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ON THE EXISTENCE AND ASYMPTOTIC BEHAVIOR OF WEAK SOLUTION OF
THE KINETIC FOKKER-PLANCK EQUATION IN A BOUNDED DOMAIN WITH

ABSORBING BOUNDARY

ÉTIENNE BERNARD

November 3, 2023

Abstract. We study here the kinetic Fokker-Planck equation in a bounded domain with absorbing bound-
ary. We show the existence and the uniqueness of a weak solution to the initial-boundary problem and
we associate it to a positive compact strongly continuous semigroup. Then, we establish that the weak
solution satisfies the balanced exponential growth, meaning both exponential decay toward zero and a
thermalization phenomenon. Eventually, we show that it has a trace in the sense of the Green formula.

Introduction

We discuss here the existence, the unicity and the asymptotic behavior of weak solutions of the kinetic
Fokker-Planck equation in a bounded domain with absorbing boundary. Let an integer d ≥ 2 and let Ω be
a bounded, open and smooth subset of Rd. As its boundary is smooth, we can define for any q ∈ ∂Ω the
outer normal vector nq. Hence, we can decompose ∂Ω = Γ+ ∪ Γ− ∪ Γ0 with:

Γ+ =
{

(q, p) ∈ ∂Ω × Rd |p · nq > 0
}
,

Γ− =
{

(q, p) ∈ ∂Ω × Rd |p · nq < 0
}
,

Γ0 =
{

(q, p) ∈ ∂Ω × Rd |p · nq = 0
}
.

Let σ ∈ R∗
+, γ ∈ R and F ∈ C∞(

Rd,Rd
)
, we introduce the operator:

(1) L = −p · ∇q − F (q) · ∇p + γ∇p · (p·) + σ2

2 ∆p,

and its formal adjoint in L2(dx)

(2) L∗ = p · ∇q + F (q) · ∇p − γp · ∇p + σ2

2 ∆p.

Following [10, 11], we denote D := Ω × Rd, D = Ω × Rd and ∂D := ∂Ω × Rd. The variable x ∈ D
represents the couple (q, p) ∈ D and dx = dqdp. We will use preferably this notation except when the two
variables q and p do not have symmetrical roles, as in the beginning of subsection 2.1.

The so-called kinetic Fokker-Planck equation is the following initial-boundary problem for f ≡ f(t, x):

(3)


∂tf = Lf on (0, T ) ×D, T > 0,
f(t, x) = 0 on (0, T ) × Γ−,

f(0, x) = f in(x) on D.

It models the collective behavior of particles evolving inside Ω with velocity in Rd, with initial distribution
f in, submitted both to friction and to an exterior force F with a thermal bath respectively encoded by
the friction term γ∇p · (p·), the exterior term F (q) · ∇p· and the term of diffusion in velocity σ2

2 ∆p. The
quantity f(t, x)dtdx ≡ f(t, q, p)dtdqdp represents the number of particles at time interval [t, t+ dt], in the
infinitesimal volume B(q,dq) × B(p, dp) ⊂ Ω × Rd, where q is the spatial position and p the velocity. The
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2 E. BERNARD

homogeneous boundary condition f(t, x) = 0 on (0, T ) × Γ− means that whenever a particle coming from
the interior of Ω hits the boundary, it exits and disappears forever.

In the case of Ω = Rd, the theory of the kinetic Fokker-Planck equation is well-established (see for
instance [7, 16] and references therein). The bounded case is more challenging because of the trace issue in
kinetic theory due to the presence of singularities at the boundary. There are several possible strategies for
dealing with, for more details, we refer to the enlightening discussion in Stéphane Mischler’s ”habilitation à
diriger les recherches” p. 29-32. In the specific case of the Fokker-Planck equation, among the approaches,
two stand out. The first is to define the trace using a renormalized Green’s formula. This strategy has the
merit of naturally extending to the non-linear case, see [12]. The second strategy is to bypass the trace issue
by define a weaker notion of solution with a smaller space of test functions canceling on the problematic
part of the boundary. The tricky part of this strategy is that the space of test functions must nevertheless
be sufficiently rich to allow us to derive a sufficiently ”good” theory of the weaker solutions. Such a strategy
is followed in [4] that we recall now in more detail:

Let T > 0, define the cylinder domain QT := [0, T [×D and the following space of test functions:

(4) DQT
:=

{
ϕ ∈ C∞

c (QT )
∣∣ ϕ(t, x) = 0 whenever x ∈ Γ+ ∪ Γ0 }

We recall that C∞
c (QT ) denotes the space of smooth functions with compact support in QT . In [4], it is

denoted by C∞
0 (QT ) without being explicitly defined but the context implies the compact support in veloc-

ity. Indeed, the definition of a weak solution in [4] (see formula below) implicitly requires that (∂tϕ+ L∗ϕ)
belongs to L∞(QT ) whereas a smooth function only ”vanishing at infinity” may not have its derivative
essentially bounded.

In [4] a function f ∈ L∞(
[0, T ];L1(D)

)
is called a weak solution of (3) if it verifies [4, formula (1.7)]:∫

D

f(∂tϕ+ L∗ϕ)dtdx+
∫

D

f in(x)ϕ(0, x)dx = 0, ∀ϕ ∈ DQT
.

It is easy to check that a classical solution of (3) would be also such a weak solution. However, we emphasize
that, as the space of test functions is smaller, the notion of weak solution is therefore weaker that the usual.
In [4], it is claimed to have established the existence of a weak solution provided that f in satisfies a few
conditions [4, Theorem 1.1]. But the proof of a crucial lemma [4, Lemma 2.3] has a gap which turns out
difficult to fill (see the discussion in Appendix A in the first version of [2]). We should also mention the
work of Hwang et alii [9, 8] where they follow a similar strategy and, in addition, prove some results of
Hölder-regularity of the solution on D and in the case of 1-D shows the exponential decay of the solution
toward zero [9, Theorem 1.3]. Yet, this result about the asymptotic behavior in long time limit has not
been extended in the multidimensional case studied in [8].

Meanwhile, in a series of articles, [10, 11], the initial-boundary problem dual problem L∗ , which is more
significant from a probabilistic point of view, is studied. With probabilistic tools, the authors establish the
existence of classical solutions with several interesting properties, such as its regularity, the existence of a
strongly continuous semigroup, its compactness and so on.

The aim of the present paper is to take the same approach as in [4] while relying on [10, 11] to deduce
by duality not only a theory of weaker solution, but also some properties such a compact positive strongly
continuous semigroup which allows us to get some more precise results about the asymptotic behavior what-
ever the dimension of the space, thus extending the results of [9, 8]. Indeed, we retrieve the exponential
decay toward zero shown in [9] but we show moreover a thermalization phenomenon. Before stating more
precisely the results, we introduce the notations.
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We first recall that a real valued function f defined on a local compact space E vanishing ”at infinity” is
defined by

∀ε > 0,∃ compact Kε ⊂ E : sup
x∈Kc

ε

|f(x)| ≤ ε.

We denote by C∞
0 (E) the set of smooth functions vanishing at infinity on E. We introduce the following

space:
DQ̃T

:=
{
ϕ ∈ C∞

0
(
Q̃T

) ∣∣ϕ ∈ L1(D;L∞((0, T ))) and (∂t + L∗)ϕ ∈ L∞(QT )
}
,

with
Q̃T := [0, T [ ×

(
Ω \

(
Γ+ ∪ Γ0))

× Rd.

Notice that by extension by continuity, we have ϕ ∈ Cb
(
[0, T ] ×D

)
with ϕ(T, ·) = 0 and ϕ = 0 on Γ+ ∪ Γ0

for any ϕ ∈ DQ̃T
wich implies DQT

⊂ DQ̃T
with DQT

defined in (4) and in [4]. We now give a new definition
of weak solution.

Definition 1. A function f ∈ L∞(
[0, T ];L1(D)

)
is said to be a weak solution of (3) with initial condition

f in if it satisfies ∫
D

f(∂tϕ+ L∗ϕ)dtdx+
∫

D

f in(x)ϕ(0, x)dx = 0, ∀ϕ ∈ DQ̃T
.

We can now state the first main result:

Theorem 2 (Existence and uniqueness). For any f in ∈ L1(D), there exists a unique weak solution f ∈
L∞(

[0, T ];L1(D)
)

of (3) with initial condition f in in the sense of Definition 1.

The existence and the uniqueness of the weak solution together with the properties derived in [10, 11]
implies the existence of a strongly continuous semigroup with some nice properties:

Theorem 3. Let f in ∈ L1(D), then:
(1) (Semigroup property) There exists a positive, irreducible and immediately compact C0 semigroup

(Pt)t≥0 such that for any f in ∈ L1(D), t 7→ Ptf
in is the unique weak solution of (3) with initial

condition f in in the sense of Definition 1.
(2) (Regularity) For any t > 0, we have Ptf

in ∈ C∞(D) ∩ Cb
(
D

)
(3) (Balanced exponential growth), let denotes the spectral bound of the operator L

s(L) := sup {Reλ |λ ∈ σ(L)}
then s(L) ∈ σ(L) with s(L) < 0 and up to a multiplicative constant, there exists unique nonnegative
functions φ and ψ ∈ Cb

(
D

)
∩ L1(D) such that

Lφ = s(L)φ, L∗ψ = s(L)ψ.
Moreover, normalizing ψ such that

∫
D
ψφ = 1, we have

lim
t→+∞

∣∣∣∣∣∣∣∣∣e−s(L)tPt − φ⊗ ψ
∣∣∣∣∣∣∣∣∣

L1(D)
= 0,

where
∀f ∈ L1(D) (φ⊗ ψ)(f) =

(∫
D

ψf

)
φ,

and |||·|||L1(D) denotes the norm operator in L1(D).

Remark 1. The balanced exponential growth naturally implies the exponential decay toward zero, but also
a thermalization phenomenon: the rescaled C0−semigroup converges uniformly toward a positive rank-one
projector. In other words, before disappearing, the population of particles converges towards the same profile
whatever the initial condition.

About the spectral bound, it satisfies a minmax theorem which could be useful for estimates:
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Corollary 4. (Collatz-Wielandt characterization) Denote Q the set of almost everywhere positive functions
in L1(D) and Σ0 a subfamily of the Lebesgue algebra σ(D) such that for any E ∈ Σ0,

∫
D
1E < +∞ and

{1E |E ∈ Σ0 } is weak-⋆ total in L∞(D) then for any t > 0

es(L)t = sup
f∈Q

inf
E∈Σ0

∫
E
Ptf∫

E
f

= inf
f∈Q

sup
E∈Σ0

∫
E
Ptf∫

E
f

As for the trace, since f(t, ·) ∈ Cb
(
D

)
, we can define γf ∈ Cb(∂D) and γ±f := γf|±(p·nq)>0 but we have

more:

Theorem 5. Let γf the trace of f defined as above, then γf ∈ L1(
∂Ω × Rd; |p · nq|dσ∂Ωdp

)
where dσ∂Ω

denotes the Lebesgue measure on ∂Ω. And for any t > 0 and for any ϕ ∈ C∞(D) ∩ C
(
D

)
we have∫

D

(Lf)ϕ =
∫

D

fL∗ϕ+
∫

∂D

γfϕ(nq · p)dpdσ∂Ω.

As the proofs of Theorem 2 and Theorem 3 rely heavily upon [10, 11] and upon the theory of Banach
lattice, for sake of completeness, we will first recall the mots importants points of [10, 11] and of the theory
of Banach lattice in Section 1. Then, we will establish Theorem 2, Theorem 3 and Corollary 4 in Section 2.
After that, the proof of Theorem 5 will be given in Section 3.

1. A few recall about Banach lattices and probabilistic investigations of the kinetic
Fokker-Planck equation

First, we recall the main elements of the theory of Banach lattice and a few of useful theorems around
positive operators and semigroups of operators in a Banach lattice. Then, we recall and synthesize the main
results of [10, 11].

1.1. Banach lattices. First, we underline that L1(D) is a ordered set with the partiel order defined by

0 ≤ f if and only if 0 ≤ f(x) a.e. on D.

This ordered space is a Banach lattice, meaning that the ordering is compatible with the vector structure
and is such that

∀f, g ∈ L1(D), if |g| ≤ |f |, then ∥g∥L1(D) ≤ ∥g∥L1(D).

A semigroup S ≡ (St)t≥0 is said to be positive if it preserves positivity, i.e.

f ≥ 0 ⇒ Stf ≥ 0, for each t ≥ 0.

A closed subspace I of L1(D) is said to be an (order) ideal if

∀(f, g) ∈ L1(D) × I, |f | ≤ |g| ⇒ f ∈ I.

The null subspace {0} and L1(D) are ideals. A semigroup S is said to be irreducible if and only if the only
ideals that are invariant for S are {0} and L1(D). That is equivalent to the following property (for instance
[15, Proposition III.8.3 p.186]):

∀0 ≤ f ∈ L1(D), 0 ≤ g ∈ L∞(D) with f ̸= 0, g ̸= 0,∃t > 0 :
∫

D

gStf > 0.

In others words, an irreducible semigroup spreads the support of any nonnegative function through the
entire space. A nonnegative function f ∈ L1(D) is a quasi-interior point if it is a.e. strictly positive on D.
In L∞(D) that is also a Banach lattice, a non negative function g is a quasi-interior point if there exists
δ > 0 such that δ1D ≤ g a.e. The ground bound of a C0-semigroup S is

ω0(S) := inf
ω∈R

{
∃M ≥ 0 : ∥St∥ ≤ Meωt

}
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It is known [1, Proposition 12.1 p. 181] that

ω0(S) = lim
t→

log ∥St∥
t

= inf
t≥0

log ∥St∥
t

,

and that for any t > 0, the spectral radius of St is equal to:

(5) r(St) = etω0(S).

and let A an unbounded operator, we recall its spectral bound is

s(A) := sup {Re µ |µ ∈ σ(A)}

where σ(A) is the spectrum of A. If S is a positive C0−semigroup on L1(D) then its growth bound coincides
with the spectral bound of its generator (see for instance [1, Theorem 12.17 p.193]). Moreover we have:

Lemma 6. Let A be a positive, compact and irreducible operator on L1(D)
(1) then r(A) > 0 and there exists u ∈ L1(D) and v ∈ L∞(D) strictly positive a.e., unique up to a

multiplicative constant such that {
Au = r(A)u,
A

′
v = r(A)v.

(2) Besides, let µ > 0 such there exists nonzero nonnegative w ∈ L1(D) with Aw = µw then µ = r(A)
and w = u up to a multiplicative constant.

Proof. The first point is classical in Banach lattice theory and is known as De Pagter’s theorem [5]. The
second point is almost immediate, but despite my best efforts, I have not found citable results in the
literature. For the sake of completeness, I provide the evidence. As w is nonnegative and v strictly positive
a.e., we have

∫
Ω×Rd vw > 0 Keeping that in mind, Aw = µw implies∫

D

Awv = µ

∫
wv

thus, as
∫

D
vw > 0 is strictly positive

r(A) = µ,

and the equality of w with u is a direct consequence of the uniqueness of the eigenvector associated to
r(A). □

The theory of the asymptotic behavior of positive C0-semigroups in Banach lattice is very rich. The
following proposition is a synthesis of [17, Propositions 2.3, 2.4, 2.5 and Remark 2.2] and for the precise
form of P , see Proposition III.8.5 p. 189 in [15].

Lemma 7. Let (St)t≥0 a irreducible, positive and compact semigroup on a Banach lattice E, then there
exists a positive projection of rank one, P = x0 ⊗x

′

0 where x0 is, up to a constant, the eigenvalue associated
to s(A) and x′

0 ∈ E
′ such that x′

0(x0) = 1, and constants δ > 0 and M ≥ 1 such that∣∣∣∣∣∣∣∣∣e−ts(A)St − P
∣∣∣∣∣∣∣∣∣

L1(D)
≤ Me−δt.
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1.2. A brief recalling of the results of Tony Lelièvre and alii. We recall here the theory developed
by Tony Lelièvre, Mouad Ramil, and Julien Reygnier in a probabilistic framework for the kinetic Fokker-
Planck in a bounded domain with absorbing [10, 11]. From here, we use there notations except the ones of
the operators L and L∗. Indeed, in [10, 11], L (respectively, L∗) corresponds to L∗ (respectively L) in the
present paper, because the operator L∗ defined in (2).

Let (Xx
t = (qx

t , p
x
t ))t≥0 the Langevin process starting at x ∈ D at t = 0 defined by the following SDE:

dqx
t = px

t dt,
dpx

t = F (qx
t )dt− γpx

t dt+ σdBt,

(qx
0 , p

x
0) = x,

where (Bt)t≥0 is a d−dimensional Brownian motion. Define also the first exit time from D of the process
(Xx

t )t≥0 :
τx

∂ := inf {t > 0 : Xx
t /∈ D}.

We denote the following unbounded operator:

L∗
γ ≡ p · ∇q + F (q) · ∇p − γp · ∇p + σ2

2 ∆p.

It is the operator defined in (2) with the subscript γ in order to emphasize its dependence on the parameter
γ. It is the infinitesimal generator of the Langevin process whereas (3) describes the evolution of Langevin
process absorbed at ∂D. That explains why in a probabilistic framework such as in [10, 11], the initial
problem with L∗

γ is most often studied while in mathematical physics, it is (3) that arouses the most
interest.

That being said, the first main result [10, Theorem 2.10] is then

Theorem 8. Let γ ∈ R and let f ∈ Cb(D ∪ Γ−) and define

uγ : (t, x) 7→ E
[
1τx

∂
>tf(Xx

t )
]

then
(1) (Initial and boundary values) the function u satisfies :

uγ(0, x) =
{
f(x) if x ∈ D ∪ Γ−,

0 if x ∈ Γ+ ∪ Γ0,

and
∀t > 0,∀x ∈ Γ+ ∪ Γ0, u(t, x) = 0.

(2) (Continuity) we have :

uγ ∈ Cb
((
R+ ×D

)
\

(
{0} ×

(
Γ− ∪ Γ0)))

(3) (Interior regularity) u ∈ C∞(
R∗

+
)

and, for all t > 0, x ∈ D

∂tuγ = L∗
γuγ

Moreover, f 7→
(

(t, x) 7→ E
[
1τx

∂
>tf(Xx

t )
])

is a semigroup with nice properties including the existence
of a transition kernel. We sum up the main results (specially Theorem 2.7 and Theorem 2.9 in [11] and
Theorem 2.14 in [10]).

Theorem 9. Let γ ∈ R, there exists
(t, x, y) 7→ pγ

t (x, y) ∈ C∞(
R∗

+ ×D ×D
)

∩ C
(
R∗

+ ×D ×D
)

which satisfies for all t > 0
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• pγ
t (x, y) > 0 for all x /∈ Γ+ ∪ Γ0 and y /∈ Γ− ∪ Γ0

• pγ
t (x, y) = 0 if x ∈ Γ+ ∪ Γ0 or y ∈ Γ− ∪ Γ0

Moreover, for f ∈ Cb
(
D

)
, the functions uγ , vγ defined by

∀t > 0,∀x ∈ D,uγ(t, x) :=
∫

D

pγ
t (x, y)f(y)dy, vγ(t, x) :=

∫
D

pγ
t (y, x)f(y)dy

are in C∞(
R∗

+ ×D
)

and satisfy

(6)


∂tuγ = L∗

γuγ ,

uγ = 0 on Γ+,

uγ(0, ·) = f ;

and

(7)


∂tvγ = Lγvγ ,

vγ = 0 on Γ−,

vγ(0, ·) = f.

Besides, the solution of (6) satisfies Maximum principle. For any t > 0, the operator

Qγ
t f : x ∈ D 7→ E

[
1τx

∂
>tf(Xx

t )
]

=
∫
pγ

t (y, x)f(y)dy

is well-defined and forms a positive and irreducible semigroup of compact operators (Qγ
t )t>0 on Ln(D) to

Ln(D) and Cb
(
D

)
to Cb

(
D

)
. Moreover, it maps Ln(D) into Cb

(
D

)
continuously for any n ∈ [1,∞].

Eventually, we recall here a special case of Theorem 2.13 in [11], the last property being a consequence
of the irreducibility of the semigroup (see Lemma 4.3 in [10])

Theorem 10. Under assumptions above, there exists λγ > 0 such that λγ + γd > 0 and positive functions
φγ , ψγ ∈ Cb

(
D

)
∩ L1(D), unique up to multiplicative constants such

(8)
{

Lφγ + λγφγ = 0
φγ = 0 on Γ− ∪ Γ0

and

(9)
{

L∗ψγ + λγψγ = 0
ψγ = 0 on Γ+ ∪ Γ0.

2. Proof of Theorem 2 and Theorem 3

We establish here Theorem 2 and Theorem 3. The proof of Theorem 2 is split into several steps.

2.1. A semigroup for the kinetic Fokker-Planck equation. In order to use the results of [10, 11]
recalled above, first notice that if u−γ is the solution associated to L∗

−γ as in Theorems 8 and 9 then it is
C∞(

R∗
+ ×D

)
and thus we can derive it in classical sense. It is then easy to check that the function

v(t, q, p) := edγtu−γ(t, q,−p)

solves (3) in the classical sense. That remark motivates the introduction of the following operator defined
on the set of measurable functions L0(D)

(Sf)(q, p) := f(q,−p) ∀f ∈ L0(D).
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The operator S is obviously bounded on Ln(D) and Cb
(
D

)
, moreover it is an involution, which imply that

the operators defined by
(10) P γ

t := edγtSQ−γ
t S,

with Qγ
t defined in Theorem 9, form a semigroup, which, together with Theorem 2.8 in [11], implies the

following theorem:

Theorem 11. The operators (P γ
t )t>0 form a positive and irreducible semigroup of compact operators on

Ln(D) for any n ∈ [1,∞] and Cb
(
D

)
. Moreover, it maps Ln(D) into Cb

(
D

)
. And for any f ∈ Ln(D),

vγ := P γ
t f is in C∞(

R∗
+ ×D

)
and satisfies

∂tvγ = Lγvγ on D,

vγ = 0 on Γ−,

vγ(0, ·) = f.

Moreover, we have the identity for any f ∈ Cb
(
D

)
and vγ = P γ

t f

vγ =
∫

D

pγ
t (y, x)f(y)dy.

where pγ
t is the transition kernel defined in Thorem 9.

From here on, we drop the subscript γ whenever it is obvious from the context what the value of γ is, Pt

for P γ
t and so on. We now show that Pt is a substochastic semigroup:

Lemma 12. For any t > 0
|||Pt|||L1(D) ≤ 1.

As consequence, ∀f ∈ L1(D), t 7→ Ptf ∈ L∞(
R+;L1(D)

)
.

Proof. By density, it suffices to show that for any t > 0 and for any f ∈ Cb
(
D

)
, we have

∥Ptf∥L1(D) ≤ ∥f∥L1(D).

By Theorem 11 we have for any f ∈ Cb
(
D

)
Ptf =

∫
D

pγ
t (y, x)f(y)dy

thus for any g ∈ L∞(D) by Fubini-Tonelli Theorem∫
D

Ptfgdx =
∫

D

∫
D

pt(y, x)f(y)g(x)dydx

=
∫

D

f(y)
(∫

D

pt(y, x)g(x)dx
)

dy

Thus by Maximum principle applied to
∫

D
pt(y, x)g(x)dx that is solution of (6) by Theorem 9, we have for

any g ∈ L∞(D) ∣∣∣∣∫
D

Ptfg

∣∣∣∣ ≤ ∥f∥L1(D)∥g∥L∞(D)

which implies by Hahn-Banach Theorem:
∥Ptf∥L1(D) ≤ ∥f∥L1(D)

which is the desired result. As for the eigenvalue ϕ we have the following immediate lemma: □

Lemma 13. Let λ > 0 and φ be defined as in Theorem 10, then
Ptφ = e−λtφ,∀t > 0.



9

We can now show that (Pt)t≥0 is a strongly continuous semigroup:

Proposition 14. The operators (Pt)t≥0with P0 = I and (Pt)t>0 defined above form a C0−semigroup of
L1(D). As a consequence, the semigroup (Qt)t≥0 associated to the adjoint Cauchy problem is also strongly
continuous on R+ in L1(D).

Proof. It is already known that (Pt)t>0 is strongly continuous on R∗
+ by Theorem 9. It remains to show

that it is strongly continuous at t = 0. By Proposition I.5.3 p. 38 in [6], it suffices to show that there exist
δ > 0, M ≥ 1, and a dense subset D ⊂ L1(D) such that

(1) ∥Pt∥L1(D) ≤ M for all t ∈ [0, δ],
(2) limt→0+ Ptg = g strongly in L1(D) for all g ∈ D.

By Lemma 12, we know that ∥Pt∥L1(D) ≤ 1. It remains to establish (2) for D = Cc(D). Let g ∈ Cc(D) that
we assume nonnegative and denote h(t, x) := Ptg(x) for any x ∈ D, we know that h ∈ C(R+ ×D), thus for
any t ∈ [0, T ], x 7→ h(t, x) is measurable. In the same way, for every x ∈ D, t 7→ h(t, x) is continuous. Let φ
defined in Theorem 10 and Lemma 13. As g ∈ Cc(D) and φ > 0 everywhere, there exists C > 0 such that

g ≤ Cφ a.e. on D

and by positivity of Pt and Lemma 13, we have
h ≤ Ce−λtφ ≤ Cφ a.e. on D,∀t ≥ 0

with φ ∈ L1(D). In others words, h is dominated on [0, T ] by a integrable function on D which implies that:

t →
∫

D

h(t, x)dx is continuous on [0, T ].

As h is nonnegative, Schaffé’s lemma implies:
(11) ∥Ptg − g∥L1(D) → 0 as t → 0+ for any nonnegative g ∈ Cc(D)

Now consider g ∈ Cc(D) that can change sign and let g = g+ − g− with g± ∈ Cc(D) and g± ≥ 0. We have
∥Ptg − g∥L1(D) ≤ ∥Ptg+ − g+∥L1(D) + ∥Ptg− − g−∥L1(D)

thus by (11)
∥Ptg − g∥L1(D) → 0 as t → 0+ ∀g ∈ Cc(D),

Consequently, (Pt)t≥0 is a C0−semigroup of L1(D).

As for (Qt)t≥0, it is a direct consequence of (10), i.e.

Qγ
t = edγtSP−γ

t S.

□

Let us make also an important remark

Remark 2. For any t > 0, the kernel pt satisfies a Gaussian upper-bound (see [10, Corollary 2.22] or
[11, Theorem 2.7]) that is established by studying the Langevin process on the space R2d after extending the
driving force over the whole space. The authors have deduced an inequality valid on the whole space which
they then truncate on Ω ×Rd. As the two functions are continuous, the proof of the authors implies that the
inequality is valid on Ω × Rd and thus on ∂Ω × Rd.

The recall being done, for the sake of readability, we split the proof of Theorem 2 into several steps. First
we show that for any f in ∈ L1(

Ω × Rd
)
, t 7→ Ptf

in belongs to the good function space.

Lemma 15. Let f in ∈ L1(D) and f := Ptf
in with (Pt)t>0 defined in Theorems 9 and 8. Then f ∈

L∞(
[0, T ];L1(D)

)
.
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Proof. It is simply a direct consequence that for any t > 0, we have
∥∥Ptf

in
∥∥

L1(D) ≤
∥∥f in

∥∥
L1(D). □

We now show that for any smooth initial condition, the solution in the sense of Theorems 9 and 8 is also
a weak solution.

Lemma 16. Let f in ∈ Cb(D ∪ Γ+) and u := Ptf
in with (Pt)t>0 defined in Theorems 9 and 8, then for any

ϕ ∈ DQT
we have ∫

QT

u(∂tϕ+ L∗ϕ)dtdqdp+
∫

D

f in(q, p)ϕ(0, q, p)dq = 0.

In others words, u is a weak solution of (3)

Proof. We cannot apply integration by parts (Green Theorem) to the cylindric domain QT because f is not
C1 on QT . Therefore, we introduce ε ∈ (0, T ) and the subset:

Qε,T := [ε, T ] ×D.

Let f in ∈ Cb(D ∪ Γ+) and let u be defined in Theorem 8. We have u ∈ Cb
(
Qε,T

)
∩ C∞(Qε,T ), so that by

Green Theorem applied to the cylindric domain (see Theorem 5.5 p. 47 in [13]), we have for any ϕ ∈ DQ̃T

0 =
∫∫

Qε,T

(∂tu− Lu)ϕdtdx

=
∫∫

Qε,T

(−∂tϕ− L∗ϕ)udtdx−
∫∫

D

u(ε, x)ϕ(ε, x)dx

We know that, since u ∈ Cb
((
R+ ×D

)
\

(
{0} ×

(
Γ− ∪ Γ0)))

,

u(ε, ·)ϕ(ε, ·) → f inϕ(0, ·) as ε → 0+ a.e. on Ω × Rd.

Moreover
|u(ε, ·)ϕ(ε, ·)| ≤

∥∥f in
∥∥

L∞(D)

(
sup
ε≥0

ϕ(ε, ·)
)
.

As (supε ϕ(ε, ·)) ∈ L1(
Ω × Rd

)
since it is in DQ̃T

, we can apply dominated convergence to get:∫∫
D

u(ε, x)ϕ(ε, x)dx →ε→0+

∫∫
D

f inϕdx.

In the same way, we have∫∫
Qε,T

(∂tϕ+ L∗ϕ)udtdx →ε→0+

∫∫
QT

(∂tϕ+ L∗ϕ)udtdx

Hence u satisfies for all ϕ ∈ DQ̃T∫∫
QT

(∂tϕ+ L∗ϕ)udtdx+
∫∫

D

f in(x)ϕ(0, x)dx = 0

which is the desired result. □

Let now extend the result above to the case of f in ∈ L1(D).

Lemma 17. Let f in ∈ L1(D) and for any t > 0, f(t, ·) := Ptf
in then f ∈ L∞(

[0, T ];L1(D)
)

and for any
ϕ ∈ DQT

we have ∫
QT

f(∂tϕ+ L∗ϕ)dtdqdp+
∫

D

f in(q, p)ϕ(0, q, p)dq = 0.

In others words, f is a weak solution of (3)
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Proof. Let f in ∈ L1(D). We know that for any t > 0, Pt ∈ L(Lp(D)). Keeping it in mind, take f in
n ∈ C∞

0 (D)
such that f in

n →n→+∞ f in in L1(D). Then, denoting fn := Ptf
in
n we have by Lemma 16 for any ϕ ∈ DQ̃T

and for any n ∈ N :

(12)
∫

QT

fn(∂tϕ+ L∗ϕ)dtdqdp+
∫

D

f in
n (q, p)ϕ(0, q, p)dq = 0.

By Lebesgue partial converse theorem (see Theorem 4.9 p. 94 in [3]), we can moreover assume that, up to
a subsequence, there exists g ∈ L1(D) such that:∣∣f in

n (x)
∣∣ ≤ g a.e. in x ∈ D,

and
f in

n → f in a.e. in x ∈ D.

That implies immediately:

(13)
∫

D

f in
n (q, p)ϕ(0, x)dx →

∫
D

f in(x)ϕ(0, x)dx as n → +∞,

and

(14) ∀(t, x) ∈ [0, T ] ×D,

∫
D

pt(y, x)f in
n dy →n→+∞,

∫
D

pt(y, x)f indy.

Besides, observe that

0 ≤ fn(t, x) ≤
∫

D

f in
n (y)pt(y, x)dy ≤

∫
D

g(y)pt(y, x)dy

with
∫

D
g(y)pt(y, x)dy ∈ L1([0, T ] ×D) and by (14)∫

D

f in
n (y)pt(y, x)dy →

∫
D

f in(y)pt(y, x)dy a.e. in (t, x) ∈ [0, T ] ×D

as n → +∞. Therefore by dominated convergence we have

fn → f in L1([0, T ] ×D) − strong

as n → +∞. That implies:

(15)
∫

QT

fn(∂tϕ+ L∗ϕ)dtdqdp →
∫

QT

f(∂tϕ+ L∗ϕ)dtdqdp

as n → +∞. Applying (13) and (15) to (12) shows that f is a weak solution to the initial boundary prob-
lem (3) with f in as initial condition.

As for the uniqueness of the weak solution, as the problem is linear, it suffices to show that if f ∈ L1(QT )
is such that ∫

QT

f(∂tϕ+ L∗ϕ)dtdqdp = 0, ∀ϕ ∈ DQ̃T
,

then
f = 0.

We remark that if for any ψ ∈ Cc((0, T ) ×D), there exists ϕ ∈ DQ̃T
solution of the backward problem

(16)


∂tϕ+ L∗ϕ = ψ

ϕ|Γ0∪Γ− = 0
ϕ(T, ·) = 0
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that would imply that f = 0 in distributional sense and thus f = 0 in L1(QT ). This leads us to consider ϕ̃
solution of the forward problem:

(17)


∂tϕ̃− L∗ϕ̃ = ψ

ϕ̃|Γ0∪Γ− = 0
ϕ̃(0, ·) = 0

It is obvious that t 7→ ϕ̃(T − t, ·) is solution of (16). As (Qt)t≥0 is strongly continuous by Proposition 14,
we have by Duhamel formula [6, Corollary III.1.7 p. 161]

ϕ̃ =
∫ t

0
Qt−sψ(s)ds

thus

ϕ =
∫ T −t

0
QT −t−sψ(s)ds

=
∫ T

t

QT −sψ(s− t)ds

It remains to show that ϕ ∈ DQ̃T
to conclude. By linearity, we can assume that ψ is nonnegative. That being

said, first, by the properties of the function pt (Theorems 9 and 8 above), we have ϕ ∈ C∞
0

(
Q̃T

)
. Besides,

we have obviously (∂t + L∗)ϕ ∈ L∞(QT ). Eventually, let ψλ being the positive eigenvector associated to
L∗, see (9) in Theorem 10, with eigenvalue λ and

∫
D
ψλ = 1. Let K compact of (0, T ) × D such that

supp ψ ⊂ K. As There ψλ is positive everywhere on D and constant in time, there exists c > 0 such that
ψλ ≥ c for any (t, x) ∈ K. Therefore, there exists C > 0 such that

ψ ≤ Cψλ everywhere on (0, T ) ×D.

As (Qt)t>0 are positive operators, the properties of ψλ and the inequality above imply

Qt−sψ(s) ≤ Ce−λ(t−s)ψλ.

Integrating the inequality above in time s ∈ [0, t] leads to:

ϕ̃ ≤ C

λ

(
1 − e−λt

)
ψλ,

thus

0 ≤ ϕ ≤ C

λ

(
1 − e−λ(T −t)

)
ψλ

which implies that ϕ ∈ L1(D;L∞((0, T ))). Consequently, ϕ ∈ DQ̃T
which is the desired conclusion. □

2.2. Proof of Theorem 3. Now, we establish Theorem 3
(1) By Theorem 2, for any f in ∈ L1(D), there exists a unique weak solution f in sense of Definition 1,

thus we have f(t, ·) = Ptf
in with (Pt)t≥0 defined in (10). By Theorem 11, Lemma 12 and Proposition

14, it is a positive, irreducible, contractive and compactC0- semigroup.
(2) By Theorem 8 with the property of semigroup, we have for any f in ∈ L1(D), ∀t > 0, Ptf

in ∈
C∞(D) ∩ Cb

(
D

)
.

(3) With the properties of the semigroup established above, the balanced growth law of (Pt)t≥0 is a
direct consequence of Lemma 7 with the eigenvectors identified in Theorem 10.

Now we give the proof of Corollary 4
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Proof. We know that
r(Pt) = eω0t

where ω0 is the growth bound of the semigroup (Proposition 2.2 p. 251 in [6]). As Pt is a positive C0-
semigroup in L1(D), it is equal to the spectral bound of its generator (Theorem VI.1.15 p. 358 in [6]). As
Pt is moreover irreducible and compact, the result is then a direct consequence of Theorem 1 in [14]. □

3. A Trace theory for the kinetic Fokker-Planck equation

We now establish a trace theory for the kinetic Fokker-Planck equation. First, using the regularity of the
weak solution, we can easily define its trace:

Lemma 18. Let f be the weak solution with initial condition f in ∈ L1(D). The trace of f on R∗
+ × ∂D is

well defined with γf := f|∂D and γ± := γf|±(p·nq)>0 . Moreover we have

γ−f = 0 and γ+ ∈ L1(
∂Ω × Rd; |nq · p|dqdp

)
.

Proof. By Theorem 9, we know that for any t > 0, Pt maps continuously L1(D) into Cb
(
D

)
. Thus we can

define γf := f∂Ω×Rd and γ± := γf|±(p·nq)>0 .

Besides, by semigroup property, we have for any t > 0, Ptf
in = Pt/2

(
Pt/2f

in
)

with Pt/2f
in ∈ Cb

(
D

)
which implies by Theorem 8 that γ−f = 0.

Now show that γ+f ∈ L1(
∂Ω × Rd; |nq · p|dqdp

)
. As for any t > 0, γ+f ∈ Cb(∂D), it is measurable. Now

we have by the semigroup property and by continuity:

γ+f(t, x) =
∫

D

pt/2(x, y)f
(
t

2 , y
)

dy

with y 7→ f
(

t
2 , y

)
∈ Cb(∂D), thus

|γ+f(t, x)| ≤
∥∥∥∥f(

t

2 , ·
)∥∥∥∥

Cb(∂D)

∫
D

pt/2(x, y)dy.

The Gaussian estimates on pt/2 (see [10, Corollary 2.22] and Remark 2) implies that

x ∈ ∂D 7→
∫

D

pt/2(x, y)dy ∈ L1(
∂Ω × Rd; |nq · p|dσ∂Ωdp

)
,

hence the desired result. □

The existence of the trace and the regularity of the weak solution implies that the integration by parts,
also known as Green’s formula, is satisfied:

Lemma 19. Let f be the weak solution with initial condition f in ∈ L1(D) and let γf be its trace. Then, it
satisfies Green’s formula, meaning that for any t > 0 and for any ϕ ∈ C∞(D) ∩ C

(
D

)
we have∫

D

(Lf)ϕ =
∫

D

fL∗ϕ+
∫

∂D

γfϕ(nq · p)dpdσ∂Ω.

Proof. By unicity of the weak solution, we know that for any t > 0, f = Ptf
in and thus f ∈ C∞(D) ∩

C
(
D

)
with γf ∈ L1(

∂Ω × Rd; |nq·|dσ∂Ωdp
)

by Lemma 18. Hence, the classical theorem of Green’s formula
(Integration by parts) [13, Th 5.5 p. 47] applies here and leads to the desired result. □
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