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Erratum for A Diffuse Interface Lox/Hydrogen Transcritical Flame Model

Entropy production and related fluxes

Thermodynamic methods using entropy production rates have been found to be ambiguous for diffuse interface fluid models [START_REF] Giovangigli | A kinetic derivation of diffuse interface fluid models[END_REF][START_REF] Giovangigli | Kinetic Derivation of Cahn-Hilliard Fluid Models[END_REF]. There are indeed various terms in the entropy production rate that involve products of several gradients. The complete Korteweg or Cahn-Hilliard fluid models can only be derived unambiguously from the kinetic theory of gases or that of dense gas mixtures [START_REF] Giovangigli | A kinetic derivation of diffuse interface fluid models[END_REF][START_REF] Giovangigli | Kinetic Derivation of Cahn-Hilliard Fluid Models[END_REF]. The useful form of entropy production that yields the proper fluxes is presented in this Erratum as well as the corresponding fluxes. The equation numbers used in the following are identical to those of the original publication [START_REF] Gaillard | A Diffuse Interface Lox/Hydrogen Transcritical Flame Model[END_REF].

The transport fluxes are derived by expressing the entropy production rate in terms of the fluxes and the variable gradients and proceeding as in the thermodynamics of irreversible processes [START_REF] Giovangigli | A kinetic derivation of diffuse interface fluid models[END_REF][START_REF] Giovangigli | Kinetic Derivation of Cahn-Hilliard Fluid Models[END_REF]. By using Gibbs relation it may obtained after some algebra that [START_REF] Giovangigli | Kinetic Derivation of Cahn-Hilliard Fluid Models[END_REF] 
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where t denotes time, ∇ the usual differential operator, v the fluid velocity, S is the entropy per unit volume, Q denotes the total heat flux, T the absolute temperature, ⋆ Corresponding author. Email: vincent.giovangigli@polytechnique.fr S = {1, . . . , n} the species indexing set, n the number of species, ρ i the partial density of the ith species, J i the mass flux of the ith species. g i the Gibbs function per unit mass of the ith species, P the total pressure tensor, p the pressure, and I the unit tensor. The-mass based-vectors φ i , i ∈ S, are given by φ i = j∈S κ ij ∇ρ j , i ∈ S, and κ ij , i, j ∈ S, denote the mass based capillary coefficients. Proceeding as in the thermodynamics of irreversible processes, and using the Curie principle, one may deduce from the expression of entropy production (11), that the pressure tensor is given by ( 12) from [START_REF] Gaillard | A Diffuse Interface Lox/Hydrogen Transcritical Flame Model[END_REF] and that the total heat flux is in the form

Q = i∈S φ i ρ i ∇•v + ∇•J i -m i ω i - i∈S ∇•φ i J i + q, ( 13 
)
where Π is the viscous tensor and q the dissipative heat flux. The viscous tensor Π is given by ( 14) from [START_REF] Gaillard | A Diffuse Interface Lox/Hydrogen Transcritical Flame Model[END_REF] whereas the the dissipative transport fluxes J i , i ∈ S, and q are given by
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)
where v denotes the volume viscosity, η the shear viscosity and L ij , i, j ∈ S ∪ {e}, the mass and heat transport coefficients. The matrix of mass and heat transport coefficients L defined by L = (L ij ) i,j∈S∪{e} is symmetric positive semi-definite with nullspace spanned by the vector (1, . . . , 1, 0) t as for ordinary fluids. The fluxes J i , i ∈ S, and q are obtained here in their thermodynamic form.

The pressure tensor, the Π, the total heat flux (13) and the dissipative fluxes J i , i ∈ S, and q given by (15) and ( 16) are the fluxes obtained from the kinetic theory of dense gases remoubing the ambiguities associated with thermodynalic methods applied to diffuse interface models [START_REF] Giovangigli | A kinetic derivation of diffuse interface fluid models[END_REF][START_REF] Giovangigli | Kinetic Derivation of Cahn-Hilliard Fluid Models[END_REF].

Note that all the ambiguous terms that have been clarified with the help of the kinetic theory of dense gases are zero under the simplifying assumption that all the mass based capillary coefficents are equal κ ij = κ, i, j ∈ S that has been used in [START_REF] Gaillard | A Diffuse Interface Lox/Hydrogen Transcritical Flame Model[END_REF].

Nonideal strained diffuse interfaces

Small Mach number limit for flat interfaces

The zeroth order energy conservation equation in terms of the enthalpy h = h 0 takes the simplified form

ρ∂ t h + ρv∇•h + ∇•q = ∂ t p 0 + v•∇p 0 , (29) 
with a term v•∇p 0 that is not anymore a priori negligible as for standard fluids. In particular, the correct heat equation involves the dissipative flux is q and not Q as was incorrectly written in [START_REF] Gaillard | A Diffuse Interface Lox/Hydrogen Transcritical Flame Model[END_REF].

Strained flows

The correct energy equation is

ρ∂ t h + ρv∂ ζ h -v∂ ζ p 0 + ∂ ζ q = 0, (33) 
with naturally q in place of Q. These typos only appear in the presentation of the model and the proper equations have been used in the simulations.