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Abstract—In video compression applications, the term
75%SUR (Satisfied User Ratio) is used to describe the compres-
sion parameter with which only 75% of the users can not notice
the difference between one compressed media and its source.
75%SUR is widely used in JND (Just Noticeable Difference)
modeling as a common threshold to standardize differences in
users’ perceptions of JND location. Visible difference detection is
an essential step in JND prediction. However, Visible Difference
Predictors (VDP), as objective quality metrics, are usually cali-
brated and applied on media quality datasets, no study has yet
trained or applied the VDP on JND datasets. In this work, we will
explore the feasibility of using the VDP model in predicting SUR
and JND. We focus on Video Wise JND(VW-JND) and propose
the model Extend-FvVDP, which maps the continuous quality
scores output from the current best-performing VDP model,
the FovVideoVDP, to VW-JND ground truth. Finally, Extend-
FvVDP got a mean SUR prediction error of 0.0624, a mean
JND prediction error of 1.9318. Our results show that VDP still
performs on the JND datasets, and the JND prediction using VDP
has the potential to exceed that of pure deep learning models.

Index Terms—just noticeable difference, quality metric, visible
difference predictor, visual perception

I. INTRODUCTION

Video quality decreases with increasing compression. How-
ever, in cases where compression has to be applied, it is
imperative to ensure the highest possible perceived quality
for the user. We can do this by relying on a psychophysics
study conclusion, which states that the human visual system
has a limited sensitivity in recognizing minor video distortions
[11]–[13], [15]. As we increase the compression on the source
video, the level of distortion also escalates. When the subject
first observes the difference between the compressed video and
its source, the compression parameter at this point is called the
first JND. The 1st JND is the optimal compression parameter
that guarantees the perceived quality. While even for the same
video, the JND location varies from person to person. SUR
proves to be an effective method for aggregating the individual
VW-JNDs of each observer [6]–[8].

We can obtain JND data through subjective test experiments,
in which the subjects point out the location of JND by their
own observation on the source and compressed videos. We
can derive the SUR curve from the JND data. The SUR
curve depicts the ratio of users who are satisfied with the
compressed video (users who cannot see the video difference)

Fig. 1. Example of a SUR curve. The intersection point of the 75% threshold
and the SUR curve is the harmonized JND point [9]

as the compression level changes. Fig.1 shows an example
SUR curve. The ordinate represents the satisfied user ratio, and
the abscissa represents the video compression Quantization
Parameter(QP). It can be observed that as the compression
level increases, more and more users perceive the distortion.
Previous works [6], [7], [15] take the QP corresponding to
the threshold SUR of 75% in order to satisfy a great majority
of viewers. This QP is the result of harmonizing the JNDs
of different users, it helps us make decisions on the trade-
off between the compression level and the video perception
quality. In this paper, we use the QP corresponding to 75%
SUR as the prediction target and call this QP value the
harmonized JND of the video. The streaming providers can
certainly opt for distinct thresholds tailored to various use
cases.

II. RELATED WORKS

Obtaining JND data from subjective test experiments, while
ensuring data accuracy, is expensive and inefficient. Therefore,
the prediction of JND becomes a crucial task. Existing video
JND prediction models can be divided into two categories,
pixel-wise models and video-wise models. Many studies [2]–
[5] work on pixel-wise models. These models focus on the
effect of visual perceptual factors such as masking effects
or subband frequencies on media. Pixel-wise JND modeling
is more challenging since it is difficult to model all the
influencing factors and there are still many unknown factors. In



addition, since it is difficult for the human eyes to recognize
the small differences in pixels, it is more the experience of
the entire picture or video. Therefore, most of the currently
available JND prediction models are image/video wise models
[6]–[9]. In [6], a perceptual model for compressed video SUR
prediction was proposed by exploiting the bitrate changes
in the compressed video, and the spatial-temporal features
extracted from both compressed video as well as its source. In
[7], Wang et al. proposed a method to predict the SUR curves
using VMAF (Video Multi-method Assessment Fusion) [10]
quality degradation features followed masking effect features.
After that, a SVM model is used to regress the features to
complete the prediction of JND. Zhu et al. proposed a source
based VW-JND prediction model in [8], which improves the
model in [7] by extracting the masking effect features from
only the source video and then using SVM to regress the
features to complete the JND prediction. Zhang et al. proposed
a deep learning model for H.264 videos’ JND prediction in [9].
The authors used a deep learning model for extracting spatio-
temporal features of the reference and test videos and used
them to predict the SUR curve. Then the QP corresponding
to 75%SUR is taken as JND. This model outperforms in both
SUR and JND prediction as compared with the state-of-the-art.

Besides, the JND predictors are designed to find the QP at
which visible differences are just perceived by users, which
brings us to the VDP. Mantiuk et al. proposed a calibrated
image visual metric called HDR-VDP2 in [11]. This metric
is based on a new visual model for all luminance conditions,
especially the High Dynamic Range (HDR) images. It was
calibrated against several contrast discrimination datasets, and
image quality databases [16], [17]. In [12], the authors further
proposed HDR-VDP2.2 to improve HDR-VDP2 to support the
quality analysis for both Standard Dynamic Range (SDR) sig-
nals and HDR signals. Mantiuk et al. also proposed a quality
metric specific for videos called FovVideoVDP in [13]. For
computational complexity reasons, FovVideoVDP removes the
modeling of the Human Visual System. FovVideoVDP adds
temporal characteristics and contrast masking analysis to better
detect video visibility. FovVideoVDP has been calibrated on
3 independent foveated video datasets, and on a large image
quality dataset to evaluate its validity.

Visibility detection is an indispensable step in JND pre-
diction, and usually implicitly included in the neural network
structure of JND predictors. While the standalone VDPs are
calibrated and applied on media quality datasets, no study has
yet trained or applied the VDP on JND datasets. In this work,
we will bridge the gap between VDP and JND datasets. Our
main contributions are:

• Validated VDP on the JND datasets;
• Proposed the VW-JND prediction model Extend-FvVDP

to explore the mapping relation between VDP score and
JND location;

• Analysed the room for improvement of VDP on JND
prediction.

The rest of this paper is organized as follows: In section III,

we will describe our experiment data and model’s implemen-
tation details. In section IV, we will examine the prediction
accuracy and robustness of Extend-FvVDP. The final section
V will summarize the whole paper and point out the room for
improvement of this study.

III. PROPOSED FRAMEWORK FOR VW-JND PREDICTION

In this section we will describe the implementation details of
our proposed model Extend-FvVDP. Since the environmental
factors have a significant impact on the output of VDP and
our study conclusion, we will pay attention to the values and
acquisition methods of the environmental parameters used in
this paper and describe them in section III.A. In section III.B,
we will describe Extend-FvVDP’s framework structure.

A. Dataset and its environmental parameters

This paper uses 220 source videos with the resolution of
1920x1080 and their compressed versions in the VW-JND
dataset VideoSet [15]. Each source video has 51 compressed
versions with H.264, corresponding to the QP range from 1 to
51. When QP is at the edge, the video cannot be substantially
compressed. QP 1-7 product the same video, so do the QP 47-
51. Therefore, this paper only uses compressed videos with QP
of 7-47, a total of 9240 videos, as our experiment data. In this
paper, QP appears many times in the charts as the abscissa.
Without loss of generality, all QP values in the chart in this
paper are the result of subtracting 7 from the real value. For
example, when QP shows 0 in the chart, it represents QP 7.

The environmental parameters of the subjective test exper-
iment have a serious impact on the perceived quality and
the output of the VDP. Therefore, we have made careful
considerations in the selection of parameters. The parameters
required in this paper are specifically:

• Y peak: peak luminance of the display in cd/m2

• contrast: display contrast
• gamma: standard gamma-encoding
• E ambient: ambient light in lux
• k ref: reflectivity of the display
• ppd: pixels per degree

VideoSet is a huge video dataset, thus the subjective test
on it was assigned to different universities in different cities.
Every experiment site conducted the subjective test experiment
in different environment. VideoSet’s authors didn’t record the
assignment of the experiment work. Thus, we can only use
the mean of all the experiment site as our parameter. Besides,
the environmental parameters we need are only very vaguely
represented in the dataset paper [15]. We begin with the
Y peak. The paper does not precise the parameter values but
only a chart showing them. So we added gridlines to the chart.
Fig.2 shows the original chart with our gridlines. Each blue
cross represents the Y-peak value of one experiment site. We
try to record the value of each cross as accurately as possible,
and then calculate their mean. The parameter contrast is in
the same situation, we did the same process. For the parameter



Fig. 2. VideoSet chart of peak luminance with gridlines [15]

TABLE I
VDP ENVIRONMENT PARAMETERS

Parameter Value
Y peak 165.8
contrast 435
gamma 2.2

E ambient 100
k ref 0.005
ppd 60.8

E ambient, it is mentioned in the paper that the ambient light
of the subjective test experiment is the brightness of usual
offices, so we set it to 100 lux. The other two parameters
gamma and k refl are not mentioned in the paper at all.
As these two parameters have only a weak effect on VDP
output, we leave them as the default value of FovVideoVDP.
Finally, the paper clearly informs that distance h(viewing
distance/active display height) equal to 3.2, and the display
height resolution is 1080. We use the equation (1) to calculate
ppd. The final environment parameter settings are shown in
Table I.

ppd =
height resolution

arctan( 1
distance h )

(1)

B. Extend-FvVDP, JND prediction using FovVideoVDP

We propose Extend-FvVDP, which extends FovVideoVDP
for JND prediction to demonstrate the existence of the map-
ping relation between VDP quality score and JND. Fig.3
shows the framework structure of Extend-FvVDP. This section
goes on to explain the implementation details of each step.

Calculation of VDP scores
At the end of the FovVideoVDP model, the authors pool

the visible differences of each frame of the video to obtain
a pooling score. This pooling score is then regressed to map
to the final quality score. The purpose of this step is to scale
the pooling score to make the final output more closely match
the quality score ground truth. Since there is no quality score
data to be fit and only the visible differences in quantification
are needed in this study, we dropped the final regression
and directly use the pooling scores as the output score of
FovVideoVDP.

We first input all the 9020 compressed videos as well the
220 source videos into FovVideoVDP. After display model,
temporal & multiscale decomposition, contrast sensitivity &
masking modules and the final pooling, we get the output
scores. For every source video, we learned the mapping of

each QP to VDP score. From the subjective test experiments,
for every source video, we learned the mapping of each QP to
SUR value. In the next step, we will find the correspondence
between VDP score and SUR value using QP as the proxy.

Preprocessing of VDP score
For each source video, its VDP score increases with increas-

ing QP in the form of a concave curve. VDP score achieves
a minimum value of 0 at QP equal to 0, where the source
video is compared with itself, so the visible difference is 0.
But the maximum value has a considerable range of variation
from 8000 to 17500. We calculated the correlation between the
maximum VDP score and JND ground truth of each source
video. We got Pearson Correlation Coefficient (PCC) = 0.0076
and Spearman Correlation Coefficient (SRCC) = 0.0363. They
are both approximately 0. This shows that the range of scores
has no effect on the JND prediction. To fit these curves better,
we normalized them using the maximum score of each source
video.

Besides, we found some points out of the trend of the
VDP score curve. The objective quality of the video will
gradually decrease with the increase of the QP. These outliers
are unnormal and will interfere with the following regression.
So we replace the outliers with the mean of the before and the
after points. Among the 220 1080P source videos in VideoSet,
we find 8 videos with outlier scores, they are SRC10, SRC40,
SRC41, SRC42, SRC43, SRC45, SRC53 and SRC124.

Feature Extraction and Regression Model
Using QP as a proxy, we can obtain the correspondence

between VDP score and SUR ground truth. Fig.4 gives the
corresponding relation between the VDP score and SUR of
all the 9020 compressed videos in our dataset. Each blue dot
represent a compressed video with its VDP score and SUR
value. We can observe that when we fix the score, for example,
when score = 1250 as the red vertical line shown in Fig.4,
on different videos, the score corresponds to a big range of
SUR values. Therefore, our regression work cannot simply
regress the (VDP score, SUR) point set, but consider the
VDP score curve where each point is located. Therefore, for
each source video and its compressed versions, we performed
polynomial fitting between the VDP score and QP value. After
that, we use the fitting parameters as features, and splicing
them with the QP index and score value of each point to jointly
predict the SUR value. Through this method, we provide the
regressor with the score of each QP, and also the information
of the source video where this score point is from. Our feature
structure is as equation (2):

[fit para1...fit paraN,QP index, vdp score]− > SUR
(2)

The left side of the arrow is the input vector, the output of
the model is the SUR value corresponding to the source video
and QP index.

In order to select the appropriate number of fitting param-
eters and the type of regressor, we tested the performance



Fig. 3. Extend-VDP framework structure [13]

Fig. 4. VDP score and SUR corresponding map of all the 9020 compressed
video in our dataset. This figure shows that the same VDP score may
correspond to a very large range of SURs on different videos. Therefore,
there is no uniform mapping between VDP score and SUR, but rather it is
related to the video as a whole.

of 8 different regressors under different numbers of curve
fitting degree, the results are shown in Fig.5. The abscissa
represents the degree of polynomial fitting, and the ordinate
represents the mean absolute error of SUR prediction out from
different regression models after 4 cross-tests. We consider
firstly the score curve fit. We can see that when the degree
equals to 12, the score curves are fitted the best. So we set the
degree of the polynomial fit to 12. Then we selected the best
performing model when degree equals to 12, that is random
forest regressor. Fig.6 gives an example of the SUR curve
prediction results of source video SRC220. After obtaining
the SUR curve, we only need to find the QP corresponding to
75% SUR to complete the harmonized JND prediction.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

To evaluate the performance of Extend-FvVDP, we com-
pared our prediction results with the results of the model VW-
STSUR-QF proposed in [9]. VW-STSUR-QF is implemented
entirely based on deep learning methods and the authors also
use VideoSet [15] for training and evaluation. It is suitable
as our comparison object. The dataset division scheme used

Fig. 5. Polynomial fit degree and regressor type test results

Fig. 6. SUR prediction result example: SUR prediction result of the source
video SRC220

in [9] is 60% for training, 20% for validation, and 20% for
testing. For a fairer comparison, we applied the same dataset
split scheme.

We first tuned our model using the train and validation set.
In section III-B, we have given test results for the degree of
polynomial fit and the type of regressor in Fig.5, and we finally
chose the degree of 12 and the random forest regressor. Table
II shows the specific training error for each fold of the random
forest regressor.

We then apply this tuned model to the test set. The SUR



Fig. 7. The absolute prediction error of Extend-FvVDP and VW-STSUR-QF

TABLE II
EXTEND-FVVDP TRAINING ERROR FOR SUR PREDICTION

fold MAE MSE R2
1 0.0598 0.0106 0.9391
2 0.0628 0.0123 0.9296
3 0.0672 0.0130 0.9250
4 0.0559 0.0089 0.9473

mean 0.0614 0.0112 0.9353

and JND prediction results are given in table III.
Compared with the results given in [9]: SUR MAE =

0.049, harmonized JND MAE = 1.69, the accuracy of our
model in predicting SUR and JND was reduced by 1.3% and
0.58% respectively according to equation (3), where ∆acc(x)
represents the increment in the prediction accuracy of the
variable x, ∆MAE(x) represents the incremental MAE of the
variable x, and MAX(x) represents the maximum possible
value of the variable x.

∆acc(x) =
∆MAE(x)

MAX(x)
(3)

The authors of [9] also give out the specific absolute error
of the test set JND, we also give ours in the Fig.7. We
observed that both the JND prediction performance of our
model and that of VW-STSUR-QF are unstable. For our
model, the absolute error range from -5 to 6. And the absolute
error of VW-STSUR-QF range from -4 to 5. In summary, our
model has similar performance as VW-STSUR-QF in terms
of accuracy and robustness, but slightly inferior.

V. CONCLUSION AND FURTHER WORK

In this work, we innovatively calibrated the VDP using the
JND dataset and subsequently applied it to JND prediction.
Our prediction results are comparable to the current state of
research, which proves the feasibility of utilizing VDP for
JND prediction. But unfortunately, our model did not surpass

TABLE III
EXTEND-FVVDP PREDICTION RESULTS ON TEST SET

MAE MSE R2
SUR 0.062479 0.009501 0.945483

harmonized JND 1.931818 5.931818 0.292291

the current state of research in terms of both accuracy and
robustness.

But there is a controversial point in this work. That is
the environmental parameter which we input to the model.
As we mentioned before, environmental parameters have a
significant impact on the output of the VDP. However, the
precise values of these parameters remain elusive due to
inadequate recording.

We have consistently maintained confidence in the capabil-
ity of VDP for JND prediction. In our future endeavors, we
intend to employ more rigorous and dependable environmental
parameters and experimental designs to further enhance the
accuracy of our predictions.
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