
Risk-Aware Navigation for Mobile Robots in Unknown 3D
Environments

Elie Randriamiarintsoa 1, Johann Laconte 2, Benoit Thuilot1, Romuald Aufrère1

Abstract— Autonomous navigation in unknown 3D environ-
ments is a key issue for intelligent transportation, while still
being an open problem. Conventionally, navigation risk has
been focused on mitigating collisions with obstacles, neglecting
the varying degrees of harm that collisions can cause. In this
context, we propose a new risk-aware navigation framework,
whose purpose is to directly handle interactions with the
environment, including those involving minor collisions. We
introduce a physically interpretable risk function that quantifies
the maximum potential energy that the robot wheels absorb
as a result of a collision. By considering this physical risk in
navigation, our approach significantly broadens the spectrum of
situations that the robot can undertake, such as speed bumps or
small road curbs. Using this framework, we are able to plan safe
trajectories that not only ensure safety but also actively address
the risks arising from interactions with the environment.

I. INTRODUCTION

Navigating in unknown 3D environments is a crucial task
for mobile robots. Before being able to move, a robot must
represent the environment in which it evolves. A well-known
and efficient way to map the environment is the occupancy
grids introduced by Elfes [1]. An occupancy grid provides
the robot with information about the potential presence of
an obstacle at a given position. However, this information
alone does not encompass all the capabilities of the robot to
maneuver within its environment. For example, a wheeled
robot can safely cross grasses, a curb, or a speed bump at
low speed, as shown in Figure 1. Therefore, a way to assess
their hazardous nature is necessary to evolve in these envi-
ronments. Motivated by this fact, numerous recent works [2]
have contributed to risk-aware navigation. However, Laconte
et al. [3] demonstrated that the Bayesian occupancy grid,
which stores the probability of collision of a given position,
is ill-suited to compute the risk over paths. Indeed, the
probability of collision, computed as the joint probability that
every cell is free of obstacles, is highly dependent on the grid
tessellation size. To overcome this difficulty, they developed
a novel framework called Lambda-Field to assess physics-
based risks on occupancy grids. Moreover, in occupancy
grids framework, most navigation methods [4] use geometric
and semantic reasoning to handle the obstacles present in
the environment, such as curbs, traffic cones, speed bump,
sidewalk, buildings, traffic circle and traffic lights shown
in Figure 1. Laconte et al. [3] showed that path planning
becomes more intuitive and meaningful when a physical
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Fig. 1. Example of a situation that a vehicle might encounter while
navigating. Speed bumps are frequent obstacles an intelligent vehicle has
to safely overcome. With our framework, the vehicle is able to make more
effective decisions based on the level of risk it is allowed to take.

risk metric is used. However, their work has been developed
solely for 2D environments. Here, we adapt their work to
3D environments and use physical, risk-based reasoning to
deal with the obstacles represented in Figure 1.

The main contributions of this paper are i) an extension of
the Lambda-Field [3] to 3D environments; ii) a generaliza-
tion of the risk that take into account traversable obstacles;
iii) a mathematical formulation of a local risk-aware path
planning algorithm in the Lambda-Field; iv) a demonstration
of the applicability of the method, using data acquired in real
urban environment.

II. RELATED WORK

An important challenge in local motion planning is to find
a feasible path that matches the robot’s capabilities while
being safe to traverse. Prior to identifying such a path, it
is essential to accurately map the immediate surroundings
of the robot, thereby representing its local environment.
A popular representation of the robot surroundings is the
occupancy grids, introduced by Elfes [1]. The main idea of
the occupancy grids is to tessellate the environment into cells
and to store in each cell the information of occupancy. Coué
et al. [5] enhanced the previous idea by adding a Bayesian
layer to the approach. Their work led to the Bayesian
Occupancy Filter (BOF) techniques.

Using these Bayesian occupancy grids, standard motion
planning frameworks plan collision-free paths by assessing
the probability of collision of each potential robot path.
However, assessing only the risk of colliding with an obstacle
will always lead the robot to go around them. Therefore, the



collision risk does not fully exploit the robot ability. Indeed,
a mobile robot can cross tall grass or a speed bump even
if it results in collisions. To allow robots to make more
insightful choices, several approaches propose to integrate
the notion of risk in motion planning by using risk maps.
Unlike conventional Bayesian occupancy grids, where each
cell stores the occupancy probability of a given position,
a risk map stores the risk at this position. Schroder et al.
[6] designed a risk map for cognitive vehicles. The defined
risk map is used to prevent the robot from approaching the
hazardous obstacles, such as pedestrians or cars. Pereira et
al. [7] used historical shipping traffic and bathymetry data of
coastal regions to create a risk map for underwater vehicles.
Assigning a probabilistic risk value to each position that is
likely to be occupied allows to avoid potential hazardous
collisions. Primatesta et al. [8] used a risk map to quantify
the risk of an unmanned aerial vehicle flying over a given
position to cause lethal incidents in an inhabited area. Even
though these techniques produce good results, they all make
the assumption that the risk is only dependent on the robot
position, while intuitively the risk depends also on the robot
state and capabilities. As such, our work proposes a risk
model that exploits both the state of the environment and
the robot ability to assess the risk of a given path.

In risk-aware navigation, Majumdar et al. [9] provide
insight about which metrics should be used. Among them, the
expected value and the Conditional value-at-risk (CVaR) are
identified as valid candidates. The CVaR is used to capture
the worst-case expected hazardous event that could happen
over a given horizon of time, and has been used by several re-
cent works [10], [11]. Hakobyan et al. [12] measure the risk
of colliding with randomly moving obstacles. They define
the problem of path planning as a constrained optimization
where the distance to the obstacles must be superior or equal
to a fixed threshold. They demonstrate that this formulation
allows to plan an effective path for a quadrotor in a 3D
environment, while adjusting the safety and prudence of
the motions. For mobile robots, Fan et al. [13] enhance
the previous work by adding multiple sources of risk, such
as the slippage risk. A new risk map is then created by
aggregating the risks that come from these different sources.
Cai et al. [14] quantify the risk by converting a learned speed
distribution map to a risk cost value. In constrast to our
work, traversability is captured via experienced trajectories.
Koval et al. [15] propose another risk-aware path planning
which is also based on a priori data, precisely on a known
map. In [3], the authors introduce the Lambda-Field, a
generic method to assess a physical risk over a continuous
path. The risk is defined as the expected force of collision
along a path. They introduced a new mapping framework
where each cell stores the density of collisions that could be
hazardous to the robot. In contrast to the Bayesian occupancy
grids framework, the Lambda-Field framework computes the
integral of the risk over a given path. This approach has the
ability to retain the physical units of the risk. They have
demonstrated the relevance of the approach in 2D static
environments. They extended their work to unstructured [16]

and dynamic environments [17], yet still only considering 2D
obstacles. In this article, we adapt their framework to 3D
static environments and propose a new physically coherent
risk measure.

III. PRELIMINARIES

In this section, we briefly present the framework developed
by Laconte et al. [3]. In a similar way as occupancy grid
frameworks, the environment is tessellated into cells, where
all cells have a fixed size and area ∆a ∈ R>0. The
core difference of their approach, compared to a standard
Bayesian occupancy grid, is the information that is stored in
each cell. Instead of estimating the probability of collision,
they estimate the density of collision λ ∈ R≥0 for each cell,
also called the intensity. The probability of collision within
the cell is then λ∆a. The higher the intensity of a cell, the
more likely it is that a hazardous event will happen in this
cell. On the contrary, an intensity of zero means that the cell
will never lead to a harmful collision and can be crossed
safely. As shown in [3], the probability of facing at least
one hazardous event (i.e., collision) over a path P in the
discretized field is

P(coll|P) = 1− exp

(
−∆a

∑
ci∈C

λi

)
, (1)

where C is the set of cells crossed by the path P , and λi is
the intensity of a cell ci ∈ C.

In order to build this map, Laconte et al. [16] use a 2D
lidar. If e is the error region area attached to every lidar
measurement, then a cell ci is measured as hazardous if it is
located within the error region area of a lidar beam impact.
Otherwise, if the lidar beam traversed the cell without
returning a collision, the cell is measured as safe. Under
these considerations, the intensity λi of each cell is computed
using an expectation maximization approach. Let si be the
number of times a cell ci is measured as safe and hi the
number of times a cell ci is measured as hazardous, it can
be shown, see [16], that the intensity of the cell ci can be
expressed as

λi =
1

e
ln

(
1 +

hi
si

)
. (2)

Furthermore, the main advantage of the Lambda-Field
is that it enables the computation of the probability of
collision, but also of a generic risk over a path. Following
the demonstration in [16], the expected value of a generic
deterministic risk over a path P crossing the cells {ci}0:N−1,
is given by

E[r(X)] =

N−1∑
i=0

Kir(xi), (3)

where xi corresponds to the position on the path associated
to the cell i and r(xi) is a generic risk function that gives the
value of the deterministic risk if a collision would happen
at xi. Ki gives the probability of encountering an harmful



event at xi and is given by

Ki = exp

−∆a

i−1∑
j=0

λj

 (1− exp(−∆aλi)). (4)

E[r(X)] encompasses both the state of the environment
through the intensity field, and the state of the robot when
it comes at a given position along the path, though the risk
function r(xi). As such, this framework provides a way to
compute a meaningful risk over a path in occupancy grids.

IV. MAPPING

We present here our extension of the Lambda-Field to take
into account traversable 3D obstacles in the environment. For
that, we use a 3D lidar to compute a Digital Elevation Map
(DEM) [18]. By aggregating multiple point clouds over time,
we compute the difference in elevation of the environment.
This is achieved by taking into account the elevations of the
eight neighboring cells for each grid cell. Then, this DEM
is used to compute the Lambda-Field.

To model traversable obstacles in the context of urban
environments containing road curbs and speed bumps. We
define a cell ci as safe if the value of the difference in
elevation is below a threshold value Hsafe; otherwise, this cell
is defined as hazardous. The intensity equation Equation 2
is however modified to take into account the severity of the
event and will stop the robot in its course. As such, the
intensity of a cell ci is computed with

λi =
1

e
ln

(
1 +

hi
si

)
pi (5)

where quantity pi describing the severity of this collision is
defined by

pi = min

( |Hi|
R

, 1

)
, (6)

with Hi the difference in elevation of the cell ci with
reference to its neighbors and R the radius of the wheel.
As such, the likelihood it stop pi is one when the obstacle is
higher than the wheel radius and the robot has no chance to
go over the obstacle, and tends to zero for small obstacles
which are harmful. In the conservative case where we assume
the robot is not able to go over any obstacle, then pi = 1 and
the measurement equation returns to Equation 2. Equation 5
is then a generalization of the approach where we consider
that the robot is also able to traverse over small obstacles.

As an example, Figure 2 depicts a Lambda-Field computed
using Equation 5, for the environment shown in Figure 1. The
global Lambda-Field map is shown at the top in Figure 2
and the construction of the map around the speed bump (in
yellow in Figure 1) at different times is illustrated below.
At time t1, the speed bump is in the lidar range and the
intensities λi representing the speed bump began to converge.
The speed bump is better represented at time t2 through
new and additional measurements. As the speed bump has
been completely scanned at time t3, the intensities associated
with it have completely converged. One can note that the
curbs, traffic cones, speed bump, buildings and traffic lights
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Fig. 2. Example of Lambda-Field of the environment depicted in Figure 1.
The area containing the speed bump and the cones is enlarged and shown
at different times. The lidar range (vertical line) and the robot (box) pose
for each of these times are illustrated in teal (t1), dull green (t2) and blue
(t3). The left curb (light blue) and the traffic lights (green) seen in Figure 1
are outlined in dashed lines.

poles are well detected. The borders of the speed bump have
high intensity values, when its ascending and descending
portions have more nuanced intensities, meaning that harmful
collisions are less prone to happen. As a result, the robot will
be able to cross the speed bump by taking a reasonable risk.
Additionally, buildings, traffic light poles, and traffic cones
have high intensities. These obstacles cannot be crossed by
the robot without taking an unreasonable risk.

V. RISK ASSESSMENT
In order to navigate in the Lambda-Field, we define a risk

function that reflects the potential obstacles that the robot
can face. We choose to describe the risk by the maximum
potential energy absorbed by the wheels.

We illustrate in Figure 3 the modeling of the wheel. The
wheel is modeled as a deformable disk, see Figure 3. When
the wheel crosses an elevated obstacle, it deforms at the
point where the two objects collide. This deformation is
approximated with the deformation of a spring of stiffness
kr. In order to find the maximum amplitude lm of the tire

H

R Ψ

v

kr

Fig. 3. Modeling of the wheel of radius R in collision with the curb (in
blue) of height H , with a speed v and angle Ψ. The deformation of the
wheel due to the collision is approximated with the deformation of a spring
of stiffness kr .

compression due to the collision, we solve the following
differential equation:

l̈ + ω2l = 0 with ω =

√
kr
m

(7)



where l is the compression at the contact point and m is the
mass of the vehicle. As such, the maximum amplitude lm of
the tire compression is

lm =
v cos(Ψ)

ω
(8)

where v is the linear velocity of the robot and
Ψ = arcsin(R−min(H,R)

R ) is the angle of attack of the colli-
sion. The angle Ψ depends on the elevation of the obstacle
and the radius R of the wheel. To be conservative, we take
the maximum difference in elevation H of the obstacles that
lie in the transverse axis of the robot path P . Finally, the
risk function is defined as the maximum potential energy
that will be absorbed in the wheels at the time of collision
and is computed by

r(X) =
1

2
krl

2
m (9)

As such, the risk function r(X) has a clear physical meaning
and is expressed in Joule. In the next section, we use this
risk assessment to construct safe paths in 3D environments.

VI. PATH PLANNING

The goal of the robot is to follow a local reference path
Pref ⊂ R3 that is assumed to be known. However, unfore-
seen events, detected by the robot’s sensors, can make this
path impassable. The aim of our path planning framework is
to find the optimal path P∗ ⊂ R3 that is the closest to the
reference path Pref , while maintaining a reasonable level
of risk along the path. Namely, a path P is accepted only
if the risk undertaken by the robot along the path is below
a user-defined risk threshold rthreshold, consistent with the
preferences of the user and the robot abilities. The optimal
path P∗ also minimizes the traversal time of the robot.

To address the problem, we rely on a Nonlinear Model
Predictive Control (NMPC) approach, where we use the
Ackermann steering model as the prediction model. Using
a small sample time ∆t, the kinematic equations can be
discretized intoxk+1

yk+1

θk+1

 =

xkyk
θk

+ ∆t

 vk cos θk
vk sin θk

vk tan δk/L

 , (10)

where k represent the discrete time, L is the length of the
wheelbase of the robot, (xk, yk) and θk are respectively the
centre position of the rear axle and the yaw angle of the robot
in the absolute frame. Finally, vk is the linear velocity of the
robot, and δk the steering angle of the robot. The compact
form of Equation 10 is written as xk+1 = fd(xk,uk), where
xk+1 = [xk+1, yk+1, θk+1]ᵀ is the predicted state vector,
xk = [xk, yk, θk]ᵀ is the state vector, and uk = [vk, δk]ᵀ

is the control vector. The reference trajectory associated
with the path Pref is defined as a set of desired states
[xr

0, · · · , xrNp
]ᵀ, where xrk is the desired state at time k.

According to our objective and constraints, we want to
minimize the errors between the predicted and the reference
paths over a finite prediction horizon of length Np while
considering kinematic, control, and risk constraints. We also

want to minimize the traversal time and penalize the error
in the final state. The penalization of this latter error is used
to force the robot to approach the farthest reference goal
xrNp

located in the perceived and therefore secure navigable
area. As a result, the risk-aware navigation based on NMPC
consists in computing a trajectory [x0, · · · , xNp ]ᵀ by the
following quadratic constraint optimization:

min Z = Z1 + Z2 + Z3

s. t. xk+1 = fd(xk,uk)

umin ≤ uk ≤ umax

E[r(X)] ≤ rthreshold

(11)

where Z is the cost function of the optimization problem,
defined as a combination of three penalty terms described
below, and (umin,umax) are respectively the lower and
upper bounds of the control vector.

The first penalty term is used to prevent the robot from
deviating too far from the reference path Pref :

Z1 =

Np−1∑
k=0

(xk − xr
k)ᵀQ(xk − xrk), (12)

where Q ∈ R3×3 is the weight matrix used to penalize the
state component parts. The second penalty term ensures that
the robot approaches to the farthest desired position:

Z2 = (xNp − xrNp
)ᵀQN (xNp − xrNp

), (13)

where xNp is the last predicted state, and QN ∈ R3×3 is
the weight matrix used to penalize the final state component
parts. The last penalty term is used to prioritize a minimum
traversal time:

Z3 =

Np−1∑
k=0

wv(vk − vmax)2, (14)

where vmax is the maximum velocity the robot can reach
and wv ∈ R is the weighting coefficient that penalizes
low velocities. The final constraint E[r(X)] ≤ rthreshold
forces the robot to find a trajectory that is safe to traverse.
Therefore, any trajectory that exceeds the risk threshold
rthreshold will be rejected. Note that we do not add the risk
to the cost function, as we would lose its physical meaning.
The risk is here defined as a hard constraint to ensure that
it is never exceeded. Finally, the optimal path P∗ is the one
that minimizes the cost function in respects to the risk and
the control constraints.

VII. VALIDATION OF THE FRAMEWORK

To show the applicability of this framework, we ran three
scenarios in the environment depicted in Figure 1, in which
three different risk thresholds were considered. We used real
data for the perception part and simulated the path planning
with a simulation model of the robot seen in Figure 1. The
simulations were performed on a computer equipped with an
11th Gen Intel Core i7-11850H processor and an NVIDIA
GeForce RTX 3080 graphics card. In all scenarios, the robot
starts in front of the speed bump with zero steering angle and
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Fig. 4. Example of an environment where an unexpected obstacle (speed bump) occurred on the reference path (dashed green). We investigated three risk
thresholds, 0 J (left), 3 J (middle) and 40 J (right). For each threshold, the path taken by the robot is in blue. Its velocity and risk are depicted in purple
and red. Events: (1): Speed bump came into the robot’s perception field. (2): Robot started to climb the speed bump. (3): Robot reached the speed bump
top. (4): Robot started to get down. (5): Robot reached the asphalt. The gray shaded areas show the duration when the robot traversed the speed bump.

zero speed. The Lambda-Field construction involves setting
the difference in elevation threshold Hsafe to 5 cm and the
e value to 1 cm2. Each Lambda-Field grid map consist of
200 × 200 cells, where each cell has a size of 10 × 10 cm,
resulting in a map of 20 × 20 m. The simulated robot has
a wheel radius R of 25 cm and a mass m of 50 kg. The
stiffness kr of each robot wheel is set to 150 000 N/m.
The maximum velocity vmax of the robot is set to 1.5 m/s,
while the steering angle range (δmin, δmax) is set to ±11◦.
The sampling time ∆t is set to 100 ms. The weight matrix
Q is a diagonal matrix of elements [0.05, 0.05, 0.05]. The
weight matrix QN is a diagonal matrix of elements [1, 1, 1].
Therefore, if an unexpected obstacle prevents the robot from
tracking the reference path, but the reference goal can be
reached by a path deviating from the reference path, then
the path planner will be able to choose this path. Finally, the
weight coefficient wv is equal to 0.1.

We show the results in Figure 4, where each column
corresponds to the result of a scenario. The first row in
Figure 4 shows the path of the robot as well as the reference
path, which is a straight line passing through the speed bump.
The second row in Figure 4 shows the velocity profile and
the risk during the traversal. The graphs are labeled with
numbers corresponding to different times of interests: t1:
the speed bump is detected; t2: the robot ascend the speed
bump; t3: the robot reaches the top speed bump; t4: the robot
descends the speed bump; and t5: the robot comes back to
the road.

In the first scenario, the risk threshold is set to zero,
meaning that the robot is not allowed to take any risk. As
long as the robot does not see the speed bump, the reference
path is tracked. At time t1, the robot can no longer track the
reference path, as crossing the speed bump is risky. The path

planning formulation leads the robot to go around the speed
bump. One can note that throughout the traversal, the robot
maximizes its velocity without ever crossing a potential risky
cell, as no risk is allowed. This scenario shows that setting
the risk to zero is the same as assessing the risk of collision
and imposing that the robot goes around the obstacles.

However, in some cases, avoiding may not be possible
(for example, the left lane is forbidden due to traffic rules
or occupied by another vehicle) and if no risk is allowed the
robot would then stop in front of the speed bump. With our
approach, it is possible to reach the goal by managing the
risk threshold in accordance with the capability of the robot.
In the scenario shown in the second column in Figure 4,
we set the risk threshold rthreshold to 3 J, meaning in our
case that 6 mm compression of the wheel is the maximum
allowed. One can see that the robot passes through the speed
bump, but at a low speed. The robot slows down at time
t1, as the speed bump is detected by the robot. Then, from
time t2 to time t5, our path planner regulates the speed of
the robot to stay below the risk threshold. The path planner
maintains an adequate speed to cross the speed bump safely,
finding a balance between minimizing the traversal time and
the risks taken by the robot. From time t3 to t4, the robot
is on the speed bump. Before leaving it, the robot again
detects hazardous events on the reference path, leading the
robot to slow down. At time t4, the robot starts to descend
the speed bump at a reasonable speed to manage the risk that
has appeared on the path. Finally, at time t5, the robot leaves
the obstacle, accelerating again. This scenario shows that the
robot can handle a consistent amount of risk in complicated
situations.

In the last scenario, we increase the risk threshold to
40 J, meaning that we accept a 23 mm maximum tire’s



compression. Intuitively, the robot goes faster than in the
previous scenario. At time t1, the speed bump is detected.
The planner stabilizes the velocity of the robot to traverse
the speed bump, while not expecting a risk exceeding 40 J.
Until it reaches its target, the robot tracks the reference path
at its greatest allowable velocity. As such, our framework is
able to produce meaningful paths by considering the potential
hazards associated with navigating through 3D obstacles.

VIII. CONCLUSION

In this paper, we presented a method of risk-aware nav-
igation in unknown 3D environments. We propose a gen-
eralization of the work of Laconte et al. [3], taking into
account the traversal of small obstacles such as road curbs
or speed bumps. We showed how to compute the associated
Lambda-Field, using 3D lidar measurements. The resulting
map is used to evaluate the expected maximum potential
energy that the robot’s wheels will absorb in the event of a
collision along a given path. Finally, we presented a path
planning formulation that take the risk into account as a
hard constraint. Using our formulation, we showed that the
risk function is well-fitted for risk-aware navigation in urban
environment. While being able to mimic a standard path
planning approach by setting the risk threshold to zero, our
framework can also generate a path going over obstacles if
the risk is tolerable. This work focused on explaining the
theoretical framework and its applicability.

Future works will focus on improving the path planning
part and demonstrating the pertinence of the framework
in larger-scale experiments. The exploration of alternative
risk metrics, such as CVaR, will be pursued to account for
tail events. We intend to extend our framework to enable
the robot to perform long-term missions. Indeed, providing
mobile robots with such capabilities will augment the auton-
omy of intelligent vehicles in rural environments. A global
path planner based on OpenStreetMap [19] will be included
to the framework. Furthermore, we will conduct extensive
experiments on the framework, incorporating quantitative
evaluations. Finally, we will investigate the possibility of
adding several risks to further constrain the path-planning
algorithm, such as the risk of crossing a continuous lane
marking.
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