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Abstract – The deployment and the exploitation of a Wireless Underground Sensor Network (WUSN) remain challenging
because of signal attenuation in the soil and the limited battery that powers the sensor nodes. Due to the attenuation of the
signal in the ground, the reception or loss of the sent data depends on the ground conditions, which can change dynamically.
However, in existing WUSNs, each node sends the data collected in each round regardless of the signal attenuation. It is well
demonstrated that sensor nodes consume the most energy during transmission. Obviously, transmission without receiving
any data signiϔicantly reduces the lifetime of a sensor node useless. This paper presents a novel fuzzy‑based decision‑making
solution called FuzDeMa that reduces energy consumption by anticipating data losses before transmission. To do so, FuzDeMa
assesses in real time the loss or the reception of a packet according to the in‑situ node’s environments before its transmission
anddecideswhether to send or not the packet based on the computed reliability. To validate the proposed approach, we embed
it into a dedicated underground node called the MoleNet and realized real experimentations ϔirstly with an existing dataset
and secondly, with precision‑measuring equipment to estimate the energy consumption. The results revealed the possibility
of prolonging the lifetime of the sensor node by saving up to 81.7876𝜇𝐽 in a single round. Additionally, FuzDeMa shows the
ability to save energy for up to 46 of additional revolutions, thus extending the life of the sensor node to 32.85% for 140 real
transmission cycles. An analytical generalization of FuzDeMa is provided regardless of a speciϔic dataset or sensor node. Thus,
we provided the conditions for a random dataset to save the energy with any sensor node that implements FuzDeMa during
transmissions.

Keywords – Decision‑making, embedded systems, energy efϐiciency, fuzzy inference system, signal loss, wireless under‑
ground sensor network (WUSN)

1. INTRODUCTION
Contrary to conventional Wireless Sensor Networks
(WSNs), in which nodes are located above the ground,
a Wireless Underground Sensor Network (WUSN) con‑
sists of sensor nodes buried in the ground. Despite
the increase in its popularity, deploying and operating
a WUSN is very challenging [1]. In addition to the lim‑
ited resources (computation, storage, energy, communi‑
cation) of sensor nodes, a WUSN has to face several ad‑
ditional challenges. First, the attenuation of Electromag‑
netic waves (EMs) in soil widely affects the link quality
during each transmission [2]. In WUSN, changes in link
quality depend on soil properties, which can vary over
time due to weather conditions [3] and transmitted data
at a bad instant can be easily lost due to signal attenua‑
tion and not received by either an intermediate node or
the ϐinal destination.
A real time assessment of the reception/loss of data trans‑
mitted by a sensor node could be a good solution to
avoid energy wastage. Nevertheless, because using a
low power micro‑controller and low bandwidth, sensor
nodes cannot efϐiciently execute locally, or via the cloud,
well‑known Machine Learning (ML) solutions for learn‑
ing/predictions purposes [4] are used. ML solutions in
WSN have fundamental limitations on their applications,

and the accuracy of the prediction can be affected by the
data quality. Unsupervised ML, such as clustering , is
widely used to prolong the lifetime of the sensor network
by organising the communication within the network [5,
6]. The main idea is to reduce the amount of data to
send to save the sensor nodes’ energy without impact‑
ing the data quality. A recent application of ML to avoid
energy wastage in WSN for precision agriculture consists
in reducing the amount of transmitted data to the sink
[7]. This solution helps reduce energy consumption and
bandwidth while maintaining good accuracy by trying lo‑
cally to ”guess” another value and send it only when the
guessing is wrong. Although this work applies light ML
techniques in smart agriculture applications and demon‑
strates its feasibility, it differs from our approach since
it only focuses on data and does not consider network
conditions. On the other hand, recent lightweight com‑
putational intelligence solutions such as fuzzy logic have
been used in several applications as a decision‑making
tool adapted to embedded systems [8, 9, 10], but to the
best of our knowledge, none of them has ever been ap‑
plied to sending decisions.
This paper introduces a novel fuzzy logic‑based approach
applied to network conditions to save energy related to
transmission in WUSN called FuzDeMa. It is known that



the sensor node’s largest energy consumption source oc‑
curs duringwireless data transmission by the transceiver.
For that, this latter evaluates the reception probability
of sending the data based on its environment parame‑
ters. If the reception probability is low, the node keeps
the data locally and avoids a useless transmission, thus
saving energy. The results show that FuzDeMa can save
up to 81.7876𝜇𝐽 per round in a real and dedicated un‑
derground sensor node called theMoleNet. Furthermore,
the energy evaluation through a real dataset reveals that
FuzDeMa can extend the lifetime of the sensor to up to
32.85%without losing information at the sink (for 140dif‑
ferent measurements. The main contributions of this pa‑
per are as follows:

• A new lightweight decision‑making approach based
on Sugeno’s fuzzy inference system that accurately
estimates packet loss before transmission.

• The evaluation of the performance of the proposed
FuzDeMa according to a real dataset. FuzDeMa has
been compared to a recent and accurate path loss
model.

• The implementation of FuzDeMa on a real and ded‑
icated sensor node used for underground applica‑
tions such as precision agricultural and ecological
monitoring.

• The evaluation of the energy behaviour of FuzDeMa
when operating within real sensor nodes according
to different scenarios.

• Theenergy consumptionof FuzDeMawas intensively
evaluated using precision‑measuring equipment.

• The analytical generalization of FuzDeMa is per‑
formed in order to give the energy break‑even point
of the proposal regardless of the sensor node used.

The rest of this paper is organised as follows: Background
and related work are presented in Section 2; Section 3
presents the main motivation of this work and states
the problem of the paper. The fuzzy‑based solution for
decision‑making during transmission is described in Sec‑
tion 4; Section 5 presents the performance evaluation of
FuzDeMa on a real dataset. Integration of our proposal
within a real sensor node is given in Section 6 and Sec‑
tion 7 describes the experimental setup used for the eval‑
uation of the energy consumption. The energy consump‑
tion of FuzDeMa within the MoleNet is discussed in Sec‑
tion 8 and Section 9 extends the validation of FuzDeMa
by providing a generalisationwith an analytical approach
regardless of the sensor node. The paper endswith a con‑
clusion in Section 10.

2. BACKGROUND AND RELATEDWORKS
In this section, we ϐirstly present the existing path loss
models inWUSN. Themost relevant applications basedon
the fuzzy logic for decision‑making are described there‑
after.

2.1 Path loss models of EM waves in WUSN
The characteristics of the wireless underground channel
differ to the conventional free space wireless communi‑
cation channel. These differences are caused by the wave
propagation mechanism in the underground channel. In
this section, we present the main existing path loss mod‑
els designed for the prediction of EM loss in the soil. Ac‑
cording to the communication types in WUSN, we clas‑
siϐied the existing approaches into full underground and
mixing path loss models.

2.1.1 Full underground path loss models
These models are designed to evaluate the EM loss when
the transmitter and the receiver are both under the
ground (underground to underground communications).

One famous path loss model in the literature is called
modiϐied Friis proposed by Li et al. [11]. This model
is based on the Friis transmission equations initially de‑
signed for free space communication. The authors ob‑
tained the total loss 𝐿𝑡𝑜𝑡 of an EM crossing the ground by
taking into account the lossdue towaveattenuation in soil
(1)‑(3).
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The constants 𝛼 and 𝛽 are the key elements of the modi‑
ϐied Friis model and constitute the real and the imaginary
parts of the complex propagation constant 𝛾 (𝛾 = 𝛼+𝑖𝛽).
The permeability in vacuum 𝜇0 and the permittivity in
free space 𝜖0 are related to the light velocity in vacuum
by 𝜖0𝜇0𝑐2 = 1. For non‑ferrous soils, the magnetic per‑
meability can be neglected (𝜇𝑟 = 1).

Bogena et al. [12] proposed the semi‑empirical model
calledCRIM‑Fresnel by combining theComplexRefractive
IndexModel (CRIM) and Fresnel equations. They showed
that the signal attenuation in soils𝐴𝑡𝑜𝑡 given in (4)‑(6) de‑
pendson the soil attenuation constant𝛼, the reϐlection co‑
efϐicient of thewave and the distance 𝑑 between the trans‑
mitter and the receiver.

𝐴𝑡𝑜𝑡 = 𝛼𝑑 + 𝑅𝑐 (4)
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Where𝑓 is the frequency inhertz of theEMwave, 𝜖0
1 is the

dielectric permittivity in free space, 𝜎𝑏 is the bulk density,
𝜖′ and 𝜖″ the real (Dielectric Constant (𝐷𝐶)) and imagi‑
nary (Loss Factor (𝐿𝐹 )) parts of themixingmodel respec‑
tively.

Another semi‑empirical path loss model has been pro‑
posed by Chaamwe et al. in [13]. This model combines
modiϐied Friis and CRIM‑Fresnel path loss models. More‑
over, the proposed path loss model adds signal attenua‑
tion due to the refraction phenomenon of an EM in the
soil. The resulting path loss 𝐿𝑡𝑜𝑡 given in (7) depends on
the refractive attenuation factor 𝐾 (8) of the EM. Here 𝜙1
and 𝜙2 are respectively the incidence and the refraction
angles of the wave.

𝐿𝑡𝑜𝑡 = 6.4 + 20 log(𝑑𝛽𝐾√ 2𝑅
1 + 𝑅 ) + 8.68𝛼𝑑 (7)

𝐾 = 20 log(√𝜖1 cos(𝜙1)
𝜖2 cos(𝜙2)) (8)

Other path loss models are also based on the modiϐied
Friis; however, these latter ones are interested in the pre‑
diction of DC and LF. The in situ path lossmodel proposed
by Sadeghioon et al. in [14] uses a real Time Domain Re‑
ϐlectometry (TDR) to predict in real time the values of𝐷𝐶
and𝐿𝐹 . Themain challenge of this approach remains the
expensive cost of the TDR. Another similar approach is
proposed byWohwe S. et al. in [15] by using a newmodel
called Mineralogy‑Based Soil Dielectric Model (MBSDM)
to predict with lesser inputs the values of 𝐷𝐶 and 𝐿𝐹 .

2.1.2 Mixing path loss models

In contrast to path loss models designed only for under‑
ground communications, further research is being car‑
ried out to assess the attenuation of a wave as it passes
through different communication media (air‑to‑ground
or ground‑to‑air).

By adding loss in free space path loss 𝐿𝑓𝑠 (9) to the loss
due to underground communication 𝐿𝑡𝑜𝑡 (1), Sun et al.
proposed in [16] a path loss model for communications
between the air and the ground (Air‑to‑Underground
𝐴2𝑈 and Underground‑to‑Air 𝑈2𝐴). Similar to [13], the
Sun et al. adds to their model, the loss due to refraction.
The two resulting loss estimations are given in (10) and
(11).

𝐿𝑓𝑠 = −147.55 + 20 log(𝑑) + 20 log(𝑓) (9)
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Dong et al. present in [17] a mixing path loss model sim‑
ilar to [16]. However, the proposed model neglects the
loss due to refraction for U2A communications and as‑
sumes that the incidence angle is null. Thus, the obtained
EM attenuations during A2U and U2A communications
are summarised in (12) and (13) below.

𝐿𝐴𝐺2𝑈 = 𝐿𝑡𝑜𝑡 + 𝐿𝑓𝑠 (12)
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2.1.3 Complete path loss models

Only a few path loss models are designed to estimate the
EM attenuations in the soil for the three different types
of communication (U2U, A2U, and U2A) that can occur
in WUSN. The most famous is the Wireless Underground
SensorNetwork ‑ Path LossModel (WUSN‑PLM)designed
for agricultural or ecological applications proposed in [3].
In addition to the communication type, the WUSN‑PLM
is able to consider the burial depth of the sensor nodes
(transmitter and/or receiver) and to adjust the different
losses due to the reϐlection or refraction of the EM wave.
The depth of the proposed model is subdivided into two
regions: topsoil (ϐirst 30cm after the ground surface) and
subsoil (after the 30cm) regions. Furthermore, the pro‑
posed approach uses the MBSDM as in [15] to predict the
values of 𝐷𝐶 and 𝐿𝐹 . The overall path loss according to
theburial depthof the transmitter is given in (14) and (14)
for topsoil and subsoil regions respectively.

𝐿1 = −288.8+20 log(𝑑1𝑑2𝑑𝑢𝑔𝛽𝑓2√ 2𝑅
1 + 𝑅 )+8.69𝛼𝑑𝑢𝑔

(14)
𝐿2 = −288.8 + 20 log (𝑑1𝑑2𝑑𝑢𝑔𝛽𝑓2) + 8.69𝛼𝑑𝑢𝑔 (15)

Where 𝑑1 and 𝑑2 are travelled distance in the air by the
wave; 𝑑𝑢𝑔 denotes the underground distance. For the
communication between two buried nodes, 𝑑1 and 𝑑2 are
the distance travelled by the signal inside the waterproof
box. However, for a smaller distance (less than 1 m), the
signal loss in free space can be neglected [12]. In the case
of A2U communication, 𝑑1 will represent the distance
between the above‑ground node and the soil surface. For
U2A communication, 𝑑2 is the height of the buried node
relative to the ground surface.

We observe that the existing path loss models are mainly
based on the dielectric parameters of the soil summarized



into the Constant Dielectric Complex CDC (made up of
the dielectric constant 𝜖′ as the real part and the loss fac‑
tor 𝜖″ as the imaginary part). In addition to parameters
such as the volumetric water content and the distance be‑
tween the transmitter and the receiver, other studies have
shown that wave frequency and burial depth affect signal
attenuation in the soil [18, 19].

The performance comparison of some existing path loss
models is provided in Table 1 below.

2.2 Applications of fuzzy logic for decision‑
making

In this section, we present several pieces of work and ap‑
proaches based on fuzzy logic for decision‑making. Each
of the presentedpieces ofwork are based on theMamdani
[20] Fuzzy Inference System (FIS) or the Sugeno FIS [21].
Jassbi et al. [22] proposed a space fault detection model
based on fuzzy logic. To ϐind the best performance for a
gyroscope fault detection, the authors designed two FIS
based on Mamdani and Sugeno with 73 rules. The com‑
parisons of the two existing FIS show that despite the
good results and the simple structure of Mamdani, the
Sugeno FIS provides better results with the three differ‑
ent tests.
For evaluating the quality of experience of Hapto‑Audio‑
Visual Environments (HAVEs), Hamam et al. [23] pro‑
posed a decision‑making model based on fuzzy logic. To
achieve this, the authors designed and compared their ap‑
proach based onMamdani and Sugeno FIS. This is similar
to Jassbi et al. [22]. The output set describes the satis‑
faction and the beneϐit gained from the application and is
made up of ϐive membership functions. From the exper‑
imentations and comparisons, the authors show that the
Sugeno FIS gives better results than Mamdani in their ap‑
plication.
Like the previous proposals, SinglaSingla2015 uses the
two existing FIS to design a decision‑making tool for dia‑
betes diagnosis. As input data, the author considers 11pa‑
rameters needed to diagnose different types of diabetes.
The output of his proposal consists of four variables cor‑
responding to the different types of diabetes. To validate
the tool, the author considered a dataset consisting of 150
different cases of diagnosed patients and compared the
results obtained with Mamdani and Sugeno FIS. The best
result was observed with the Sugeno FIS which achieved
146 good predictions on the 150 cases (i.e. 97.33% accu‑
racy).
Another fuzzy logic‑based application based on Sugeno
FIS is proposed by Cavallaro [24] to ϐind the suitable sus‑
tainability index of the biomass. The four inputs (energy
output, energy ration, fertilizers and pesticides levels) of
the proposed decision‑making tool help in giving infor‑
mation about chemical pressure caused by crop cultiva‑
tion and contaminant impacts due to the use of fertiliz‑
ers and pesticides. From these inputs, the resulting index
of the biomass consists of ϐive fuzzy variables that repre‑

sent the sustainability level of the particular crop accord‑
ing to the energy use. To validate its model, the author
compared it with real data from ϐive different crops.
Dhimish et al. [25] proposed a fault detection approach
for Photovoltaic (PV) systems based on artiϐicial neural
networks and fuzzy logic. The fuzzy logic is used to ϐind
the maximum power point tracking thanks to the Mam‑
dani and Sugeno FIS. The output of the proposed solution
is made up of the 10 different types of fault that can occur
in a PV system. Based on their experiments, the authors
conclude that the Mamdani or Sugeno FIS can be used for
fault detection of PV.
Chaudhary [8] comparedMamdani and SugenoFIS for the
detection of packet dropping attack in mobile ad‑hoc net‑
works. The resulting sytem uses as inputs the ratio of for‑
warded packets and the average rate of dropped packets.
The results show a similar performance of the two FIS,
however, due to the simpliϐied defuzziϐication process of
Sugeno, this latter is a better choice thanMamdani for the
detection of packet attacks.
Almadi et al. [26] proposed a novel framework based on
the fuzzy logic to identify the behaviour of drivers. The
resulting approach is based on the Mamdani FIS and the
authors considered as inputs speed limits, the weather
and road conditions. The different possible behaviours
of the drivers are considered as output set. To validate
the decision‑making approach, the authors considered a
dataset made up of 100 people grouped in ϐive different
age categories.
The fuzzy logic is also used for Non‑deterministic Polyno‑
mial (NP) hard optimization problem in wireless sensor
networks. These optimization problems include the clus‑
tering that is widely used in several approaches based ei‑
ther on Mamdani or Sugeno FIS [27, 5, 28, 29].
Bayrakdar [9] proposed a fuzzy‑based solution for loss‑
less data transmission in WUSN. This proposal efϐiciently
selects the collector station of each underground sen‑
sor node to improve the throughput, the average de‑
lay, the packet loss ratio and the node’s lifetime. The
fuzzy inference system consists of the burial depth of
the node, the residual energy and the node’s density.
Only one‑hop underground‑to‑aboveground communica‑
tions between buried nodes and the base station are con‑
sidered. The output of the FIS gives the distance of a
gathered node with the collector station. However, this
study does not consider real parameters such as the soil
moisture level, the locations of the transmitter/receiver
and the distance between nodes which widely af‑
fect the link quality in WUSN. Furthermore, a typical
WUSN must deal with the three communication types
of WUSN (underground‑to‑aboveground, aboveground‑
to‑underground and underground‑to‑underground) de‑
scribed in [1, 3].
Despite a large number of applications of fuzzy logic in
decision‑making and to the best of our knowledge, there
is no previous study or research on reliable communica‑
tion inWUNS based on fuzzy logic that takes into account
dynamic changes in the environment of sensor nodes be‑



Table 1 – Performance’s comparison of some path loss approaches

Balanced accuracy Matthew Correlation Coefϐicient Area Under the ROC curve
Modiϐied Friis* [11] 75.77% 0.52 0.83
NCModiϐied Friis* [13] 72.03% 0.35 0.87
ZS PLM** [16] 50% / /
XD PLM** [17] 50% / /
WUSN‑PLM [3] 81.06% 0.64 0.92

* Path loss models designed for Underground to Underground (U2U) communications
** Path loss models designed for Underground to Aboveground (U2A) and Aboveground to Underground (A2U) communications

fore transmission.

3. MOTIVATION AND PROBLEM STATE‑
MENT

In this section, the main motivation of this work is pre‑
sented. Furthermore, the problem and the differents as‑
sumptions of the proposed work are stated.

3.1 Motivation
The proposition of new and accurate path loss models in
the literature allows researchers to predict if a sent packet
can be received or not according to the link budget equa‑
tion and the signal attenuation in the soil (Section 2.1).
However, the problem of real time prediction by the sen‑
sor node itself still needs to be solved. Thus, a decision‑
making tool that can be integrated into a node becomes
the most adequate solution for this problem. Meanwhile,
the trade‑off between performance, computational cost,
and energy consumption is challenging to get, especially
for WUSN. From the existing machine learning and com‑
putational intelligence‑based approaches, fuzzy logic is
considered to be a good candidate. Indeed, as we seen in
Section 2.2, the fuzzy logic shows good performance re‑
sults while reducing the computational cost in decision‑
making for resource‑constrained systems such as sen‑
sor nodes. These results are possible because of its sim‑
plicity, which allows its rapid conception, adaptability to
the uncertainty of incomplete information and the small
dataset required for its implementation. Furthermore,
as shown in [30], the computational cost for fuzzy‑based
systems can be constant, thus, no additional computa‑
tion is needed regardless of the number of inputs. The
present paper improve our previous work [30] that dis‑
cussed the possible use of fuzzy logic for reliable wireless
underground communications.
However, the validation of this type of solution needs
more experimentations andmust be integrated in real de‑
vices to verify its feasibility. In addition, the computa‑
tional cost (energy consumption) should be carried out
to verify its applicability in real applications. Thus, by ad‑
dressing these issues, the present study is a novel contri‑
bution in the ϐields of wireless underground communica‑
tions and fuzzy logic for WUSN.

3.2 Problem statement and assumption
Nowadays, extending the lifetime of a sensor remains a
real challenge, especially in WUSN. Furthermore, know‑
ing that a node drainsmost of its battery during transmis‑
sion, the energy can be wasted especially when the link is
broken, thus no information is received. To reduce these
energy losses, we propose a new lightweight decision‑
making solution for reliable transmissiondescribed in the
following sections. We assume that the deployment of
nodes in a typical WUSN is mainly deterministic, thus the
position of each of them is well‑known. Furthermore, we
assume that the burial depth of a node is considered to be
a known parameter by the latter.

4. THE FUZZY‑BASED APPROACH TO RE‑
DUCE TRANSMISSIONWASTAGE

In this section, we brieϐly describe the functioning of an
FIS and then the proposed approach is described in detail.

4.1 Overview of a fuzzy inference system
As we can see from Fig. 1, a typical Fuzzy Inference Sys‑
tem (FIS) consists of 3 steps : i) fuzziϐication, ii) ap‑
plication of the inference rules and iii) defuzziϐication.
During the fuzziϐication process, the real input variables
are converted into linguistic fuzzy variables. Thereafter,
the membership degree of the inputs is computed based
on the membership functions before applying operations
(AND,OR,NOT) according to the fuzzy rules deϐined in the
inference system. During the defuzziϐication process, the
output of the FIS is a fuzzy set that represents the degree
of membership of the input variables.

Fig. 1 – Different parts of a Fuzzy Inference System.

From the two famous FIS in the literature and from Sec‑
tion 2.2, the Sugeno‑type is more suitable for low‑power
and automated decision‑making system due to his sim‑
ple defuzziϐication process [30]. Indeed, the output 𝑧∗ in
Sugeno FIS is the weighted average of each rule inside the
inference system (16).



𝑍∗ = ∑𝑛
𝑖=1 𝛼𝑖𝑧𝑖

∑𝑛
𝑖=1 𝛼𝑖

(16)

𝑛 is the number of rules inside the inference system, and
𝛼𝑖 denotes the aggregated membership degree of each
rule obtained by applyingmin ormax operators. 𝑧𝑖 repre‑
sents the linear output of rule 𝑖.

4.2 The fuzzy‑based approach for reliable
transmission

Energy reduction during transmission in WUSN must
be performed in real time by each node, predicting
whether or not the data to be sent can be received be‑
fore transmission. However, sensor nodes are high re‑
sources restricted, and the use of a traditional ML ap‑
proach should not be considered. We use a portable, eas‑
ily integrated and lightweight fuzzy‑based approach for
decision‑making before transmission in aWUSN. The pro‑
posal consists of four inputs and 36 (2×3×3×2) rules in‑
side the inference system. The crisp output is the prob‑
ability (or degree) that checks if it will have a reception
or data loss according to input data. The input param‑
eters give an overview of the environment between the
transmitter and the data receiver. According to [3], these
parameters are the key factors that affect wireless under‑
ground communication. In order to make it as easy as
possible to calculate the membership degrees of the dif‑
ferent inputs, we have used simplemembership functions
(trapezoidal and triangular). The inputs are:

Fig. 2 – Overview of the proposed FIS.

• The burial depth of the transmitter (BD) and the
burial depth of the receiver (NBD): They give the dis‑
tance between the ground surface (zero meters) to
the node’s location. Knowing that the soil can be sub‑
divided into two regions (topsoil and subsoil), the BD
and NBD each consist of two trapezoidal member‑
ship functions close and far (Fig. 3a). The member‑
ship functions are trapezoidal because the behaviour
of the EM is slightly similar when the burial depth
is less than 50cm but depends on if the node is fully
buried or not [31].

• The average soil moisture proportion (MST): This

represents the water level in the soil. Contrary to
the previous parameters, the moisture level in the
soil is evaluated through three triangular member‑
ship functions: low, average and high (Fig. 3b). We
chose triangular functions here because of the direct
impact of the soil moisture in the quality of under‑
ground communications. Based on calibration mea‑
surements carried out using the dataset [31], we ob‑
serve that the impact of soil moisture on communi‑
cation becomesmore signiϐicant at 40%moisture re‑
gardless of the location of the nodes. The soil mois‑
ture varies fromdry soil (nearly 0%moisture) to free
water (close to 100% moisture).

• The distance between the transmitter and receiver
(LD): This consists of three triangular membership
functions: close, medium and far (Fig. 3c). Simi‑
lar to the soil moisture, the direct distance between
the transmitter and the receiver has a direct im‑
pact on the communication quality. For example, we
haveobserved thatwhen the linear distancebetween
nodes is small (less than 7m), underground commu‑
nications are reliable with very few lost packets. The
range value of the distance between the transmitter
and receiver (up to 30m) depends on our previous
results [3, 30] and the dataset [31].

Table 2 – Computation of the membership degrees.

Fuzzy sets Variables Membership degree

BD / NBD close
⎧{
⎨{⎩

1 0 ≤ x ≤ 0.1
2 − 10𝑥 0.1 < x ≤ 0.2
0 else

far
⎧{
⎨{⎩

0 0 ≤ x ≤ 0.1
5𝑥 − 1/2 0.1 < x ≤ 0.3
1 else

low { 1 − 𝑥/15 0 ≤ x ≤ 15
0 else

MST average
⎧{
⎨{⎩

𝑥/20 − 1/2 10 ≤ x ≤ 15
5/2 − 𝑥/20 30 < x ≤ 50
0 else

high { 𝑥/15 − 2/3 40 ≤ x ≤ 100
0 else

close { 1 − 2𝑥/15 0 ≤ x ≤ 7.5
0 else

LD medium
⎧{
⎨{⎩

𝑥/5 − 1 5 ≤ x ≤ 10
3 − 𝑥/5 10 < x ≤ 15
0 else

far { 𝑥/20 − 0.5 10 ≤ x ≤ 30
0 else

During the fuzziϐication process, the membership degree
of each input parameter𝑥 of the proposedFIS is evaluated
according to Table 2. The probability used for decision‑
making (defuzziϐication) in the fuzzy‑based approach is
the average weight of the 36 rules of the inference system
given in (16). Having only two classes (reception or not
reception), our proposed decision‑making systemdivides
the probability of reception into two equal parts. Thus,
when the calculated probability is less than or equal to
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Fig. 3 – (a) Membership functions of the transmitter (BD) and receiver (NBD) burial depths. (b) Membership functions of the soil moisture level (MST).
(c) Membership functions of the distance between the transmitter and the receiver (LD).

0.5, we assume that the packet to be sent will be received
(reception), otherwise thepacketwill be lost, so the trans‑
mission can be avoided. In addition, as it is shown in [30],
the crisp output can easily be obtained bymerging several
If‑then rules without any computation, thus obtaining a
constant complexity (𝒪(1)).

5. PERFORMANCE EVALUATION OF
FUZDEMA

To evaluate the performance of the proposed FuzDeMa,
we consider the dataset of [31] also used to design and
validate our previouswork [3]. From this dataset, 140 dif‑
ferent scenarios were evaluated in two different conϐigu‑
rations of the soil: dry and moist.
For each scenario, we evaluate the performance of the
FuzDeMa by considering the following metrics (17) ‑ (21)
that depend on the values of True Positive (TP); TrueNeg‑
ative (TN), False Positive (FP) and False Negative:

• The Threat Score (TS): This is also known as the Crit‑
ical Success Index (CSI) and given in (17) is a perfor‑
mance metric used to measure the success of an ini‑
tiative (reception or loss of a packet).

• The Fowlkes‑Mallows Index (FMI): This is an index
used to determine the similarity between two differ‑
ent classes (reception or not reception). Its formula
is deϐined in (18).

• The Matthews Correlation Coefϐicient (MCC): This
is also known as the Phi‑coefϔicient applied in two
classes helps to measure the correlation differences
between the real observation and the predicted val‑
ues (19).

• The balanced Accuracy (bACC) : This is a metric used
for evaluating how good a binary classiϐier is when
the classes are imbalanced (size of the positive class
is higher than the size of the negative class). Its for‑
mula is given in (20).

• The F1‑Score : This metric is similar to the bACC but
is appliedwhen the size of the negative class is higher
than the size of the positive class (21).

• The Root Mean Square Deviation (RMSD) : This is the
square root of errors between the predicted and the
observed values (22). It gives the magnitudes of the
errors in predictions for varied datasets.

𝑇 𝑆 = 𝑇 𝑃
𝑇 𝑃 + 𝐹𝑁 + 𝐹𝑃 (17)

𝐹𝑀𝐼 = 𝑇 𝑃 √ 1
(𝑇 𝑃 + 𝐹𝑃)(𝑇 𝑃 + 𝐹𝑁) (18)

𝑀𝐶𝐶 = 𝑇 𝑃 𝑇 𝑁 − 𝐹𝑃 𝐹𝑁
√(𝑇 𝑃 + 𝐹𝑃)(𝑇 𝑃 + 𝐹𝑁)(𝑇 𝑁 + 𝐹𝑃)(𝑇 𝑁 + 𝐹𝑁)

(19)

𝑏𝐴𝐶𝐶 = 𝑇 𝑃(𝑇 𝑁 + 𝐹𝑃) + 𝑇 𝑁(𝑇 𝑃 + 𝐹𝑁)
2(𝑇 𝑃 + 𝐹𝑁)(𝑇 𝑁 + 𝐹𝑃) (20)

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2𝑇 𝑃
2𝑇 𝑃 + 𝐹𝑃 + 𝐹𝑁 (21)

𝑅𝑀𝑆𝐷 = √ 𝐹𝑃 + 𝐹𝑁
𝑇 𝑃 + 𝐹𝑃 + 𝑇 𝑁 + 𝐹𝑁

(22)

5.1 Dry soil conϐigurations
The 80 measurements of the dry conϐiguration occurred
when the soil moisture was close to 0%. From the exper‑
imental dataset, 68 and 12 observations are obtained for
the positive and negative classes (reception rcv. and loss
of packets not rcv.), respectively. The resulting confusion
matrix in dry soil conϐigurations is given in Table 3.

Table 3 – Confusion matrix for dry soil conϐigurations.

Observation
rcv. not rcv.

Prediction rcv. 68 TP 0 FP
not rcv. 0 FN 12 TN

We observe that for dry soil, the proposed FuzDeMa
achieves perfect predictions (𝑇 𝑆 = 𝐹𝑀𝐼 = 𝑀𝐶𝐶 = 1
and 𝑏𝐴𝐶𝐶 = 100%) regardless of the different scenarios
of the dataset used (with a 68.57% prevalence).



5.2 Moist soil conϐigurations
When the soil moisture level has a difference of 0%, the
soil is assumed to bewet. From the considered dataset, 60
measurements for wet soils are recorded (Table 4). Con‑
trary to the dry conϐiguration, here, the number of nega‑
tive cases is higher than the number of positive cases (32
and 28, respectively).

Table 4 – Confusion matrix for moist soil conϐigurations

Observation
rcv. not rcv.

Prediction rcv. 25 TP 9 FP
not rcv. 3 FN 23 TN

Furthermore, due to the inequity between the size of the
sets, the F1‑Score is more suitable than the balanced ac‑
curacy. The performance evaluation of FuzDeMa is given
in Table 5.
Table 5 – Performance evaluation of FuzDeMa in moist scenarios of the
soil

TS FMI F1‑Score MCC RMSD
0.675 0.810 80.675% 0.615 0.447

The results show that FuzDeMa gets a positive correla‑
tion between the prediction (reception or loss) and the
actual scenarios of the dataset used when the soil is wet.
Indeed, the value of the MCC deϐines a high correlation
between the prediction and the observation with an
accuracy of 80.675% (F1‑Score).

In short, over the 140 measurements of the used dataset
[31], themiss‑rate (or False Negative Rate FNR) probabil‑
ity and the False Discovery Rate (FDR) deϐined in (23) of
FuzDeMa are 3.125% and 8.824% respectively. These low
values demonstrate the high feasibility of FuzDeMa to ad‑
dress the problem of reliable communications in WUSN.

𝐹𝑁𝑅 = 𝐹𝑁
𝐹𝑁 + 𝑇 𝑃 ; 𝑃 𝐷𝑅 = 𝐹𝑃

𝐹𝑃 + 𝑇 𝑃 (23)

To validate the performance of FuzDeMa in predicting
the reception or the loss of packet before transmission,
we consider the performance metrics of (17) ‑ (21). For
each of these parameters, we compare our proposal with
WUSN‑PLM that obtained the best results compared to
the existing path loss models (Table 1). Table 6 sum‑
marizes the overall performance comparison of FuzDeMa
and WUSN‑PLM. We observe that the proposed decision‑
making tool outperforms WUSN‑PLM with higher bACC,
MCC, TS and FMI. The comparison table reveals that
FuzDeMa has a lower error than WUSN‑PLM in the same
dataset.
Additionally, to evaluate the proposed approach indepen‑
dently of the ϐixed threshold (0.50) and the insensibility
to class distribution, the Receiver Operating Characteris‑

Table 6 – Overall comparison of performances

bACC RMSD MCC TS FMI
WUSN‑PLM 81.06% 0.39 0.64 0.81 0.89
FuzDeMa 88.21% 0.29 0.80 0.89 0.94

tic (ROC) curve is considered (Fig. 4). Indeed, the ROC
curve evaluates graphically the impact of the false posi‑
tive rate on the sensibility (truepositive rate). Weobserve
that the ROC curve is well above the random guess, thus
conϐirming the good accuracy of the proposed approach
to differentiate the reception of the loss of a packet before
its transmission.
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Fig. 4 – Overall ROC curve evaluation of FuzDeMa with an AUC = 0.92.

The numerical evaluation of the ROC curve using the Area
Under the Curve (AUC) gives the same value (92%) as that
observed for the WUSN‑PLM given in Table 1. This value
means that FuzDeMa has a 92% chance of making the dif‑
ference between the two classes (reception and loss of a
packet).

6. INTEGRATION OF FUZDEMA WITHIN A
REAL DEVICE

Regardless of the good performances of FuzDeMa ob‑
served on an existing dataset, in this section, we evalu‑
ate our proposal in a real and dedicated sensor node for
WUSN.

6.1 MoleNet: A sensor node for underground
monitoring

The MoleNet2 [32] is a sensor node specially designed
for ecological and agricultural monitoring. However, it
can be used also for any other underground monitoring
purposes. The MoleNet is based on the Wattuino Pro
2molenet.org



Mini board powered by the Atmega328p microcontroller.
Wireless underground communications are achieved by
the RFM69CW transceiver at 433MHz, which is more
suitable than 868MHz or the classical 2.4GHz in under‑
ground environments. Like most existing sensor nodes,
the MoleNet periodically performs the same basic tasks
based on events. The ϐlow chart that summarizes the
different steps performed by the MoleNet is illustrated
in Fig. 5. To save its energy, the MoleNet sleeps more

Fig. 5 – Flow chart describing the functioning of the MoleNet. Overview
of the PCB and the deployment of the MoleNet at the University of
Ngaoundere [32].

than 99% of the time. An RTC interruption wakes up the
MoleNet fromdeep sleep for the sensing and transmission
of data to the gateway. After data transmission, the mi‑
crocontroller waits for an acknowledgement before going
into deep sleep mode. If it does not receive the acknowl‑
edgement before the end of the timer, it saves the sensed
data locally in its EEPROM and then goes into sleepmode.

6.2 Integration of FuzDeMa into the MoleNet
The previous fuzzy approach has been implemented and
ϐlashed inside the MoleNet to allow decision‑making be‑
fore each transmission. When it wakes up, the node
checks the reliability of transmission after reading the
sensor. The reliability checking is put after the reading
of the sensor because the MoleNet is equipped with a soil
moisture sensor, and the sensed value is after that used
as a moisture level to evaluate the transmission reliabil‑
ity. The values of the computed reliability vary from 0 to 1.
The proposed decision‑making consists of two equiprob‑
able classes: reception (should send) and no reception
(should not send). From this, the crisp output is divided
into two equal sets for the reception ([0; 0.5[) and for the
data loss ([0.5; 1]).

• If the computed reliability𝑍∗ is low (𝑍∗∈[0; 0.5[), the
MoleNet stops its round and goes into sleepmodebe‑
cause in such cases, it assumes that it cannot reach

the gateway (receiver).

• If the reliability 𝑍∗ is high (𝑍∗∈[0.5; 1]), the MoleNet
presumes that the link quality is good enough for
transmission. In this case, the gateway will receive
the sent packet.

The ϐlow chart of the integration of the fuzzy‑based
decision‑making for data transmission is summarized by
Fig. 6.

Fig. 6 – Improvement ofMoleNet by adding the FuzDeMamodule before
the transmission of a packet. The blue elements represent the different
steps of FuzDeMa according to the MoleNet ϐlowchart. The red section
is neglected when implementing FuzDeMa in MoleNet.

7. EXPERIMENTS AND EVALUATIONS
In this section, we describe the experimental setup used
to evaluate the energy consumption of theMoleNet in dif‑
ferent scenarios. After that the results, discussions and
validation are provided.

7.1 Measurement setup
To evaluate the energy consumption of the MoleNet, we
consider the setup of Fig. 7. The R&S®HM8143 delivers
power to the MoleNet during the experiment. The preci‑
sion multi‑meter R&S HM8112‑3 is also connected to the
MoleNet to measure the voltage values in real time and
the current variations. The digital oscilloscope Tektronix
TBS 1102B is also used to visualize the voltage of the
MoleNet. We consider each measurement’s output CSV
ϐiles for the numerical analysis. To check if the MoleNet
has sent data, we used the digital spectrum analyser RF
Explorer COMBO.



Fig. 7 –Evaluation of the energy consumption during different scenarios
of data transmission in the ComNets lab at the University of Bremen,
Germany.

Each transmission of the MoleNet occurs only from the
nodes to the gateway through a single‑hop communica‑
tion. After sending a packet, the MoleNet waits for an ac‑
knowledgement sent by the gateway before going to sleep
mode. Thus, two scenarios are possible:

• The gateway is not reachable: here, the node sends
a packet, but after the ϐixed time, it does not re‑
ceive an acknowledgement from the gateway. During
this scenario, a communication round of theMoleNet
contains four different stages (Fig. 8a): 1)sleep,
2)microcontroller computation, 3)transmission, and
4)waiting for an acknowledgement. As we can see,
MoleNet spends additional energy after the trans‑
mission before switching off the transmission mod‑
ule and going into sleep mode.

• The gateway is reachable: the node sends a packet
and receives an acknowledgement from the gateway
node. After the successful transmission, the node
goes into sleep mode (Fig. 8b). Unlike the ϐirst sce‑
nario, the MoleNet does not go through step 4 and
avoids the energy spent by the communication mod‑
ule after a packet transmission.

7.2 Evaluation
To evaluate the energy consumed by the node during a
round is achieved by considering the setup of Fig. 7. The
value of the energy consumed in joules (24) is explained
in function of the voltage 𝑢 (in volts), time 𝑡 (in seconds)
and the resistance 𝑅 (set to 10Ω for computational con‑
venience). From the output CSV ϐile, more than 2500mea‑
surements (each 4ms) of the time and voltage are pro‑
vided by TBS 1102B.
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Fig. 8 – Energy consumption of the MoleNet during a round. (a) Energy
consumed when the gateway is not reachable. (b) Energy consumed
when the gateway is reachable.

𝐸 = 𝑢2𝑡
𝑅 (24)

From the setup of Fig. 7, several shots have been per‑
formed and the average values of the energy consumed
by the MoleNet is summarized in Table 7 below.

Table 7 – Energy consumed by the MoleNet in a round

Gateway not reached Gateway reached
Energy (J) 133.3141𝜇𝐽 59.8134𝜇𝐽

As the table above shows, the power consumption of
the MoleNet doubles when the gateway is not reachable
for about the same running time. This large difference
between these values can be explained by the fact that
the communication module stays in listening mode for
longer. Additionally, It is well‑known that the commu‑
nication module is the most energy‑intensive module of
a sensor node. In other words, the node will consume
133.3141𝜇𝐽 per transmission when the link to the gate‑
way (or any other receiver) is broken due to bad ground
conditions.

8. EVALUATIONOFTHEENERGYCONSUMP‑
TION

The evaluation of the energy consumed during the com‑
putation of the FuzDeMa is summarized in Fig. 9.
We observe that the energy consumed by the MoleNet
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Fig. 9 – Evaluation of the energy drained by the proposed approach. (a)
Computation of the proposed FuzDeMa (no TX). (b) Computation of the
proposed FuzDeMa (TX).

while performing our proposal during transmission is
similar to the energy consumed during transmission by
the conventional MoleNet (Fig. 9b). Table 8 gives the nu‑
merical values of the energy consumed with and without
transmission while running our proposed approach.

Table 8 – Energy consumed by FuzDeMa

FuzDeMa (no TX) FuzDeMa (TX)
Energy (J) 51.5264𝜇𝐽 68.0133𝜇𝐽

Despite the short time used to transmit data, we observe
that the MoleNet consumes more than 16𝜇𝐽 . Thus, by
cancelling a transmissionwhen the environment does not
allow it to reach a distant node (here the gateway), we can
save this energy, thus increasing the lifetime of the sensor
node. The energy consumption of the MoleNet while run‑
ning, or not, our proposed fuzzy‑based decision‑making
tool is summarized in Fig. 10.
Moreover,weevaluate and compare the energy consumed
in two cases: (i) the gateway is reachable; (ii) the gateway
is not reachable.

8.1 The gateway is reachable
Since the node cannot knowby itself perfectly (with prob‑
ability 1) when the gateway is reachable or not, we eval‑
uate in this subsection the energy consumed during and
without transmission of our proposal. When the gate‑
way is reachable, the conventional MoleNet consumes

Fig. 10 – Comparison the energy consumption per round.

around 59.8134𝜇𝐽 per round, and it is assumed that the
link with the gateway is not broken. When the fuzzy ap‑
proach decides to send data (TX) according to the com‑
puted reliability (True Positive), the node will consume
8.2𝜇𝐽 more than in the conventional MoleNet (Fig. 11).
In other words, although this case is the worst one of our
proposal, we see that the additional energy consumed by
the node is minimal and can be neglected.
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Fig. 11 – Energy saved (and lost) while using FuzDeMa when the gate‑
way is reachable.

However, if the proposed FuzDeMa does not decide to al‑
low a transmission (False Negative), the energy saved by
FuzDeMa is around 8.287𝜇𝐽 (Fig. 11). In this case, the
MoleNet sends and receives an acknowledgement from
the gateway, and the fuzzy‑based control will not proceed
to transmission and thus save 8.287𝜇𝐽 . The negative side
of the fuzzy‑based decision‑making tool is that the gate‑
way will not receive any data from the sensor node. In
short, we summarize in Table 9 the energy saved and data
status when the gateway is reachable.

Table 9 – Evaluation of FuzDeMa (gateway is reachable)

Energy saved Data
True Positive −8.2𝜇𝐽 send & receive
False Negative 8.287𝜇𝐽 not send & not receive



8.2 The gateway is not reachable
When the gateway is not reachable, the MoleNet does not
receive an acknowledgement, thus, it will consume addi‑
tional energy (Fig. 8a). In other words, the link between
the sensor node and the gateway may be broken. During
this scenario, the MoleNet will consume 133.3141𝜇𝐽 per
round (Table 7).
If the fuzzy‑based control allows a transmission (TX) even
if the gateway is not reachable (False Positive), the sen‑
sor node will consume 65.3007𝜇𝐽 per round lesser than
in the conventional MoleNet (Fig. 12). This difference
is explained by the fact that the MoleNet stays a few
times waiting for the acknowledgement from the gate‑
way and then wastes more energy. In this case, we no‑
tice that the saved energy is just about enough for another
round of our proposed fuzzy‑based decision‑making tool
(59.8134𝜇𝐽 or 68.0134𝜇𝐽).
Meanwhile, when our fuzzy controller decides not to al‑
low transmission (no TX), the saved energy increases up
to 81.786𝜇𝐽 . This case is the best scenario in which the
efϐiciency of our proposed approach (True Negative) can
be observed. Here, the sensor node will save energy and
no data is missed.
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Fig. 12 – Energy saved while using FuzDeMa when the gateway is not
reachable.

The overall energy saved when the gateway is not reach‑
able according to the status of the data is shown in Ta‑
ble 10 below.

Table 10 – Evaluation of FuzDeMa (no gateway)

Energy saved Data
False Positive 65.3007𝜇𝐽 send & not receive
True Negative 81.7876𝜇𝐽 not send & not receive

9. DISCUSSION AND GENERALIZATION OF
FUZDEMA

One key limitation of the MoleNet that we can easily ob‑
serve occurs when the gateway is not reachable. During
this case, the buried node keeps the transceiver in listen‑

ing mode to receive any acknowledgement from the gate‑
way. From Section 7.1, the energy drained by theMoleNet
becomes substantial (≈133𝜇𝐽 per round). However, with
a different node the presented results may vary. Here, we
analyse the impact of the FuzDeMa for any kind of device.
Let’s assume a random sensor ϐield𝐹 is made up of𝑁 ho‑
mogenous nodes. Each sensor node 𝑛𝑖 (𝑖∈ [1 𝑁]) sends
periodically the collected information to the base station.
Furthermore, to reduce the energy consumption, there is
only one transmission per round in a non‑connected way
(no acknowledgment is needed from the base station).
During a round, a node without the FuzDeMa will con‑
sumes 𝐸𝑖 (25). 𝑚𝑐𝑐𝑜𝑚𝑝 denotes the computation made
by the microcontroller and 𝑡𝑥𝑐𝑜𝑠𝑡 is the energy consumed
by the transceiver during a transmission. Thus, after 𝑘
rounds, the energy consumed by a sensor node is 𝑘𝐸𝑖.

𝐸𝑖 = 𝑚𝑐𝑐𝑜𝑚𝑝 + 𝑡𝑥𝑐𝑜𝑠𝑡 (25)

Meanwhile, when a node integrates the proposed
FuzDeMa, the overall energy consumed 𝐸′

𝑖 per round
is given in (26). 𝑓𝑢𝑧𝑐𝑜𝑠𝑡 is the additional calculation
cost of the FuzDeMa. After 𝑘 rounds, the overall energy
consumed by node 𝑛𝑖 depends on the number of data
receptions 𝛼 (with 𝑘 ≥ 𝛼). This is because the FuzDeMa
does not allow a transmission when the conditions are
not sufϐicient for a reception.

𝐸′
𝑖 = {𝐸𝑖 + 𝑓𝑢𝑧𝑐𝑜𝑠𝑡 if transmission

𝐸𝑖 + 𝑓𝑢𝑧𝑐𝑜𝑠𝑡 − 𝑡𝑥𝑐𝑜𝑠𝑡 else
(26)

Aswe canobserve fromFig. 10, the energy consumeddur‑
ing transmission is higher than the additional calculation
of FuzDeMa (𝑡𝑥𝑐𝑜𝑠𝑡 > 𝑓𝑢𝑧𝑐𝑜𝑠𝑡), thus when there is no
transmission, 𝐸′

𝑖 ≤ 𝐸𝑖. However, after 𝑘 random rounds,
FuzDeMa will save energy when 𝑘𝐸𝑖 ≥ 𝑘𝐸′

𝑖 . (27).

𝑘𝐸𝑖 ≥ 𝑘(𝑚𝑐𝑐𝑜𝑚𝑝 + 𝑓𝑢𝑧𝑐𝑜𝑠𝑡) + 𝛼𝑡𝑥𝑐𝑜𝑠𝑡 (27)

In short, theFuzDeMawill improve the lifetimeof any sen‑
sor node𝑛𝑖 after𝑘 roundswhen the relationof (28) ismet.

𝛼 ≤ ⌊𝑘(𝑡𝑥𝑐𝑜𝑠𝑡 − 𝑓𝑢𝑧𝑐𝑜𝑠𝑡)
𝑡𝑥𝑐𝑜𝑠𝑡

⌋ (28)

When the condition (28) is met, the overall energy 𝐺𝑖
saved by a node 𝑛𝑖 that implements the FuzDeMa after 𝑘
random rounds with 𝛼 reception(s) is resumed by (29).
Fig. 13 below presents the evolution of the energy saved
by FuzDeMa after 1000 rounds.

𝐺𝑖 = 𝑡𝑥𝑐𝑜𝑠𝑡(𝑘 − 𝛼) − 𝑘𝑓𝑢𝑧𝑐𝑜𝑠𝑡 (29)

10. CONCLUSION
In this paper, we proposed and evaluated a novel portable
fuzzy‑based approach for decision‑making during trans‑
mission in WUSN to avoid energy waste called FuzDeMa.
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Fig. 13 – Energy saved by FuzDeMa according to the number of recep‑
tions.

The main idea of our proposed solution is to allow a sen‑
sor node to senddata onlywhen it is ”sure” of its reception
according to a calculated reception probability. The out‑
put of the fuzzy inference system used is the reliability of
data reception which depends on the soil moisture level,
the distance between nodes and the burial depths of the
transmitter and receiver. Evaluation of the energy con‑
sumed during different scenarios (TN, TN, FP, FN) reveals
that the approach can save up to 81.7876𝜇𝐽 per transmis‑
sion cycle. Moreover, the validation of FuzDeMa is based
on a real dataset made up of 140 different measurements
in two different conϐigurations (dry and moist soils). The
results showed that, the proposed FuzDeMa is able to ex‑
tend the lifetime of a sensor node by up to 32.85%.
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