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ABSTRACT

A few errors and typos have been identified in P. Gaillard, V. Giovangigli and L.
Matuszewski, A Diffuse Interface Lox/Hydrogen Transcritical Flame Model, Comb.
Theor. Mod., 20 486-520 (2016), doi.org/10.1080/13647830.2016.1150518 and are
listed here.

1. Entropy production and related fluxes

Thermodynamic methods using entropy production rates have been found to be am-
biguous for diffuse interface fluid models [2, 3]. There are indeed various terms in
the entropy production rate that involve products of several gradients. The complete
Korteweg or Cahn-Hilliard fluid models can only be derived unambiguously from the

kinetic theory of gases or that of dense gas mixtures [2, 3]. The useful form of entropy
production that yields the proper fluxes is presented in this Erratum as well as the
corresponding fluxes. The equation numbers used in the following are identical to those
of the original publication [1].

The transport fluxes are derived by expressing the entropy production rate in terms
of the fluxes and the variable gradients and proceeding as in the thermodynamics of
irreversible processes [2, 3]. By using Gibbs relation it may obtained after some algebra
that [3]
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where t denotes time, ∇ the usual differential operator, v the fluid velocity, S is the
entropy per unit volume, Q denotes the total heat flux, T the absolute temperature,
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S = {1, . . . , n} the species indexing set, n the number of species, ρi the partial density
of the ith species, Ji the mass flux of the ith species. gi the Gibbs function per
unit mass of the ith species, P the total pressure tensor, p the pressure, and I the
unit tensor. The—mass based—vectors φi, i ∈ S, are given by φi =

∑

j∈S κij∇ρj ,
i ∈ S, and κij , i, j ∈ S, denote the mass based capillary coefficients. Proceeding as
in the thermodynamics of irreversible processes, and using the Curie principle, one
may deduce from the expression of entropy production (11), that the pressure tensor
is given by (12) from [1] and that the total heat flux is in the form
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where Π is the viscous tensor and q the dissipative heat flux. The viscous tensor Π
is given by (14) from [1] whereas the the dissipative transport fluxes Ji, i ∈ S, and q

are given by
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where v denotes the volume viscosity, η the shear viscosity and Lij, i, j ∈ S ∪ {e},
the mass and heat transport coefficients. The matrix of mass and heat transport
coefficients L defined by L = (Lij)i,j∈S∪{e} is symmetric positive semi-definite with

nullspace spanned by the vector (1, . . . , 1, 0)t as for ordinary fluids. The fluxes Ji,
i ∈ S, and q are obtained here in their thermodynamic form.

The pressure tensor, the Π , the total heat flux (13) and the dissipative fluxes Ji,
i ∈ S, and q given by (15) and (16) are the fluxes obtained from the kinetic theory of
dense gases remoubing the ambiguities associated with thermodynalic methods applied
to diffuse interface models [2, 3].

Note that all the ambiguous terms that have been clarified with the help of the
kinetic theory of dense gases are zero under the simplifying assumption that all the
mass based capillary coefficents are equal κij = κ, i, j ∈ S that has been used in [1].

2. Nonideal strained diffuse interfaces

2.1. Small Mach number limit for flat interfaces

The zeroth order energy conservation equation in terms of the enthalpy h = h0 takes
the simplified form

ρ∂th+ ρv∇·h+∇·q = ∂tp
0 + v·∇p0, (29)

with a term v·∇p0 that is not anymore a priori negligible as for standard fluids. In
particular, the correct heat equation involves the dissipative flux is q and not Q as
was incorrectly written in [1].
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2.2. Strained flows

The correct energy equation is

ρ∂th+ ρv∂ζh− v∂ζp
0 + ∂ζq = 0, (33)

with naturally q in place of Q. These typos only appear in the presentation of the
model and the proper equations have been used in the simulations.
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