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General Formulas of the Structure Constants in the su(N) Lie Algebra

We provide the analytic expressions of the totally symmetric and anti-symmetric structure constants in the su(N ) Lie algebra. The derivation is based on a relation linking the index of a generator to the indexes of its non-null elements. The closed formulas obtained to compute the values of the structure constants are simple expressions involving those indexes and can be analytically evaluated without any need of the expression of the generators. We hope that these expressions can be widely used for analytical and computational interest in Physics.

The su(N ) Lie algebra and their corresponding Lie groups are widely used in fundamental physics, particularly in the Standard Model of particle physics [START_REF] Halzen | Quarks and Leptons: An Introductory Course in Modern Particle Physics[END_REF][START_REF] Georgi | Lie Algebras In Particle Physics: from Isospin To Unified Theories[END_REF]. The su(2) Lie algebra is used describe the spin- 1 2 system. Its generators, the spin operators, are Ŝj = 2 σ j with the Pauli matrices

σ 1 = 0 1 1 0 , σ 2 = 0 -i i 0 , σ 3 = 1 0 0 -1 . ( 1 
)
The generators of the su(3) Lie algebra are proportional to the Gell-Mann λ matrices [START_REF] Gell-Mann | Symmetries of baryons and mesons[END_REF] as Ŝj = 2 λ j , with

λ 1 =   0 1 0 1 0 0 0 0 0   , λ 2 =   0 -i 0 i 0 0 0 0 0   , λ 3 =   1 0 0 0 -1 0 0 0 0   λ 4 =   0 0 1 0 0 0 1 0 0   , λ 5 =   0 0 -i 0 0 0 -i 0 0   , λ 6 =   0 0 0 0 0 1 0 1 0   λ 7 =   0 0 0 0 0 -i 0 i 0   , λ 8 = 1 √ 3   1 0 0 0 1 0 0 0 -2   . ( 2 
)
These matrices are used in quantum chromodynamics as an approximate symmetry of the strong interaction between quarks and gluons [START_REF] Gell-Mann | Symmetries of baryons and mesons[END_REF]. There are different manners for obtaining the generators of an algebra, but the most commonly used one in physics is based on a generalization of the Pauli matrices of su(2) and of the Gell-Mann matrices [START_REF] Gell-Mann | Symmetries of baryons and mesons[END_REF] of su [START_REF] Gell-Mann | Symmetries of baryons and mesons[END_REF], which is what we used in this work.

The generators of the su(N ) Lie algebra can be expressed as follows [START_REF] Kimura | The bloch vector for n-level systems[END_REF][START_REF] Bertlmann | Bloch vectors for qudits[END_REF]. There are a total of N (N -1)/2 symmetric matrices

ŜSnm = 2 |m n| + |n m| , (3) 
as well as N (N -1)/2 anti-symmetric matrices

ŜAnm = -i 2 |m n| -|n m| , (4) 
and N -1 diagonal matrices (so-called Cartan generators)

ŜDn = 2n(n -1) n-1 k=1 |k k| + (1 -n)|n n| , (5) 
The indexes S nm , A nm and D n indicate generators corresponding to the symmetric, anti-symmetric, and diagonal matrices, respectively. The explicit relation between a projection operator |m n| and the generators can be found in Ref. [START_REF] Bertlmann | Bloch vectors for qudits[END_REF]. Note that these generators are traceless Tr[ Ŝi ] = 0, as well as orthonormal Tr[ Ŝi Ŝj ] = 2 2 δ ij . These higher dimensional su(N ) Lie algebra are commonly used in particle physics. For example, the su(6) Lie algebra in the quark model [START_REF] Kokkedee | The quark model[END_REF]; in the search of a Grand Unification Theory (GUT), su(5) has been proposed as the simplest possible version of GUT by Georgi and Glashow [START_REF] Georgi | Unity of All Elementary-Particle Forces[END_REF]. In atomic and optical physics [START_REF] Hioe | N -Level Coherence Vector and Higher Conservation Laws in Quantum Optics and Quantum Mechanics[END_REF], as well as in physical chemistry [START_REF] Meyer | Classical models for electronic degrees of freedom: Derivation via spin analogy and application to F * +H2 → F+H2[END_REF][START_REF] Runeson | Spin-mapping approach for nonadiabatic molecular dynamics[END_REF], spin analogy is used to map the electronic-nuclear dynamics of open quantum systems involving non-adiabaticity [START_REF] Meyer | Classical models for electronic degrees of freedom: Derivation via spin analogy and application to F * +H2 → F+H2[END_REF][START_REF] Runeson | Spin-mapping approach for nonadiabatic molecular dynamics[END_REF][START_REF] Kuratsuji | Path integral in the representation of SU(2) coherent state and classical dynamics in a generalized phase space[END_REF][START_REF] Runeson | Generalized spin mapping for quantum-classical dynamics[END_REF][START_REF] Bossion | Non-adiabatic ring polymer molecular dynamics with spin mapping variables[END_REF]. The su(N ) Lie algebra is also proposed as general mapping between a multi-state Hamiltonian and a classical-like Hamiltonian [START_REF] Runeson | Generalized spin mapping for quantum-classical dynamics[END_REF]. In quantum computing, the su(N ) Lie algebra [START_REF] Bertlmann | Bloch vectors for qudits[END_REF][START_REF] Patera | The pauli matrices in n dimensions and finest gradings of simple lie algebras of type an1[END_REF] is widely used for describing the qudit [START_REF] Wang | Qudits and high-dimensional quantum computing[END_REF], the state of a d-state quantum system.

The crucial quantities to define an algebra are the generators and what govern their commutation and anticommutation relations. These relations give rise to the structure constants, where the totally anti-symmetric structure constant, f ijk , is defined through the commutation relation

[ Ŝi , Ŝj ] = i N 2 -1 k=1 f ijk Ŝk , (6) 
which is anti-symmetric under the exchange of any two indexes. The totally symmetric structure constant, d ijk , is determined through the anti-commutation relation

{ Ŝi , Ŝj } = 2 N δ ij Î + N 2 -1 k=1 d ijk Ŝk , (7) 
which is symmetric under the exchange of any two indexes. Using the properties in Eq. 6 and Eq. 7, as well as the fact that the generators are traceless and orthogonal to each other, one can derive the well-known results [START_REF] Haber | Useful relations among the generators in the defining and adjoint representations of SU(N )[END_REF] 

f ijk = -i 2 3 Tr [ Ŝi , Ŝj ] Ŝk ; d ijk = 2 3 Tr { Ŝi , Ŝj } Ŝk . (8) 
Using the above relation as well as general expressions of the generators (Eq. 3-5) one can compute the numerical values of all the structure constants of the su(N ) algebra through Eq. 8, as has been commonly done in the literature. However, this requires laboriously efforts of different combinations of the N 2 -1 generators of su(N ), which remain numerous even when considering the symmetry properties of the structure constants when N is large. Despite the extensive usage and crucial role of these structure constants, to the best of our knowledge [17], we are not aware of any analytic expression (closed formulas) of f ijk and d ijk .

In this letter, we derive the analytic expressions of the structure constants in the su(N ) Lie algebra. The key results are summarized in Eq. 14 for f ijk and Eq. 21 for d ijk . We first determine the relation of the indexes of the generators (see Eq. 3-5) S nm , A nm , and D nm with the label n and m. We note that one can use recursive relations to obtain the generators of su(N + 1) from the generators of su(N ) [18]. This helps to determine the indexes of the generators as

S nm =n 2 + 2(m -n) -1, (9a) 
A nm =n 2 + 2(m -n), (9b) 
D n =n 2 -1. (9c) 
Note that there is no overlap among the indexes as long as the conditions 1 ≤ m < n ≤ N holds. Hence, there is a one to one correspondence between the value i ∈ {S nm , A nm , D n } with indexes {n, m}, which helps us to identify the type of generator it labels. This is the first key step to determine closed formulas of structure constants.

The Totally Anti-symmetric Structure Constants f ijk . The commutation relation between two symmetric generators is

[ ŜSnm , ŜS n ′ m ′ ] = i N 2 -1 k=1 f SnmS n ′ m ′ k Ŝk (10) = 2 4 δ nm ′ (|m n ′ | -|n ′ m|) + δ nn ′ (|m m ′ | -|m ′ m|) + δ mm ′ (|n n ′ | -|n ′ n|) + δ mn ′ (|n m ′ | -|m ′ n|) = i 2 δ nm ′ ŜA n ′ m + δ nn ′ ( ŜA m ′ m -ŜA mm ′ ) + δ mm ′ ( ŜA n ′ n -ŜA nn ′ ) -δ mn ′ ŜA nm ′ .
With constraints from δ ij , we can identify the index of each generator, and hence obtain the non-zero analytic expression of f SnmS n ′ m ′ k , which are summarized in the first line of Eq. 14.

For a symmetric and an anti-symmetric generator, the commutation relation is

[ ŜSnm , ŜA n ′ m ′ ] = i N 2 -1 k=1 f SnmA n ′ m ′ k Ŝk (11) = i 2 4 δ nn ′ (|m m ′ | + |m ′ m|) -δ nm ′ (|m n ′ | + |n ′ m|) + δ mn ′ (|n m ′ | + |m ′ n|) -δ mm ′ (|n n ′ | + |n ′ n|) = i 2 δ nn ′ ( ŜS m ′ m + ŜS mm ′ ) -δ nm ′ ŜS n ′ m + δ mn ′ ŜS nm ′ -δ mm ′ ( ŜS n ′ n + ŜS nn ′ ) + 2 δ mm ′ δ nn ′ (2|m m| -2|n n|) .
The first two lines of the last equality in Eq. 11 give us directly several structure constants. The last line of Eq. 11 contains diagonal elements, hence we know it will be a combination of diagonal generators. In fact, we can prove (see Supplemental Material [19], Sec I) that

i 2 2 (|m m| -|n n|) (12) = i n 2(n -1) ŜDn + n-1 k>m ŜD k 2k(k -1) - m -1 2m ŜDm .
This helps to determine the rest of the structure constant f SnmA n ′ m ′ k with the expressions documented in Eq. 14.

The commutation relations between symmetric and diagonal generators are not required as we already obtained all the non-zero structure constants involving diagonal and symmetric generators (as we know that we cannot obtain a diagonal matrix through the commutator of a symmetric and a diagonal generator).

Between two anti-symmetric generators, the commutation relation is

[ ŜAnm , ŜA n ′ m ′ ] = i N 2 -1 k=1 f AnmA n ′ m ′ k Ŝk (13) = 2 4 δ nm ′ (|n ′ m| -|m n ′ |) + δ nn ′ (|m m ′ | -|m ′ m|) + δ mm ′ (|n n ′ | -|n ′ n|) + δ mn ′ (|m ′ n| -|n m ′ |) = i 2 -δ nm ′ ŜA n ′ m + δ nn ′ ( ŜA m ′ m -ŜA mm ′ ) + δ mm ′ ( ŜA n ′ n -ŜA nn ′ ) + δ mn ′ ŜA nm ′ ,
which helps to determine the structure constants involving all anti-symmetric generators (second line of Eq. 14). The remaining totally anti-symmetric structure constants are computed through the commutator between two diagonal generators, which is [ ŜDn ,

ŜD n ′ ] = i N 2 -1 k=1 f DnD n ′ k Ŝk = 0 (see proof in Supplemental Ma- terial, Sec II), indicating a zero value for all f DnD n ′ k .
This was a known fact, as the diagonal matrices are generators of the Cartan subalgebra of su(N ), and they commute by definition [START_REF] Georgi | Lie Algebras In Particle Physics: from Isospin To Unified Theories[END_REF].

To summarize, all of the non-zero totally antisymmetric structure constants are expressed as follows

f SnmS kn A km = f SnmS nk A km = f SnmS km A kn = 1 2 , (14) 
f AnmA km A kn = 1 2 , f SnmAnmDm = - m -1 2m , f SnmAnmDn = n 2(n -1) , f SnmAnmD k = 1 2k(k -1)
, m < k < n.

One of the interesting usages of these expressions is the construction of an adjoint representation of the su(N ) Lie algebra, which is a defining representation of SO(N 2 -1), whose generators Ti are (N 2 -1)×(N 2 -1) matrices. The (jk)-th matrix element of Ti is [ Ti ] jk = -if ijk . Thus, Ti are anti-symmetric, non-diagonal and traceless, and we provide analytic expressions to obtain them through the totally anti-symmetric structure constants expressions.

Totally Symmetric Structure Constants d ijk . The anti-commutation relation between two symmetric generators is

{ ŜSnm , ŜS n ′ m ′ } = 2 N δ SnmS n ′ m ′ Î + N 2 -1 k=1 d SnmS n ′ m ′ k Ŝk = 2 4 δ nm ′ (|m n ′ | + |n ′ m|) + δ nn ′ (|m m ′ | + |m ′ m|) + δ mm ′ (|n n ′ | + |n ′ n|) + δ mn ′ (|n m ′ | + |m ′ n|) = 2 δ nm ′ ŜS n ′ m + δ nn ′ ( ŜS m ′ m + ŜS mm ′ ) + δ mm ′ ( ŜS n ′ n + ŜS nn ′ ) + δ mn ′ ŜS nm ′ + δ nn ′ δ mm ′ 2 (2|m m| + 2|n n|) . ( 15 
)
We know that the last line of Eq. 15 only involves diagonal matrices. In fact, we can prove that (see Supplemental Material, Sec III)

2 2 (|m m| + |n n|) = 2 N Î (16) + N k>n 2 k(k -1) ŜD k + 2 -n 2n(n -1) ŜDn + n-1 k=m+1 1 2k(k -1) ŜD k - m -1 2m
ŜDm .

Thus, we can extract all the non-zero d SnmS n ′ m ′ k , with the expressions summarized in Eq. 21.

Between a symmetric and an anti-symmetric generator, the anti-commutation relation reads

{ ŜSnm , ŜA n ′ m ′ } = N 2 -1 k=1 d SnmA n ′ m ′ k Ŝk (17) = i 2 4 δ nm ′ (|n ′ m| -|m n ′ |) + δ nn ′ (|m m ′ | -|m ′ m|) + δ mm ′ (|n ′ n| -|n n ′ |) + δ mn ′ (|n m ′ | -|m ′ n|) = 2 δ nm ′ ŜA n ′ m + δ nn ′ ( ŜA mm ′ -ŜA m ′ m ) + δ mm ′ ( ŜA n ′ n -ŜA nn ′ ) + δ mn ′ ŜA nm ′ ,
from which one can extract d SnmA n ′ m ′ k . Note that based on Eq. 17, there is no diagonal component ŜD , thus all the d SAD = 0. The anti-commutator between symmetric and diagonal generators is not necessary as we already obtained the structure constants involving those generators by permutation [20].

Computing the anti-commutators between two antisymmetric generators gives

{ ŜAnm , ŜA n ′ m ′ } = 2 N δ AnmA n ′ m ′ Î + N 2 -1 k=1 d AnmA n ′ m ′ k Ŝk = 2 4 δ nn ′ (|m m ′ | + |m ′ m|) -δ nm ′ (|m n ′ | + |n ′ m|) + δ mm ′ (|n n ′ | + |n ′ n|) -δ mn ′ (|n m ′ | + |m ′ n|) = 2 δ nn ′ ( ŜS m ′ m + ŜS mm ′ ) -δ nm ′ ŜS n ′ m + δ mm ′ ( ŜS n ′ n + ŜS nn ′ ) -δ mn ′ ŜS nm ′ + δ nn ′ δ mm ′ 2 (2|m m| + 2|n n|) , (18) 
where we recognize that the last line of Eq. 18 is identical to the last line of Eq. 15, which can be expressed as generators in Eq. 18. We do not need to compute the anti-commutator between an asymmetric and a diagonal generator as we already have the result by permutation from Eq. 18 (and Eqs. 17 indicates d SAD = 0).

The remaining d ijk values are obtained through the anti-commutator between two diagonal generators

{ ŜDn , ŜD n ′ } = 2 N δ DnD n ′ Î + N 2 -1 k=1 d DnD n ′ k Ŝk (19) = 2 2n(n -1)2n ′ (n ′ -1) n-1 k=1 δ kk ′ (|k k ′ | + |k ′ k|) + δ kn ′ (1 -n ′ )(|k n ′ | + |n ′ k|) + δ nk ′ (1 -n)(|n k ′ | + |k ′ n|) + δ nn ′ (1 -n)(1 -n ′ )(|n n ′ | + |n ′ n|) = 2n(n -1) 2δ kn ′ ŜD n ′ + 2n ′ (n ′ -1) 2δ nk ′ ŜDn + δ nn ′ 2 n(n -1) ( n-1 k=1 |k k| + (1 -n) 2 |n n|).
One can see that only diagonal matrices are involved in the last line of Eq. 19 and there is no off-diagonal element. We can prove that (see Supplemental Material, Sec IV)

2 n(n -1) ( n-1 k=1 |k k| + (1 -n) 2 |n n|) = 2 N Î (20) + N k>n 2 k(k -1) ŜD k + (2 -n) 2 n(n -1)
ŜDn , which helps to determine all d DnD n ′ k . We summarize all the non-zero totally symmetric structure constants as follows

d SnmS kn S km = d SnmA kn A km = d SnmA mk A nk = 1 2 , ( 21 
)
d SnmA nk A km = - 1 2 , d SnmSnmDm = d AnmAnmDm = - m -1 2m , d SnmSnmD k = d AnmAnmD k = 1 2k(k -1) , m < k < n, d SnmSnmDn = d AnmAnmDn = 2 -n 2n(n -1) , d SnmSnmD k = d AnmAnmD k = 2 k(k -1) , n < k, d DnD k D k = 2 n(n -1) , k < n, d DnDnDn = (2 -n) 2 n(n -1)
.

In a recent work on deriving the quantum Liouvillian of coupled electronic-nuclear DOFs based upon the su(N ) representation (see Appendix F in Ref. [START_REF] Runeson | Generalized spin mapping for quantum-classical dynamics[END_REF]), these d ijk are explicitly present in the equation of motion. Having the above analytic expressions will facilitate future theoretical developments.

Mapping Hamiltonian using the su(N ) Lie Algebra. The SU(2) representation of the Lie algebra (spin-1 2 analogy) is often used in quantum dynamics to study systems with two states [START_REF] Meyer | Classical models for electronic degrees of freedom: Derivation via spin analogy and application to F * +H2 → F+H2[END_REF][START_REF] Runeson | Spin-mapping approach for nonadiabatic molecular dynamics[END_REF][START_REF] Bossion | Non-adiabatic ring polymer molecular dynamics with spin mapping variables[END_REF]. For a two level system with the Hamiltonian Ĥ = H

0 Î + 1 H • Ŝ = H 0 Î + k 1 (H k • Ŝk ) = H 0 Î + 1 [2R(V 12 ) • Ŝx + 2I(V 12 ) • Ŝy +(V 11 -V 22 )
• Ŝz ], it can be shown (through the Heisenberg equations of motion (EOMs)) that

d dt S i = 1 3 j,k ε ijk H j S k , (22) 
where S i = Tr[ρ Ŝi ] is the expectation value of Ŝi , ρ being the density operator, and ε ijk the Levi-Civita tensor which is the two-dimension totally anti-symmetric structure constant f ijk . This is equivalent to the precession of spin of a spin-1 2 system around a magnetic field M = H, which is a well-known result (eg, Page 424 of Ref. [START_REF] Cohen-Tannoudji | Quantum Mechanics[END_REF]). Those EOMs exactly obey the time-dependent Schrödinger equation (TDSE), ċi = -i 2 j=1 V ij c j . More specifically, with an arbitrary state defined as |Ψ = c 1 |1 + c 2 |2 , by using the transformation S

x = Re{c * 1 c 2 }, S y = Im{c * 1 c 2 } and S z = 1 2 (|c 1 | 2 -|c 2 | 2 )
, one can show that Eq. 22 is equivalent to TDSE.

For a system with N states, one can use the su(N ) Lie algebra for the spin analogy [START_REF] Hioe | N -Level Coherence Vector and Higher Conservation Laws in Quantum Optics and Quantum Mechanics[END_REF][START_REF] Meyer | Classical models for electronic degrees of freedom: Derivation via spin analogy and application to F * +H2 → F+H2[END_REF][START_REF] Runeson | Generalized spin mapping for quantum-classical dynamics[END_REF], describing the precession of the N -states system [22]. This su(N ) analogy is based on a reformulation of the Hamiltonian Ĥ = H 0 Î + Ve ( R) with the generators of su(N ) as follows [START_REF] Hioe | N -Level Coherence Vector and Higher Conservation Laws in Quantum Optics and Quantum Mechanics[END_REF][START_REF] Runeson | Generalized spin mapping for quantum-classical dynamics[END_REF] Ĥ = H 0 Î + 1 

N 2 -1 k=1 H k Ŝk , (23) 
f ijk H j S k . ( 24 
)
where f ijk is the totally anti-symmetric structure constant of su(N ). For an arbitrary state defined as |Ψ = 

|c k | 2 - n -1 2n |c n | 2 , (26) 
and the analytic expressions of the f ijk , one can show that Eq. 24 is equivalent to the TDSE . Hence Eq. 24 now has a closed formula.

Conclusion.

In this letter, we provide the analytic expressions of the totally symmetric and totally antisymmetric structure constants for the su(N ) Lie algebra. We hope that these expressions can be widely used for analytical and computational interest in Physics, as they are valid for any dimension N of su(N ) Lie algebra without the need to explicitly compute the commutation and anti-commutation relations or use any generator. The structure constants bear important information on the algebra they belong to, and the possibility to obtain those constants with simple relations can bring insight into the high dimensional su(N ) Lie algebra, which might be challenging otherwise.

where H k = 1 1 N Î + 1 2 N 2 - 1 k=1

 11221 Tr[ Ĥ Ŝk ]. Similarly, for the density matrix [8] ρ = S k Ŝk where S k = Tr[ρ Ŝk ]. Plugging the su(N ) generator expression of Ĥ and ρ into the quantum Liouville equation i ∂ ρ/∂t = [ Ĥ, ρ], one arrives at the following equation [23] which can be viewed as the generalization of the spin precession [8

N k=1 c k

  |k , using the transformationS Snm = Re{c * m c n }, S Anm = Im{c * m c n },

ACKNOWLEDGMENTS

This work was supported by the National Science Foundation CAREER Award under Grant No. CHE-1845747.