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Introduction

We discuss here the existence, the unicity and the asymptotic behavior of weak solutions of the kinetic Fokker-Planck equation in a bounded domain with absorbing boundary. Let an integer d ≥ 2 and let Ω be a bounded, open and smooth subset of R d . As its boundary is smooth, we can define for any q ∈ ∂Ω the outer normal vector n q . Hence, we can decompose ∂Ω = Γ + ∪ Γ -∪ Γ 0 with:

Γ + = (q, p) ∈ ∂Ω × R d |p • n q > 0 , Γ -= (q, p) ∈ ∂Ω × R d |p • n q < 0 , Γ 0 = (q, p) ∈ ∂Ω × R d |p • n q = 0 . Let σ ∈ R * + , γ ∈ R and F ∈ C ∞ R d , R d
, we introduce the operator:

(1)

L = -p • ∇ q -F (q) • ∇ p + γ∇ p • (p•) + σ 2 2 ∆ p ,
and its formal adjoint in L 2 (dx)

(2)

L * = p • ∇ q + F (q) • ∇ p -γp • ∇ p + σ 2 2 ∆ p .
Following [START_REF] Lelièvre | A probabilistic study of the kinetic Fokker-Planck equation in cylindrical domains[END_REF][START_REF] Lelièvre | Quasi-stationary distribution for the Langevin process in cylindrical domains, Part I: Existence, uniqueness and long-time convergence[END_REF], we denote D := Ω × R d , D = Ω × R d and ∂D := ∂Ω × R d . The variable x ∈ D represents the couple (q, p) ∈ D and dx = dqdp. We will use preferably this notation except when the two variables q and p do not have symmetrical roles, as in the beginning of subsection 2.1.

The so-called kinetic Fokker-Planck equation is the following initial-boundary problem for f ≡ f (t, x):

(3)

     ∂ t f = Lf on (0, T ) × D, T > 0, f (t, x) = 0 on (0, T ) × Γ -, f (0, x) = f in (x) on D.
It models the collective behavior of particles evolving inside Ω with velocity in R d , with initial distribution f in , submitted both to friction and to an exterior force F with a thermal bath respectively encoded by the friction term γ∇ p • (p•), the exterior term F (q) • ∇ p • and the term of diffusion in velocity σ 2 2 ∆ p . The quantity f (t, x)dtdx ≡ f (t, q, p)dtdqdp represents the number of particles at time interval [t, t + dt], in the infinitesimal volume B(q, dq) × B(p, dp) ⊂ Ω × R d , where q is the spatial position and p the velocity. The 1 homogeneous boundary condition f (t, x) = 0 on (0, T ) × Γ -means that whenever a particle coming from the interior of Ω hits the boundary, it exits and disappears forever.

In the case of Ω = R d , the theory of the kinetic Fokker-Planck equation is well-established (see for instance [START_REF] Hörmander | Hypoelliptic second order differential equations[END_REF][START_REF] Villani | Hypocoercivity[END_REF] and references therein). The bounded case is more challenging because of the trace issue in kinetic theory due to the presence of singularities at the boundary. There are several possible strategies for dealing with, for more details, we refer to the enlightening discussion in Stéphane Mischler's "habilitation à diriger les recherches" p. 29-32. In the specific case of the Fokker-Planck equation, among the approaches, two stand out. The first is to define the trace using a renormalized Green's formula. This strategy has the merit of naturally extending to the non-linear case, see [START_REF] Mischler | Kinetic equations with Maxwell boundary conditions[END_REF]. The second strategy is to bypass the trace issue by define a weaker notion of solution with a smaller space of test functions canceling on the problematic part of the boundary. The tricky part of this strategy is that the space of test functions must nevertheless be sufficiently rich to allow us to derive a sufficiently "good" theory of the weaker solutions. Such a strategy is followed in [START_REF] José | Global weak solutions for the initial-boundary-value problems Vlasov-Poisson-Fokker-Planck System[END_REF] that we recall now in more detail:

Let T > 0, define the cylinder domain Q T := [0, T [×D and the following space of test functions:

(4)

D Q T := ϕ ∈ C ∞ c (Q T ) ϕ(t, x) = 0 whenever x ∈ Γ + ∪ Γ 0 We recall that C ∞ c (Q T )
denotes the space of smooth functions with compact support in Q T . In [START_REF] José | Global weak solutions for the initial-boundary-value problems Vlasov-Poisson-Fokker-Planck System[END_REF], it is denoted by C ∞ 0 (Q T ) without being explicitly defined but the context implies the compact support in velocity. Indeed, the definition of a weak solution in [START_REF] José | Global weak solutions for the initial-boundary-value problems Vlasov-Poisson-Fokker-Planck System[END_REF] (see formula below) implicitly requires that (∂ t ϕ + L * ϕ) belongs to L ∞ (Q T ) whereas a smooth function only "vanishing at infinity" may not have its derivative essentially bounded.

In [START_REF] José | Global weak solutions for the initial-boundary-value problems Vlasov-Poisson-Fokker-Planck System[END_REF] 

a function f ∈ L ∞ [0, T ]; L 1 (D) is called a weak solution of (3) if it verifies [4, formula (1.7)]: D f (∂ t ϕ + L * ϕ)dtdx + D f in (x)ϕ(0, x)dx = 0, ∀ϕ ∈ D Q T .
It is easy to check that a classical solution of (3) would be also such a weak solution. However, we emphasize that, as the space of test functions is smaller, the notion of weak solution is therefore weaker that the usual. In [START_REF] José | Global weak solutions for the initial-boundary-value problems Vlasov-Poisson-Fokker-Planck System[END_REF], it is claimed to have established the existence of a weak solution provided that f in satisfies a few conditions [START_REF] José | Global weak solutions for the initial-boundary-value problems Vlasov-Poisson-Fokker-Planck System[END_REF]Theorem 1.1]. But the proof of a crucial lemma [START_REF] José | Global weak solutions for the initial-boundary-value problems Vlasov-Poisson-Fokker-Planck System[END_REF]Lemma 2.3] has a gap which turns out difficult to fill (see the discussion in Appendix A in the first version of [START_REF] Albritton | Variational methods for the kinetic Fokker-Planck equation[END_REF]). We should also mention the work of Hwang et alii [START_REF] Hyung | The Fokker-Planck Equation with Absorbing Boundary Conditions[END_REF][START_REF] Hyung | The Fokker-Planck Equation with Absorbing Boundary Conditions in Bounded Domains[END_REF] where they follow a similar strategy and, in addition, prove some results of Hölder-regularity of the solution on D and in the case of 1-D shows the exponential decay of the solution toward zero [START_REF] Hyung | The Fokker-Planck Equation with Absorbing Boundary Conditions[END_REF]Theorem 1.3]. Yet, this result about the asymptotic behavior in long time limit has not been extended in the multidimensional case studied in [START_REF] Hyung | The Fokker-Planck Equation with Absorbing Boundary Conditions in Bounded Domains[END_REF].

Meanwhile, in a series of articles, [START_REF] Lelièvre | A probabilistic study of the kinetic Fokker-Planck equation in cylindrical domains[END_REF][START_REF] Lelièvre | Quasi-stationary distribution for the Langevin process in cylindrical domains, Part I: Existence, uniqueness and long-time convergence[END_REF], the initial-boundary problem dual problem L * , which is more significant from a probabilistic point of view, is studied. With probabilistic tools, the authors establish the existence of classical solutions with several interesting properties, such as its regularity, the existence of a strongly continuous semigroup, its compactness and so on.

The aim of the present paper is to take the same approach as in [START_REF] José | Global weak solutions for the initial-boundary-value problems Vlasov-Poisson-Fokker-Planck System[END_REF] while relying on [START_REF] Lelièvre | A probabilistic study of the kinetic Fokker-Planck equation in cylindrical domains[END_REF][START_REF] Lelièvre | Quasi-stationary distribution for the Langevin process in cylindrical domains, Part I: Existence, uniqueness and long-time convergence[END_REF] to deduce by duality not only a theory of weaker solution, but also some properties such a compact positive strongly continuous semigroup which allows us to get some more precise results about the asymptotic behavior whatever the dimension of the space, thus extending the results of [START_REF] Hyung | The Fokker-Planck Equation with Absorbing Boundary Conditions[END_REF][START_REF] Hyung | The Fokker-Planck Equation with Absorbing Boundary Conditions in Bounded Domains[END_REF]. Indeed, we retrieve the exponential decay toward zero shown in [START_REF] Hyung | The Fokker-Planck Equation with Absorbing Boundary Conditions[END_REF] but we show moreover a thermalization phenomenon. Before stating more precisely the results, we introduce the notations.

We first recall that a real valued function f defined on a local compact space E vanishing "at infinity" is defined by

∀ε > 0, ∃ compact K ε ⊂ E : sup x∈K c ε |f (x)| ≤ ε.
We denote by C ∞ 0 (E) the set of smooth functions vanishing at infinity on E. We introduce the following space:

D QT := ϕ ∈ C ∞ 0 QT ϕ ∈ L 1 (D; L ∞ ((0, T ))) and (∂ t + L * )ϕ ∈ L ∞ (Q T ) , with QT := [0, T [ × Ω \ Γ + ∪ Γ 0 × R d .
Notice that by extension by continuity, we have [START_REF] José | Global weak solutions for the initial-boundary-value problems Vlasov-Poisson-Fokker-Planck System[END_REF] and in [START_REF] José | Global weak solutions for the initial-boundary-value problems Vlasov-Poisson-Fokker-Planck System[END_REF]. We now give a new definition of weak solution.

ϕ ∈ C b [0, T ] × D with ϕ(T, •) = 0 and ϕ = 0 on Γ + ∪ Γ 0 for any ϕ ∈ D QT wich implies D Q T ⊂ D QT with D Q T defined in
Definition 1. A function f ∈ L ∞ [0, T ]; L 1 (D) is said to be a weak solution of (3) with initial condition f in if it satisfies D f (∂ t ϕ + L * ϕ)dtdx + D f in (x)ϕ(0, x)dx = 0, ∀ϕ ∈ D QT .
We can now state the first main result:

Theorem 2 (Existence and uniqueness). For any f in ∈ L 1 (D), there exists a unique weak solution f ∈ L ∞ [0, T ]; L 1 (D) of (3) with initial condition f in in the sense of Definition 1.

The existence and the uniqueness of the weak solution together with the properties derived in [START_REF] Lelièvre | A probabilistic study of the kinetic Fokker-Planck equation in cylindrical domains[END_REF][START_REF] Lelièvre | Quasi-stationary distribution for the Langevin process in cylindrical domains, Part I: Existence, uniqueness and long-time convergence[END_REF] implies the existence of a strongly continuous semigroup with some nice properties:

Theorem 3. Let f in ∈ L 1 (D), then:
(1) (Semigroup property) There exists a positive, irreducible and immediately compact C 0 semigroup (P t ) t≥0 such that for any f in ∈ L 1 (D), t → P t f in is the unique weak solution of (3) with initial condition f in in the sense of Definition 1.

(2) (Regularity) For any t > 0, we have 

P t f in ∈ C ∞ (D) ∩ C b D (3) (Balanced exponential
b D ∩ L 1 (D) such that Lφ = s(L)φ, L * ψ = s(L)ψ. Moreover, normalizing ψ such that D ψφ = 1, we have lim t→+∞ e -s(L)t P t -φ ⊗ ψ L 1 (D) = 0, where ∀f ∈ L 1 (D) (φ ⊗ ψ)(f ) = D ψf φ, and |||•||| L 1 (D) denotes the norm operator in L 1 (D).
Remark 1. The balanced exponential growth naturally implies the exponential decay toward zero, but also a thermalization phenomenon: the rescaled C 0 -semigroup converges uniformly toward a positive rank-one projector. In other words, before disappearing, the population of particles converges towards the same profile whatever the initial condition.

About the spectral bound, it satisfies a minmax theorem which could be useful for estimates: 

{1 E |E ∈ Σ 0 } is weak-⋆ total in L ∞ (D) then for any t > 0 e s(L)t = sup f ∈Q inf E∈Σ0 E P t f E f = inf f ∈Q sup E∈Σ0 E P t f E f As for the trace, since f (t, •) ∈ C b D , we can define γf ∈ C b (∂D) and γ ± f := γf |±(p•nq)>0 but we have more: Theorem 5. Let γf the trace of f defined as above, then γf ∈ L 1 ∂Ω × R d ; |p • n q |dσ ∂Ω
dp where dσ ∂Ω denotes the Lebesgue measure on ∂Ω. And for any t > 0 and for any ϕ

∈ C ∞ (D) ∩ C D we have D (Lf )ϕ = D f L * ϕ + ∂D γf ϕ(n q • p)dpdσ ∂Ω .
As the proofs of Theorem 2 and Theorem 3 rely heavily upon [START_REF] Lelièvre | A probabilistic study of the kinetic Fokker-Planck equation in cylindrical domains[END_REF][START_REF] Lelièvre | Quasi-stationary distribution for the Langevin process in cylindrical domains, Part I: Existence, uniqueness and long-time convergence[END_REF] and upon the theory of Banach lattice, for sake of completeness, we will first recall the mots importants points of [START_REF] Lelièvre | A probabilistic study of the kinetic Fokker-Planck equation in cylindrical domains[END_REF][START_REF] Lelièvre | Quasi-stationary distribution for the Langevin process in cylindrical domains, Part I: Existence, uniqueness and long-time convergence[END_REF] and of the theory of Banach lattice in Section 1. Then, we will establish Theorem 2, Theorem 3 and Corollary 4 in Section 2. After that, the proof of Theorem 5 will be given in Section 3.

A few recall about Banach lattices and probabilistic investigations of the kinetic

Fokker-Planck equation First, we recall the main elements of the theory of Banach lattice and a few of useful theorems around positive operators and semigroups of operators in a Banach lattice. Then, we recall and synthesize the main results of [START_REF] Lelièvre | A probabilistic study of the kinetic Fokker-Planck equation in cylindrical domains[END_REF][START_REF] Lelièvre | Quasi-stationary distribution for the Langevin process in cylindrical domains, Part I: Existence, uniqueness and long-time convergence[END_REF].

1.1. Banach lattices. First, we underline that L 1 (D) is a ordered set with the partiel order defined by 0 ≤ f if and only if 0 ≤ f (x) a.e. on D.

This ordered space is a Banach lattice, meaning that the ordering is compatible with the vector structure and is such that

∀f, g ∈ L 1 (D), if |g| ≤ |f |, then ∥g∥ L 1 (D) ≤ ∥g∥ L 1 (D) .
A semigroup S ≡ (S t ) t≥0 is said to be positive if it preserves positivity, i.e.

f ≥ 0 ⇒ S t f ≥ 0, for each t ≥ 0. A closed subspace I of L 1 (D) is said to be an (order) ideal if ∀(f, g) ∈ L 1 (D) × I, |f | ≤ |g| ⇒ f ∈ I.
The null subspace {0} and L 1 (D) are ideals. A semigroup S is said to be irreducible if and only if the only ideals that are invariant for S are {0} and L 1 (D). That is equivalent to the following property (for instance [15, Proposition III.8.3 p.186]):

∀0 ≤ f ∈ L 1 (D), 0 ≤ g ∈ L ∞ (D) with f ̸ = 0, g ̸ = 0, ∃t > 0 : D gS t f > 0.
In others words, an irreducible semigroup spreads the support of any nonnegative function through the entire space. A nonnegative function f ∈ L 1 (D) is a quasi-interior point if it is a.e. strictly positive on D.

In L ∞ (D) that is also a Banach lattice, a non negative function g is a quasi-interior point if there exists δ > 0 such that δ1 D ≤ g a.e. The ground bound of a C 0 -semigroup S is

ω 0 (S) := inf ω∈R ∃M ≥ 0 : ∥S t ∥ ≤ M e ωt It is known [1, Proposition 12.1 p. 181] that ω 0 (S) = lim t→ log ∥S t ∥ t = inf t≥0 log ∥S t ∥ t ,
and that for any t > 0, the spectral radius of S t is equal to:

(5) r(S t ) = e tω0 (S) .

and let A an unbounded operator, we recall its spectral bound is

s(A) := sup {Re µ |µ ∈ σ(A) }
where σ(A) is the spectrum of A. If S is a positive C 0 -semigroup on L 1 (D) then its growth bound coincides with the spectral bound of its generator (see for instance [START_REF] Bátkai | Positive Operator Semigroups. Operator Theory: Advances and Applications[END_REF]Theorem 12.17 p.193]). Moreover we have: Lemma 6. Let A be a positive, compact and irreducible operator on L 1 (D)

(1) then r(A) > 0 and there exists u ∈ L 1 (D) and v ∈ L ∞ (D) strictly positive a.e., unique up to a multiplicative constant such that

Au = r(A)u, A ′ v = r(A)v.
(2) Besides, let µ > 0 such there exists nonzero nonnegative w ∈ L 1 (D) with Aw = µw then µ = r(A) and w = u up to a multiplicative constant.

Proof. The first point is classical in Banach lattice theory and is known as De Pagter's theorem [START_REF] De | Irreducible compact operators[END_REF]. The second point is almost immediate, but despite my best efforts, I have not found citable results in the literature. For the sake of completeness, I provide the evidence. As w is nonnegative and v strictly positive a.e., we have Ω×R d vw > 0 Keeping that in mind, Aw = µw implies

D Awv = µ wv thus, as D vw > 0 is strictly positive r(A) = µ,
and the equality of w with u is a direct consequence of the uniqueness of the eigenvector associated to r(A). □

The theory of the asymptotic behavior of positive C 0 -semigroups in Banach lattice is very rich. The following proposition is a synthesis of [17, Propositions 2.3, 2.4, 2.5 and Remark 2.2] and for the precise form of P , see Proposition III.8.5 p. 189 in [START_REF] Helmut | Banach Lattices and Positives Operators[END_REF]. ≤ M e -δt .

1.2.

A brief recalling of the results of Tony Lelièvre and alii. We recall here the theory developed by Tony Lelièvre, Mouad Ramil, and Julien Reygnier in a probabilistic framework for the kinetic Fokker-Planck in a bounded domain with absorbing [START_REF] Lelièvre | A probabilistic study of the kinetic Fokker-Planck equation in cylindrical domains[END_REF][START_REF] Lelièvre | Quasi-stationary distribution for the Langevin process in cylindrical domains, Part I: Existence, uniqueness and long-time convergence[END_REF]. From here, we use there notations except the ones of the operators L and L * . Indeed, in [START_REF] Lelièvre | A probabilistic study of the kinetic Fokker-Planck equation in cylindrical domains[END_REF][START_REF] Lelièvre | Quasi-stationary distribution for the Langevin process in cylindrical domains, Part I: Existence, uniqueness and long-time convergence[END_REF], L (respectively, L * ) corresponds to L * (respectively L) in the present paper, because the operator L * defined in (2). Let (X x t = (q x t , p x t )) t≥0 the Langevin process starting at x ∈ D at t = 0 defined by the following SDE:

     dq x t = p x t dt, dp x t = F (q x t )dt -γp x t dt + σdB t , (q x 0 , p x 0 ) = x,
where (B t ) t≥0 is a d-dimensional Brownian motion. Define also the first exit time from D of the process (X x t ) t≥0 :

τ x ∂ := inf {t > 0 : X x t /
∈ D}. We denote the following unbounded operator:

L * γ ≡ p • ∇ q + F (q) • ∇ p -γp • ∇ p + σ 2 2 ∆ p .
It is the operator defined in (2) with the subscript γ in order to emphasize its dependence on the parameter γ. It is the infinitesimal generator of the Langevin process whereas (3) describes the evolution of Langevin process absorbed at ∂D. That explains why in a probabilistic framework such as in [START_REF] Lelièvre | A probabilistic study of the kinetic Fokker-Planck equation in cylindrical domains[END_REF][START_REF] Lelièvre | Quasi-stationary distribution for the Langevin process in cylindrical domains, Part I: Existence, uniqueness and long-time convergence[END_REF], the initial problem with L * γ is most often studied while in mathematical physics, it is (3) that arouses the most interest.

That being said, the first main result [10, Theorem 2.10] is then

Theorem 8. Let γ ∈ R and let f ∈ C b (D ∪ Γ -) and define u γ : (t, x) → E 1 τ x ∂ >t f (X x t ) then
(1) (Initial and boundary values) the function u satisfies :

u γ (0, x) = f (x) if x ∈ D ∪ Γ -, 0 if x ∈ Γ + ∪ Γ 0 , and ∀t > 0, ∀x ∈ Γ + ∪ Γ 0 , u(t, x) = 0. ( 2 
) (Continuity) we have :

u γ ∈ C b R + × D \ {0} × Γ -∪ Γ 0 (3) (Interior regularity) u ∈ C ∞ R * + and, for all t > 0, x ∈ D ∂ t u γ = L * γ u γ Moreover, f → (t, x) → E 1 τ x ∂ >t f (X x t
) is a semigroup with nice properties including the existence of a transition kernel. We sum up the main results (specially Theorem 2.7 and Theorem 2.9 in [START_REF] Lelièvre | Quasi-stationary distribution for the Langevin process in cylindrical domains, Part I: Existence, uniqueness and long-time convergence[END_REF] and Theorem 2.14 in [START_REF] Lelièvre | A probabilistic study of the kinetic Fokker-Planck equation in cylindrical domains[END_REF]). Theorem 9. Let γ ∈ R, there exists

(t, x, y) → p γ t (x, y) ∈ C ∞ R * + × D × D ∩ C R * + × D × D which satisfies for all t > 0 • p γ t (x, y) > 0 for all x / ∈ Γ + ∪ Γ 0 and y / ∈ Γ -∪ Γ 0 • p γ t (x, y) = 0 if x ∈ Γ + ∪ Γ 0 or y ∈ Γ -∪ Γ 0 Moreover, for f ∈ C b D , the functions u γ , v γ defined by ∀t > 0, ∀x ∈ D, u γ (t, x) := D p γ t (x, y)f (y)dy, v γ (t, x) := D p γ t (y, x)f (y)dy are in C ∞ R * + × D and satisfy (6)      ∂ t u γ = L * γ u γ , u γ = 0 on Γ + , u γ (0, •) = f ; and (7)      ∂ t v γ = L γ v γ , v γ = 0 on Γ -, v γ (0, •) = f.
Besides, the solution of (6) satisfies Maximum principle. For any t > 0, the operator

Q γ t f : x ∈ D → E 1 τ x ∂ >t f (X x t ) = p γ t (y, x)f (y)dy
is well-defined and forms a positive and irreducible semigroup of compact operators

(Q γ t ) t>0 on L n (D) to L n (D) and C b D to C b D . Moreover, it maps L n (D) into C b D continuously for any n ∈ [1, ∞].
Eventually, we recall here a special case of Theorem 2.13 in [START_REF] Lelièvre | Quasi-stationary distribution for the Langevin process in cylindrical domains, Part I: Existence, uniqueness and long-time convergence[END_REF], the last property being a consequence of the irreducibility of the semigroup (see Lemma 4.3 in [START_REF] Lelièvre | A probabilistic study of the kinetic Fokker-Planck equation in cylindrical domains[END_REF]) Theorem 10. Under assumptions above, there exists λ γ > 0 such that λ γ + γd > 0 and positive functions φ γ , ψ γ ∈ C b D ∩ L 1 (D), unique up to multiplicative constants such

(8) Lφ γ + λ γ φ γ = 0 φ γ = 0 on Γ -∪ Γ 0 and (9) L * ψ γ + λ γ ψ γ = 0 ψ γ = 0 on Γ + ∪ Γ 0 .

Proof of Theorem 2 and Theorem 3

We establish here Theorem 2 and Theorem 3. The proof of Theorem 2 is split into several steps.

2.1.

A semigroup for the kinetic Fokker-Planck equation. In order to use the results of [START_REF] Lelièvre | A probabilistic study of the kinetic Fokker-Planck equation in cylindrical domains[END_REF][START_REF] Lelièvre | Quasi-stationary distribution for the Langevin process in cylindrical domains, Part I: Existence, uniqueness and long-time convergence[END_REF] recalled above, first notice that if u -γ is the solution associated to L * -γ as in Theorems 8 and 9 then it is C ∞ R * + × D and thus we can derive it in classical sense. It is then easy to check that the function v(t, q, p) := e dγt u -γ (t, q, -p) solves (3) in the classical sense. That remark motivates the introduction of the following operator defined on the set of measurable functions L 0 (D) (Sf )(q, p) := f (q, -p) ∀f ∈ L 0 (D).

The operator S is obviously bounded on L n (D) and C b D , moreover it is an involution, which imply that the operators defined by (10) P γ t := e dγt SQ -γ t S, with Q γ t defined in Theorem 9, form a semigroup, which, together with Theorem 2.8 in [START_REF] Lelièvre | Quasi-stationary distribution for the Langevin process in cylindrical domains, Part I: Existence, uniqueness and long-time convergence[END_REF], implies the following theorem: Theorem 11. The operators (P γ t ) t>0 form a positive and irreducible semigroup of compact operators on

L n (D) for any n ∈ [1, ∞] and C b D . Moreover, it maps L n (D) into C b D . And for any f ∈ L n (D), v γ := P γ t f is in C ∞ R * + × D and satisfies      ∂ t v γ = L γ v γ on D, v γ = 0 on Γ -, v γ (0, •) = f.

Moreover, we have the identity for any

f ∈ C b D and v γ = P γ t f v γ = D p γ t (y, x)f (y)dy.
where p γ t is the transition kernel defined in Thorem 9. From here on, we drop the subscript γ whenever it is obvious from the context what the value of γ is, P t for P γ t and so on. We now show that P t is a substochastic semigroup: Lemma 12. For any t > 0

|||P t ||| L 1 (D) ≤ 1. As consequence, ∀f ∈ L 1 (D), t → P t f ∈ L ∞ R + ; L 1 (D) .
Proof. By density, it suffices to show that for any t > 0 and for any f ∈ C b D , we have

∥P t f ∥ L 1 (D) ≤ ∥f ∥ L 1 (D) .
By Theorem 11 we have for any

f ∈ C b D P t f = D p γ t (y, x)f (y)dy thus for any g ∈ L ∞ (D) by Fubini-Tonelli Theorem D P t f gdx = D D p t (y, x)f (y)g(x)dydx = D f (y) D p t (y, x)g(x)dx dy
Thus by Maximum principle applied to D p t (y, x)g(x)dx that is solution of ( 6) by Theorem 9, we have for any g ∈ L ∞ (D)

D P t f g ≤ ∥f ∥ L 1 (D) ∥g∥ L ∞ (D)
which implies by Hahn-Banach Theorem:

∥P t f ∥ L 1 (D) ≤ ∥f ∥ L 1 (D)
which is the desired result. As for the eigenvalue ϕ we have the following immediate lemma: □ Lemma 13. Let λ > 0 and φ be defined as in Theorem 10, then

P t φ = e -λt φ, ∀t > 0.
We can now show that (P t ) t≥0 is a strongly continuous semigroup: Proposition 14. The operators (P t ) t≥0 with P 0 = I and (P t ) t>0 defined above form a C 0 -semigroup of L 1 (D). As a consequence, the semigroup (Q t ) t≥0 associated to the adjoint Cauchy problem is also strongly continuous on R + in L 1 (D).

Proof. It is already known that (P t ) t>0 is strongly continuous on R * + by Theorem 9. It remains to show that it is strongly continuous at t = 0. By Proposition I.5.3 p. 38 in [START_REF]One-Parameter Semigroups for Linear Evolution Equations[END_REF], it suffices to show that there exist δ > 0, M ≥ 1, and a dense subset

D ⊂ L 1 (D) such that (1) ∥P t ∥ L 1 (D) ≤ M for all t ∈ [0, δ],
(2) lim t→0 + P t g = g strongly in L 1 (D) for all g ∈ D. By Lemma 12, we know that ∥P t ∥ L 1 (D) ≤ 1. It remains to establish (2) for D = C c (D). Let g ∈ C c (D) that we assume nonnegative and denote h(t, x) := P t g(x) for any x ∈ D, we know that h ∈ C(R + × D), thus for any t ∈ [0, T ], x → h(t, x) is measurable. In the same way, for every x ∈ D, t → h(t, x) is continuous. Let φ defined in Theorem 10 and Lemma 13. As g ∈ C c (D) and φ > 0 everywhere, there exists C > 0 such that g ≤ Cφ a.e. on D and by positivity of P t and Lemma 13, we have h ≤ Ce -λt φ ≤ Cφ a.e. on D, ∀t ≥ 0 with φ ∈ L 1 (D). In others words, h is dominated on [0, T ] by a integrable function on D which implies that:

t → D h(t, x)dx is continuous on [0, T ].
As h is nonnegative, Schaffé's lemma implies: [START_REF] Lelièvre | Quasi-stationary distribution for the Langevin process in cylindrical domains, Part I: Existence, uniqueness and long-time convergence[END_REF] ∥P t g -g∥ L 1 (D) → 0 as t → 0 + for any nonnegative g ∈ C c (D)

Now consider g ∈ C c (D) that can change sign and let g = g + -g -with g ± ∈ C c (D) and g ± ≥ 0. We have

∥P t g -g∥ L 1 (D) ≤ ∥P t g + -g + ∥ L 1 (D) + ∥P t g --g -∥ L 1 (D)
thus by ( 11)

∥P t g -g∥ L 1 (D) → 0 as t → 0 + ∀g ∈ C c (D), Consequently, (P t ) t≥0 is a C 0 -semigroup of L 1 (D).
As for (Q t ) t≥0 , it is a direct consequence of (10), i.e.

Q γ t = e dγt SP -γ t S. □
Let us make also an important remark Remark 2. For any t > 0, the kernel p t satisfies a Gaussian upper-bound (see [START_REF] Lelièvre | A probabilistic study of the kinetic Fokker-Planck equation in cylindrical domains[END_REF]Corollary 2.22] or [11, Theorem 2.7]) that is established by studying the Langevin process on the space R 2d after extending the driving force over the whole space. The authors have deduced an inequality valid on the whole space which they then truncate on Ω × R d . As the two functions are continuous, the proof of the authors implies that the inequality is valid on Ω × R d and thus on ∂Ω × R d .

The recall being done, for the sake of readability, we split the proof of Theorem 2 into several steps. First we show that for any f in ∈ L 1 Ω × R d , t → P t f in belongs to the good function space. Lemma 15. Let f in ∈ L 1 (D) and f := P t f in with (P t ) t>0 defined in Theorems 9 and 8. Then

f ∈ L ∞ [0, T ]; L 1 (D) .
Proof. It is simply a direct consequence that for any t > 0, we have

P t f in L 1 (D) ≤ f in L 1 (D) . □
We now show that for any smooth initial condition, the solution in the sense of Theorems 9 and 8 is also a weak solution.

Lemma 16. Let f in ∈ C b (D ∪ Γ + ) and u := P t f in with (P t ) t>0 defined in Theorems 9 and 8, then for any ϕ ∈ D Q T we have

Q T u(∂ t ϕ + L * ϕ)dtdqdp + D f in (q, p)ϕ(0, q, p)dq = 0.
In others words, u is a weak solution of (3)

Proof. We cannot apply integration by parts (Green Theorem) to the cylindric domain Q T because f is not C 1 on Q T . Therefore, we introduce ε ∈ (0, T ) and the subset:

Q ε,T := [ε, T ] × D. Let f in ∈ C b (D ∪ Γ + ) and let u be defined in Theorem 8. We have u ∈ C b Q ε,T ∩ C ∞ (Q ε,T
), so that by Green Theorem applied to the cylindric domain (see Theorem 5.5 p. 47 in [START_REF] Sauvigny | Partial Differential Equations 1 -Foundations and Integral Representations[END_REF]), we have for any ϕ

∈ D QT 0 = Q ε,T (∂ t u -Lu)ϕdtdx = Q ε,T (-∂ t ϕ -L * ϕ)udtdx - D u(ε, x)ϕ(ε, x)dx We know that, since u ∈ C b R + × D \ {0} × Γ -∪ Γ 0 , u(ε, •)ϕ(ε, •) → f in ϕ(0, •) as ε → 0 + a.e. on Ω × R d . Moreover |u(ε, •)ϕ(ε, •)| ≤ f in L ∞ (D) sup ε≥0 ϕ(ε, •) .
As (sup ε ϕ(ε, •)) ∈ L 1 Ω × R d since it is in D QT , we can apply dominated convergence to get:

D u(ε, x)ϕ(ε, x)dx → ε→0 + D f in ϕdx.
In the same way, we have

Q ε,T (∂ t ϕ + L * ϕ)udtdx → ε→0 + Q T (∂ t ϕ + L * ϕ)udtdx Hence u satisfies for all ϕ ∈ D QT Q T (∂ t ϕ + L * ϕ)udtdx + D f in (x)ϕ(0, x)dx = 0
which is the desired result. □

Let now extend the result above to the case of f in ∈ L 1 (D).

Lemma 17. Let f in ∈ L 1 (D) and for any t > 0, f (t, •)

:= P t f in then f ∈ L ∞ [0, T ]; L 1 (D) and for any ϕ ∈ D Q T we have Q T f (∂ t ϕ + L * ϕ)dtdqdp + D
f in (q, p)ϕ(0, q, p)dq = 0.

In others words, f is a weak solution of (3)

Proof. Let f in ∈ L 1 (D). We know that for any t > 0, P t ∈ L(L p (D)). Keeping it in mind, take

f in n ∈ C ∞ 0 (D) such that f in n → n→+∞ f in in L 1 (D).
Then, denoting f n := P t f in n we have by Lemma 16 for any ϕ ∈ D QT and for any n ∈ N :

(12) Q T f n (∂ t ϕ + L * ϕ)dtdqdp + D f in n (q, p)ϕ(0, q, p)dq = 0.
By Lebesgue partial converse theorem (see Theorem 4.9 p. 94 in [START_REF] Brezis | Functional Analysis, Sobolev Spaces and Partial Differential Equations[END_REF]), we can moreover assume that, up to a subsequence, there exists g ∈ L 1 (D) such that: 

f in n (x) ≤ g a.
f n → f in L 1 ([0, T ] × D) -strong
as n → +∞. That implies:

(15)

Q T f n (∂ t ϕ + L * ϕ)dtdqdp → Q T f (∂ t ϕ + L * ϕ)dtdqdp
as n → +∞. Applying ( 13) and ( 15) to [START_REF] Mischler | Kinetic equations with Maxwell boundary conditions[END_REF] shows that f is a weak solution to the initial boundary problem (3) with f in as initial condition.

As for the uniqueness of the weak solution, as the problem is linear, it suffices to show that if

f ∈ L 1 (Q T ) is such that Q T f (∂ t ϕ + L * ϕ)dtdqdp = 0, ∀ϕ ∈ D QT , then f = 0.
We remark that if for any ψ ∈ C c ((0, T ) × D), there exists ϕ ∈ D QT solution of the backward problem ( 16)

     ∂ t ϕ + L * ϕ = ψ ϕ |Γ 0 ∪Γ - = 0 ϕ(T, •) = 0
that would imply that f = 0 in distributional sense and thus f = 0 in L 1 (Q T ). This leads us to consider φ solution of the forward problem: 

(17)      ∂ t φ -L * φ = ψ φ|Γ 0 ∪Γ - = 0 φ(0, •) = 0 It is obvious that t → φ(T -t, •) is solution of (16
φ = t 0 Q t-s ψ(s)ds thus ϕ = T -t 0 Q T -t-s ψ(s)ds = T t Q T -s ψ(s -t)ds
It remains to show that ϕ ∈ D QT to conclude. By linearity, we can assume that ψ is nonnegative. That being said, first, by the properties of the function p t (Theorems 9 and 8 above), we have ϕ ∈ C ∞ 0 QT . Besides, we have obviously (∂ t + L * )ϕ ∈ L ∞ (Q T ). Eventually, let ψ λ being the positive eigenvector associated to L * , see [START_REF] Hyung | The Fokker-Planck Equation with Absorbing Boundary Conditions[END_REF] in Theorem 10, with eigenvalue λ and D ψ λ = 1. Let K compact of (0, T ) × D such that supp ψ ⊂ K. As There ψ λ is positive everywhere on D and constant in time, there exists c > 0 such that ψ λ ≥ c for any (t, x) ∈ K. Therefore, there exists C > 0 such that ψ ≤ Cψ λ everywhere on (0, T ) × D.

As (Q t ) t>0 are positive operators, the properties of ψ λ and the inequality above imply

Q t-s ψ(s) ≤ Ce -λ(t-s) ψ λ .

Integrating the inequality above in time

s ∈ [0, t] leads to: φ ≤ C λ 1 -e -λt ψ λ , thus 0 ≤ ϕ ≤ C λ 1 -e -λ(T -t) ψ λ which implies that ϕ ∈ L 1 (D; L ∞ ((0, T ))). Consequently, ϕ ∈ D QT which is the desired conclusion. □ 2.
2. Proof of Theorem 3. Now, we establish Theorem 3

(1) By Theorem 2, for any f in ∈ L 1 (D), there exists a unique weak solution f in sense of Definition 1, thus we have f (t, •) = P t f in with (P t ) t≥0 defined in [START_REF] Lelièvre | A probabilistic study of the kinetic Fokker-Planck equation in cylindrical domains[END_REF]. By Theorem 11, Lemma 12 and Proposition 14, it is a positive, irreducible, contractive and compactC 0 -semigroup. (2) By Theorem 8 with the property of semigroup, we have for any

f in ∈ L 1 (D), ∀t > 0, P t f in ∈ C ∞ (D) ∩ C b D . ( 3 
) With the properties of the semigroup established above, the balanced growth law of (P t ) t≥0 is a direct consequence of Lemma 7 with the eigenvectors identified in Theorem 10.

Now we give the proof of Corollary 4

Proof. We know that

r(P t ) = e ω0t
where ω 0 is the growth bound of the semigroup (Proposition 2.2 p. 251 in [START_REF]One-Parameter Semigroups for Linear Evolution Equations[END_REF]). As P t is a positive C 0semigroup in L 1 (D), it is equal to the spectral bound of its generator (Theorem VI.1.15 p. 358 in [START_REF]One-Parameter Semigroups for Linear Evolution Equations[END_REF]). As P t is moreover irreducible and compact, the result is then a direct consequence of Theorem 1 in [START_REF] Schaefer | A minimax theorem for irreducible compact operators inLp-spaces[END_REF]. □

A Trace theory for the kinetic Fokker-Planck equation

We now establish a trace theory for the kinetic Fokker-Planck equation. First, using the regularity of the weak solution, we can easily define its trace: Besides, by semigroup property, we have for any t > 0, P t f in = P t/2 P t/2 f in with P t/2 f in ∈ C b D which implies by Theorem 8 that γ -f = 0. Now show that γ + f ∈ L 1 ∂Ω × R d ; |n q • p|dqdp . As for any t > 0, γ + f ∈ C b (∂D), it is measurable. Now we have by the semigroup property and by continuity: The existence of the trace and the regularity of the weak solution implies that the integration by parts, also known as Green's formula, is satisfied: Lemma 19. Let f be the weak solution with initial condition f in ∈ L 1 (D) and let γf be its trace. Then, it satisfies Green's formula, meaning that for any t > 0 and for any ϕ ∈ C ∞ (D) ∩ C D we have

γ + f (t, x) = D p t/
D (Lf )ϕ = D f L * ϕ + ∂D γf ϕ(n q • p)dpdσ ∂Ω .
Proof. By unicity of the weak solution, we know that for any t > 0, f = P t f in and thus f ∈ C ∞ (D) ∩ C D with γf ∈ L 1 ∂Ω × R d ; |n q •|dσ ∂Ω dp by Lemma 18. Hence, the classical theorem of Green's formula (Integration by parts) [13, Th 5.5 p. 47] applies here and leads to the desired result. □

  growth), let denotes the spectral bound of the operator L s(L) := sup {Reλ |λ ∈ σ(L) } then s(L) ∈ σ(L) with s(L) < 0 and up to a multiplicative constant, there exists unique nonnegative functions φ and ψ ∈ C

Corollary 4 .

 4 (Collatz-Wielandt characterization) Denote Q the set of almost everywhere positive functions in L 1 (D) and Σ 0 a subfamily of the Lebesgue algebra σ(D) such that for any E ∈ Σ 0 , D 1 E < +∞ and

Lemma 7 .

 7 Let (S t ) t≥0 a irreducible, positive and compact semigroup on a Banach lattice E, then there exists a positive projection of rank one, P = x 0 ⊗ x ′ 0 where x 0 is, up to a constant, the eigenvalue associated to s(A) and x ′ 0 ∈ E ′ such that x ′ 0 (x 0 ) = 1, and constants δ > 0 and M ≥ 1 such that e -ts(A) S t -P L 1 (D)

Lemma 18 .

 18 Let f be the weak solution with initial conditionf in ∈ L 1 (D). The trace of f on R * + × ∂D is well defined with γf := f |∂D and γ ± := γf |±(p•nq)>0 . Moreover we have γ -f = 0 and γ + ∈ L 1 ∂Ω × R d ; |n q • p|dqdp .Proof. By Theorem 9, we know that for any t > 0, P t maps continuously L 1 (D) into C b D . Thus we can define γf := f ∂Ω×R d and γ ± := γf |±(p•nq)>0 .

  ). As (Q t ) t≥0 is strongly continuous by Proposition 14, we have by Duhamel formula [6, Corollary III.1.7 p. 161]
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