate query returns only the
traceroutes that meet specific conditions, such as whether
the traceroute traverses a particular AS.

3.2 Which database to choose?
Optimizing the choice of a database for performant aggre-
gate and predicate queries is not overly restrictive. However,
we observed that there is no compelling reason to modify
or delete traceroute data. Consequently, we sought a data-
base that prioritizes efficient read operations. We found the
ClickHouse database to be a promising candidate as it is pro-
moted as a database optimized for reads and aggregations [7].
IMoreover, ClickHouse offers a comprehensive set of con-
venient features for expressing complex aggregate queries.
Notably, ClickHouse introduces a powerful feature called
“groupArray”[8], which facilitates manipulation of data in
aggregate queries. In Section 3.5, we provide an example
showcasing this feature.

While the benchmark conducted by ClickHouse itself was
compelling [9], we independently verified its superior perfor-
mance over standard solutions like MySQL and PostgreSQL,
even on simple queries. This confirmed that ClickHouse sig-
nificantly outperformed these solutions by orders of magni-
tude in our specific setup. However, it is important to clarify

that we are not asserting ClickHouse as the ultimate solu-
tion for processing traceroutes. Nevertheless, based on our
experience, ClickHouse has proven to be highly reliable and
has fulfilled our requirements for several years. We believe
it is valuable to share this information with the community.
Furthermore, we emphasize that ClickHouse employs a SQL-
like language that is easy to learn, requiring minimal effort
for the community to adopt such a database.

3.3 Which schema to represent a
traceroute?

Now that we have selected our database, we need to de-
termine an appropriate schema for storing the traceroutes.
Given that ClickHouse is a column-oriented database, we
structure our schema based on the fields present in an ICMP
reply to a traceroute probe (e.g., TTL, RTT). Additionally,
we include fields that uniquely identify the traceroute that
generated the probe, such as the flow identifier and tracer-
oute timestamp. In this design, a traceroute is represented
as a collection of rows, where each row contains these fields.
The flow identifier within each row enables differentiation
between load-balanced paths, as encountered in per-flow
load balancing scenarios [26, 27]. For simplicity, we will fo-
cus on handling single-path traceroutes going forward. The
complete database schema is outlined in Table 3.

This data format offers several advantages. First, it is com-
patible with all existing traceroute tools, serving as the low-
est common denominator for platforms and tools that uti-
lize traceroute techniques. These tools typically send TTL-
limited probes to generate ICMP TTL exceeded messages
from routers along the path. Second, the format is memory-
efficient for predicate queries. By loading only the relevant
column(s) for a predicate, it becomes feasible to identify the
rows that match the predicate efficiently [3]. It may seem
that this format introduces redundancy since certain fields
(e.g., source and destination) are repeated for each row of a
traceroute. However, we demonstrate that this redundancy
incurs minimal disk usage overhead (§4.2) when the data
is properly sorted (§3.5). Compared to our column-oriented
format where each row corresponds to a traceroute reply,
Ark and RIPE Atlas employ row-oriented variable-length for-
mats. However, these formats have drawbacks for traceroute
storage and analysis. Firstly, they lack easy sorting capabili-
ties, except for the traceroute execution time. This leads to
suboptimal compression (§4.2). Secondly, without parsing
traceroutes and integrating them into a database, leveraging
database optimizations such as indexes becomes impractical.
All traceroutes must be scanned to perform any predicate
query, unless a manual approach is employed by selecting
traceroute files based on specific dates indicated in their file
names.

2

Towards a Publicly Available Framework to Process Traceroutes with MetaTrace

3.4 What queries can we write with
ClickHouse?

In Section 3.6, we demonstrate how ClickHouse enables the
execution of standard SQL queries with predicates while
enhancing query performance. However, the true strength
of ClickHouse lies in its ability to handle complex aggregate
queries. For instance, consider the scenario where we aim
to calculate the distribution of the RTT difference between
both ends of an IP link using our traceroute dataset. This
computation can be utilized as a foundation for monitoring
performance degradation [13, 15].
To translate this need into an aggregate query, we first

need to choose the level of aggregation of the query. There
is a tradeoff between the complexity of a query (and even-
tually the resources needed to run it), and the running time
of the computation. One option is to perform no aggrega-
tion and iterate over all rows, executing the computation
with a script. However, this approach forfeits the benefits
of utilizing a database (§4). Instead, one can perform the ag-
gregation per (source, destination, timestamp) in a subquery
that corresponds to the rows of one traceroute, and then
another aggregation on the results of the previous subquery
by (source, destination) corresponding to a set of traceroutes,
so that all the computation is made in base. Figure 1 shows
the first aggregate subquery per (source, destination, times-
tamp).

Figure 1: Aggregate subquery indexed by (source, des-
tination, timestamp).

This query allows us to get the RTT difference for each
traceroute, so then we still have to group the traceroutes by
(source, destination) and perform some computation to eval-
uate whether there is a performance degradation. This could
be done entirely in base but we only show this subquery that
already illustrates the power of ClickHouse for aggregate
queries.

3.5 How to minimize resource usage?
Reducing RAMusage: The complex aggregate queries that
we can achieve with ClickHouse generally need to scan the

entire table and might take too much RAM to complete.
The solution to avoid the memory overhead is to carefully
choose how to sort the traceroutes to allow the queries to be
streamed by block of rows. With ClickHouse, this is made
with the mechanism of “sorting key”.

In ClickHouse, the sorting key determines the storage
order of data on disk. Taking our previous example query
(Figure 1), if we sort the traceroutes by (source, destination,
timestamp), ClickHouse can efficiently stream the query.
This means it can compute the aggregate query on differ-
ent blocks of data with distinct (source, destination, times-
tamp) values, release the associated memory, and load subse-
quent blocks. However, if we choose a different sorting key
like (timestamp, source, destination), ClickHouse must scan
through all traceroutes to locate rows corresponding to the
same (source, destination) pair. This hampers streaming and
increases memory usage.

Reducing disk usage: In addition to saving RAM usage of
the aggregate queries, the sorting key also determines the
quality of the compression of the columns, so has an impor-
tant impact on disk usage. In ClickHouse, each column is
stored in a different file and the compression is performed
on each file. A column has a good compression rate if there
is a lot of redundancy between values that are close in space:
ClickHouse uses a derivation of the LZ77 algorithm [29]:
without entering into details, the idea is to read the file using
a sliding window that keeps the tokens (e.g., a character) and
sequences of tokens that have been read in that sliding win-
dow in memory. Each token or sequence of tokens is mapped
to a symbol taking less space than the token (typically an
integer). When a token is read, the algorithm looks into the
map for the longest sequence of tokens already appearing
in the sliding window, and replaces it with its correspond-
ing symbol. If no matching is found, the token is added to
the map. As a result, the closer redundant data the column
has, the better it will compress. With a sorting key (field-1,
field-2, field-3), field-2 should compress better than field-3.
In general, with traceroute datasets, as we have a fixed set
of sources and often a set of recurring destinations, a good
option is to choose (source, destination, timestamp) as a sort-
ing key. But if we need to compute aggregate queries over
time, using (timestamp, source, destination) might be better.
We evaluate the performance of compression in Section 4.2.

3.6 How to optimize predicate queries?
The choice of sorting key in ClickHouse is primarily focused
on optimizing aggregate queries and resource usage. How-
ever, it is important to note that we can only have one sort-
ing key per table, which means that optimizing for predicate
queries on any arbitrary column is not possible. Assuming
we use the sorting key (source, destination, timestamp), our

3

Matthieu Gouel, Omar Darwich, Maxime Mouchet, and Kevin Vermeulen

objective is to have a mechanism to sort the data by (pred-
icate, source, destination, timestamp), where the predicate
can be a subset of columns or even the result of an aggre-
gate query per (source, destination, timestamp). Fortunately,
ClickHouse provides a solution for this through the materi-
alized view feature [11]. It allows us to create a table from
the result of a computation. To address predicate queries on
the reply_ip column, for instance, we can create a material-
ized view sorted by the key (reply_ip, source, destination,
timestamp). This can be achieved using the query outlined
in Figure 2.

Figure 2: Create materialized view to optimize predi-
cate queries on the reply_ip column.

When executing predicate queries, we can leverage the
materialized view to enhance query performance. This is
demonstrated in Figure 3, where the materialized view is
utilized in the query to expedite the retrieval of results.

Figure 3: Predicate query using the materialized view
on the reply_ip column.

Since the materialized view reply_ip_view is sorted by (re-
ply_ip, source, destination, timestamp), the innermost query
can benefit from ClickHouse sparse indexes [10]. Similarly,
the result of the subquery aligns with the sorting key of the
traceroute table, allowing the sparse index of the main table
to come into play. We evaluate the effectiveness of using
materialized views compared to other approaches, such as
no optimization or directly utilizing indexes on columns, in
Section 4.

3.7 How to add metadata on traceroutes?
Metadata refers to additional information associated with IP
addresses, such as ASes or geolocation. ClickHouse offers a
feature called “dictionary,” which enables the creation of a

table containing mappings from IP addresses to correspond-
ing values. Specifically, this dictionary can be implemented
as a radix tree that maps IP prefixes to metadata. To ensure
the most relevant metadata is used for each traceroute, the
radix tree can be parameterized by a date. In practice, for
every row in the traceroute table, the reply_ip column is
mapped to its corresponding metadata using the dictionary.
To optimize predicate queries on metadata, we can create a
materialized view as if the metadata were treated as another
column, as described in Section 3.6. This allows for efficient
querying and retrieval of metadata information.

4 EVALUATION
Our goal is to demonstrate the viability of MetaTrace for
processing large-scale traceroute datasets. We divide this
objective into two parts: evaluating the query response time
and assessing the resource utilization ofMetaTrace in serving
these queries.
Overview of the results: On a dataset of 202 million tracer-
outes from one day of RIPE Atlas, MetaTrace takes 25% less
disk space than the compressed JSON source data (§4.2).
MetaTrace is able to serve predicate queries 552x faster than
a multiprocessed Rust solution, and is 3.4x faster than the
ClickHouse database without MetaTrace’s optimizations. On
aggregate queries, MetaTrace is 62x faster than our Rust
solution. Overall, MetaTrace is able to serve both types of
queries with a very reasonable 1.6 GB maximum usage of
memory. These results on queries are shown in Section 4.3.
MetaTrace’s performance scales linearly with the number
of traceroutes. Finally, we showcase MetaTrace on a huge
dataset of 6B traceroutes showing that it gives access to
information previously not obtainable (§4.4).

4.1 Dataset and setup
We download the RIPE Atlas traceroutes [23] from June 12th,
2022, representing 202 M traceroutes and 7.4 B replies. We
compare MetaTrace with four alternative solutions:
(1) Python: this implementation represents the perfor-

mance of a multiprocessed Python implementation to
analyze traceroutes.

(2) Rust: the same implementation as Python but (suppos-
edly) more performant.

(3) ClickHouse: this implementation represents the per-
formance of the ClickHouse database without any in-
telligence, just storing the traceroutes in a table with
our format.

(4) ClickHouse with indexes: it is the raw ClickHouse
database plus indexes on columns used in the predicate
queries.

(5) MetaTrace: this is our optimized ClickHouse with the
materialized views to satisfy predicate queries.

4

Towards a Publicly Available Framework to Process Traceroutes with MetaTrace

Table 1: Query time on one day (June 12th, 2022) of IPv4 and IPv6 RIPE Atlas data (202million traceroutes). Time shown
in seconds, peak memory and disk usage shown in MB. Python, the database, and MetaTrace, are limited to 16 threads.

Insert Select by reply IP Select by ASN/Country Average S-D RTT

Method Disk Time Mem Read Time Mem Read Time Mem Read Time Mem Read

Python 71,778 0 0 0 945 21.38 71,778 918 206.57 71,778 1204 615.32 71,778
Rust 71,778 0 0 0 602 97.15 71,778 780 676,95 71,778 690 97.228 71,778
BigQuery - - - - 16 - 58,562 - - - 16 - 101,340
Database 28,707 3603 4176 71,778 3.68 59.96 4604 3.38 76.11 1958 11 1588 14,088
Database/index 29,270* 3603 4176 71,778 4.74 79.69 835 5.08 68.94 192 11 1588 14,088
MetaTrace 52,877** 3603 5295 71,778 1.09 55.14 63 1.13 75.64 50 11 1588 14,088
* Including 581 MB for the data skipping index on the reply IP, 25.58 MB for the reply ASN and 3.84 MB for the reply country.
** Including 14,612 MB for the materialized view table on the reply IP, 5,562 MB for the reply ASN and 3,307 MB for the reply
country.

We selected these alternatives to highlight the tradeoff
commonly encountered by researchers when processing
traceroutes. On one hand, there are ad hoc solutions like
Python, which enable rapid prototyping but may lack effi-
ciency. On the other hand, there are more performant solu-
tions like MetaTrace, which require significant implementa-
tion efforts but offer time-saving benefits for future process-
ing.

To be fair with the Python and Rust solution, we split the
202M traceroutes into multiple files such that the compu-
tation can be performed in parallel. Moreover, the files are
compressed using the LZ4 algorithm that is used by default
on column files by ClickHouse (reducing disk read overhead).
All the solutions based on ClickHouse use the sorting key
(source, destination, timestamp). The indexes used by Click-
House with indexes are minmax and set indexes [10]. Each
column appearing in the predicate queries (§4.3) has one
index of each type.
The evaluation is performed on a single server equipped

with a 64-core CPU, 256 GB ofmemory, but only 2GB are used
during the queries (§4.3) and an SSD delivering ≈ 1GB/s read
performance.We restrict the four alternatives andMetaTrace
to 16 CPU threads in order to evaluate MetaTrace on a server
with reasonable resources.

4.2 MetaTrace storage efficiency
We first evaluate the compression of the traceroute table
when we use different sorting keys. The sorting key (source,
destination, timestamp) achieves better compression than
(destination, source, timestamp) and (timestamp, source, des-
tination) with the table taking 28GB on disk against 31GB
and 70 GB.
Compared to the compressed RIPE Atlas JSON files with

LZ4 which take 77 GB, MetaTrace takes 52GB in total, with
24 GB for the three materialized views (one ordered by the

reply IP address column, one by the ASN of the reply IP ad-
dress column and one by the country of the reply IP address
column). This shows that adding materialized views remains
reasonable in terms of disk space and that even with multiple
materialized views, MetaTrace remains in the same order of
magnitude as the original dataset.

4.3 MetaTrace performance on queries
We evaluate MetaTrace’s performance of three queries: two
predicate queries, one with a single field and one with multi-
ple fields (§4.3.2), and an aggregate query (§4.3.3).

We assess the query response time, memory (RAM) usage,
and the volume of bytes read by each solution to serve the
queries. The consideration of bytes read becomes crucial,
especially for systems with slower storage, as it can become
a potential bottleneck for I/O disk reads. Prior to this, we
address the insertion overhead.

4.3.1 Insertion overhead. Unlike the Python or Rust solu-
tion, database solutions require loading the data, once, in
the database. MetaTrace takes 1 hour to insert the results.
This corresponds to the time taken by 6 predicate queries
with the Rust solution (Table 1). In practice, we argue that
one generally needs more than 6 predicate queries to fully
analyze a set of 202 millions of traceroutes.

The addition of materialized views or indexes has no dis-
cernible impact on the insertion time, however the usage of
materialized views requires an additional gigabyte of mem-
ory at insertion time.

4.3.2 Predicate queries. The query consists in finding the
traceroutes going through a particular interface and return-
ing all the information of these traceroutes. For the Python
and Rust implementation, each thread opens a traceroute
file and performs a double for loop on the traceroutes (a json
object) and its hops. If the hop is found, it adds the traceroute
in memory. ClickHouse raw and ClickHouse with index run

5

Matthieu Gouel, Omar Darwich, Maxime Mouchet, and Kevin Vermeulen

a simple predicate query, whereas MetaTrace runs the predi-
cate query with the materialized views. The rows returned
by the three techniques are loaded in memory.
As shown in Table 1, MetaTrace outperforms the other

solutions in terms of query time and data read, while being
very reasonable in memory: MetaTrace takes 1.09 seconds
compared to 945 seconds for the Python solution and 602
seconds for the Rust solution, 3.68 seconds for the database
and 4.74 for the database with indexes. MetaTrace only reads
63 MB, whereas the Python and Rust solutions read 71.8
GB, the database solution reads 4.604 GB, the database with
indexes 835 MB. Finally, MetaTrace memory usage stays
under 60 MB, which is negligible on modern computers.
The difference in bytes read between the Python and Rust
solutions and ClickHouse based solutions comes from how a
column-oriented database works on queries with a predicate:
it only loads the column(s) on which there is a predicate,
and then loads the other columns of the rows matching that
predicate. In the Python and Rust solutions, each row has
to be read entirely in order to apply a filter on one column.
The results are similar for the predicate query with multiple
fields (Table 1).
We also provide information on the performance of Big-

Query: we cannot really provide an apple-to-apple compari-
son with MetaTrace, as we do not know the details of Big-
Query’s implementation nor its infrastructure. BigQuery
takes 16 seconds, reads 58 GB of data, and more importantly,
amounts to $0.29 at a cost of $5 per TB. The information
about memory usage is unavailable on BigQuery. Queries on
the country and ASN cannot be performed as these metadata
are not available on RIPE Atlas’s BigQuery project.

4.3.3 Aggregate queries. The query consists in computing
the mean RTT for each (source, destination) pair. As for the
predicate queries, for the Python and Rust solution, each
thread opens a traceroute file and compute the mean RTT
per (source, destination) in their file, and then the results are
merged as traceroutes with the same source and destination
can be located in different files. ClickHouse based solutions,
including MetaTrace, run the same aggregate query.
The most important result comes from the comparison

with Python and Rust solutions. MetaTrace is 94x faster than
the Python solution and 62x faster than the Rust solution.
Again, the memory usage is reasonable with 1.6GB. Also,
as expected, raw ClickHouse, ClickHouse with indexes and
MetaTrace perform similarly as they use the same sorting
key (§4.1) and take 11 seconds to execute the query.

4.3.4 MetaTrace scaling. We run the same aggregate query
as in Section 4.3.3 on subsamples of 1M, 10M, 100M, 1B rows
and the full table, with 2, 4, 8 and 16 CPU threads. We observe
that above 100M, the scaling is linear in both the number of
threads and the number of rows.

Table 2: Time in milliseconds to compute the average
RTT per origin-destination pair.

1M 10M 100M 1B 7.4B rows

2 threads 21 124 1110 11,263 80,928
4 threads 18 74 577 5771 40,970
8 threads 18 44 302 2951 20,884

16 threads 12 34 167 1548 10,799

4.4 MetaTrace on huge datasets
To demonstrate the capabilities of MetaTrace on a large
dataset, we analyze the fraction of traceroutes per year pass-
ing through a Tier 1 network using the Ark prefix-probing
dataset. This dataset comprises 6 billion traceroutes collected
from 2016 to 2022. Each cycle in the dataset involves every
source probing a destination in each BGP prefix, and the
cycle repeats indefinitely. The compressed data files are ap-
proximately 6.2 terabytes in size and are not stored on our
SSD, as in Section 4 To map IP addresses to their correspond-
ing Autonomous System (AS), we utilize Route Views [25]
over 15-day windows. Each predicate query required approx-
imately 240 seconds to execute. Running such a computation
in Python or Rust would take several days. Previous stud-
ies resorted to sampling the dataset and selecting only one
arbitrary traceroute (source, destination) pair per month to
investigate similar metrics [5].

5 RELATEDWORK

Towards a public framework to process the tracer-
outes: On the choice of the database, both RIPE Atlas and
CAIDA, the two entities running the traceroute measure-
ment infrastructures, are pushing towards the development
of a common framework to query the traceroutes. RIPE
Atlas has tried Apache Spark on Hadoop and also pushes its
data on BigQuery [2], while CAIDA uses Apache Spark and
Elasticsearch [1]. While these endeavors are closely related
to our work, we argue that these solutions require sub-
stantial infrastructure deployment, whereas our approach
can be implemented on a single server with reasonable
resources. Indeed, these solutions do not prioritize providing
a user-friendly framework that researchers can conveniently
use locally.

On the traceroute format, today’s production systems per-
forming traceroutes include RIPE Atlas [24]; M-Lab [20]; Iris
[18]; and CAIDA Ark [6]. Typically, measurement data is
shared as JSON, CSV, binary Warts files or BigQuery [17]
datasets and must be manually refined by the end user. Meta-
Trace provides a unified format transparent to the user with

6

Towards a Publicly Available Framework to Process Traceroutes with MetaTrace

open-source drivers transforming JSON, CSV, Warts or Big-
Query traceroutes into MetaTrace’s format2.
Usage of MetaTrace: Any system using traceroute mea-
surements [12, 16, 19, 21, 22] have to develop its implemen-
tation to process the traceroutes. For instance, some used a
custom Python implementation [16] with each traceroute
being represented as a JSON object, a raw database [19, 28],
or a graph representation of traceroute paths [22]3. In any
case, these systems would benefit from MetaTrace to scale
up.

6 CONCLUSION
This paper highlights the advantages of utilizing MetaTrace,
an intelligent utilization of ClickHouse, for traceroute pro-
cessing. We showcased the capabilities of ClickHouse in
efficiently addressing typical traceroute processing inquiries.
Our findings demonstrate that MetaTrace outperforms mul-
tiprocessed Python and Rust solutions, as well as the raw
ClickHouse database, in terms of query response time for
both predicate and aggregate queries. Furthermore, this per-
formance improvement is achieved while utilizing reason-
able amounts of memory, CPU, and disk resources. As a
result, MetaTrace enables the processing of large traceroute
datasets, potentially in combination, within a local environ-
ment.

A DATABASE SCHEMA
REFERENCES
[1] Fantail project, 2023. URL https://www.caida.org/projects/fantail/.
[2] RIPE Atlas presentation on Hadoop and BigQuery, 2023. URL https://

www.caida.org/workshops/aims/1904/slides/aims1904_eromero.pdf.
[3] Daniel J Abadi, Samuel R Madden, and Nabil Hachem. Column-stores

vs. row-stores: how different are they really? In Proceedings of the 2008
ACM SIGMOD international conference on Management of data, pages
967–980, 2008.

[4] Mark Allman and Vern Paxson. A reactive measurement framework.
In International Conference on Passive and Active Network Measurement,
pages 92–101. Springer, 2008.

[5] Timm Böttger, Gianni Antichi, Eder L Fernandes, Roberto di Lallo,
Marc Bruyere, Steve Uhlig, and Ignacio Castro. The elusive internet
flattening: 10 years of ixp growth. CoRR, 2018.

[6] CAIDA. Archipelago. https://www.caida.org/projects/ark.
[7] ClickHouse. ClickHouse database. https://clickhouse.yandex, .
[8] ClickHouse. ClickHouse Array Functions. https://clickhouse.com/

docs/en/sql-reference/functions/array-functions, .
[9] ClickHouse. ClickHouse Benchmark, .

https://benchmark.clickhouse.com.
[10] ClickHouse. Understanding ClickHouse Data Skipping In-

dexes. https://clickhouse.com/docs/en/guides/improving-query-
performance/skipping-indexes/, .

[11] ClickHouse. ClickHouse materialized views. https://clickhouse.com/
docs/en/sql-reference/statements/create/view, .

2https://github.com/dioptra-io/pantrace
3Private communication with the authors of the different papers.

Table 3: Schema of MetaTrace main table.

Field Database Type

probe_src_addr * IPv4 or IPv6
probe_dst_addr * IPv4 or IPv6
probe_src_port * UInt16
probe_dst_port * UInt16
probe_protocol * UInt8
traceroute_start * DateTime
probe_ttl UInt8
quoted_ttl UInt8
reply_ttl UInt8
reply_size UInt16
reply_mpls_labels Array(UInt32)
reply_src_addr IPv4 or IPv6
reply_icmp_type UInt8
reply_icmp_code UInt8
rtt UInt16
∗ Primary key used by MetaTrace
sorted in the vertical descending or-
der to optimize RAM and storage
(§3.5).

[12] Í. Cunha, P. Marchetta, M. Calder, Y-C. Chiu, B. Schlinker, B. V. A.
Machado, A. Pescapé, V. Giotsas, H. V. Madhyastha, and E. Katz-Bassett.
Sibyl: A Practical Internet Route Oracle. In Proc. USENIX NSDI, 2016.

[13] Amogh Dhamdhere, David D Clark, Alexander Gamero-Garrido,
Matthew Luckie, Ricky KP Mok, Gautam Akiwate, Kabir Gogia, Vaib-
hav Bajpai, Alex C Snoeren, and Kc Claffy. Inferring persistent inter-
domain congestion. In Proceedings of the 2018 Conference of the ACM
Special Interest Group on Data Communication, pages 1–15, 2018.

[14] Ashley Flavel, Pradeepkumar Mani, David Maltz, Nick Holt, Jie Liu,
Yingying Chen, and Oleg Surmachev. FastRoute: A Scalable Load-
Aware Anycast Routing Architecture for Modern CDNs. In Proc.
USENIX NSDI, 2015.

[15] Romain Fontugne, Cristel Pelsser, Emile Aben, and Randy Bush. Pin-
pointing delay and forwarding anomalies using large-scale traceroute
measurements. In Proc. ACM IMC, 2017.

[16] Vasileios Giotsas, Thomas Koch, Elverton Fazzion, Ítalo Cunha, Matt
Calder, Harsha V Madhyastha, and Ethan Katz-Bassett. Reduce, reuse,
recycle: Repurposing existing measurements to identify stale tracer-
outes. In Proc. ACM IMC, pages 247–265, 2020.

[17] Google. BigQuery. https://cloud.google.com/bigquery.
[18] Matthieu Gouel, Kevin Vermeulen, Maxime Mouchet, Justin P Rohrer,

Olivier Fourmaux, and Timur Friedman. Zeph & iris map the internet:
A resilient reinforcement learning approach to distributed ip route
tracing. Proc. ACM SIGCOMM Computer Communication Review, 52(1):
2–9, 2022.

[19] Ethan Katz-Bassett, Harsha V Madhyastha, Vijay Kumar Adhikari,
Colin Scott, Justine Sherry, Peter Van Wesep, Thomas E Anderson,
and Arvind Krishnamurthy. Reverse traceroute. In Proc. USENIX NSDI,
2010.

[20] M-Lab. M-Lab. https://www.measurementlab.net.
7

https://www.caida.org/projects/fantail/
https://www.caida.org/workshops/aims/1904/slides/aims1904_eromero.pdf
https://www.caida.org/workshops/aims/1904/slides/aims1904_eromero.pdf
https://www.caida.org/projects/ark
https://clickhouse.yandex
https://clickhouse.com/docs/en/sql-reference/functions/array-functions
https://clickhouse.com/docs/en/sql-reference/functions/array-functions
https://clickhouse.com/docs/en/guides/improving-query-performance/skipping-indexes/
https://clickhouse.com/docs/en/guides/improving-query-performance/skipping-indexes/
https://clickhouse.com/docs/en/sql-reference/statements/create/view
https://clickhouse.com/docs/en/sql-reference/statements/create/view
https://github.com/dioptra-io/pantrace
https://cloud.google.com/bigquery
https://www.measurementlab.net

Matthieu Gouel, Omar Darwich, Maxime Mouchet, and Kevin Vermeulen

[21] H. Madhyastha, E. Katz-Bassett, T. Anderson, A. Krishnamurthy, and
A. Venkataramani. iPlane Nano: Path Prediction for Peer-to-peer
Applications. In Proc. USENIX NSDI, 2009.

[22] Harsha V Madhyastha, Tomas Isdal, Michael Piatek, Colin Dixon,
Thomas Anderson, Arvind Krishnamurthy, and Arun Venkataramani.
iplane: An information plane for distributed services. In Proc. USENIX
OSDI, pages 367–380, 2006.

[23] RIPE NCC. Atlas daily dumps. https://data-store.ripe.net/datasets/
atlas-daily-dumps/.

[24] RIPE NCC Staff. RIPE Atlas: A global internet measurement network.
Internet Protocol Journal, 18(3):2–26, 2015.

[25] University of Oregon. Route Views. http://www.routeviews.org/.

[26] Kevin Vermeulen, Stephen D Strowes, Olivier Fourmaux, and Timur
Friedman. Multilevel MDA-Lite Paris traceroute. In Proc. ACM IMC.
ACM, 2018.

[27] Kevin Vermeulen, Justin P Rohrer, Robert Beverly, Olivier Fourmaux,
and Timur Friedman. Diamond-miner: Comprehensive discovery of
the internet’s topology diamonds. In Proc. USENIX NSDI, 2020.

[28] Kevin Vermeulen, Ege Gurmericliler, Ítalo Cunha, Dave Choffnes, and
Ethan Katz-Bassett. Internet scale reverse traceroute. In Proc. ACM
IMC, 2022.

[29] J. Ziv and A. Lempel. A universal algorithm for sequential data com-
pression. IEEE Transactions on Information Theory, 23(3):337–343, 1977.
doi: 10.1109/TIT.1977.1055714.

8

https://data-store.ripe.net/datasets/atlas-daily-dumps/
https://data-store.ripe.net/datasets/atlas-daily-dumps/
http://www.routeviews.org/

	Abstract
	1 Introduction
	2 Motivation
	3 Methodology
	3.1 Which processing do we want to perform?
	3.2 Which database to choose?
	3.3 Which schema to represent a traceroute?
	3.4 What queries can we write with ?
	3.5 How to minimize resource usage?
	3.6 How to optimize predicate queries?
	3.7 How to add metadata on traceroutes?

	4 Evaluation
	4.1 Dataset and setup
	4.2 storage efficiency
	4.3 performance on queries
	4.4 on huge datasets

	5 Related Work
	6 Conclusion
	A Database schema
	References

