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Abstract

In this paper we study general hyperplane sections of adjoint and coadjoint varieties. We
show that these are the only sections of homogeneous varieties such that a maximal torus of
the automorphism group of the ambient variety stabilizes them. We then study their geometry,
provide formulas for their classical cohomology rings in terms of Schubert classes and compute
the quantum Chevalley formula. This allows us to obtain results about the semi-simplicity of
the (small) quantum cohomology, analogous to those holding for (co)adjoint varieties.

1 Introduction

Many Fano varieties are obtained as linear sections or more generally zero loci of general sections
of vector bundles over a projective rational homogeneous space. Furthermore, varieties having an
action of a torus (with finitely many fixed points) have a rather simple cohomological description.

In this paper we consider G a connected reductive group and X ⊂ P(V ) a projective G-
homogeneous space G-equivariantly embedded in the projective space of a G-representation V .

T -general pairs. The pair X ⊂ P(V ) is called T -general if a general hyperplane section of X is
stable under a maximal torus of G (see Definitions 2.1 and 2.12). We fully answer the following.

Problem 1.1. Classify the T -general pairs X ⊂ P(V ).

To state our results we recall some definitions (see Subsection 2.1). Let G be a connected
reductive group whose Lie algebra g is simple. We call G-adjoint variety the unique closed
G-orbit X ⊂ P(g). In this case V = g is the highest weight representation of highest weight Θ,
the highest root of G. Let θ be the highest short root of G (for G simply laced, we have θ = Θ)
and let ∇θ be the highest weight G-representation of highest weight θ. The unique closed G-orbit
X ⊂ P(∇θ) is called G-quasi-minuscule variety. It turns out that for X adjoint or quasi-
minuscule both embeddings X ⊂ P(g) and X ⊂ P(∇θ) are T -general pairs. We state our results
for V irreducible (see Lemma 2.2 to extend to the general situation).

Theorem 1.2 (see Theorem 2.15). The pair X ⊂ P(V ) is T -general if and only if G acts via a
unique simple factor and X = P(V ), X ⊂ P(g) is G-adjoint or X ⊂ P(∇θ) is G-quasi-minuscule.

Linear sections of T -general pairs. Let Y be a general hyperplane section of X ⊂ P(V ) a
T -general pair. Then Y is a Fano variety and we devote the rest of the paper to study some of the
geometric properties of Y for X ⊊ P(V ). We start with a description of the automorphism group
of Y and its infinitesimal deformations. Let Rk(G) be the semi-simple rank of G.

Proposition 1.3 (see Theorem 2.15). Let X ⊊ P(V ) be a T -general pair and let Y be a general
hyperplane section of X.

1. If X is adjoint, then the deformation space of Y has dimension Rk(G) − 1 and we have
Aut(Y )0 = T ad the image of a maximal torus T in the adjoint group Gad of G.
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2. If X is quasi-minuscule and not adjoint, then the dimension of the deformation space of Y
and the connected component of its automorphism group are given as follows

Type X Aut0(Y ) dim H1(Y, TY )
Bn Q2n−1 SO2n 0
Cn IGr(2, 2n) (SL2)n n− 3
F4 F4/P4 SO8 0
G2 Q5 SO6 0

Here Qn is a smooth n-dimensional quadric, IGr(2, 2n) is the grassmannian of line in C2n isotropic
for a symplectic form and F4/P4 is the the homogeneous variety obtained as the quotient of the
group of type F4 by the maximal parabolic associated to the fourth fundamental weight in Bourbaki’s
notation [Bou02].

An interesting feature of the proof of the above results for X quasi-minuscule and G non-simply
laced is the use of Jordan algebras. In particular, we compute all the above invariants in terms of
an associated simple Jordan algebra J (see Subsection 2.3).

Cohomology of Y . We now consider cohomology and quantum cohomology of linear section of
T -general pairs. For Z a complex variety, we denote by H∗(Z) the cohomology of Z with coefficients
in the fiels Q of rational numbers. As in our situation there will be not odd-cohomology, we call a
class η ∈ H∗(Z) of degree d if η ∈ H2b(Z,Q). If T is a torus acting on Z, we write H∗

T (Z) for the
T -equivariant cohomology with coefficients in Q.

Let Y ⊂ X as above and let T ⊂ G be a maximal torus stabilising Y . Since X has only finitely
many T -fixed points and T -stable curves, the same holds true for Y . In particular, we have a
Bia lynicki-Birula decomposition leading to two cohomology basis (σα)α∈ℵ and (σ−

α )α∈ℵ. Note that
the indexing set ℵ is the set of T -fixed points in X and Y and is the set of long (resp. short) roots
of G for X adjoint (resp. quasi-minuscule). The class σα has middle degree i.e. deg(σα) = dimY
if and only if α or −α is simple. Set ϖ = Θ (resp. ϖ = θ) for X adjoint (resp. X quasi-minuscule).
We have σϖ = 1 is the unit in H∗(Y ) and σ−ϖ = [pt] is the class of a point. We write h for the
hyperplane class in H∗(Y ) or H∗

T (Y ) the rational and equivariant rational cohomology of Y .
We prove an equivariant Chevalley formula for multiplying with h. Let us fix some notations.

Let Φ be the set of simple roots and set Φℵ = Φ∩ℵ. For x =
∑

α∈Φ xαα a linear combination, set
Supp(x) = {α ∈ Φ | xα ̸= 0}, set |x| = |Supp(x)| and set ∥x∥ = max{|xα| | α ∈ Φ}.

Theorem 1.4 (see Theorem 4.13). Let Y ⊂ X be a general hyperplane section as above.

1. Let α ∈ ℵ, then we have h ∪ σα = (ϖ − α)σα +
∑

β∈ℵ aβασβ in H∗
T (Y ).

2. For α, β ∈ ℵ, then aβα = 0 unless (α ≥ β, β ̸= −α and |α−β| = 1) or (α ≥ β, |α−β| ∈ {2, 3},
Supp(α− β) is connected and Supp(α− β) ∩ {α,−β} ≠ ∅).

3. Assume that α, β ∈ ℵ satisfy the above condition, then

(a) If |α− β| = 1, then aβα = ∥α− β∥.

(b) If α,−β ∈ Φℵ are simple, then aβα = −α.

(c) If α ∈ Φℵ and −β ̸∈ Φℵ, then aβα =

{
∥β∥ if |α− β| = 2
0 if |α− β| = 3.

(d) If α ̸∈ Φℵ and −β ∈ Φℵ, then aβα =

{
∥α∥ if |α− β| = 2 and Supp(α− β) ̸⊂ ℵ
∥α− β∥ otherwise.

The class h generates H∗
T (Y ) so that this result gives a full description of the algebra struc-

ture of H∗
T (Y ). However, it is hard to express the classes (σα)α∈ℵ as polynomials in h and the

multiplication rule is not easy to compute, so more geometric methods are also interesting.
On the other hand if j : Y → X is the inclusion, most classes in H∗(Y ) can be expressed

as elements in j∗ H∗(X). In fact only the middle cohomology in Y is not obtained this way. If
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(σα,X)α∈ℵ ∈ H∗(X) is the Schubert basis, we use the previous result to give an explcit formula for
j∗σα,X in terms of the basis (σα)α∈ℵ. To get a useful multiplication rule in H∗(Y ) we compute

the intersection form on HdimY (Y ). Note that (σα)±α∈Φℵ is a basis of HdimY (Y ). Let Iℵ be
the identity matrix of size |Φℵ|, let Cℵ = (⟨α∨, β⟩)α,β∈Φℵ be the submatrix of the Cartan matrix
corresponding to Φℵ and let J be the matrix of the map ι : Φℵ → Φℵ, α 7→ −w0(α) where w0 ∈ W
is the longest element of the Weyl group W of G. We prove the following result.

Theorem 1.5 (see Theorem 4.36). We have the formula

(σα ∪ σβ)α,β∈Φℵ∪−Φℵ =
1

4Iℵ − Cℵ

(
J + (

√
−1)dimY (Cℵ − 3Iℵ)2 J + (

√
−1)dimY (Cℵ − 3Iℵ)

J + (
√
−1)dimY (Cℵ − 3Iℵ) J + (

√
−1)dimY Iℵ)

)
.

From this result we deduce an explicit presentation of the algebra H∗(Y ), see Theorem 4.41.

Quantum cohomology. Next we turn to quantum cohomology. We write QH(Z) for the small
quantum cohomology ring and BQH(Z) for the big quantum cohomology ring of a Fano variety
Z. Let Y ⊂ X as above. To understand QH(Y ) and BQH(Y ), we need to study the moduli space
M0,n(Y, d) of n-pointed genus 0 stable maps of degree d ∈ H2(Y,Z) to Y .

Note that for X as above, we have Pic(X) = Z except for G of type An with n ≥ 2 in which case
Pic(X) = Z2. We also obtain result in type An but to simplify the exposition in the introduction,
we state some results in the case Pic(X) = Z. After proving general results, we focus on degree 1
and 2 curves in Y . We prove the following.

Proposition 1.6 (see Proposition 5.10 and Theorem 5.11). Let Y ⊂ X as above with Pic(X) = Z.

1. M0,n(Y, 1) is smooth irreducible of expected dimension.

2. If X is not the adjoint variety of type G2, then M0,n(Y, 2) is irreducible of expected dimension.

3. If X is the adjoint variety of type G2, then M0,n(Y, 2) has two irreducible components, both
of expected dimension, one of which is formed by degenerate conics.

Using these results, we are able to compare Gromov-Witten invariants in Y to Gromov-Witten
invariants in X and we obtain quantum Chevalley formulae.

Theorem 1.7 (see Theorems 5.17 and 5.38). Let Y ⊂ X be as above with Pic(X) = Z.

1. Assume that X is adjoint. Let α ∈ ℵ, then in QH(Y ) we have:

(a) If α > 0 and deg(σα) < c1(Y ) − 1, then h ⋆ σα = h ∪ σα.

(b) If α > 0 and deg(σα) = c1(Y ) − 1, then h ⋆ σα = h ∪ σα + ∥α∥qδα0≤α.

(c) If α is simple, then h ⋆ σα = h ∪ σα + qhδα0≤α.

(d) If α < 0 and |Θ + α| ≥ 2, then h ⋆ σα = h ∪ σα + |⟨Θ∨, α⟩|qσsΘ(α).

(e) If α < 0 and |Θ+α| = 1, then h⋆σα = h∪σα+q(σα0+σ−α0+
∑

β∈Φℵ,⟨β∨,α0⟩<0 σ−β)+2q2.

(f) If α = −Θ, then h ⋆ σα = 2q2h + q
∑

γ∈Φ,⟨γ∨,α0⟩<0 |⟨γ∨, α0⟩|σ−sγ(α0).

2. Assume that X is quasi-minuscule not adjoint. Let α ∈ ℵ, then in QH(Y ) we have:

(a) If α > 0 is not simple, then h ⋆ σα = h ∪ σα.

(b) If α is simple, then h ⋆ σα = h ⋆ σ−α.

(c) If α < 0, then h ⋆ σα = h ∪ σα + δα≤θ−Θqj
∗σα+Θ,X . We thus have

h ⋆ σα =

 h ∪ σα + δα≤θ−Θq

(
σα+Θ + σ−α−Θ +

∑
β∈Φℵ, β+α+Θ∈∆

σ−β

)
for α + Θ simple

h ∪ σα + δα≤θ−Θqσα+Θ otherwise.

The following is a general problem for the quantum cohomology of a Fano variety Z.

Problem 1.8. For which Fano varieties Z are BQH(Z) and QH(Z) semi-simple?
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Note that the semi-simplicity of QH(Z) implies that BQH(Z) is semi-simple but the converse is
false in general. This question was answered in [CP11] and [PS21] for X adjoint or quasi-minuscule.

Theorem 1.9 (see [CP11, PS21]). Let X be as above.

1. The algebra BQH(X) is semi-simple.

2. If X is quasi-minuscule, then QH(X) is not semi-simple.

3. If X is adjoint not quasi-minuscule, then QH(X) is semi-simple.

We conjecture that general linear sections Y ⊂ X as above have the same behaviour as X. In
particular we make the following conjecture.

Conjecture 1.10. Let Y ⊂ X be as above.

1. The algebra BQH(Y ) is semi-simple.

2. The algebra QH(Y ) is semi-simple if and only if QH(X) is semi-simple.

We prove some partial results in this direction. In particular, we obtain the following results.

Theorem 1.11 (see Propositions 5.46, 5.28 and 5.31). Let Y ⊂ X be as above with Pic(X) = Z.

1. If X is quasi-minuscule not of type Cn or Dn, then QH(Y ) is not semi-simple.

2. If X is adjoint not quasi-minuscule, then QH(Y ) is semi-simple.

In type An, a more interesting question is the restriction QH(X)can and QH(Y )can of QH(X)
and QH(Y ) to the canonical curve. This means to set q1 = q2 where q1 and q2 are the quantum
parameters. The algebra QH(X)can is semi-simple if and only if n is even and has a singularity
of type An for n odd. We give a complete Chevalley formula in type An and make the following
conjecture.

Conjecture 1.12. For X adjoint of type An and Y ⊂ X a general hyperplane section, the algebra
QH(Y )can is semi-simple if and only if n is even.

In the appendix we prove this conjecture when n is even.

Acknowledgements. The first author is partially supported by SupToPhAG/EIPHI ANR-17-
EURE-0002, Région Bourgogne-Franche-Comté, Feder Bourgogne. The second author was par-
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Notations Let G be a connected reductive group and g its Lie algebra. Then g is a G-
representation: the adjoint representation. Let T be a maximal torus of G and let h ⊂ g be
its Lie algebra. Denote by ∆ the set of roots and by W the Weyl group associated to (G,T ). We
write gα for the weight space associated to the root α ∈ ∆. Fix B a Borel subgroup containing
T and let b ⊂ g be its Lie algebra. Let ∆+ be the set of positive roots defined as the set of root
α ∈ ∆ such that gα ⊂ b. Denote by Φ ⊂ ∆ the set of simple root and by ∆− the set of negative
roots.

The finite dimensional representation theory of reductive Lie algebras is well understood in
terms of weights. All representations are completely reducible, and isomorphism classes of irre-
ducible representations are in a one-to-one correspondance with non-negative characters of T . By
non-negative characters we mean elements w ∈ χ(T ), where χ(T ) is the set of group homomor-
phisms T → C∗, such that w(α) ≥ 0 for all α ∈ Φ. Indeed, if V is a finite g-representation via
ρ : g → gl(V ), it is also a h-representation. Since h is composed of semi-simple commuting oper-
ators, one can diagonalize its action on V and decompose it in eigenspaces V = ⊕γ∈χ(T )Vγ , with
χ(T ) ⊂ h∨. If V is irreducible, there exists a unique weight λ, called the highest weight, such that
ρ(n) · Vλ = 0, where n is a maximal nilpotent subalgebra of b. Furthermore Vλ is one-dimensional
and ⟨α∨, λ⟩ ≥ 0 for all α ∈ ∆+. Vice versa, starting from such a λ, one can construct an irreducible
representation, which we will denote by ∇λ, whose highest weight is λ.

Denote by Θ the highest (long) root of ∆, and by θ the highest short root of ∆. If G is simply
laced, then Θ = θ. If G is semi-simple, then g is the unique irreducible G-representation whose
highest weight is Θ i.e. g = ∇Θ. In general for g reductive, we have ∇Θ = [g, g]. For I ⊂ Φ a set
of simple roots, denote by PI the parabolic subgroup whose simple roots are given by Φ \ I: for
α ∈ Φ, we have g−α ⊂ pI = Lie(PI) ⇔ α ∈ Φ \ I. For example PΦ = G and P∅ = B.

Recall that if G is simply laced, all roots are conjugated by the Weyl group and have the same
length, while if G is not simply laced, there are two conjugacy classes of roots of different lengths,
long roots and short roots. In the former case we will consider the roots to be long and short, and
in both cases we define ∆l = {α ∈ ∆ | α is a long root} and ∆s = {α ∈ ∆ | α is a short root}. For
x =

∑
α∈Φ xαα a linear combination of simple roots, we define Supp(x) = {α ∈ Φ | xα ̸= 0}. Set

|x| = |Supp(x)| and set ∥x∥ = max{|xα| | α ∈ Φ}. We define the height of x as ht(x) =
∑

α xα.
Recall that, for any vector space V , there exists an exponential map exp : gl(V ) → GL(V ),

which is the usual exponential of matrices. The exponential map exp : g → G exists in general
for any linear algebraic group, and it allows to lift any g-representation ρ : g → gl(V ) to a
G-representation (beware: for this, we need to consider the “simply connected version” of G)
satisfying

exp(g) · v =
∑
i≥0

1

i!
ρ(g)i · v.

From this, one sees that the induced representation ρ : G → GL(V ) is compatible with the
exponential maps (of g and gl(V )).

Let g be a simple Lie algebra, and let g = h ⊕
⊕

α∈∆ gα be the Cartan decomposition of
g. Recall that the restriction of the Killing form to h is non degenerate and induces a duality
between gα and g−α for α ∈ ∆. Let eα ∈ gα. Then there exists hα ∈ h and e−α ∈ g−α such that
[eα, e−α] = hα, [hα, eα] = 2eα, [hα, e−α] = −2e−α.

We have ad(eα)3(e−α) = 0 and for α ̸= β positive roots, we have ad(eγ)−⟨γ∨,α⟩+1(eα) = 0. For
the exponential map exp : g → G, we have exp(b) ⊂ B for b the Borel subalgebra corresponding to
B, and exp(h) ⊂ T . Any G-representation V is also a g-representation and these representations
are compatible with the exponential map.

2 Torus stable hyperplane sections of homogeneous spaces

Let G be a connected reductive group and X ⊂ P(V ) be a G-homogeneous projective variety
G-equivariantly embedded.

Definition 2.1. The pair X ⊂ P(V ) is called T -general if a general hyperplane section is stable
under a maximal torus of G.
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Note that this definition is stable under central extensions of G since maximal tori will act via
their quotient by the center of G. Any X as above is of the form X = G/P where P is a parabolic
subgroup of G. The variety X can be G-equivariantly embedded in a projective space in many
ways. Any such embedding is of the form P(V ) where V is a G̃-representation for G̃ the simply
connected cover of G. By the above remark we may therefore assume that V is a G-representation.
If the embedding X ⊂ P(V ) is non degenerate i.e. if X is not contained in any proper linear
subspace of P(V ), then V = ∇λ is the highest weight representation of highest weight λ, and if
v ∈ Vλ is a highest weight vector and [v] ∈ P(V ) is the class of v, we have P = StabG([v]) and
X = G · [v].

Lemma 2.2. Let X ⊂ P(V ) be a G-homogeneous space G-equivariantly embedded in P(V ). Assume
that V is not irreducible as representation.

1. Then there exists an unique irreducible representation ∇ ⊂ V such that X ⊂ P(∇) ⊂ P(V ).

2. The pair X ⊂ P(V ) is T -general if and only if the pair X ⊂ P(∇) is T -general.

Proof. 1. Since X is projective and homogeneous, we have X = G · [v] with StabG([v]) a parabolic
subgroup. In particular v is a highest weight vector and if we define ∇ as the G-submodule
generated by v, the result follows.

2. Linear section are given by elements in V ∨ and ∇∨. Furthermore the inclusion ∇ ⊂ V
induces a surjective open morphism π : V ∨ → ∇∨. If U∇ ⊂ ∇∨ and UV ⊂ V ∨ are the sets
of hyperplane sections of X ⊂ P(∇) and X ⊂ P(V ) stable under a maximal torus of G, then
UV = π−1(U∇) proving the result.

In particular, in what follows we may and will assume that the representation V is irreducible.
We are thus interested in general hyperplane sections Y of X in P(V ) with V irreducible which
are stable under the action of a maximal torus T . Let V ∨ be the dual representation of V .
Hyperplane sections are indexed by elements [h] ∈ P(V ∨) with h ∈ V ∨ non-zero via [h] 7→ Yh =
{[x] ∈ X | h(x) = 0}.

Lemma 2.3. The hyperplane section Yh is T -stable if and only if h ∈ V ∨ is a T -eigenvector.

Proof. If h is a T -eigenvector of weight λ, we have, for any [w] ∈ Yh and any t ∈ T , the equality
h(t · w) = (t−1 · h)(w) = λ(t)−1h(w) = 0 thus t · [w] ∈ Yh.

Conversely, since V is irreducible, the restriction map H0(P(V ),OP(V )(1)) → H0(X,OX(1)) is
an isomorphism, and we have that, for t ∈ T , the equality Yt·h = t · Yh = Yh implies [t · h] = [h]
and h is a weight vector.

We now consider the situation where the group G = G1 × G2 is a product of two reductive
groups. Note that, up to a finite central extension, this is equivalent to the fact that the same
holds at the Lie algebra level: g = g1× g2. We let T = T1×T2 be a maximal torus with T1 and T2

maximal tori of G1 and G2. Let X = G/P ≃ G1/P1 ×G1/P2 where P = P1 × P2 is a product of
parabolic subgroups of G1 and G2. Note also that a G-representation V is irreducible if and only
if V = V1 ⊗ V2 with V1 and V2 irreducible representations of G1 and G2 (see [Ste68, §12]).

Lemma 2.4. Let G = G1 × G2 and X ⊂ P(V ) with V = V1 ⊗ V2 as above. The pair X ⊂ P(V )
is T -general if and only if, up to reordering, we have P2 = G2, the representation V2 is trivial and
X ⊂ P(V1) is a T1-stable pair for G1

Proof. Assume that both V1 and V2 are non-trivial. In particular any T -weight space of V1 and V2

or equivalently of V ∨
1 and V ∨

2 are proper subspaces. Let f ∈ V ∨ = V ∨
1 ⊗V ∨

2 . If f is a T -eigenvector
then f ∈ V ∨

1,λ1
⊗ V ∨

2,λ2
for weights λ1 and λ2. But this implies that the rank of f as a tensor is at

most min(dim(V ∨
1,λ1

),dim(V ∨
2,λ2

)) < min(dimV1,dimV2), which is the rank of a general tensor. In
particular f is not general. This implies that V1 or V2 must be trivial. Assuming that V2 is trivial,
the result follows.

We may and will therefore assume that g is a simple Lie algebra.
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2.1 Minuscule, quasi-minuscule and adjoint representations

Let T be a maximal torus of G. Many aspects of the geometry of X can be interpreted using
weights of the T -action on V and on X. Denote by Π(V ) the set of T -weights of V .

Definition 2.5. Let V = ∇λ be an irreducible representation of highest weight λ.

1. The representation V or its highest weight λ is called minuscule if Π(V ) = W · λ.

2. The representation V or its highest weight λ is called quasi-minuscule if Π(V )\{0} = W ·λ.

Let ∆ be the root system of G and recall that Θ is the highest (long) root.

Definition 2.6. A representation V is called adjoint if it is irreducible of highest weight Θ. The
highest weight Θ is called adjoint weight.

Let G be a reductive group and G∨ its dual Langlands group. The Dynkin diagram of G∨ is
obtained from that of G by reversing the arrows. The fundamental weights of G are denoted by
(ϖi)i∈[1,n] while the fundamental weights of G∨ are denoted by (ϖ∨

i )i∈[1,n]. We keep the same
numbering of simple roots and fundamental weights for G and G∨. For a weight ϖ =

∑
i aiϖi, we

set ϖ∨ =
∑

i aiϖ
∨
i .

Definition 2.7. Recall the definition of minuscule and adjoint representations.

1. A representation V is called cominuscule if it is irreducible of highest weight ϖ such that
ϖ∨ is a minuscule weight for G∨. The weight ϖ is called cominuscule.

2. A representation V is called coadjoint if it is irreducible of highest weight ϖ such that ϖ∨

is an adjoint weight for G∨. The weight ϖ is called coadjoint.

Quasi-minuscule, (co)minuscule or (co)adjoint representations are well known. See [Ses78] for
a classification of minuscule and quasi-minuscule ones. We list them in Table 1 using notations as
in [Bou02] for roots systems. For example, recall that θ is the highest short root (for simply laced
groups, we have θ = Θ), then we have the following well known observation.

Lemma 2.8. A representation is quasi-minuscule if and only if it is irreducible of highest weight θ.

Type of G minuscule cominuscule quasi-minuscule adjoint coadjoint
An (ϖi)i∈[1,n] (ϖi)i∈[1,n] ϖ1 + ϖn ϖ1 + ϖn ϖ1 + ϖn

Bn ϖn ϖ1 ϖ1 ϖ2 2ϖ1

Cn ϖ1 ϖn ϖ2 2ϖ1 ϖ2

Dn ϖ1, ϖn−1, ϖn ϖ1, ϖn−1, ϖn ϖ2 ϖ2 ϖ2

E6 ϖ1, ϖ6 ϖ1, ϖ6 ϖ2 ϖ2 ϖ2

E7 ϖ7 ϖ7 ϖ1 ϖ1 ϖ1

E8 None None ϖ8 ϖ8 ϖ8

F4 None None ϖ4 ϖ1 ϖ4

G2 None None ϖ1 ϖ2 ϖ1

Table 1: Quasi-minuscule, (co)minuscule and (co)adjoint weights

Remark 2.9. Notice that quasi-minuscule and coadjoint weights coincide except for type Bn for
which the quasi-minuscule weight is ϖ1 while the coadjoint weight is 2ϖ1.

Definition 2.10. Let V be an irreducible representation, let v ∈ V an highest weight vector and
X = G · [v] ⊂ P(V ) be the closed orbit. The variety X is called minuscule, cominuscule, quasi-
minuscule, adjoint or coadjoint if V is minuscule, cominuscule, quasi-minuscule, adjoint or
coadjoint.

The list of adjoint, coadjoint and quasi-minuscule varieties is given in Table 2
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G Parabolic Adjoint variety Parabolic Coadjoint Quasi-minuscule
An P1,n Fl(1, n;n + 1) P1,n Fl(1, n;n + 1) Fl(1, n;n + 1)
Bn P2 OGr(2, 2n + 1) P1 v2(Q2n−1) Q2n−1

Cn P1 v2(P2n−1) P2 IGr(2, 2n) IGr(2, 2n)
Dn P2 OGr(2, 2n) P2 OGr(2, 2n) OGr(2, 2n)
E6 P2 E6/P2 P2 E6/P2 E6/P2

E7 P1 E7/P1 P1 E7/P1 E7/P1

E8 P8 E8/P8 P8 E8/P8 E8/P8

F4 P1 F4/P1 P4 F4/P4 F4/P4

G2 P2 G2/P2 P1 G2/P1 G2/P1

Table 2: Adjoint, coadjoint and quasi-minuscule varieties

Remark 2.11. Notice that in the Bn case for the coadjoint variety and in the Cn case for the
adjoint variety, the embeddings Q2n−1 ≃ v2(Q2n−1) ⊂ P((S2C2n+1)0) and P2n−1 ≃ v2(P2n−1) ⊂
P(sp2n) ∼= P(S2(C2n)) are the Veronese embeddings given by the line bundle O(2).

2.2 T -general representations

It is easy to produce hyperplace sections Yh of X which are T -stable. However, these hyperplane
sections will be very special and singular in general. Our aim is to find a representation V as
above such that a general hyperplane section is T -stable. Let us be more precise in the following
definition.

Definition 2.12. Let V be an irreducible G-representation and P(V ∨)T ⊂ P(V ∨) the set of T -fixed
points. The representation V is called T -general if G · P(V ∨)T is dense in P(V ∨).

Lemma 2.13. Let X ⊂ P(V ) be as before. Then V is a T -general representation if and only if a
general hyperplane section Yh ⊂ X is G-conjugate to a T -stable hyperplane section.

Proof. Let Yh be a hyperplane section with h ∈ V ∨ general. If Yh is G-conjugate to a T -stable
section, it means that there exists g ∈ G such that g · Yh = Yg·h is T -stable. Hence g · h is a
T -eigenvector, thus showing that V is T -general. The converse follows from the definitions.

Proposition 2.14. Let V be a T -general representation of G.

1. For G not of type An or Cn, then V = ∇Θ or V = ∇θ.

2. If G is of type An, then V = ∇Θ, V = ∇ϖ1 or V = ∇ϖn .

3. If G is of type Cn, then V = ∇Θ, V = ∇θ or V = ∇ϖ1
.

Proof. For the special cases of type An and Cn, the corresponding representations have a unique
non-zero orbit and therefore are obviously T -general. The case of type A1 is also easily verified so
we assume that Rk(G) ≥ 2.

We now prove that adjoint representations are T -general. For coadjoint and quasi-minuscule
representations, this will be addressed in Section 2.3 using Jordan algebras. Note that adjoint
representations are self-dual. The crucial point for the adjoint case is Kostant’s Theorem stating
the equality of quotients: g//G ∼= h/W . In particular any general G-orbit in g contains an element
of h and therefore a T -stable element h.

In the sequel we consider V an irreducible representation not listed in the statement of the
proposition. Let V ∨ be its dual and λ be the highest weight of V ∨. We prove that V cannot be
T -general. Assume that G · P(V ∨)T is dense. This means that there exists a weight µ such that
G · P(V ∨

µ ) is dense, where V ∨
µ is the weight space associated to the weight µ. Up to acting by an

element of G, we may assume that µ is dominant. Note that for µ = λ, the space P(V ∨
µ ) is a point

and G · P(V ∨
µ ) is the closed orbit in P(V ∨) and is not dense (since X is not a projective space).

Therefore we must have µ ̸= λ. In particular V ∨ (and therefore V ) cannot be minuscule. The set
of weights Π(V ∨) contains at least two W -orbits: W ·λ the orbit of the highest weight λ and W ·µ.
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We will now compare dimensions to prove that V is not T -general. To simplify notation, set Oλ,µ

be the set of W -orbits in Π(V ∨) different from W · λ and W · µ.
Recall that T fixes P(V ∨

µ ), therefore we have

dimG · P(V ∨
µ ) ≤ dim(V ∨

µ ) − 1 + dimG− Rk(G) = dim(V ∨
µ ) − 1 + |∆|,

where ∆ is the root system of G. On the other hand, because of the description of Π(V ∨), we
have dimP(V ∨) ≥ |W · λ| + |W · µ|dim(V ∨

µ ) +
∑

ν∈Oλ,µ
|W · ν| − 1. If G · P(V ∨

µ ) is dense in

P(V ∨), we get |W · λ| + |W · µ|dim(V ∨
µ ) +

∑
ν∈Oλ,µ

|W · ν| − 1 ≤ dimP(V ) = dimG · P(V ∨
µ ) ≤

dim(V ∨
µ ) − 1 + dimG− Rk(G) = dim(V ∨

µ ) − 1 + |∆| and therefore the inequality

(1) |∆| ≥ |W · λ| + (|W · µ| − 1) dim(V ∨
µ ) +

∑
ν∈Oλ,µ

|W · ν|.

We deduce the following fact.

Fact. For ν ∈ Π(V ∨) with ν ̸= µ or ν ̸= 0, we have |∆| > |W · ν|.

Proof. Assume first that ν ̸= µ. If µ ̸= 0, we have |W · µ| − 1 > 0 and the result follows. If µ = 0,
remark that since V is not quasi-minuscule, so is V ∨ and therefore there exists ν′ ∈ Π(V ∨) with
ν′ ̸= λ and ν′ ̸= 0. We get |∆| ≥ |W · λ| + |W · ν′|. We may choose ν′ such that ν is either equal
to λ or ν′, proving the result.

If µ = ν ̸= 0, then |W · µ| ≥ 2 (recall that Rk(G) ≥ 2) and we thus have |∆| ≥ |W · λ|+ |W · µ|
proving the result.

We need to understand the size of W -orbits on weights. Note that |W ·ν| = |W/Wν | where Wν is
the stabiliser of ν. The group Wν is the Coxeter subgroup of W generated by all simple roots α such
that ⟨α∨, ν⟩ = 0. Recall that Φ denotes the set of simple roots and set Φν = {α ∈ Φ | ⟨α∨, ν⟩ ≠ 0}.
It is now easy to check the following fact.

Fact. The condition |∆| > |W · ν| implies |Φν | = 1.

Proof. With no loss of generality, we will show that |∆| ≤ |W · ν| when |Φν | = 2. We will identify
simple roots with the corresponding nodes in the Dynkin diagram (nodes are ordered following
Bourbaki’s convention).

Suppose that G is of type An and Φν = {i, j}. Then |∆| = n(n + 1), |W | = (n + 1)! and
|Wν | = i!(j−i)!(n+1−j)! ≤ (n−1)! for any i, j, thus showing that |∆| ≤ |W ·ν|. If G is of type Bn or
Cn and Φν = {i, j}, then |∆| = 2n2, |W | = 2n(n)! and |Wν | = i!(j− i)!2n−j(n− j)! ≤ 2n−2(n−2)!,
thus giving the claim in this case as well. If G is of type Dn and Φν = {i, j}, then |∆| = 2n(n−1),
|W | = 2n−1(n)! and |Wν | = i!(j − i)!2n−j−1(n − j)! ≤ 2n−3(n − 2)! if n − 1 /∈ {i, j}, while
|Wν | = (n − 1)! if {n − 1, n} = {i, j}; once again from these computations the claim follows. In
the exceptional cases, one can proceed with a case by case analysis.

The previous fact is in particular true for ν = λ, therefore λ = mϖ is a multiple of a fundamental
weight ϖ. Let α be the simple root such that ⟨α∨, ϖ⟩ = 1.

Assume first that we have m = 1. Recall that V and therefore V ∨ are not minuscule and that
we assume that V and therefore V ∨ are neither adjoint nor quasi-minuscule. It is easy to check
that the above inequality (1) is never satisfied. Indeed, following a similar argument as the one
appearing in the proof of the previous Fact, one can show that |∆| > |W · λ| implies that λ is
either minuscule, adjoint or quasi-minuscule, or λ = ϖ = ϖn in type Cn; this last case is excluded
by a further inspection of inequality (1).

Assume now that m ≥ 2. The weight ν = λ − α = mϖ − α is in Π(V ∨). Furthermore,
this weight is dominant and non trivial since if β is a simple root with ⟨β∨, α⟩ ̸= 0 (recall that
Rk(G) ≥ 2), we have ⟨β∨, ν⟩ = −⟨β∨, α⟩ > 0. By the above facts, we thus have |∆| > |W · ν|
and |Φν | = 1. This implies that ν is a multiple ν = m′ϖβ of the fundamental weight dual to the
simple coroot β∨. Therefore we must have ⟨α∨, ν⟩ = 0 which implies m = 2. Furthermore, there
must be a unique simple root β such that ⟨β∨, α⟩ ̸= 0 so that α is a simple root at an end of the
Dynkin diagram. Note that since ν ̸= 0, we have |∆| ≥ |W · λ| + |W · ν|. Indeed, for µ ̸= ν, this is
obvious from the inequality (1). For µ = ν we have µ ̸= 0, thus |W · µ| ≥ 2 and the result follows
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again from inequality (1). The only possibilities are λ = 2ϖ1 in types Bn and Cn. We recover the
adjoint and coadjoint non fundamental weights.

To finish the proof, we need to check that in type Bn, the representation V = ∇2ϖ1 ≃ V ∨

of highest weight 2ϖ1 is not T -general. We have Π(V ∨) = W · {2ϖ1, ϖ2, 0} with dim(V2ϖ1) =
dim(Vϖ2

) = 1 and dim(V0) = n. Furthermore it is easy to check that G · P(V2ϖ1
) and G · P(Vϖ2

)
are not dense. Now we have dim(G · P(V0)) ≤ dimG − Rk(G) + dimP(V0) = 2n2 + n − 1 <
2n2 + 3n− 1 = dimP(V ) so that V is not T -general.

Let G be a reductive group and let Rk(G) be its rank. We obtain the following result.

Theorem 2.15. Let X ⊂ P(V ) be a projective rational homogeneous space. The general hyper-
surface Y of X of multidegree d is T -stable for some maximal torus T ⊂ G if and only if one of
the following conditions is satisfied

1. X = Pn, d = 1 and G is of type An;

2. X = P2n−1, d = 1 and G is of type Cn;

3. X is an adjoint or a quasi-minuscule variety and d = 1.

For X adjoint and G not of type Cn, the deformation space of Y has dimension Rk(G)− 1 and
we have Aut(Y )0 = T ad the image of a maximal torus T in the adjoint group Gad of G.

For X quasi-minuscule and not adjoint, the dimension of the deformation space of Y and the
connected component of its automorphism group are given in Table 3.

Type Weight X Aut0(Y ) dim H1(Y, TY )
Bn ϖ1 Q2n−1 SO2n 0
Cn ϖ2 IGr(2, 2n) (SL2)n n− 3
F4 ϖ4 F4/P4 SO8 0
G2 ϖ1 Q5 SO6 0

Table 3: Hyperplane section of coadjoint varieties

Remark 2.16. Note that the unique coadjoint non quasi-minuscule variety X = v2(Q2n−1) ⊂
P((S2C2n+1)0) does not appear in the above result. Indeed, a general hyperplane section will be an
even dimensional complete intersection of two quadrics and is not T -stable. However, we will see
in the next sections that many computations also hold for this variety. We give the deformation
information in this case (see Proposition 2.40).

Type Weight X Aut0(Y ) dim H1(Y, TY )
Bn 2ϖ1 Q2n−1 1 2n− 3

Remark 2.17. In [BM21], the possible automorphism groups of smooth hyperplane sections Y =
Yh of adjoint varieties have been classified, including the component group Aut(Y )/Aut0(Y ). It
turns out that, in the non simply laced case, there exist special smooth hypersurfaces Y for which
the automorphism group does not contain any maximal torus of G. In the simply laced case the
situation is simpler: h is a semi-simple element in V ∨ ∼= g if and only if Y is smooth, and in such
a situation Aut0(Y ) = T ad; moreover, except in type A, Aut(Y )/Aut0(Y ) can be identified with
the subgroup of the Weyl group of G stabilizing [h] ∈ P(g).

Remark 2.18. Let X be a G-homogeneous variety, E an irreducible homogeneous vector bundle on
X such that H0(X,E) is a T -general representation. From Proposition 2.14 one directly recovers
that the zero locus Y inside X of a general section of E is stabilized by a maximal torus of
G. This applies for instance to the case X = IGr(k, 2n), E = ∧2U∨, where U is the rank k
tautological bundle; in such situation Y is called a bisymplectic Grassmannian. The same bundle
over X = OGr(k,m) gives as Y the so-called orthosymplectic Grassmannians.
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Proof. The first part of the result follows from Proposition 2.14. We need to prove the last
assertions on automorphism groups and deformation spaces.

In the adjoint case not of type A, using Bott’s Theorem, we have H0(Y, TX |Y ) = H0(X,TX) so
that any automorphism of Y in the connected component of the identity lifts to an automorphism
of X. Indeed, there exists a contact structure on adjoint varieties ([Buc06]), i.e. a non-split exact
sequence of vector bundles

(2) 0 → F → TX → O(1) → 0

such that the differential df : ∧2F → O(1) of the map f : TX → O(1) is everywhere non-
degenerate, thus giving an isomorphism F∨ ∼= F (−1). Since O(−1) is acyclic, the dual of (2) gives
that Hi(F∨) ∼= Hi(Ω1

X) for all i ∈ Z; in particular, H1(F∨) ∼= C is the only non-zero cohomology
(here we used the fact that H1(Ω1

X) ∼= C, which is not true in type A). As a consequence, twisting
(2) by O(−1), one gets that TX(−1) is acyclic, which in turn implies that H0(Y, TX |Y ) = H0(X,TX)
by a direct application of the Koszul complex of Y ⊂ X.

For G ̸= Sp2n we have Aut(X) = Gad the adjoint form of G and Aut(Y ) = CGad(h) where
h ∈ h = Lie(T ) is such that Y = Yh. Since h is general, it is regular and CGad(h) = T ad. Note
that in type Cn, X = P2n−1 and Aut(X) = PGL2n while Y is a quadric hypersurface of dimension
2n and Aut(Y ) = SO2n−1. To compute the dimension of the deformation space, we use the exact
sequence

0 → H0(Y, TY ) → H0(Y, TX |Y ) = g → H0(Y,OY (1)) = g/⟨h⟩ → H1(Y, TY ) → 0,

where the map g → g/⟨h⟩ ≃ h⊥ (this last isomorphism is induced by the Killing form) is given by
adh. We therefore get H0(Y, TY ) = cg(h) = h with h = Lie(T ) and H1(Y, TY ) = h⊥ ∩ h ≃ h/⟨h⟩.

In the coadjoint but non-adjoint case and in type A, the automorphisms and the deformation
spaces are studied via Jordan algebras in Subsection 2.3. Note that in type G2, the variety X is
a 5-dimensional quadric and Aut(X) = SO7 while Y is a 4-dimensional quadric hypersurface and
Aut0(Y ) = SO6.

For the unique quasi-minuscule non-adjoint and non-coadjoint case, we have X = Q2n−1 ⊂ P2n,
G = SO2n+1 and Y = Q2n−2. Therefore Y has no deformation and Aut0(Y ) = SO2n.

Remark 2.19. We obtain a non-homogeneous rigid Fano variety Y with Picard number 1 as the
hyperplane section of F4/P4. We have dim(Y ) = 14, c1(Y ) = 10 and Aut0(Y ) = SO8.

2.3 Coadjoint varieties and Jordan algebras

In this subsection, we consider X a quasi-minuscule or a coadjoint non-adjoint variety. In partic-
ular, the variety X is homogeneous for the action of a non simply laced group G. Let V be the
irreducible coadjoint G-representation and let v be a highest weight vector, then X = G·[v] ⊂ P(V ).
Recall that θ is the highest short root of G and that ϖ1 is its first fundamental weight. Recall that
∇ϖ is the highest weight representation of highest weight ϖ of G. The list of the quasi-minuscule
or coadjoint non adjoint varieties X is reported in Table 4.

G V Parabolic X
Bn ∇ϖ1 P1 Q2n−1

Bn ∇2ϖ1
P1 v2(Q2n−1)

Cn ∇θ P2 IGr(2, 2n)
G2 ∇θ P1 Q5

F4 ∇θ P4 F4/P4

Table 4: Coadjoint varieties

We will interpret the representation V occuring in Table 4 in terms of Jordan algebras.
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2.3.1 Jordan algebras

In this subsection, we recall the definition and few facts on Jordan algebras that we will need in
the sequel. We refer to [Spr73] for definitions and results.

Definition 2.20. A Jordan algebra A is a C-vector space with a bilinear commutative product
satisfying the following rule: x(x2y) = x2(xy) for all x, y ∈ A. A Jordan algebra is called simple if
it contains no non-trivial ideal.

Example 2.21. We describe all possible simple Jordan algebras in the following examples.

1. If A is an associative algebra, then A with the product x•y = 1
2 (xy+yx) is a Jordan algebra.

Almost all semi-simple Jordan algebras are obtained this way.

2. Let A be a complex composition algebra i.e. A = AR⊗RC, where AR is a real division algebra,
namely AR = R,C,H,O, the real numbers, the complex numbers, the quaternions or the
octonions. For a ∈ A, denote by ā its conjugate and set Jn(A) = {M ∈ Mn(A) | M t = M̄}.
Then Jn(A) with the product M •N = 1

2 (MN+NM) is a Jordan algebra with the restriction
n = 3 for A = O. These Jordan algebras are denoted by Sn, Mn, An and E3 for AR = R, C,
H and O.

3. Let V be a vector space of dimension n endowed with a non-degenerate bilinear form B. Let
e ∈ V such that B(e, e) = 1. Then the product x•y = xB(y, e)+yB(x, e)−eB(x, y) induces
a Jordan algebra structure on V denoted by O2,n.

The following is a construction of any simple Jordan algebra. Let Γ be a connected reduc-
tive group and fix a maximal torus T in Γ. Let Π ⊂ Γ be a parabolic subgroup containing T
whose unipotent radical is abelian and which is conjugate to its opposite Π− with respect to T .
For Γ simple, the condition on the unipotent radical imposes that Π is a maximal parabolic sub-
group associated to a cominuscule fundamental weight ϖ. The possible triples (Type(Γ), ϖ,Π)
are as follows: (A2n−1, ϖn, Pn) ; (Bn, ϖ1, P1) ; (Cn, ϖn, Pn) ; (Dn, ϖ1, P1) ; (D2n, ϖ2n, P2n) ;
(D2n, ϖ2n−1, P2n−1) ; (E7, ϖ7, P7).

Let (Γ,Π) be as above, let J be the Lie algebra of the unipotent radical of Π and let f ∈ J− be
a general element in the Lie algebra J− of the unipotent radical of Π−. Define a product on J as
follows: for x, y ∈ J set

x • y =
1

2
[x, [f, y]].

Let e ∈ J such that, setting α∨ = [e, f ], we have [α∨, e] = 2e and [α∨, f ] = −2f . Then e is the
unit for J and we may define invertible elements and the inverse x−1 of x ∈ J. Let j : J 99K J be
the rational map defined by j(x) = x−1. We define two subgroups of GL(J).

Definition 2.22. The structure group is defined by G = {g ∈ GL(J) | ∃h ∈ GL(J), g ◦ j = j ◦ h}.

Proposition 2.23 (See [Spr73, Chapter 2 and 14]). Let Γ, Π and J as above.

1. The space J with the above product is a simple Jordan algebra.

2. The Jordan algebra does not depend (up to isomorphism) on the choice of f ∈ J−.

3. Any simple Jordan algebra is obtained this way.

4. The G-representation J is irreducible.

Lemma 2.24 (See [Spr73, Pages 10-11]). For g in G, there is a unique h such that g ◦ j = j ◦ h.
Furthermore, the map σ : G → G, g 7→ σ(g) = h is a group automorphism of G.

Lemma 2.25 (See [Spr73, Proposition 12.2, Corollary 12.4 and Theorem 14.27]). For a simple
Jordan algebra, the group G is reductive and G · e is dense in J.

Definition 2.26. The automorphism group of J is defined by G = {g ∈ G | σ(g) = g and g ·e = e}.

Lemma 2.27 (See [Spr73, Proposition 4.6 and Theorem 14.27]). We have G = StabG(e) and for
a simple Jordan algebra, the orbit G · e ≃ G/G is the dense G-orbit in J. Furthermore G is a
semi-simple group.

In Table 5 we list the simple Jordan algebras, together with the groups Γ, G and G, the maximal
parabolic subgroup Π ⊂ Γ and the G-representation J (see [Spr73, Sections 14.25-14.31]).
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Type of Γ Parabolic Π G/Z(G) G◦ J Jordan algebra
A2n−1 Pn PGLn(C) × PGLn(C) PGLn(C) Mn(C) Mn

Bn+1 P1 PO2n(C) O2n−1(C) C2n O2,2n

Cn+1 Pn+1 PGLn(C) On(C) S2(Cn) Sn

Dn+1 P1 PO2n+1(C) O2n(C) C2n+1 O2,2n+1

D2n P2n−1 or P2n PGL2n(C) PSp2n(C) Λ2C2n An

E7 P7 E6 F4 C27 E3
Table 5: Simple Jordan algebras

Note that Gσ contains G. The following is a consequence of [Spr73, Sections 14.25-14.31].

Lemma 2.28. The group G has finite index in Gσ.

Let Lie(Γ), g and g be the Lie algebras of Γ, G and G. As G-representation, we have

Lie(Γ) = J∨ ⊕ g ⊕ J.

This is also the decomposition with respect to weights of α. If Lie(Γ)(i) is the weight space of
weight i for α∨, we have Lie(Γ)(−2) = J∨, Lie(Γ)(0) = g = [g,g] ⊕ Cα∨ and Lie(Γ)(2) = J. We
have e ∈ J and f ∈ J∨ and both generate a dense G-orbit.

Lemma 2.29 (See [Spr73, Chapter 14]). For a simple Jordan algebra, the Lie algebras [g,g] and
g are simple. Furthermore g = c(g) ⊕ [g,g] and c(g) = Cα∨ is one-dimensional.

2.3.2 Symmetric spaces and T -general representations

The group G is obtained as a subgroup of finite index in the invariant subgroup of the above group
involution σ of G. We may therefore apply results concerning symmetric spaces to the situation.
In this subsection, we recall few facts on symmetric spaces and refer to [Tim11, Section 26] for
more details.

The group (G,G) admits maximal σ-stable tori. There are two important types of maximal
σ-stable tori T: those for which Tσ is of maximal dimension and the split maximal tori for which
the dimension of T−1 = {t ∈ T | σ(t) = t−1} is maximal. We will use both types of σ-stable tori.

For any σ-stable torus T, the involution σ induces an involution on roots and we have σ(gβ) =
gσ(β) for any root β of (G,T). We consider the eigenspace decomposition with respect to σ and
set E1 = {x ∈ E | σ(x) = x} and E−1 = {x ∈ E | σ(x) = −x} for any subspace E ⊂ g. Denote by
h the Lie algebra of T. We have the decompositions [g,g] = [g,g]1 ⊕ [g,g]−1 and h = h1 ⊕ h−1.

Lemma 2.30. We have g1 = [g,g]1 = g as Lie algebras and g−1 = [g,g]−1 ⊕ c(g) is a g-module.

Proof. The equality g1 = gσ implies that g1 is a Lie algebra. Furthermore, the subgroup G has
finite index in Gσ so g = g1 = [g,g]1 ⊕ c(g)1 and since g is simple we must have g = [g,g]1.
This Lie algebra acts on g−1 via the restriction of the adjoint representation of g on itself and the
previous argument implies that g−1 = [g,g]−1 ⊕ c(g).

Set J = [g,g]−1. Recall that θ is the highest short root of G and that ϖ1 is its first fundamental
weight. Recall that ∇ϖ is the highest weight representation of highest weight ϖ of G.

Lemma 2.31. As G-representations, we have the following results:

1. We have g = g⊕ J ⊕ Cα∨ and J ≃ J ⊕ Ce ≃ J ⊕ Cf ≃ J∨.

2. The representation J is the following irreducible representation of G

Type of J Mn O2,2n Sn O2,2n+1 An E3
G◦ PGLn(C) O2n−1(C) On(C) O2n(C) PSp2n(C) F4

J ∇θ ∇θ ∇2ϖ1 ∇ϖ1 ∇θ ∇θ
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Remark 2.32. Remark that, except for type G2, any quasi-minuscule non-adjoint representation
occurs as the representation J above as cases O2,2n, An and E3.

Proof. The second statement is an easy case by case check: decompose the Lie algebra [g,g] as g-
representation. This statement also follows from the description of the weight space decompositions
of g and J with respect to a maximal σ-stable torus T such that Tσ has maximal dimension (in that
case (Tσ)◦ is a maximal torus of G). Since G fixes e and f , the maps ade and adf are morphisms
of G-representations and we therefore get the decompositions J = J ⊕ Ce and J∨ = J ⊕ Cf .

Let T be a split maximal torus. We will decribe the decomposition of g and J in terms of root
spaces for T. Note that for a root β of g, σ(β) is again a root. We have three possible cases (see
[Tim11, Section 26.4]):

- [Complex roots] σ(β) ̸= ±β, then both (gβ⊕gσ(β))1 and (gβ⊕gσ(β))−1 are one-dimensional.

- [Real roots] σ(β) = −β, then both (gβ ⊕ gσ(β))1 and (gβ ⊕ gσ(β))−1 are one-dimensional.

- [Imaginary compact roots] σ(β) = β and σ|gβ
= Id, then (gβ)1 = gβ and (gβ)−1 = 0.

Note that for such tori, there are no imaginary non-compact roots (roots β for which σ(β) = β
and σ|gβ

= − Id) and σ maps positive complex or real roots to negative roots.

Lemma 2.33. If T is a split maximal torus, we have the following weight space decompositions
g = h1 ⊕σ(β)=β gβ ⊕σ(β)̸=β (gβ ⊕ gσ(β))1 and J = h−1 ⊕σ(β)̸=β (gβ ⊕ gσ(β))−1.

Proof. Follows from the above description of roots and the fact that T is σ-stable, therefore the
weight space descomposition is compatible with σ.

Let h ∈ h−1 be a general element. We view h ∈ J ⊂ J as an element of Lie(Γ)(2). We therefore
have a map adh : g → J .

Lemma 2.34. We have Ker adh = h1 ⊕σ(β)=β gβ and Coker adh = h−1.

Proof. An element h ∈ h−1 acts (via adh) by scalar multiplication on the weight spaces gβ and
trivially on h. In particular h1 ⊂ Ker adh. Furthermore, the space h−1 acts on g via all weights
λ ∈ h∨

−1 such that σ(λ) = −λ. These weights are orthogonal to roots β such that σ(β) = β so that
gβ ⊂ Ker adh in that case. Finally, since h is general, its weight on all weight spaces gβ ⊕ gσ(β) is
non-trivial if σ(β) ̸= β proving that the restriction of adh on (gβ ⊕gσ(β))1 → (gβ ⊕gσ(β))−1 is an
isomorphism. The result follows from this observation.

We describe general hyperplane sections in P(J).

Proposition 2.35. For T a maximal split torus, the orbit G·P(h−1) is dense in P(J) or equivalently
a general G-orbit in J contains an element h ∈ h−1.

Proof. By Lemma 2.34, we have J = adh(g) ⊕ h−1 proving that G · P(h−1) is dense in P(J).

Note that if the maximal split torus T is also a maximal σ-stable torus such that Tσ has
maximal dimension, then T = (Tσ)◦ is a maximal torus of G and P(h−1) ⊂ P(J)T . In particular
we obtain the following result.

Corollary 2.36. If there exists a maximal split torus T for which Tσ has maximal dimension,
then J is a T -general representation.

Remark 2.37. It is easy from the classification to compute the dimension of T−1 when T is a
maximal split torus or when T is such that Tσ has maximal dimension. If both dimensions agree,
then there are maximal split tori T such that Tσ has maximal dimension. We describe this in the
following table. The case for which Tσ has maximal dimension is described by T = (Tσ)◦ while
the other one is the maximal split case. Note that the dimension of T−1 in the first case equals
Rk(G)−Rk(G) while in the second case it is the dimension of the restricted root system. We refer
to [Tim11, Section 26] for descriptions of maximal tori for symmetric spaces.
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Jordan algebra dimT−1 for T = (Tσ)◦ dimT−1 for maximal split J
O2,2n 1 1 ∇θ

O2,2n+1 0 1 ∇ϖ1

Sn ⌊n
2 ⌋ n− 1 ∇2ϖ1

Mn n− 1 n− 1 ∇θ

An n− 1 n− 1 ∇θ

E3 2 2 ∇θ

Table 6: When do the two types of maximal σ-stable tori coincide?

In particular, we see (recall Remark 2.32) that, except for type G2, all quasi-minuscule non-
adjoint representations come from a Jordan algebra for which the two types of σ-stable maximal
tori agree.

Proposition 2.38. Quasi-minuscule representations are T -general.

Proof. Assume first that G is not of type G2. Then V = J for a Jordan algebra for which the two
type of σ-stable maximal tori agree. The result follows from Corollary 2.36. If G = G2, then V
is the standard representation of SO7(C) and V T is one-dimensional. It is easy to check that the
Lie algebra of the stabiliser of any element in V T contains the maximal torus and gα for any long
root α. The stabiliser has therefore dimension 8 and G · V T has dimension 14 + 1 − 8 = 7 and is
dense in V , the result follows.

2.3.3 Deformation of general hyperplane sections

From our discussion on Jordan algebras, the following result is easy to check.

Lemma 2.39. Let X be a quasi-minuscule or coadjoint variety for the group G, then X is a
general hyperplane section of a variety X homogeneous for the group G.

We describe the varieties X and X in the following table.

Jordan algebra G/Z(G) G◦ X X
O2,n POn(C) On−1(C) Qn−2 Qn−3

Sn PGLn(C) On(C) v2(Pn−1) v2(Qn−2)
Mn PGLn(C) × PGLn(C) PGLn(C) Pn−1 × (Pn−1)∨ Fl(1, n− 1;n)
An PGL2n(C) PSp2n(C) Gr(2, 2n) IGr(2, 2n)
E3 E6 F4 E6/P6 F4/P4

Table 7: Quasi-minuscule and coadjoint varieties as hyperplane sections of homogeneous spaces

We use this description of X as a hyperplane section to compute the local deformation of the
general hyperplane section Y of X.

Proposition 2.40. Let X be quasi-minuscule or coadjoint but not adjoint for G and let Y be a
general hyperplane section defined by h ∈ J = J∨.

1. We have H0(Y, TY ) = Ker adh and H1(Y, TY ) = (h−1⊕Ce)/⟨e, h, h2⟩. In particular, we have
h1(Y, TY ) = max(0,Rk(J) − 3).

2. The connected component of the automorphism group Aut0(Y ) of Y and the dimension of
local deformations h1(Y, TY ) are given in Table 8
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Jordan algebra X X Aut0(Y ) h1(Y, TY )
O2,n Qn−2 Qn−3 POn−2(C) 0
Sn v2(Pn−1) v2(Qn−2) 1 n− 3
Mn Pn−1 × (Pn−1)∨ Fl(1, n− 1;n) T n− 3
An Gr(2, 2n) IGr(2, 2n) (SL2(C))n n− 3
E3 E6/P6 F4/P4 SO8(C) 0

Table 8: Automorphisms and deformations

Proof. Since Y is obtained as complete intersection of two hyperplane sections in X, we have the
following exact sequence

0 → H0(Y, TY ) → H0(Y, TX|Y ) → H0(Y,OY (1))2 → H1(Y, TY ) → H1(Y, TX|Y ).

Furthermore, via Borel-Weil-Bott, we may check the following equalities: H1(Y, TX|Y ) = 0 and
H0(Y, TX|Y ) = H0(X, TX) = [g,g] = g⊕J . Furthemore, we have an identification H0(Y,OY (1))2 =
(J/Ch)2 and the map H0(Y, TX|Y ) → H0(Y,OY (1))2 identifies with (ade, adh) : g⊕ J → (J/Ch)2.
The spaces H0(Y, TY ) and H1(Y, TY ) are the kernel and cokernel of this map.

Since ade vanishes on g (recall that G fixes e), we get the following commutative diagram

0 // Ker adh
//

��

g
adh //

��

J/Ch //

��

h−1/Ch

��

// 0

0 // H0(Y, TY ) //

��

g⊕ J
(ade,adh) //

��

(J/Ch)2 //

��

H1(Y, TY ) // 0

0 // C[f, h] // J
ade // J/Ch // 0 .

The exact sequence in the last row comes from the fact that [e, [f, h]] = −[h, [e, f ]] − [f, [h, e]] =
−[h, α∨] = 2h. Note that h−1/Ch = (h−1 ⊕ Ce)/⟨e, h⟩. Applying The Snake Lemma, we get an
exact sequence

0 → Ker adh → H0(Y, TY ) → C[f, h]
adh−→ (h−1 ⊕ Ce)/⟨e, h⟩ → H1(Y, TY ) → 0.

Now adh([f, h]) = 2h•h = 2h2 for the product in J. Since h is general in h−1, the elements e, h and
h2 are linearly independent so that the map adh in the last exact sequence is injective and we get
H0(Y, TY ) = Ker adh and H1(Y, TY ) = (h−1⊕Ce)/⟨e, h, h2⟩. To compute the automorphism group
we can use the fact that it is the adjoint group of the reductive group L generated by compact
roots in G (see Lemma 2.34).

Remark 2.41. For J a Jordan algebra of rank n, there is a natural degree n polynomial defined
over J and called the norm N of J (this is simply the determinant in cases Sn and Mn and the
Pfaffian for An). The group G is the subgroup of GL(J) stabilising N .

We recover the fact that the dimension of the deformation space of Y is always n − 3 as the
dimension of the moduli space of n points over P1. It turns out that to any smooth Y one can
associate a point in such moduli space. Indeed, Y is the intersection of two hyperplane sections
inside X and therefore it defines a generic line inside P(J). The n points on P1 are given by the
intersection of this line with the set {N = 0} ⊂ P(J).

3 Geometry of hyperplane sections

Let X ⊂ P(V ) be adjoint or quasi-minuscule. Recall that we have V = g = ∇Θ or V = ∇θ, the
highest weight representations of highest weights Θ and θ, the highest root and the highest short
root respectively. Recall that ∆l and ∆s denote the set of long roots and short roots respectively.
We have Π(V ) = ∆∪{0} = ∆l∪∆s∪{0} or Π(V ) = ∆s∪{0} if V = ∇Θ or V = ∇θ. Let ℵ be the
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W -orbit of the highest weight in V . We have ℵ = ∆l or ℵ = ∆s. Recall that for α ∈ Π(V ) \ {0},
we have dimVα = 1. In that case, we choose eα ∈ Vα \ {0} and set xα = [eα].

Let [h] ∈ P(V ∨) be general and T -invariant. Recall that this implies that h ∈ V0 has weight 0
i.e. that h is T -invariant. Let Y = Yh be the corresponding hyperplane section, which is general
and therefore smooth. The variety Y is T -stable and therefore inherits the T -action from X. The
T -fixed point of X are given by XT = {xα | α ∈ ℵ}.

Lemma 3.1. We have Y T = XT .

Proof. We only need to prove the inclusion XT ⊂ Y T . Let α ∈ ℵ and eα ∈ Vα. For t ∈ T , we have
⟨h, eα⟩ = ⟨t · h, eα⟩ = ⟨h, t · eα⟩ = α(t)⟨h, eα⟩. Since α ̸= 0, there exists t ∈ T with α(t) ̸= 1 and we
get ⟨h, eα⟩ = 0, therefore xα = [eα] ∈ Y .

3.1 T -stable curves

Let Z = G/P ⊂ P(V ) be a projective rational G-homogeneous space embedded in its minimal
embedding P(V ). We recall few facts on T -stable curves in Z before specialising to our situation
(see [Bri05] or [FW04] for more details).

Let ZT = {zα | α ∈ ℵ} be the finite set of T -fixed points in Z. Any T -invariant curve in Z
contains exactly two distinct T -fixed points. Furthermore, a pair of distinct fixed points (zα, zβ) is
connected by a T -stable curve if and only if there exists a root γ such that sγ(zα) = zβ . For such a
root γ, denote by SL2(γ) = ⟨exp(gγ), exp(g−γ)⟩ the subgroup generated by exp(gγ) and exp(g−γ)
(this subgroup is isomorphic to SL2(C) or PGL2(C)). Then the T -stable curve passing through
(zα, zβ) is Cα,β = SL2(γ) · zα = SL2(γ) · zβ . It is isomorphic to P1. Note that the root γ above is
determined up to sign.

Recall that A1(Z) the group of one-cycles on Z = G/P is isomorphic to the quotient Q∨/Q∨
P

where Q∨ is the coroot lattice and Q∨
P the coroot lattice of P . Let α, β ∈ ℵ and γ ∈ ∆ as above

and let w ∈ W such that w(zα) = P/P ∈ Z. The following result is proved in [FW04, Lemma 3.4].

Lemma 3.2. We have [Cα,β ] = [δ∨], where δ is the unique positive root in {±w(γ)}.

Recall that the Picard group Pic(Z) is isomorphic to ΛP = {λ ∈ Λ | ⟨δ∨, λ⟩ = 0 for δ∨ ∈ Q∨
P },

where Λ is the set of characters of T . The isomorphism ΛP → Pic(Z), λ 7→ Lλ is defined as follows:
Lλ is the equivariant line bundle whose fiber at P/P , the B-fixed point, has weight λ. We have
the following result.

Lemma 3.3 (Lemma 3.2 [FW04]). We have ⟨Lλ, Cα,β⟩ = ⟨δ∨, λ⟩ with δ as in Lemma 3.2.

Assume now that Z = X ⊂ P(V ) is an adjoint or quasi-minuscule variety and is minimally
embedded. Let Lϖ = OP(V )(1). Then ϖ = Θ or ϖ = θ and ℵ = ∆l or ℵ = ∆s according to
the case adjoint or quasi-minuscule. Let V0 be the weight space of weight 0 in V and let E be its
T -stable complement.

Lemma 3.4. Any linear form h ∈ V ∨
0 vanishes on E.

Proof. Let α be a weight of E and t ∈ T . We have ⟨h, vα⟩ = ⟨t · h, vα⟩ = ⟨h, t · vα⟩ = α(t)⟨h, vα⟩.
Since α ̸= 0, there exists t ∈ T with α(t) ̸= 1 and ⟨h, vα⟩ = 0. The result follows.

Let α, β ∈ ℵ such that there exists γ ∈ ∆ with sγ(xα) = xβ . We have β = sγ(α).

Lemma 3.5. The degree of the curve Cα,β in P(V ) is equal to |⟨γ∨, α⟩|.

Proof. The B-fixed point in X is xϖ. Let w ∈ W with w(α) = ϖ. The degree is ⟨δ∨, ϖ⟩ =
|⟨w(γ∨), ϖ⟩| = |⟨γ∨, w−1(ϖ)⟩| = |⟨γ∨, α⟩|.

In particular, the degree of a T -stable curve in X ⊂ P(V ) is equal to 1, 2 or 3 and there are
degree 3 curves only in the adjoint variety of type G2. For later purposes, we define two types of
T -stable curves in X.

Definition 3.6. Let α, β ∈ ℵ, the curve Cα,β and γ ∈ ∆ as above.
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1. The curve Cα,β is a root-conic if β = −α. In that case γ = ±α and the curve has degree 2.

2. The curve Cα,β is called plain if β ̸= −α.

3. The weight wt(Cα,β) of Cα,β is wt(Cα,β) = γ.

Let ρ : g → gl(V ) be the representation of the Lie algebra on V .

Lemma 3.7. Let α, β ∈ ℵ such that there exists a T -stable curve Cα,β joining xα and xβ. Let
γ ∈ ∆ such that sγ(α) = β.

1. If Cα,β is plain, then Cα,β ⊂ P(E) ⊂ P(V ).

2. If Cα,β is a root conic, then Cα,β is a conic in P(⟨vα, ρ(e−α)(vα), v−α⟩) ⊂ P(V ).

Proof. Assume that ⟨γ∨, α⟩ > 0. Then xα is stable under the action of exp(gγ) and Cα,β is the
closure of exp(g−γ) · xα. In particular Cα,β is contained in P(⟨exp(g−γ) · vα⟩).

In case 1., recall that we have the vanishing ad(eγ)|⟨γ
∨,α⟩|+1(eα) = 0. We therefore have the

inclusion exp(Ce−γ) · vα ∈ ⟨vα, ρ(e−γ)(vα), · · · , ρ(e−γ)|⟨γ
∨,α⟩|(vα)⟩. Since all these vectors have

non-zero weights, the first assertion follows.
In case 2., we have γ = α. Recall that we have the vanishing ad(e−α)3(eα) = 0. We therefore

have the inclusion exp(Ce−γ) · vα ⊂ ⟨vα, ρ(e−α)(vα), v−α⟩.

We now describe the intersection of T -stable curves with Y ⊂ X a general T -stable hyperplane
section.

Proposition 3.8. The plain T -stable curves are contained in Y while the root-conics are not
contained in Y .

Proof. Let h ∈ V ∨
0 general, then h vanishes on E by Lemma 3.4. The result for plain T -stable

curves follows from this.
For root-conics, recall that h ∈ V ∨

0 is general. In particular, we may assume that h does not
vanish on any vector ρ(eα) · vα ∈ V0. Therefore Y intersects the plane P(⟨vα, ρ(e−α)(vα), v−α⟩) ⊂
P(V ) along a line, while the root conic Cα,−α is an irreducible conic in that plane. This proves the
result for root-conics.

3.2 Bia lynicki-Birula decomposition

We recall few facts on the Bia lynicki-Birula decomposition [BB73] before applying them to our
situation. Let Z be a smooth projective variety acted on by a one dimensional torus ⊤ such that
Z⊤ = {zα | α ∈ ℵ} is finite. We identify ⊤ with C∗ and embed it in P1. For z ∈ Z⊤ define
Ω+

α,Z = {z ∈ Z | limt→0 t · z = zα} and Ω−
α,Z = {z ∈ Z | limt→∞ t · z = zα}. Let Z±

α be the Zariski

closure in Z of Ω±
α,Z and set σ±

α,Z = [Z±
α ] ∈ H∗(Z,Z).

Theorem 3.9 (Bia lynicki-Birula decomposition [BB73]). We have the following results.

1. We have two cellular decompositions Z =
∐

α∈ℵ Ω+
α,Z =

∐
α∈ℵ Ω−

α,Z .

2. The cells (Ω±
α,Z)α∈ℵ are affine spaces and their closures (Z±

α )α∈ℵ are irreducible.

3. The classes (σ+
α,Z)α∈ℵ and (σ−

α,Z)α∈ℵ form two basis of H∗(Z,Z).

Definition 3.10. The Bia lynicki-Birula decomposition satisfies the inclusion condition if the
following implications are satisfied: (zα ∈ Z+

β ⇒ Z+
α ⊂ Z+

β ) and (zα ∈ Z−
β ⇒ Z−

α ⊂ Z−
β ).

Lemma 3.11. If the Bia lynicki-Birula decomposition satisfies the inclusion condition, then the
families (σ+

α,Z)α∈ℵ and (σ−
α,Z)α∈ℵ form two Poincaré dual basis of H∗(Z,Z).
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Proof. For γ ∈ ℵ, by [BB73], we have dimZ+
γ +dimZ−

γ = dimZ. Furthermore, we have Z+
γ ∩Z−

γ =
{zγ} and the intersection is transverse.

Let α and β in ℵ such that dimZ+
α + dimZ−

β = dimZ. If Z+
α ∩ Z−

β is non empty, then it

contains zγ for some γ ∈ ℵ. We get Z+
γ ⊂ Z+

α and Z−
γ ⊂ Z−

β . In particular dimZ+
γ ≤ dimZ+

α

and dimZ−
γ ≤ dimZ−

β . This implies dimZ = dimZ+
γ + dimZ−

γ ≤ dimZ+
α + dimZ−

β = dimZ. We

must have equality in all previous inequalities. This implies that Z+
α = Z+

γ and Z−
β = Z−

γ thus

α = γ = β and Z+
α ∩ Z−

β = {zγ} is transverse.

To simplify notation we set Ωα,Z = Ω+
α,Z , Zα = Z+

α and σα,Z = σ+
α,Z .

Remark 3.12. Note that in general a Bia lynicki-Birula decomposition does not satisfy the in-
clusion condition. We will see that the general T -stable hyperplane section Y of an adjoint or
quasi-minuscule variety X gives an example of such a decomposition.

We give two examples where the inclusion condition is satisfied.

1. If Z is a rational projective homogeneous space under the action of a reductive group G
and ⊤ is a general one-parameter subgroup in G, then the Bia lynicki-Birula decomposition
is given by the Schubert cells and varieties and their opposites. They satisfy the inclusion
condition. This is mainly because the decomposition identifies with the Bruhat decomposition
(see [BBCM02][Book II, example 4.2]) and is given by orbits of Borel subgroups, see below
for more details.

2. If Z is a (non-homogeneous) smooth G-horospherical variety of Picard rank one for some
reductive group G and ⊤ is a general one parameter subgroup of G, then it is easy to
check that the decomposition satisfies the inclusion condition (again because the cells are
described using Borel subgroups). We recover the Poincaré dual basis description in [GPPS,
Proposition 1.10].

Assume that Z = G/P is a projective rational G-homogeneous space. The fixed point set
ZT = {zα | α ∈ ℵ} is finite. Let ⊤ ⊂ T be a regular anti-dominant one parameter subgoup. In
this case, the Bia linicky-Birula decomposition coincides with the Bruhat decomposition.

Lemma 3.13. We have Ωα,Z = B− · zα, Ω−
α,Z = B · xα and Zα = B− · xα, Z−

α = B · xα.

Proof. Let α ∈ ℵ. Note that for b ∈ B−, we have limt→0(tbt−1) ∈ T . From this we obtain
limt→0(t · b · zα) = limt→0(tbt−1t · zα) = limt→0(tbt−1) · zα = zα. In particular B− · zα is contained
in the Bia lynicki-Birula cell Ωα,Z .

Since cells are irreducible and contain one ⊤-fixed point, we get the equality Ωα,Z = B− · zα.
The last assertions follow by taking closures.

Corollary 3.14. For a projective rational homogeneous space Z, the Bia lynicki-Birula decompo-
sition satisfies the inclusion condition.

Proof. If zα ∈ Zβ , since the cells and their closures are B−-stable, we get Ωα = B− · zα ⊂ Zβ and
Zα ⊂ Zβ . The same argument works for opposite cells.

We therefore get Poincaré dual basis (σα,Z)α∈ℵ and (σ−
α,Z)α∈ℵ for H∗(Z,Z). Actually for

a projective rational homogeneous space Z, these two basis coincide so that we get a Poincaré
self-dual basis. Recall that W acts on ℵ via w · zα = zw(α) for w ∈ W and α ∈ ℵ.

Lemma 3.15. If w0 ∈ W is the longest element, we have σ∨
α,Z = σ−

α,Z = σw0(α),Z .

Proof. We have B = w0B
−w−1

0 and w0 ·xα = xw0(α). We therefore have Ω−
α,Z = B ·xα = w0B

−w0 ·
xα = w0B

− · xw0(α) and Z−
α = w0Zw0(α). Since w0 ∈ G◦ we get σ∨

α,Z = σ−
α,Z = σw0(α),Z .

For Z = X an adjoint or quasi-minuscule variety, the basis is indexed by long or short roots:
ℵ = ∆l or ℵ = ∆s. This partially recovers results from [CP11, Proposition 2.9]. Recall that
ϖ = Θ or θ and let ρ be the half sum of positive roots. Recall the order ≤ on roots defined
by α ≤ β ⇔ (β − α is a sum of simple roots), and the support of β =

∑
αi∈Φ biαi defined by

Supp(β) = {αi ∈ Φ | bi ̸= 0}.
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Proposition 3.16 (Proposition 2.9 and Lemma 2.6, [CP11]). Let X be adjoint or quasi-minuscule.

1. If X is adjoint we have dimX = 2⟨ρ,Θ∨⟩−1 and if X is quasi-minuscule its dimension is the
same as the one of the adjoint variety of the dual Langlands group; moreover c1(X) = ⟨ρ,ϖ∨⟩.

2. We have Xα ⊂ Xβ ⇔
{

α ≤ β for α and β of the same sign
Supp(α) ∪ Supp(β) is connected for α < 0 and β > 0.

From the Chevalley formula proved in [CP11, Theorem 3], it is easy to check the following
result.

Proposition 3.17. Let α, β ∈ ℵ with dimXβ = dimXα − 1. Then xβ ∈ Xα if and only if there
exists a root γ with β = sγ(α) and one of the following occurs:

1. the root γ is simple or

2. the roots α and −β are simple and γ = α− β.

We now consider the case Z = Y . The same one-dimensional torus ⊤ ⊂ T induces a decompo-
sition of Y . We will refer to Ωα = Ωα,Y and Ω−

α = Ω−
α,Y as the Schubert cells of Y and to Yα and

Y −
α as the Schubert varieties of Y , in analogy with the homogeneous case.

lls of Y and to Yα and Y −
α as the Schubert varieties of Y , in analogy with the homogeneous

case.

Remark 3.18. Note that we have the equalities Ωα = Ωα,X∩Y and Ω−
α = Ω−

α,X∩Y . In particular

we have Yα = Ωα = Ωα,X ∩ Y = B− · xα ∩ Y ⊂ P(V ).
However we have Yα ̸= Xα ∩ Y in general! The equality fails in general because, if xα ∈ Xβ ,

then
Xα ∩ Y = B− · xα ∩ Y ⊂ B− · xβ ∩ Y = Xβ ∩ Y,

while we will see that in certain cases it is not true that Yα ⊂ Yβ for xα ∈ Yβ (the decomposition
does not satisfy the inclusion condition). Indeed, it may very well happen that xα ∈ Yβ and
dim(Yα) = dim(Yβ).

We first compare the Schubert varieties in X and in Y .

Proposition 3.19. Let α ∈ ℵ, we have the following alternative:

1. If α > 0 i.e. dim(Xα) > dim(X)/2, then Xα ̸⊂ Y and dimYα = dimXα − 1,

2. If α < 0 i.e. dim(Xα) < dim(X)/2, then Xα ⊂ Y and dimYα = dimXα.

Proof. For α > 0, the root-conic SL2(α) · xα is contained in Xα but not inside Y , which implies
that Xα ̸⊂ Y . For α < 0, since Xα = B− · xα is contained in P(⊕β<0Vβ) ⊂ P(E), we deduce that
Xα ⊂ Y .

We are now interested in inclusions of T -fixed points in the Schubert varieties (Yα)α∈ℵ. As Y
is a hyperplane section inside X, by Lefschetz hyperplane theorem most of the cohomology of Y
is determined by the cohomology of X and we will be mainly interested in the middle cohomology
of Y , therefore in Schubert varieties Y±α for α simple. We set Φℵ = Φ ∩ ℵ.

Since V is self-dual as a G-representation, there exists a non-degenerate G-invariant scalar
product ( , ) identifying V with V ∨. Set h⊥ = {v ∈ V | ⟨h, v⟩ = 0} = {v ∈ V | (h, v) = 0}. Since
( , ) is G-invariant, we have (Vα, Vβ) = 0 for α + β ̸= 0 with α, β ∈ ℵ. Furthermore for α ∈ ℵ the
bilinear form ( , ) realises a duality between Vα and V−α. In particular we have (vα, v−α) ̸= 0.

Lemma 3.20. Let α ∈ Φℵ and β ∈ Φ be simple roots. If β ̸= α, then ρ(g−β)Vα = 0.

Proof. Follows from ρ(g−β)Vα ⊂ Vα−β . and the fact that non-zero weights of V are roots.

Endow the Lie algebra g with the Z-grading induced by the height: g =
⊕

i∈Z gi, where
gα ⊂ ght(α) and h = g0. Let f ∈ b− be an element in the Borel subalgebra of g corresponding to
B− and write f =

∑
i≤0 fi with fi ∈ gi.
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Lemma 3.21. Let f =
∑

i≤0 fi ∈ b− and let xα = [vα] ∈ XT with α simple. Then exp(f) · xα

belongs to Y if and only if f−1 ∈ g⊥α or equivalently ρ(f−1)vα = 0.

Proof. We have the inclusion exp(f) ·xα ∈ Y if and only if the vanishing ⟨h, exp(f) ·vα⟩ = 0 holds.
We compute this evaluation (recall that h vanishes on E = ⊕γ∈ℵVγ and that ρ(f0)(V0) = 0):

⟨h, exp(f) · vα⟩ =

〈
h,
∑
k≥0

1

k!
ρ(f)k(vα)

〉

=

〈
h,
∑
k≥1

1

k!
ρ(f−1)ρ(f0)k−1vα

〉

=

∑
k≥1

⟨f0, α⟩k−1

k!

 ⟨h, ρ(f−1)vα⟩

=
e⟨f0,α⟩ − 1

⟨f0, α⟩
⟨h, ρ(f−1)vα⟩.

Since the scalar eλ−1
λ never vanishes, the vanishing of this term is equivalent to the vanishing of

⟨h, ρ(f−1)vα⟩. By Lemma 3.20 we have that the space ρ(g−1)(Vα) = ρ(g−α)(Vα) is one-dimensional.
Since h is general, it only vanishes on the zero-vector in this space. Since ρ(f−1)(vα) ∈ ρ(g−1)(Vα)
and ⟨h, ρ(f−1)vα⟩ = 0, we get ρ(f−1)(vα) = 0. Finally note that ρ(g−1) acts on Vα via ρ(g−α) and
that this last action is non trivial. This proves that the condition ρ(f−1)vα = 0 is equivalent to
f−1 ∈ g⊥α .

Proposition 3.22. Let α ∈ Φℵ. Then x−α /∈ Yα.

Proof. Recall that we have Yα = B− · xα ∩ Y = B− · xα ∩ P(h⊥). Recall also that (vα, v−α) ̸= 0.
We will prove that B− · vα ∩ h⊥ ⊂ v⊥α , this implies that x−α = [v−α] /∈ Yα.

Let f =
∑

i≤0 fi ∈ b−. To compute (exp(f) · vα, vα), recall that v−α is dual to vα for ( , )
so we only need to compute the coefficient of v−α in exp(f) · vα. Recall that g−2α = 0 so that
(ρ(f−2)vα, vα) = 0. Recall also that if exp(f) · vα ∈ Y , then ρ(f−1)vα = 0. Finally note that
ρ(f0)(V0) = 0. Altogether this gives, for exp(f) · vα ∈ Y , the vanishing (exp(f) · vα, vα) = 0 and
the result.

Proposition 3.23. Let α ∈ Φℵ and β ∈ Φ be simple roots with ⟨β∨, α⟩ < 0.

1. If β ∈ ℵ, then x−sβ(α) ̸∈ Yα.

2. If β ̸∈ ℵ, then x−sβ(α) ∈ Yα and there is a positive root γ with sγ(α) = −sβ(α).

Proof. Note that the condition β ∈ ℵ is equivalent to saying that α and β have the same length.
Assume first that β ̸∈ ℵ and set m = ⟨β∨, α⟩⟨β, α∨⟩. In that case, there is a root γ with

sγ(α) = −sβ(α): for m = 2, set γ = sα(β) and for m = 3, set γ = sαsβ(α).
Since sγ(α) = −sβ(α), we have γ ̸= ±α. We may therefore consider the plain T -stable curve

SL2(γ) · xα which connects xα with xsγ(α) = x−sβ(α) inside Y . Moreover, since α > 0 > −sβ(α)

we have SL2(γ) · xα = (B− ∩ SL2(γ)) · xα ⊂ Yα. In particular x−sβ(α) = xsγ(α) ∈ Yα. Note that
the curve SL2(γ) · xα is a line in all cases except if m = 2 and α is a long root in which case it is a
conic.

Assume now that β ∈ ℵ. In that case α and β have the same length thus we have ⟨β∨, α⟩ = −1
and sβ(α) = α + β. We claim that Yα ⊂ P(v⊥α+β) from which we get x−sβ(α) = x−(α+β) ̸∈ Yα. To

prove the claim, let f =
∑

i≤0 fi ∈ b− such that exp(f)·vα ∈ h⊥. We prove that exp(f)·vα ∈ v⊥α+β .
By Lemma 3.21 we know that ρ(f−1)vα = 0. The only possibly non zero factors of (exp(f)·vα, vα+β)
are

(ρ(f−3)vα, vα+β), (ρ(f−1)ρ(f−2)vα, vα+β),

(ρ(f−2)ρ(f−1)vα, vα+β), (ρ(f−1)3vα, vα+β).

The last two terms are equal to zero because ρ(f−1)vα = 0. The first term is equal to zero because
g2α+β = 0 since 2α + β is not a root. We are left with computing (ρ(f−1)ρ(f−2)vα, vα+β) =
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−(ρ(f−2)vα, ρ(f−1)vα+β). Note that ρ(f−1)vα+β ∈ Vα ⊕ Vβ and by Lemma 3.21, since f−1 has no
component in g−α, we have ρ(f−1)vα+β ∈ Vα. Therefore (ρ(f−2)vα, ρ(f−1)vα+β) is non-zero only
if ρ(f−2)vα has a non trivial component in V−α, which means that f−2 has a non-trivial component
in g−2α = 0. This is not possible and proves the last vanishing.

Remark 3.24. Note that we have proven something more in the previous lemma: if α and β are
not of the same length, then the positive root γ induces a plain T -invariant curve SL2(γ) ·xα inside
Yα joining xα and x−sβ(α) = xsγ(α)

. This curve is a line in all cases except for ⟨β∨, α⟩ = 2 in which
case it is a conic.

Proposition 3.25. Let α, β ∈ Φℵ be two simple roots with ⟨β∨, α⟩ < 0. Then there exists a plain
T -stable line joining xα and x−β in Yα.

Proof. Note that α and β have the same length. Set γ = sβ(α) = α + β. Then sγ(α) = −β and

SL2(γ) · xα = (SL2(γ) ∩B−) · xα ⊂ Yα is a plain line joining xα and x−β in Yα.

Corollary 3.26. If |Φℵ| ≥ 2, the Bia lynicki-Birula decomposition in Y does not satisfy the inclu-
sion condition.

Proof. Let α, β ∈ Φℵ be two simple roots with ⟨β∨, α⟩ < 0. This is possible by assumption. Then α
and β have the same length and sβ(α) = α+β. By Proposition 3.25, we have x−β ∈ Yα. However,
since Y−β = X−β we have x−sβ(α) ∈ Y−β but x−sβ(α) ̸∈ Yα by Proposition 3.23.

Remark 3.27. We will see, using the equivariant Chevalley formula (see Section 4), that the
Schubert basis (σ+

α )α∈ℵ and (σ−
α )α∈ℵ are not dual for the Poincaré pairing.

Definition 3.28. Define a relation ⊢ on ℵ by α ⊢ β if xα ∈ Yβ. Define the order ≼ on ℵ as the
transitive closure of ⊢.

Remark 3.29. We summarise few basic facts on ⊢ and ≼.

1. The relation α ⊢ β is not transitive. Indeed, for α, β ∈ Φℵ two simple roots with ⟨β∨, α⟩ < 0,
we have (−β) ⊢ α by Proposition 3.25, since Y−β = X−β , we have (−α − β) = (−sα(β)) ⊢
(−β) but (−α− β) = (−sβ(α)) ⊬ α by Proposition 3.23.

2. We have the following properties.

(a) We have the implication (α ⊢ β ⇒ Xα ⊂ Xβ). Indeed, for α ⊢ β, we have xα ∈ Yβ ⊂ Xβ

and this implies Xα ⊂ Xβ since the decomposition in X satisfies the inclusion condition.

(b) The converse implication is not true. Indeed, if α ∈ Φℵ is simple, then X−α ⊂ Xα while
x−α ̸∈ Yα therefore −α ⊬ α.

(c) We also have the implication (α ≼ β ⇒ Xα ⊂ Xβ) since ⊂ is a transitive relation.

(d) For α ∈ Φℵ simple, we have (−α) ̸≼ α. Indeed, the inclusion X−α ⊂ Xα is of codimen-
sion 1. If (−α) ≼ α then, since x−α /∈ Yα we must have a chain (−α) ≺ β ≺ α. This
gives X−α ⊊ Xβ ⊊ Xα and the inclusion X−α ⊂ Xα would be of codimension at least
2, a contradiction.

(e) The converse implication of (c) is not true: for α ∈ Φℵ simple, X−α ⊂ Xα but (−α) ̸≼ α.

The order ≺ is fully described by the following result.

Proposition 3.30. Let α, β ∈ ℵ, we have: β ≺ α ⇔ (Xβ ⊊ Xα and β ̸= −α if α is simple).

Proof. Note that by Remark 3.29, we have the implication β ≺ α ⇒ Xβ ⊊ Xα and β ̸= −α if α is
simple. We prove the converse implication. Assume that Xβ ⊊ Xα and β ̸= −α if α is simple.

If β > 0, then α > 0 and it is an easy consequence of Proposition 3.17 that there exists a
sequence of plain curves joining xα to xβ in Xα. All these plain curves are contained in Yα thus
xβ ∈ Yα and β ≺ α. If α < 0, then β < 0 and xβ ∈ Xβ ⊂ Xα = Yα thus β ≺ α. Finally assume
α > 0 > β. Then by the previous cases and Proposition 3.23, we may assume that α and −β are
simple and α− β is a root. The result follows from Proposition 3.25
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Remark 3.31. We have the equivalence β ≺ α ⇔ −α ≺ −β.

Using the equivariant Chevalley formula, we will also describe the intersections Xα∩Y in terms
of the Schubert varieties (Yβ)β∈ℵ. We conclude this section with the following results.

Proposition 3.32. Let α ∈ ℵ.

1. The T -weights of Txα
X are {γ ∈ ∆ | α + γ ∈ Π(V )} and have multiplicity 1.

2. The T -weights of TxαY are {γ ∈ ∆ \ {−α} | α + γ ∈ Π(V )} and have multiplicity 1.

3. The T -weights of Txα
Xα are {γ ∈ ∆− | α + γ ∈ Π(V )} and have multiplicity 1.

4. The T -weights of Txα
Yα are {γ ∈ ∆− \ {−α} | α + γ ∈ Π(V )} and have multiplicity 1.

5. The Schubert variety Yα is smooth at xα.

Proof. Let b and b− be the Lie algebras of B and B− and set n = [b, b] and n− = [b−, b−].
1. By differentiation and since xα is T -fixed, we get that a first order neighbourhood of xα

in X has the form vα + ρ(n− ⊕ n)Vα = vα + ρ(⊕γ∈∆gγ)Vα = vα + ⊕γ∈∆\{−α}Vα+γ ⊕ ρ(g−α)Vα,
proving the weight description. Finally note that ρ(g−α)Vα ⊂ V0 is one-dimensional and that for
β ̸= 0, the space Vβ is also one-dimensional.

2. Note that ρ(g−α)Vα ⊂ V0 is not contained in h⊥ for h general. In particular, we get that a
first order neighbourhood of xα in Y has the form vα + ⊕γ∈∆\{−α}Vα+γ .

3. Recall the equality Xα = B− · xα. In particular B− · xα is an open neighbourhood of
xα in Xα. Differentiating, we get that a first order neighbourhood of xα in Xα has the form
vα + ρ(n−) · Vα. For α > 0 we get that vα + ⊕γ∈∆−\{−α}Vα+γ ⊕ ρ(g−α)(Vα), while for α < 0 we
have vα + ⊕γ∈∆\{−α}Vα+γ .

4. Recall the equality Yα = B− · xα ∩ Y . In particular B− · xα ∩ Y is an open neighbourhood
of xα in Yα. Differentiating, this gives that a first order neighbourhood of xα in Yα has the form
vα + ρ(n−) · Vα ∩ h⊥ = vα + ⊕γ∈∆\{−α}Vα+γ .

5. Since xα is smooth in Xα, we have dimTxα
Xα = dimXα and in both cases α > 0 and α < 0

we get dimTxα
Yα = dimYα, thus proving the result.

Recall the definition of the weight wt(C) of a T -stable curve C (see Definition 3.6).

Corollary 3.33. Let α ∈ ℵ. We have a bijection C 7→ wt(C) between T -stable curves in X (resp.
Y ) passing through xα and T -weights of Txα

X (resp. Txα
Y ). This bijection maps T -stable curves

in Xα (resp. Yα) to T -weights of Txα
Xα (resp. Txα

Yα).
A T -stable curve C of weight γ = wt(C) in X (resp. Y ) passing through xα is contained in Xα

(resp. Yα) if and only if ⟨γ∨, α⟩γ > 0.

Proof. Let SL2(γ) · xα be a T -stable curve passing through xα. Replacing γ by −γ, we may
assume that gγ acts non-trivially on xα. Differentiating, we get that vα + ρ(gγ)Vα is in a first
order neighbourhood of xα in X and γ is a weight of Txα

X. If the curve is contained in Y then
γ is a weight of Txα

Y . Conversely, if γ is a root such that α + γ ∈ Π(V ), then ⟨γ∨, α⟩ ≠ 01 and
SL2(γ) · xα is a T -stable curve of weight γ in X. If furthermore γ ̸= −α, we have γ ̸= ±α and the
curve is a plain curve thus contained in Y . Finally, the curve SL2(γ) ·xα is contained in Xα if and
only if sγ(α) < α i.e. if and only if ⟨γ∨, α⟩γ > 0.

4 Cohomology of hyperplane sections

In this section we study the T -equivariant cohomology H∗
T (Y ) of Y . We prove a Chevalley formula

that completely determines the ring structure of H∗
T (Y ). We deduce some information on the

classical cohomology and on the Bia lynicki-Birula cells.

1If ⟨γ∨, α⟩ = 0 and α + γ is a root, then α and γ are short thus V is quasi-minuscule and α + γ is long and is
not a weight of V .

23



4.1 Reminders on equivariant cohomology

We start with a recollection of some basic facts about equivariant cohomology. Our exposition is
based on the papers [Bri98], [GKM98] and [Bri97]. We refer to these texts for more details.

Let Z be a smooth variety with an action of a torus T such that ZT = {zα | α ∈ ℵ} is finite.
Let X (T ) ≃ Zn be the character group of T . The equivariant cohomology ring H∗

T (Z) is an algebra
over the polynomial ring H∗

T (pt) ∼= Q[X (T )] via the pull-back of the structural map Z → Spec(C).
The Bia lynicki-Birula decomposition induces an additive basis for this algebra ([Zα]T )α∈ℵ. Set
H∗(Z) := H∗(Z,Q). The pullback map i∗ : H∗

T (Z) → H∗
T (ZT ) of the natural inclusion i : ZT → Z

is injective, therefore H∗
T (Z) can be seen as a subring of H∗

T (ZT ) ≃ H∗
T (pt)ℵ ≃ Q[X (T )]ℵ.

Via this inclusion, we will denote by fα ∈ Q[X (T )]ℵ the pullback of the class [Zα]T ∈ H∗
T (Z),

and by fα(zβ) = (i ◦ izβ )∗[Zα]T , where izβ : {zβ} → ZT is the natural inclusion. More generally
for f ∈ H∗

T (ZT ), we set f(β) = i∗zβf . If (ϵi)i∈[1,n] is a Z-basis of X (T ), then fα(zβ) ∈ H∗
T (zβ) is a

polynomial in (ϵi)i∈[1,n].
For α, β ∈ ℵ, if C is a T -stable curve joining zα and zβ in Z, then T acts on TzαC with character

χ. We set χC = χ, this character is determined up to sign. The following results are our basic
tools to compute the polynomials fα(zβ).

Theorem 4.1 (Theorem 3.4 [Bri97]). If Z contains finitely many T -stable curves, then H∗
T (Z) is

the subalgebra of Q[X (T )]ℵ consisting of elements f = (f(zα))α∈ℵ satisfying the following condi-
tion: If there exists a T -stable curve C joining zα and zβ, then

(3) f(zα) − f(zβ) = 0 (mod χC).

Theorem 4.2 (Theorems 4.2 and 3.4 [Bri97]). Let α, β, γ ∈ ℵ, we have.

1. The polynomial fα(zβ) is homogeneous of degree codim(Zα).

2. If zβ /∈ Zα, then fα(zβ) = 0.

3. If zβ ∈ Zα is a smooth point, then fα(zβ) is the product of the T -characters of NZα/Z,zβ .

4. If there exists a T -stable curve C joining zβ and zγ , then χC divides fα(zβ) − fα(zγ).

Finally, we recover the ordinary cohomology H∗(Z) from the equivariant cohomology H∗
T (Z).

Theorem 4.3 (Corollary 2.3 [Bri97]). We have H∗(Z) ≃ H∗
T (Z)/(ϵ1, · · · , ϵn).

4.2 Chevalley formula

The main result of this section will be a Chevalley formula, i.e. a formula for multiplying the
hyperplane class fH (see definition below) with Schubert classes in Y . This formula determines
the full equivariant cohomology (see for example [BCMP18]). Set ℵ1 = {α ∈ ℵ | codimYα = 1}.

Fact. The set ℵ1 is described as follows.

1. In all cases except in type An, we have ℵ1 = {α0} for a unique root α0.

2. In type An, we have ℵ1 = {α0, β0} for two roots α0, β0.

Definition 4.4. Define the hyperplane class fH as follows.

1. In all cases except in type An, set fH = fα0
.

2. In type An, set fH = fα0 + fβ0 .

Recall the order ≼ on ℵ from Definition 3.28

Lemma 4.5. There exist aβα ∈ Q[X (T )] of degree codim(Yβ) − codim(Yα) − 1 such that

(4) fα(·)(fH(·) − fH(xα)) =
∑
β≺α

aβαfβ(·).
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Proof. By Theorem 4.2, the left hand side vanishes at all xβ with β ̸≼ α and it obviously vanishes
at xα. Since (fγ)γ∈ℵ is a basis we get that the left hand side has the form

∑
β∈ℵ aβαfβ(·) and since

all classes are homogeneous, we have deg(aβα) = codim(Yβ) − codim(Yα) − 1. Now by descending
induction on ℵ for the order ≼ and evaluation at fixed points it is easy to check that aβα vanishes
except maybe for β ≺ α.

A formula as above is called equivariant Chevalley formula. In the rest of this subsection,
we compute the coefficients aβα of the equivariant Chevalley formula. Among them the constant
coefficients aβα are the coefficients of the Chevalley formula in classical cohomology (this follows
from Theorem 4.3). Moreover, notice that knowing the equivariant Chevalley formula allows to
compute all fα’s explicitly by induction, using the order relation ≼ and starting from the maximal
degree class.

Before computing the coefficients aβα, we give an explicit expression for fH and prove useful
results on T -stable curves. Recall that ϖ is the maximal element in ℵ for the order ≼ (or the
maximal root in ℵ).

Proposition 4.6. The element fH ∈ H∗
T (Y T ) is given by fH(xα) = ϖ − α for α ∈ ℵ.

Proof. Let gH be defined by gH(α) = ϖ − α. Both elements fH and gH belong to the image of
H∗

T (Y ) inside H∗
T (Y T ): there are finitely many T -stable curves in Y and the element gH satisfies

(3). Consider the difference c = fH − gH which also lies in the image of H∗
T (Y ) inside H∗

T (Y T ).
We have fH(xϖ) = 0 since xϖ /∈ Yα0

(and xϖ ̸∈ Yβ0
in type An) and gH(xϖ) = 0 therefore

c(xϖ) = 0. Furthermore, by Proposition 3.32 the point xα0
is smooth in Yα0

and the T -weight of
the normal bundle of Yα0 in Y at xα0 is ϖ − α0. We thus have fH(xα0) = ϖ − α0 = gH(xα0) (in
type An the same results hold for β0 in place of α0) thus c(xα0) = 0 (and c(xβ0) = 0 in type An).
Assume now that c ̸= 0 and let xα with c(xα) ̸= 0 be maximal for ≼.

Recall from Proposition 3.32 that the set of weights of the normal bundle of Yα at xα is
{γ ∈ ∆+ \{−α} | α+γ ∈ Π(V )}. For any γ ∈ ∆+ \{−α} with α+γ ∈ Π(V ), we have ⟨γ∨, α⟩ < 0.
The curve SL2(γ) · xα is a plain T -stable curve in Y and if β = sγ(α) ∈ ℵ, we have xα ≺ xβ .
In particular c(xβ) = 0. Since c satisfies (3), we have that γ divides c(β) − c(α) and therefore γ
divides c(α). This is true for all γ ∈ ∆+ \ {−α} such that α + γ ∈ Π(V ). Since these weights are
distinct we see that the product of all these weights divides c. The degree of this product is equal
to codimYα but since c(xα) ̸= 0 and c vanishes on codimension 1 Schubert varieties, the degree of
this product is at least 2. Since c has degree 1, we obtain a contradiction.

We start with the identification of the potential non-zero terms aβα.

Proposition 4.7. Let α, β ∈ ℵ, then aβα = 0 except maybe if β ≺ α and one of the following holds:

1. dimYβ = dimYα − 1, dimXβ = dimXα − 1, the roots α and β have the same sign, in
which case there is no root η ∈ ℵ with β ≺ η ≺ α and there exists a simple root γ such that
β = sγ(α) and ⟨γ∨, α⟩ > 0.

2. dimYβ = dimYα, dimXβ = dimXα − 1, the roots α and −β are simple and γ = α− β is a
root such that sγ(α) = β.

3. dimYβ = dimYα − 1, dimXβ = dimXα − 2, α > 0 > β and one of the following occurs:

(a) There is no root η ∈ ℵ with β ≺ η ≺ α and there is a simple root ϵ ̸∈ ℵ with β = −sϵ(α).

(b) There is a unique root η ∈ ℵ with β ≺ η ≺ α.

Proof. By equation (4) we already know that if aβα ̸= 0 then β ≺ α. Furthermore, we have
codimYα − codimYβ + 1 = deg aβα ≥ 0. We get dimYβ ≥ dimYα − 1. The condition β ≺ α implies
Xβ ⊊ Xα (see Remark 3.29), thus dimXβ ≤ dimXα − 1. We thus have the inequalities:

dimYα − 1 ≤ dimYβ ≤ dimXβ ≤ dimXα − 1.

The different cases depend on the signs of α and β. If α < 0 then dimYα = dimXα and we get
equality in all the above inequalities. We are in case 1: dimYβ = dimYα−1, dimXβ = dimXα−1
and dimYβ = dimXβ . The last equality implies β < 0. Furthermore, Proposition 3.17 implies
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that there exists a simple root γ with β = sγ(α). Since β ≺ α, we have ⟨γ∨, α⟩ > 0. Proposition
3.30 and the fact that dimXβ = dimXα − 1 imply that there is no root η ∈ ℵ with β ≺ η ≺ α.

If α > 0, then dimYα = dimXα−1 and we get dimYα−1 ≤ dimYβ ≤ dimXβ ≤ dimXα−1 =
dimYα. We either have dimYβ = dimYα − 1 or dimYβ = dimYα.

If dimYβ = dimYα − 1 and if β > 0, we are in case 1 and the same arguments as above imply
that there is no root η ∈ ℵ with β ≺ η ≺ α, and there exists a simple root γ such that β = sγ(α)
and ⟨γ∨, α⟩ > 0. Otherwise β < 0 and we have dimXβ = dimYβ = dimYα − 1 = dimXα − 2 and
we are in case 3.

If dimYβ = dimYα, we must have dimYβ = dimXβ and therefore β < 0 and dimXβ =
dimXα − 1. Now by Proposition 3.17, there exists a root γ with sγ(α) = β. Since both α and −β
are simple, the root γ is not simple and Proposition 3.17 implies that γ = α− β.

We finally deal with the different possibilities in case 3. Note that, since dimXβ = dimXα−2,
there exists a root δ ∈ ℵ such that Xβ ⊊ Xδ ⊊ Xα. Furthermore, since α > 0 > β, we have two
possibilities: α is simple and −δ is simple or δ is simple and −β is simple.

In the first case, by Proposition 3.17 there is a simple root ϵ such that β = sϵ(δ). Furthermore,
we have δ = −α or α−δ is a root. If δ = −α and ϵ ̸∈ ℵ, then δ is the only root with Xβ ⊊ Xδ ⊊ Xα

and there is no root η ∈ ℵ with β ≺ η ≺ α. If δ = −α and ϵ ∈ ℵ then β = δ − ϵ = −(α + ϵ) and
η = −ϵ is the unique root such that β ≺ η ≺ α. If δ ̸= −α and ϵ = α then β = −(α + ϵ) and as
above η = −ϵ is the unique root such that β ≺ η ≺ α. If δ ̸= −α and ϵ ̸= α then ⟨α∨, ϵ⟩ = 0 and
η = δ is the unique root such that β ≺ η ≺ α.

For the second case, apply the previous case to −α and −β using Remark 3.31.

We will compute aβα in the three cases of the previous lemma. The following will be useful. Let
α, β ∈ ℵ with a codimension 1 inclusion Xβ ⊂ Xα. Recall from Proposition 3.17 that, in that case,
there exists a root γ with β = sγ(α) such that one of the following occurs:

1. the root γ is simple or
2. the roots α and −β are simple and γ = α− β.

Lemma 4.8. Let α, β ∈ ℵ and γ ∈ ∆ as above.

1. If γ is simple, then we have a bijection {weights of Nxα,Yα
} → {weights of Nxβ ,Yβ

} \ {γ}
given by δ 7→ sγ(δ). In particular, we have

fβ(xβ)

γ
= fα(xα) (mod γ).

2. If α and −β are simple roots and if γ = α − β is a root with sγ(α) = β, then we have a
bijection {weights of Nxα,Yα} \ {−β} → {weights of Nxβ ,Yβ

} \ {γ} given by δ 7→ sγ(δ). In
particular, we have

fβ(xβ)

γ
= −fα(xα)

β
(mod γ).

3. If α is simple, then we have a bijection {weights of Nxα,Yα
} → {weights of Nx−α,Y−α

} given
by δ 7→ sα(δ). In particular, we have fα(xα) = sα(f−α(x−α)).

Proof. 1. Note that ±γ is not a weight of Nxα,Yα
and that the two sets have the same size. We

therefore only need to prove that sγ maps the weights of Nxα,Yα
to weights of Nxβ ,Yβ

.
Let δ be a weight of Nxα,Yα . By Corollary 3.33, there is a plain T -stable curve SL2(δ) ·xα in Y

but not in Yα. Furthermore, we have ⟨δ∨, α⟩δ < 0. Consider the root η = sγ(δ). We have δ ̸= ±α,
therefore η = sγ(δ) ̸= ±sγ(α) = ±β and thus SL2(η) · xβ is a plain T -stable curve. Furthermore,
we have ⟨η∨, β⟩η = ⟨sγ(δ)∨, β⟩sγ(δ) = ⟨δ∨, sγ(β)⟩sγ(δ) = ⟨δ∨, α⟩(δ − ⟨γ∨, δ⟩γ). Since this is a
multiple of a root, since δ ̸= γ, since γ is simple and since ⟨δ∨, α⟩δ < 0, we have ⟨η∨, β⟩η < 0. In
particular the T -stable curve SL2(η) · xβ is not contained in Yβ and η is a weight of Nxβ ,Yβ

. Note
that sγ(δ) = δ (mod γ) and using Theorem 4.2.3 we get the last equality.

2. Note that SL2(β) · xα is a plain T -stable curve joining xα and xα−β thus −β is a weight of
Nxα,Yα

. Similarly SL2(γ) · xβ is a plain T -stable curve joining xβ and xα, thus γ is a weight of
Nxβ ,Yβ

. Note finally that dimYα = dimYβ so that the two sets have the same size and it is enough
to prove that the map is well defined.
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Let δ be a weight of Nxα,Yα
different from −β. Note that γ ̸= α. By Corollary 3.33, there is a

plain T -stable curve SL2(δ) · xα in Y but not in Yα. Furthermore, we have ⟨δ∨, α⟩δ < 0. Consider
the root η = sγ(δ). We have δ ̸= ±α, therefore η = sγ(δ) ̸= ±sγ(α) = ±β and thus SL2(η) · xβ

is a plain T -stable curve. Furthermore, we have ⟨η∨, β⟩η = ⟨sγ(δ)∨, β⟩sγ(δ) = ⟨δ∨, sγ(β)⟩sγ(δ) =
⟨δ∨, α⟩(δ−⟨γ∨, δ⟩γ). Since this is a multiple of a root, since δ ̸= γ, since γ = α−β and δ ̸∈ {α,−β}
and since ⟨δ∨, α⟩δ < 0, we have ⟨η∨, β⟩η < 0. In particular, the T -stable curve SL2(η) · xβ is not
contained in Yβ and η is a weight of Nxβ ,Yβ

. Note that sγ(δ) = δ (mod γ), and using Theorem
4.2.3 we get the last equality.

3. This is a direct consequence of Proposition 3.32.

We compute aβα in case 1. of Proposition 4.7.

Lemma 4.9. Let α, β ∈ ℵ such that α and β are of the same sign with β ≺ α and dimYβ =
dimYα−1. We are in case 1 of Proposition 4.7 and there exists a simple root γ such that sγ(α) = β.
Then SL2(γ) · xα is a plain T -stable curve inside Y joining xα and xβ and we have aβα = ⟨γ∨, α⟩.

Proof. The first statement follows directly from Proposition 4.7 as well as the existence of the
simple root γ and the plain T -stable curve SL2(γ) ·xα joining xα and xβ . By Equation (4) we have
that fα(xβ)(α−β) = aβαfβ(xβ). Equation (3) and the equality α−β = ⟨γ∨, α⟩γ give the following
relation

0 = fα(xα) − fα(xβ) = fα(xα) − aβαfβ(xβ)

⟨γ∨, α⟩γ
(mod γ).

By Lemma 4.8, the root γ does not divide fα(xα) and fβ(xβ)/γ = fα(xα) (mod γ). This implies

fα(xα)

(
1 − aβα

⟨γ∨, α⟩

)
= 0 (mod γ)

and since fα(xα) is not divisible by γ, we get the equality aβα = ⟨γ∨, α⟩.

We now compute aβα in case 2. of Proposition 4.7.

Lemma 4.10. Let α, β ∈ ℵ such that β ≺ α , dimYβ = dimYα, dimXβ = dimXα − 1, the roots
α and −β are simple and γ = α− β is a root such that sγ(α) = β. Then aβα = −α.

Proof. The plain T -stable curve SL(γ) · xα connects xα and xβ . Since α, β ∈ ℵ, the roots α and
β have the same length. Since γ = α − β is a root and α and −β are simple, we must have
⟨α∨, β⟩ = 1 = ⟨β∨, α⟩. Thus sα(β) = β − α = −γ and the plain T -stable curve SL2(α) · xβ joins
xβ and x−γ . Note that SL2(α) · xβ ⊂ Yβ since 0 > β > −γ.

By Equation (4) we have γfα(xβ) = fα(xβ)(α − β) = aβαfβ(xβ). By (3) applied to the curve
SL2(α) · xβ we know that fα(xβ)− fα(x−γ) is divisible by α. Since x−γ /∈ Yα by Proposition 3.23,
we have fα(x−γ) = 0, thus fα(xβ) is divisible by α. On the other hand fβ(xβ) is not divisible by
α (because SL2(α) · xβ ⊂ Yβ). This implies that aβα = mα for some m ∈ Z.

Apply (3) to the plain T -stable curve SL2(γ) · xα and Lemma 4.8.2 to get

0 = fα(xα)− fα(xβ) = fα(xα)− mαfβ(xβ)

γ
= fα(xα) +

mαfα(xα)

β
=

fα(xα)

β
(β +mα) (mod γ).

Lemme 4.8.2 also implies that −β divides fα(xα) while γ does not. We get β +mα = 0 (mod γ)
and since γ = α− β this implies m = −1.

We now deal with case 3.(a) of Proposition 4.7.

Lemma 4.11. Let α, β ∈ ℵ with α > 0 > β, dimXα = dimXβ + 2 and such that there is no root
η ∈ ℵ with β ≺ η ≺ α. We are in case 3.(a) of Proposition 4.7 and there exists a simple root ϵ ̸∈ ℵ
such that β = −sϵ(α).

We have aβα = |⟨ϵ∨, α⟩| = |⟨ϵ∨, β⟩| =

{
∥β∥ if α is simple
∥α∥ if −β is simple

.
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Proof. The first statement follows directly from Proposition 4.7 as well as the existence of the
simple root ϵ. By Equation (4) we have that fα(xβ)(α−β) = aβαfβ(xβ). We have two cases: either
α is simple and γ = −α is the only root such that Xβ ⊊ Xγ ⊊ Xα or −β is simple and γ = −β is
the only root such that Xβ ⊊ Xγ ⊊ Xα.

Assume first that α is simple. Note that the plain curve SL2(ϵ) ·x−α connects x−α and xβ and
since ϵ ̸∈ ℵ, we have m := ⟨α∨, ϵ⟩⟨ϵ∨, α⟩ ∈ {2, 3}.

Assume that m = 2. We have sα(β) = −sαsϵ(α) = α + ⟨ϵ∨, α⟩ϵ − mα = −α + ⟨ϵ∨, α⟩ϵ =
−sϵ(α) = β. In particular sα(fβ(xβ)) = fβ(xβ) and for γ = sα(ϵ) the plain curve SL2(γ) · xα

connects xα and xβ . By Equation (3) we have fα(xα) = fα(xβ) (mod sα(ϵ)). Since by Lemma
4.8 we have f−α(x−α) = sα(fα(xα)), this gives

sα(fα(xβ)) = sα(fα(xα)) = f−α(x−α) (mod ϵ).

Recall the equality −α− β = −⟨ϵ∨, α⟩ϵ. We get

f−α(x−α) =
aβα

sα(α− β)
fβ(xβ) =

aβα
−α− β

fβ(xβ) = − aβα
⟨ϵ∨, α⟩ϵ

fβ(xβ) (mod ϵ).

By Lemma 4.8 again, the root ϵ does not divide f−α(x−α) and f−α(x−α) = fβ(xβ)/ϵ (mod ϵ).
We get

fβ(xβ)

ϵ
= − aβα

⟨ϵ∨, α⟩ϵ
fβ(xβ) (mod ϵ).

This implies aβα = −⟨ϵ∨, α⟩ as desired.
Assume now that m = 3. Then α and ϵ are the simple roots of the G2-root system. Note that

for γ = sαsϵ(α), we have sγ(α) = β. We thus have

fα(xα) = fα(xβ) = aβα
fβ(xβ)

α− β
(mod γ).

If α is short, we have fα(xα) = ϵ(α + ϵ) and fβ(xβ) = ϵ(2α + ϵ)(3α + 2ϵ). We get ϵ(α + ϵ) =
aβαϵ(3α+ 2ϵ) (mod 2α+ ϵ). This gives aβα = 1 as desired. If α is long, we have fα(xα) = ϵ(α+ 3ϵ)
and fβ(xβ) = ϵ(α + 2ϵ)(2α + 3ϵ). We get ϵ(α + 3ϵ) = aβαϵ(α + 2ϵ) (mod 2α + 3ϵ). This gives
aβα = 3 as desired.

Assume that −β is simple. The proof will be very similar. Note that the plain curve SL2(ϵ) ·xα

connects xα and x−β and since ϵ ̸∈ ℵ, we have m := ⟨α∨, ϵ⟩⟨ϵ∨, α⟩ ∈ {2, 3}.
Assume that m = 2. As above, we have sα(β) = β and thus sβ(α) = α. In particular

sβ(fα(xα)) = fα(xα) and for γ = sβ(ϵ) the plain curve SL2(γ)·xα connects xα and xβ . By Equation
(3) we have fα(xα) = fα(xβ) (mod sβ(ϵ)). Since by Lemma 4.8 we have f−β(x−β) = sβ(fβ(xβ)),
this gives

sβ(fα(xβ)) = sβ(fα(xα)) = fα(xα) (mod ϵ).

Recall the equality α + β = ⟨ϵ∨, β⟩ϵ. We get

fα(xα) =
aβα

sβ(α− β)
f−β(x−β) =

aβα
α + β

f−β(x−β) =
aβα

⟨ϵ∨, β⟩ϵ
f−β(x−β) (mod ϵ).

By Lemma 4.8 again, the root ϵ does not divide fα(xα) and fα(xα) = f−β(x−β)/ϵ (mod ϵ). We
get

f−β(x−β)

ϵ
=

aβα
⟨ϵ∨, β⟩ϵ

f−β(x−β) (mod ϵ).

This implies aβα = ⟨ϵ∨, β⟩ as desired.
Assume now that m = 3. Then −β and ϵ are the simple root of the G2-root system. Note that

for γ = −sβsϵ(β), we have sγ(α) = β. We thus have

fα(xβ) = fα(xα) = aβα
fβ(xβ)

α− β
(mod γ).

If −β is short, we get (−β) = aβα(ϵ − 3β) (mod ϵ − 2β). This gives aβα = 1 as desired. If −β is
long, we get (−β) = aβα(ϵ− β) (mod 3ϵ− 2β). This gives aβα = 3 as desired.
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We now deal with case 3.(b) of Proposition 4.7.

Lemma 4.12. Let α, β ∈ ℵ such that dimYβ = dimYα− 1, dimXβ = dimXα− 2 and there exists
a unique η ∈ ℵ such that β ≺ η ≺ α. Then either α or −β is simple. We have

1. If α is simple, then −η is simple and aβα =

{
1 = ∥β∥ if α appears in the support of β
0 otherwise.

.

2. If −β is simple, then η is simple and there exists a simple root ϵ with α = sϵ(η). We have

aβα = ∥α− β∥ =

{
2 if −β appears in the support of α
⟨ϵ∨, α⟩ otherwise.

Proof. We have α > 0 > β and Xβ ⊊ Xη ⊊ Xα. Both inclusions are divisorial. This in particular
implies that either α or −β is simple. In the first case −η is a simple root such that α − η is a
root and there is a simple root ϵ such that sϵ(η) = β. We have the alternative ϵ = α or ⟨ϵ∨, α⟩ = 0
depending on whether α occurs in the support of β or not. In the second case η is a simple root
such that η− β is a root and there is a simple root ϵ such that sϵ(η) = α. We have the alternative
ϵ = −β or ⟨ϵ∨, β⟩ = 0 depending on whether −β occurs in the support of α or not.

Applying repeatedly Equation (4) we get

fα(xβ) =
aβα

α− β
fβ(xβ) +

aηα
α− β

fη(xβ) =
aβα

α− β
fβ(xβ) +

aηαa
β
η

(α− β)(η − β)
fβ(xβ).

Assume that α is simple and does not appear in the support of β. By Lemma 4.10 and Lemma
4.9, we have aηα = −α and aβη = ⟨ϵ∨, η⟩. Note that sα−η(α) = η and ssϵ(α−η)(α) = sϵsα−ηsϵ(α) =
sϵsα−η(α) = sϵ(η) = β. In particular, if γ = sϵ(α−η) = α−β, the plain T -stable curve SL2(γ) ·xα

connects xα and xβ . By (3) we get fα(xα) = fα(xβ) (mod α− β). We get

fα(xα) =
aβα(η − β) − ⟨ϵ∨, η⟩α

(α− β)(η − β)
fβ(xβ) (mod α− β).

Note that sβ(α) = ssϵ(η)(α) = sϵsηsϵ(α) = sϵsη(α) = sϵ(α − η) = α − sϵ(η) = α − β > α. In
particular β divides fα(xα). Unless fβ(xβ) is divisible by a root of the form β + nγ, this implies
aβα = 0. The only roots of the form β + nγ are β and β + γ = α but none of these roots divide
fβ(xβ), thus aβα = 0.

Assume that α is simple and appears in the support of β. Then ϵ = α and β = η − α. By
Lemma 4.10 and Lemma 4.9, we have aηα = −α and aβη = ⟨α∨, η⟩ = 1. Note that β = −sη(α), thus
by Proposition 3.23 we have xβ ̸∈ Yα and fα(xβ) = 0. We get

0 = fα(xβ) =
(aβα − 1)α

(α− β)α
fβ(xβ)

and thus aβα = 1.
Assume now that −β is simple and does not occur in the support of α. By Lemma 4.10 and

Lemma 4.9, we have aβη = −η and aηα = ⟨ϵ∨, α⟩. Note that sη−β(β) = η and ssϵ(η−β)(β) =
sϵsη−βsϵ(β) = sϵsη−β(β) = sϵ(η) = α. In particular, if γ = sϵ(η − β) = α − β, the plain T -stable
curve SL2(γ) · xα connects xα and xβ . By (3) we get fα(xα) = fα(xβ) (mod α− β). We get

fα(xα) =
aβα(η − β) − ⟨ϵ∨, α⟩η

(α− β)(η − β)
fβ(xβ) (mod α− β).

Note that sβ(α) = sβ(sϵ(η)) = sϵsβ(η) = sϵ(η − β) = α − β > α. In particular β divides fα(xα).
Note furthermore that sα(β) = β − α < β, thus α does not divide fβ(xβ), therefore we must have
the equality aβα(η − β) − ⟨ϵ∨, α⟩η = kβ (mod α− β) for some k ∈ Z. This gives aβα = ⟨ϵ∨, α⟩.

Assume finally that −β is simple and appears in the support of α. Then ϵ = −β and α = η−β.
By Lemma 4.10 and Lemma 4.9, we have aβη = −η and aηα = ⟨ϵ∨, α⟩ = 1. We get

fα(xβ) =
aβαα− η

(α− β)α
fβ(xβ).

However, α− β = η− 2β is not a root, thus α− β does not divide fβ(xβ). Therefore α− β divides
aβαα− η = (aβα − 1)α− β and we must have aβα = 2.
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Theorem 4.13 (Equivariant Chevalley formula). Let α, β ∈ ℵ. Then aβα = 0 unless (α ≥ β,
β ̸= −α and |α−β| = 1) or (α ≥ β, |α−β| ∈ {2, 3}, Supp(α−β) is connected and Supp(α−β)∩
{α,−β} ≠ ∅).

Assume that α, β ∈ ℵ satisfy the above condition, then

1. If |α− β| = 1, then aβα = ∥α− β∥.

2. If α,−β ∈ Φℵ are simple, then aβα = −α.

3. If α ∈ Φℵ and −β ̸∈ Φℵ, then aβα =

{
∥β∥ if |α− β] = 2
0 if |α− β| = 3.

4. If α ̸∈ Φℵ and −β ∈ Φℵ, then aβα =

{
∥α∥ if |α− β] = 2 and Supp(α− β) ̸⊂ ℵ
∥α− β∥ otherwise.

Proof. Assertion 1. is a consequence of Lemma 4.9. Assertion 2. is a consequence of Lemma 4.10.
The first case of Assertion 3. follows from Lemmas 4.11 and 4.12.1. The second case of Assertion
3. follows from Lemma 4.12.1. The first case of Assertion 4. follows from Lemma 4.11. The second
case of Assertion 4. follows from Lemma 4.12.2.

We will give more explicit formulas in Corollary 4.18.

4.2.1 Hasse diagrams

We report in the following the Hasse diagrams of Y obtained with the Chevalley formula. They
are the diagrams for classical cohomology (and not equivariant cohomology). We drew in red all
the arrows which do not already appear in the Hasse diagrams of the corresponding X. In the
diagrams, the codimension of the corresponding Schubert classes grows from the left to the right.

Figure 1: Hasse diagram of Y ⊂ OGr(2, 7)

• •
•

•

•

•

••
•

•

•

•

Figure 2: Hasse diagram of Y ⊂ IGr(2, 6) (already appearing in [Ben21])

• •
•

•

•

•

••
•

•

•

•

Figure 3: Hasse diagram of Y ⊂ G2/P2

• •• •

••••
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Figure 4: Hasse diagram of Y ⊂ F4/P1

• • • •
•

• •

• ••

•

••

•

••••
•

••

•••

•

••

•

Figure 5: Hasse diagram of Y ⊂ F4/P4

• • • •
•

•

••

•

•

••

•

••

••••
•

•

••

•

•

••

•

••

4.3 Classical cohomology formulae

We have already said that from the equivariant Chevalley formula one can recover completely by
induction the equivariant cohomology. This in turn gives the classical cohomology. However, this
involves computing each class fα, which can become painful. In the following we want to give
an explicit description of a set of generators and relations which define the cohomology of Y . In
particular we describe the intersecton form on the middle cohomology.

4.3.1 Pull-back and push-forward

Let j : Y → X be the natural inclusion. In this section we describe the pull-back j∗ and the
push-forward j∗. This will help understanding the cohomology of Y in terms of the cohomology
of X. Define i : Y T → Y and set fX

α := i∗j∗[Xα]. Since i∗ is an embedding of the equivariant
cohomology of Y inside H∗

T (Y T ), we will identify fX
α and j∗[Xα].

Recall the definition of Φℵ = ℵ∩Φ. Note that Φℵ is the base of the root system ℵ∩∆ which is a
root subsystem of ∆ (the subsystem of long resp. short roots for X adjoint resp. quasi-minuscule).

Proposition 4.14. Let α ∈ ℵ, we have the following formulas:

1. If α is a non-simple positive root, then fX
α = fα.

2. If α ∈ Φℵ is simple, then fX
α = fα + f−α +

∑
β∈Φℵ, α+β∈∆·

f−β .

3. If α is negative, we have fX
α = −αfα +

∑
β ̸=α

aβαfβ .

Proof. Since (fα)α∈ℵ is a basis of equivariant cohomology, there are homogeneous elements λβ
α ∈

H∗
T (pt) such that fX

α =
∑

β∈ℵ λβ
αfβ . By an easy descending induction on β, we have λβ

α = 0 for

xβ ̸∈ Xα. Comparing the degrees, we also have λβ
α = 0 for codimY (Yβ) > codimX(Xα).

For α positive non simple, the above vanishings imply fX
α = λα

αfα and since fX
α (xα) = fα(xα)

we get the first formula.
For α simple, the above vanishings imply fX

α = λα
αfα + λ−α

α f−α +
∑

β∈Φℵ,α+β∈∆ λ−β
α f−β . The

equality fX
α (xα) = fα(xα) gives λα

α = 1. We also have fX
α (x−α) = f−α(x−α) (note that x−α is a

smooth point of Xα and Y−α and that the T -stable curves passing through x−α and going out of
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Y−α or of Xα are the same) giving λ−α
α = 1. Note that x−β is a smooth point in Xα. Comparing T -

stable curves through x−β , we get (α+β)fX
α (x−β) = βf−β(x−β). Using the equivariant Chevalley

formula, we obtain (α + β)fα(x−β) = −αf−β(x−β). This gives λ−β
α = 1.

For α negative, note that codimX(Xα) = codimY (Yα) + 1 so that λβ
α vanishes except for β = α

or if Xβ = Yβ is a divisor in Xα = Yα. Furthermore, we have fX
α (xα) = −αfα(xα) since the

T -stable curve SL2(α) ·xα is in X and not in Y . For β such that Xβ = Yβ is a divisor in Xα = Yα,
we have α− β = aβαγ for some simple root γ. Since xβ is smooth in both Xα and Yβ and the only
T -stable curve in Xα not in Yβ is SL2(γ) · xβ while SL2(β) · xβ exists in X but not in Y , we get
γfX

α (xβ) = −βfβ(xβ). This, together with the Chevalley formula, gives the last formula. Note
that in this last formula the term

∑
aβαfβ comes from the Chevalley formula for fα.

Corollary 4.15. Let α ∈ ℵ. We have

1. For α positive, non simple, we have j∗σα,X = σα.

2. For α negative, we have j∗σα =
∑

β ̸=α aβασβ and j∗σα = σα,X .

3. For α simple, we have j∗σα,X = σα + σ−α +
∑

β∈Φℵ, α+β∈∆·

σ−β and j∗σα = σ−α,X .

Proof. The pull-back formulas follow directly from the previous proposition. Since Yα = Xα for α
negative, we get 2. To get j∗σα for α simple recall that j∗j

∗σα,X = hX∪σα,X and by the Chevalley
formula in X this cup product is equal to 2σα,X +

∑
β∈Φℵ, α+β∈∆·

σ−β,X , giving the result.

Remark 4.16. Note that the same formulas hold for σ−
α,X and σ−

α . In particular, for α simple,

we have j∗σ
−
−α = σ−

−α,X and

j∗σ−
−α,X = σ−

α + σ−
−α +

∑
β∈Φℵ, α+β∈∆·

σ−
β .

Using the above formulas we give a more explicit non-equivariant Chevalley formula. First
recall Chevalley formula for X as explained in [CP11].

Proposition 4.17. Let X be adjoint or quasi-minuscule and let α ∈ ℵ.

1. If α is not simple then hX ∪ σα,X =
∑

β∈Φ, ⟨β∨,α⟩>0⟨β∨, α⟩σsβ(α),X .

2. If α is simple then hX ∪ σα,X =
∑

β∈Φℵ
|⟨β∨, α⟩|σ−β,X .

Corollary 4.18 (Chevalley formula). Let Y ⊂ X be a general hyperplane section with X adjoint
or quasi-minuscule. Let α ∈ ℵ.

1. If α > 0 and |α| = 2, then

h ∪ σα =
∑

β∈Φ, ⟨β∨,α⟩>0

⟨β∨, α⟩

σsβ(α) + σ−sβ(α) +
∑

γ∈Φ∩ℵ,γ+sβ(α)∈∆

σ−γ

 .

2. If α is simple then h ∪ σα = h ∪ σ−α =
∑

β∈Φ, ⟨β∨,−α⟩>0⟨β∨,−α⟩σ−sβ(α).

3. Otherwise h ∪ σα =
∑

β∈Φ, ⟨β∨,α⟩>0⟨β∨, α⟩σsβ(α).

Proof. If α > 0 with |α| > 2, then σα = j∗σα,X and h ∪ σα = j∗(hX ∪ σα,X). Furthermore, since
|α| > 2, j∗ is an isomorphism in these degrees, therefore the result follows from Chevalley formula
in X.

If α < 0 then j∗(h ∪ σα) = hX ∪ σα,X and since j∗ is an isomorphism, the result follows from
Chevalley formula for X. Note that this also applies for α < 0 with −α simple.

If α is simple then j∗(h ∪ σα) = hX ∪ j∗σα = h ∪ j∗σ−α and the result follows since j∗ is an
isomorphism in this degree.

Finally if α > 0 and |α| = 2 then h∪σα = j∗(hX∪σα,X) = j∗
(∑

β∈Φ, ⟨β∨,α⟩>0⟨β∨, α⟩σsβ(α),X

)
.

Now all the roots sβ(α) occuring are simple and the result follows by Corollary 4.15.(3).
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Proposition 4.19. Let ℓ ∈ [0,dimY ].

1. For ℓ < dimY , the family {σα | α ∈ ℵ, deg σα = ℓ} is a basis of Hℓ(Y,Z).

2. For ℓ < dimY , the family {σ−α | α ∈ ℵ, deg σα = ℓ} is a basis of H2 dimY−ℓ(Y,Z).

3. For ℓ = dimY , the family {σα, σ−α | α ∈ Φℵ} is a basis of Hℓ(Y,Z).

4. Let α, β ∈ ℵ be positive non-simple roots such that σα, σβ ∈ Hℓ(Y,Z). Then ℓ < dimY and

σα ∪ σw0(β) = δα,β .

In particular the basis in 1. and 2. are Poincaré dual basis of Hℓ(Y,Z) and H2 dimY−ℓ(Y,Z).

Proof. For ℓ > dimY , by Lefschetz Theorem the two maps j∗ : Hℓ(X,Z) → Hℓ(Y,Z) and j∗ :
H2 dimY−ℓ(Y,Z) → H2 dimX−ℓ(X,Z) are isomorphisms, proving 1. and 2. Item 3. follows from the
fact that σα is a middle comohology class if and only if α or −α is simple. Finally, for α, β as in 4.,
we have σα ∪σw0(β) = j∗(σα ∪σw0(β)) = j∗(j∗σα,X ∪σw0(β)) = σα,X ∪σw0(β),X = δα,β by Poincaré
duality in X (cf. Lemma 3.15).

Remark 4.20. Note that the same results hold for opposite classes σ−
α with degree function given

by deg(σ−
α ) = dimY − deg(σα).

4.3.2 Non ambient classes and middle cohomology

The above proposition completely settles the computation of the cup product outside of the middle
cohomology HdimY (Y,Z). We now focus on the cup product on HdimY (Y,Z).

Definition 4.21. Recall the notation Φℵ = ℵ ∩ Φ, the set of simple roots of ℵ ⊂ ∆.

1. Define the matrix Iℵ = (δα,β)α,β∈Φℵ .

2. Let Cℵ be the Cartan matrix associated to ℵ and defined by Cℵ = (⟨α∨, β⟩)α,β∈Φℵ .

Note that Cℵ is symmetric since all roots have the same length in ℵ.

Proposition 4.22. We have the following intersection matrices.

1. (σα ∪ σ−
β )α,β∈Φℵ = Iℵ.

2. (σ−α ∪ σ−
−β)α,β∈Φℵ = Iℵ.

3. (σα ∪ σ−
−β)α,β∈Φℵ = Cℵ − 2Iℵ.

4. (σ−α ∪ σ−
β )α,β∈Φℵ = 0.

Proof. Let α, β ∈ Φℵ.
Let xγ ∈ Yα ∩ Y −

β . Then β ≤ γ ≤ α which implies α = γ = β. In particular Yα and Y −
β do

not meet unless α = β. In this case we have Yα ∩ Y −
α = {xα} = Xα ∩ X−

α and since the latter
intersection is transverse, so is the first proving 1. Item 2. follows along the same lines.

Let xγ ∈ Y−α ∩ Y −
β . Then β ≤ γ ≤ −α. This is impossible so that Yα and Y −

β never intersect,
this proves 4.

For 3., note that for xγ ∈ Yα ∩ Y −
−β , we have −β ≤ γ ≤ α. This is not possible for β = α

since x−α ̸∈ Yα and xα ̸∈ Y −
−α. So this is possible if and only if α + β is a root. In this case,

we see that Yα ∩ Y−β contains the line joining x−β and xα and the intersection is not transverse.
We use the equality j∗σα,X ∪ σ−

−β = σα,X ∪ j∗σ
−
−β = σα,X ∪ σ−

β,X = δα,β , the formula j∗σα,X =

σα+σ−α+
∑

α+γ∈∆ σ−γ and the cases 1., 2. and 4. to get σα∪σ−
−β = −δα+β∈∆ where δα+β∈∆ = 1

for α + β ∈ ∆ and 0 otherwise. We conclude by the fact that (−δα+β∈∆)α,β∈Φℵ = Cℵ − 2Iℵ.

Definition 4.23. Let H(Y )na = Ker(j∗|HdimY (Y )) be the non ambient part of the middle cohomol-

ogy and let H(Y )dimY
a = Im(j∗|HdimY (X)) be the ambient part of the middle cohomology.

For α ∈ Φℵ define Γα = σα − σ−α and Γ−
α = σ−

−α − σ−
α .

33



Lemma 4.24. The classes (Γα)α∈Φℵ form a basis of H(Y )na. The classes (Γ−
α )α∈Φℵ form a basis

of H(Y )na.

Proof. By Corollary 4.15, we have Γα ∈ H(Y )na and (Γα)αΦℵ is a linearly independent family in
H(Y )na. Furthermore, since j∗j∗ is bijective we have dim H(Y )dimY

a = |Φℵ|. Since dim HdimY (Y ) =
2|Φℵ| this gives dim H(Y )na = |Φℵ| and finishes the proof. The proof for the classes (Γ−

α )α∈Φℵ is
similar.

Lemma 4.25. We have the following intersection matrix: (Γα ∪ Γ−
β )α,β∈Φℵ = Cℵ − 4Iℵ.

Proof. Follows directly from Proposition 4.22.

For α ∈ Φℵ, recall that j∗σ
−
α = σ−

α,X = σw0(α),X = j∗σw0(α) with w0 ∈ W the longest element

of W (see Lemma 3.15), and similarly that j∗σ
−
−α = σ−

−α,X = σ−w0(α),X = j∗σ−w0(α).

Definition 4.26. Define the matrices A = (aα,β)α,β∈Φℵ and B = (bα,β)α,β∈Φℵ by the following
equalities:

σ−
α = σ−i(α) +

∑
β∈Φℵ

aα,βΓβ and σ−
−α = σi(α) +

∑
β∈Φℵ

bα,βΓβ

where i(α) := −w0(α) is the Cartan involution on Φ (note that this involution stabilises Φℵ).

Proposition 4.27. We have B = (Cℵ − 3Iℵ)A.

Proof. Let α ∈ Φℵ. Since σ−
−α,X = σi(α),X , by pull-back using Corollary 4.15 and Remark 4.16, we

get σ−
α + σ−

−α +
∑

β∈Φℵ, α+β∈∆ σ−
β = σi(α) + σ−i(α) +

∑
β∈Φℵ, α+β∈∆ σ−i(β). By Definition 4.26,

we get

σ−i(α) +
∑
γ∈Φℵ

aα,γΓγ + σi(α) +
∑
γ∈Φℵ

bα,γΓγ +
∑

β∈Φℵ, α+β∈∆

σ−i(β) +
∑
γ∈Φℵ

aβ,γΓγ

 =

= σi(α) + σ−i(α) +
∑

β∈Φℵ, α+β∈∆

σ−i(β).

Simplifying gives ∑
γ∈Φℵ

aα,γΓγ +
∑
γ∈Φℵ

bα,γΓγ +
∑

β∈Φℵ, α+β∈∆

∑
γ∈Φℵ

aβ,γΓγ = 0

Thus B is obtained from A by left multiplication with the matrix (−δα,β − δα+β∈∆)α,β∈Φℵ =
Cℵ − 3Iℵ.

Definition 4.28. Define the matrix J = (jα,β)α,β∈Φℵ by jα,β = δα,i(β).

Corollary 4.29. Let D = (dα,β)α,β∈Φℵ be the base change matrix from (Γα)α∈Φℵ to (Γ−
α )α∈Φℵ i.e.

Γ−
α =

∑
β∈Φℵ

dα,βΓβ. Then we have D = J + (Cℵ − 4Iℵ)A.

Proof. We have Γ−
α = σ−

−α − σ−
α = σi(α) +

∑
β∈Φℵ

bα,βΓβ − σ−i(α) −
∑

β∈Φℵ
aα,βΓβ = Γi(α) +∑

β∈Φℵ
(bα,β−aα,β)Γβ , so D = J+(B−A) and the result follows from the previous proposition.

Corollary 4.30. We have the intersection matrix (Γ−
α ∪Γ−

β )α,β∈Φℵ = (J +(Cℵ−4Iℵ)A)(Cℵ−4Iℵ)

and (
√
−1)dimY (J + (Cℵ − 4Iℵ)A)(Cℵ − 4Iℵ) is positive definite.

Proof. The formula for the intersection matrix follows from Lemma 4.25 and Corollary 4.29. The
fact that this matrix multiplied by (

√
−1)dimY is positive definite is a classical fact from Hodge

Theory, see [Voi07, Theorem 6.32].

We recover the following well know fact on eigenvalues of Cartan matrices.

Corollary 4.31. The matrix Cℵ − 4Iℵ is invertible.

Lemma 4.32. The matrices J and Cℵ are symmetric and commute.
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Proof. We already remarked that Cℵ is symmetric since the roots in Φℵ are of the same length.
Since i is an involution, we get J = J t = J−1. Finally, we have ⟨i(α)∨, i(β)⟩ = ⟨α∨, β⟩ which
implies J tCℵJ = Cℵ proving the commuting relation.

Corollary 4.33. The matrix A is symmetric.

Proof. The matrix (J + (Cℵ − 4Iℵ)A)(Cℵ − 4Iℵ) is symmetric. Since J and Cℵ are symmetric and
commute, we get (Cℵ−4Iℵ)A(Cℵ−4Iℵ) = (Cℵ−4Iℵ)At(Cℵ−4Iℵ) and since Cℵ−4Iℵ is invertible
we get At = A.

Proposition 4.34. Consider the matrices

M =

(
J 0
A J + (Cℵ − 4Iℵ)A

)
and N =

(
J 0
B J + (Cℵ − 4Iℵ)A

)
.

Then M and N are involutive.

Proof. Let (f−
α )α∈ℵ be the restriction to H∗

T (Y T ) of the equivariant classes of (Y −
α )α∈ℵ. Re-

versing the one parameter subgroup defining the Bia lynicki-Birula decomposition does not mod-
ify the graph of T -stable curves connecting T -stable points but changes the signs of weights.
This implies that f−

α (xβ) = (−1)dimYαf−α(x−β). This in particular implies that expanding
the classes (f−

α )α∈ℵ in terms of the classes (fα)α∈ℵ yields the same formulas as expanding the
classes (fα)α∈ℵ in terms of the classes (f−

α )α∈ℵ. More precisely, if f−
α =

∑
β λα,βfβ , we have

f−α =
∑

β(−1)dimYα+codimYβλα,βf
−
−β . In particular, restricting to non equivariant cohomology

and to middle cohomology, we get the equalities

σ−α = σ−
i(α) +

∑
β∈Φℵ

aα,βΓ−
β and σα = σ−

−i(α) +
∑
β∈Φℵ

bα,βΓ−
β .

This proves that the base change from the basis (Γα)α∈Φℵ to (Γ−
α )α∈Φℵ is involutive and conversely

that the base changes from the basis (σα,Γα)α∈Φℵ to (σ−
α ,Γ

−
α )α∈Φℵ , which are given by the matrices

M and N , are involutive. This proves the result.

Corollary 4.35. The matrices A and Cℵ commute and we have AJ + JA + (Cℵ − 4Iℵ)A2 = 0.

Proof. The fact that M and N are involutive implies the relations AJ+JA+(Cℵ−4Iℵ)A2 = 0 and
(J+(Cℵ−4Iℵ)A)2 = Iℵ. Taking the transpose of the first equality gives AJ+JA+A2(Cℵ−4Iℵ) = 0.
Furthermore, since J and Cℵ commute, the second equality is equivalent to (Cℵ−4Iℵ)(JA+AJ +
A(Cℵ − 4Iℵ)A) = 0 and since Cℵ − 4Iℵ is invertible, this gives (JA + AJ + A(Cℵ − 4Iℵ)A) = 0.
We thus have the equalities

(Cℵ − 4Iℵ)A2 = A2(Cℵ − 4Iℵ) = A(Cℵ − 4Iℵ)A.

Since A is a symmetric matrix with real entries, it is semi-simple and for any eigenvector v of A
with eigenvalue λ ̸= 0 the above relations imply that (Cℵ−4Iℵ)v is again an eigenvector for A with
eigenvalue λ. Furthermore, A being semi-simple, we have Ker(A2) = Ker(A) and for v ∈ Ker(A)
the above imply (Cℵ − 4Iℵ)v ∈ Ker(A2) = Ker(A). This proves that A commutes with Cℵ − 4Iℵ
and thus with Cℵ.

Theorem 4.36. We have the formula A = (J + (
√
−1)dimY Iℵ)(4Iℵ − Cℵ)−1. Furthermore, we

have the following intersection matrices

(Γα ∪ Γβ)α,β∈Φℵ = (Γ−
α ∪ Γ−

β )α,β∈Φℵ = (
√
−1)dimY (4Iℵ − Cℵ) and

(σα ∪ σβ)α,β∈Φℵ∪−Φℵ =
1

4Iℵ − Cℵ

(
J + (

√
−1)dimY (Cℵ − 3Iℵ)2 J + (

√
−1)dimY (Cℵ − 3Iℵ)

J + (
√
−1)dimY (Cℵ − 3Iℵ) J + (

√
−1)dimY Iℵ

)
.
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Proof. The fact that the intersection matrices (Γα ∪Γβ)α,β∈Φℵ and (Γ−
α ∪Γ−

β )α,β∈Φℵ are the same
follows from Proposition 4.34. The formula for this matrix is equivalent to the first formula thanks
to Corollary 4.30.

We now prove the equality (Γ−
α ∪ Γ−

β )α,β∈Φℵ = (
√
−1)dimY (4Iℵ − Cℵ). By Corollary 4.30 the

intersection matrix is equal to (J +(Cℵ−4Iℵ)A)(Cℵ−4Iℵ). Since A, J and Cℵ are real symmetric
and pairwise commute, there exists a basis (eα)α∈Φℵ of common eigenvectors. Let aα, µα and
λα be the corresponding eigenvalues. Note that µα ∈ {−1, 1} since J is an involution and that
4−λα ̸= 0 since Cℵ−4Iℵ is invertible. By Corollary 4.30 and Corollary 4.35, we have the following
two conditions on these eigenvalues:

2µαaα + (λα − 4)a2α = 0 and (
√
−1)dimY (µα + (λα − 4)aα)(λα − 4) > 0.

In particular µα + (λα − 4)aα = ±µα and the eigenvalues of the matrix (
√
−1)dimY (J + (Cℵ −

4Iℵ)A)(Cℵ − 4Iℵ) are given by

(
√
−1)dimY (µα + (λα − 4)aα)(λα − 4) = ±(

√
−1)dimY µα(λα − 4).

Since this last matrix is positive definite its eigenvalues are equal to | ± (
√
−1)dimY µα(λα − 4)| =

|λα − 4| = 4 − λα. The last equality follows from the fact that the eigenvalues λα of the Cartan
matrix are strictly smaller than 4. In fact if λα is an eigenvalue of Cℵ then so is 4 − λα (see
[BLM89]) proving that 4 − λα > 0 since Cℵ is positive definite. We thus get (

√
−1)dimY (µα +

(λα − 4)aα)(λα − 4) = 4 − λα and aα = µα+(
√
−1)dimY

4−λα
proving the first formula.

Proposition 4.22, Proposition 4.27 and the definition of the matrices A and B (see Definition
4.26) imply the following formula

(σα ∪ σβ)α,β∈Φℵ∪−Φℵ =

(
(Cℵ − 2Iℵ)J + (Cℵ − 3Iℵ)2A J + (Cℵ − 3Iℵ)A

J + (Cℵ − 3Iℵ)A A

)
.

Expressing these matrices in the eigenbasis we get(
(λα − 2)µα + (λα − 3)2aα µα + (λα − 3)aα

µα + (λα − 3)aα aα

)
.

Replacing aα by its value aα = µα+(
√
−1)dimY

4−λα
, we get(

µα+(
√
−1)dimY (λα−3)2

4−λα

µα+(
√
−1)dimY (λα−3)
4−λα

µα+(
√
−1)dimY (λα−3)
4−λα

µα+(
√
−1)dimY

4−λα

)

proving the last formula.

We recover results from [Ben18] for hyperplane sections in X = IGr(2, 2n).

Corollary 4.37. In particular if dimY ≡ 2 (mod 4) and J = Iℵ we have A = 0, the intersection
matrices (Γα ∪ Γβ)α,β∈Φℵ = 4Iℵ − Cℵ and

(σα ∪ σβ)α,β∈Φℵ∪−ϕℵ =

(
Cℵ − 2Iℵ Iℵ

Iℵ 0

)
.

This occurs for X = OGr(2, 2n + 1), X = IGr(2, 2n) or X of (co)adjoint type for the group F4.

For α ∈ Φℵ, we write

σ∨
α =

∑
β∈Φℵ

(pα,βσβ + qα,βσ−β) and σ∨
−α =

∑
β∈Φℵ

(rα,βσβ + sα,βσ−β).

Set P = (pα,β)α,β∈Φℵ , Q = (qα,β)α,β∈Φℵ , R = (rα,β)α,β∈Φℵ and S = (sα,β)α,β∈Φℵ .

Proposition 4.38. Set ε = (
√
−1)dimY . We have the equality(

P Q
R S

)
= εJ(4Iℵ − Cℵ)−1

(
J + εIℵ −J − ε(Cℵ − 3Iℵ)

−J − ε(Cℵ − 3Iℵ) J + ε(Cℵ − 3Iℵ)2

)
.
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Proof. The above matrix is the inverse of the matrix (σα ∪ σβ)α,β∈Φℵ∪−Φℵ . Since J and Cℵ
commute and from Theorem 4.36, we have(

P Q
R S

)
= (4Iℵ − Cℵ)

(
J + (

√
−1)dimY (Cℵ − 3Iℵ)2 J + (

√
−1)dimY (Cℵ − 3Iℵ)

J + (
√
−1)dimY (Cℵ − 3Iℵ) J + (

√
−1)dimY Iℵ

)−1

.

The above inverse is easily computed since all matrices involved in the blocks commute. We get

(
√
−1)dimY J−1(4Iℵ − Cℵ)−2+1

(
J + (

√
−1)dimY Iℵ −J − (

√
−1)dimY (Cℵ − 3Iℵ)

−J − (
√
−1)dimY (Cℵ − 3Iℵ) J + (

√
−1)dimY (Cℵ − 3Iℵ)2

)
.

The result follows from this and the fact that J−1 = J since J is involutive.

Example 4.39. 1. For G not of type A, we compute the class σ∨
α0

+σ∨
−α0

as a linear combination
of classes (σα, σ−α)α∈Φℵ . Since we are computing this sum, we consider the sums P +R = J
and Q+S = J(3Iℵ−Cℵ) and we are looking for the line corresponding to the root α0. Since
i(α0) = α0, we may ignore the matrix J and we get

σ∨
α0

+ σ∨
−α0

= σα0 + σ−α0 +
∑

β∈Φℵ,⟨β∨,α0⟩<0

σ−β = j∗σα0,X .

2. For G of type A, we can use the same technique and we get

σ∨
α1

+σ∨
−α1

= σαn+σ−αn+σ−αn−1 = j∗σαn,X and σ∨
αn

+σ∨
−αn

= σα1+σ−α1+σ−α2 = j∗σα1,X .

4.3.3 Generators and relations

At this point, one may notice that a multiplicative set of generators of H∗(Y ) is given by a set
of generators of j∗ H∗(X) and the classes σ−α for α > 0 simple. This comes from the fact that
the multiplication by the hyperplane class generates all classes σ−β for β > 0 non simple (by
Lefschetz hyperplane theorem). Moreover notice that all intersection products can be derived from
the Chevalley formula, the intersection product inside j∗ H(X) and the results in the previous
section. Since we have described a set of generators of H∗(Y ), we want to recover a complete set
of relations. Let us suppose that

H∗(X) = Q[ηX1 , · · · , ηXg ]/(RX
1 , · · · , RX

r ),

where ηXi is a generator of degree di and Rj are homogeneous relations. We will suppose that ηX1
is the class of a hyperplane section of X ⊂ P(V ). Notice that the generators can be chosen so that
their degree is < dim(X)/2 because multiplication by the hyperplane class generates all classes of
degree > dim(X)/2 (again by Lefschetz hyperplane theorem). We will denote by ηi := j∗ηXi . The
following lemma is a general result for hyperplane sections.

Lemma 4.40. If RX is a relation in H∗(X) and RX = ηX1 QX for a certain element QX ∈ H∗(X)
then j∗QX = 0. All the relations in j∗ H∗(X) are either of this kind or the pull-back of a relation
in H∗(X).

Proof. Since j∗j
∗(•) = ηX1 ∪ •, it is clear that if R is a polynomial in the variables η1, · · · , ηg

which vanishes inside j∗ H∗(X), then j∗R = ηX1 RX , where RX is the same polynomial R but in
the variables ηX1 , · · · , ηXg ; thus either RX = 0 or ηX1 RX = 0. The first assertion is a classical fact
about hyperplane sections.

Let RX be a relation in H∗(X). We define R as follows:

R :=

{
j∗QX if RX = ηX1 QX ,
R := j∗RX otherwise.

Let us denote by J the ideal generated by RX
1 , · · · , RX

r , and by j∗J the ideal generated by
all R’s obtained from all relations RX ∈ J . The previous lemma proves the equality j∗ H∗(X) =
Q[η1, · · · , ηg]/j∗J . Let us denote by α1, · · · , αn the simple roots in Φℵ and let [pt] = L(η1, · · · , ηg) ∈
H∗(Y ).
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Theorem 4.41. The cohomology of Y admits the following presentation

H∗(Y ) = Q[η1, · · · , ηg, σ−α1
, · · · , σ−αn

]/I,

where I is the ideal generated by j∗J and the following relations:

(σ−αiηj)1≤i≤n,1≤k≤g = (j∗(((4Iℵ − Cℵ)−1σ−αi,X)ηXj ))1≤i≤n,1≤k≤g,

(σ−αi
σ−αj

)1≤i,j≤n = (J + (
√
−1)dimY Iℵ)(4Iℵ − Cℵ)−1L(η1, · · · , ηg).

Remark 4.42. Notice that:

1. in the second set of relations, (4Iℵ − Cℵ)−1 : Hdim(X)+1(X) → Hdim(X)−1(X) is the inverse
of the multiplication by the hyperplane section in the two basis σ−α1,X , · · · , σ−αn,X and
σα1,X , · · · , σαn,X ;

2. σαi,X can be expressed in terms of the generators ηX1 , · · · , ηXg using the Giambelli formulas
for X, thus the RHS of the second set of relations (and of the third set of relations) is a
polynomial in ηX1 , · · · , ηXg ;

Proof. The first set of relations are a consequence of Lemma 4.40, while the third set of relations
are a consequence of Theorem 4.36. Let us deduce the second set of relations. In order to do so, we
want to compute coefficients cβi,j such that σ−αi

∪ηj =
∑

β∈ℵ cβi,jσβ . Note that, in such a situation,

if the coefficient cβi,j is non-zero then β is negative and not simple. Then, by Corollary 4.15,

j∗(σ−αi ∪ηj) =
∑

β∈ℵ cβi,jσβ,X . Moreover, by the projection formula, j∗(σ−αi ∪ηj) = σ−αi,X ∪ηXj .

Now, from the Chevalley formula for X, we know that the multiplication by the hyperplane class ηX1
from the dim(X)−1-cohomology of X to the dim(X)+1-cohomology is given by the matrix 4I−Cℵ.
Thus, by inverting this matrix, one gets that j∗j

∗((4I − Cℵ)−1σ−αi,X ∪ ηXj ) = σ−αi,X ∪ ηXj =

j∗(σ−αi
∪ ηj). Therefore we easily obtain that σ−αi

∪ ηj = j∗((4I − Cℵ)−1σ−αi,X ∪ ηXj ), and the
RHS is computable in the cohomology of X.

In order to prove that these relations generate the ideal I, consider an element R in I. Modding
out by the second and third set of relations, R can be rewritten as P +

∑
i aiσ−αi

with P ∈
Q[η1, · · · , ηn] and ai ∈ Q for 1 ≤ i ≤ n. Since this element R vanishes in the cohomology of Y , we
have that ai = 0 for all 1 ≤ i ≤ n and, by Lemma 4.40, P ∈ j∗J .

As an application let us explicitly give a presentation of the classical cohomology for hyperplane
sections of the adjoint and coadjoint variety of F4. We will use the presentation of cohomology
of X as it appears in [CP11] (for Giambelli formulas, we will refer to its companion file [CP09]).
Notice that in both cases we have

A = 0, 4I − Cℵ =

(
2 1
1 2

)
and (4I − Cℵ)−1 =

(
2/3 −1/3
−1/3 2/3

)
.

We will denote by α1, α2, α3, α4 the simple roots of F4, following Bourbaki’s convention [Bou02].

F4-adjoint: Let X = F4/P1 be the adjoint variety of F4, and let Y ⊂ X ⊂ P(f4) be a general
hyperplane section. A presentation of the cohomology ring of X is given by

H∗(X) = Q[hX , sX ]/J , with J = (h8
X − 12s2X , 3h12

X − 18h8
XsX + 24h4

Xs2X + 8s3X),

where hX is the hyperplane class of degree one and sX is a class of degree four. By the Giambelli
formulas we have σα1,X = 3/8h7

X − 5/4h3
XsX and σα2,X = −1/8h7

X + 1/2h3
XsX . After some

computations we obtain that

H∗(Y ) = Q[h, s, σ−α1
, σ−α2

]/


j∗J ,

24σ−α1
h− 5h8 + 24h4s, 24σ−α2

h + 4h8 − 18h4s,
24σ−α1

s− 5h7s + 24h3s2, 24σ−α2
s + 4h7s− 18h3s2,

σ2
−α1

, σ2
−α2

, σ−α1σ−α2

 .
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F4-coadjoint: Let X = F4/P4 be the coadjoint variety of F4, and let Y ⊂ X be a general
hyperplane section. A presentation of the cohomology ring of X is given by

H∗(X) = Q[hX , sX ]/J , with J = (2h8
X − h4

XsX + 3s2X ,−11h12
X + 26h8

XsX + 24h4
Xs2X),

where hX is the hyperplane class of degree one and sX is a class of degree four. By the Giambelli
formulas we have σα3,X = h7

X − 2h3
XsX and σα4,X = −2h7

X + 5h3
XsX . After some computations

we obtain that

H∗(Y ) = Q[h, s, σ−α3
, σ−α4

]/


j∗J ,

3σ−α3
h + 9h8, 3σ−α4

h− 5h8 + 12h4s,
3σ−α3

s + 9h7s, 3σ−α4
s− 5h7s + 12h3s2,

σ2
−α3

, σ2
−α4

, σ−α3σ−α4

 .

5 Towards quantum cohomology

In this section we describe moduli spaces of stables maps to Y and give techniques to compute
Gromov-Witten invariants on Y . In particular, we compute a quantum Chevalley formula and
prove results on the semi-simplicity of the quantum cohomology of Y .

5.1 Moduli spaces of curves

In this subsection we prove basic results on moduli spaces of stable maps to Y a general hyperplane
section of a (co)adjoint variety X. We start with general results on rational curves on linear sections
of homogeneous spaces.

5.1.1 Linear sections of homogeneous spaces

Let Z be a smooth projective variety, fix a non degenerate embedding Z ⊂ P(V ) and set OZ(1) =
OP(V )(1)|Z so that V ∨ = H0(Z,OZ(1)). For η ∈ H2(Z,Z), set d = ⟨OZ(1), η⟩ where ⟨−,−⟩ is

the pairing between divisors and curves on Z. Let M0,n(Z, η) be the moduli space of genus zero
n-pointed stable maps to Z of class η. Recall that the expected dimension of M0,n(Z, η) is

expdim(M0,n(Z, η)) = ⟨−KX , η⟩ + dimZ + n− 3

and that any irreducible component of M0,n(Z, η) has dimension at least expdim(M0,n(Z, η)).
For all i ∈ [1, n], we have evaluation maps evi : M0,n(Z, η) → Z and forgetful maps π :

M0,n+1(Z, η) → M0,n(Z, η). These maps induce the following diagram with e := evn+1. We
denote by F := π∗e

∗OZ(1).

M0,n+1(Z, η)
e //

π

��

Z

M0,n(Z, η).

Lemma 5.1. The sheaf F is locally free of rank d + 1 and Riπ∗e
∗OZ(1) = 0 for i > 0.

Proof. Let f := (f : C → Z, p1, · · · , pn) ∈ M0,n(Z, η). We have an isomorphism C ≃ π−1(f) and
e∗OZ(1)|π−1(f) = f∗OZ(1). Furthermore, since OZ(1) is globally generated, so is f∗OZ(1). Since

C is rational, we have Riπ∗e
∗OZ(1) = 0 for i > 0 and F is locally free of rank dimH0(C, f∗OZ(1)).

The result follows.

Note that we have a map H0(Z,OZ(1)) ⊗ OM0,n(Z,η) → F whose restriction to the stalk at

f = (f : C → Z, p1, · · · , pn) ∈ M0,n(Z, η) is given by H0(Z,OZ(1)) → H0(C, f∗OZ(1)).

Definition 5.2. A map f = (f : C → Z, p1, · · · , pn) ∈ M0,n(Z, η) is called non-degenerate if the
restriction map H0(Z,OZ(1)) → H0(C, f∗OZ(1)) is surjective.
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Note that f is non-degenerate if and only if the map H0(Z,OZ(1))⊗OM0,n(Z,η) → F is surjective

at f . In particular, the locus of non-degenerate stable maps is open. Let Mdeg(Z) ⊂ M0,n(Z, η)
be the locus of maps which are degenerate.

Remark 5.3. Let f = (f : C → Z, p1, · · · , pn) ∈ M0,n(Z, η).

1. Assume that d = 1, then f(C) is a line in P(V ) and f is always non-degenerate.

2. Assume that d = 2, then f is non-degenerate except if f(C) is a line and f : C → f(C) is a
double cover. Indeed, otherwise f(C) is a conic in P(V ) and spans a plane.

Let j : Z ′ ⊂ Z be a general linear section of codimension r such that j∗ : H2(Z ′,Z) → H2(Z,Z)
is an isomorphism (for example dim(Z ′) ≥ 3). We may thus consider η as an element of H2(Z ′,Z).

Proposition 5.4. Assume that M0,n(Z, η) is of expected dimension and let Z ′ ⊂ Z be a general
linear section of codimension r.

1. Any irreducible component of M0,n(Z ′, η) \Mdeg(Z ′) is of expected dimension.

2. If M0,n(Z, η) is smooth or has rational singularities, then so is M0,n(Z ′, η) \Mdeg(Z ′).

Proof. We may work over M0,n(Z, η)\Mdeg(Z). Let φ ∈ Hom(Or
Z ,OZ(1)) be the map defining Z ′.

Then φ induces a map Or → F and M0,n(Z ′, η) is the vanishing locus of this map in M0,n(Z, η).
Since F is globally generated on M0,n(Z, η) \Mdeg(Z), the result follows from classical results on
sections of globally generated vector bundles that we recall in Lemma 5.5.

Lemma 5.5. Let M be an irreducible variety and F be a globally generated vector bundle of rank
d + 1. Assume that the zero locus V (φ) of a general map φ : Or

M → F is non empty, then V (φ)
is equidimensional of dimension dimV (φ) = dimM − r(d + 1).

1. If M is smooth, then V (φ) is smooth.

2. If M has rational singularities, then V (φ) has rational singularities.

Proof. We include a short proof for the convenience of the reader. We identify the sheaf F with
the associated vector bundle F → M over M . By assumption, the vector bundle map

p : H0(M,Fr) ×M → Fr

is surjective and linear of maximal rank on the fibers over M . Let M0 ⊂ F be the zero section
which is isomorphic to M and therefore smooth. The inverse image p−1(M0) is therefore also
smooth and of dimension dimM + dimH0(M,Fr) − r(d + 1). We have a map

π : p−1(M0) → H0(M,Fr)

given by the first projection and for φ ∈ Hom(Or
M ,F) = H0(M,Fr), the vanishing locus V (φ)

is the fiber π−1(φ). By assumption, this map is dominant. The first assertion follows from the
generic dimension of the fibers of π.

(1) Follows from generic smoothness of the fibers of π.
(2) Follows from a similar general rational smoothness result of Brion, see [Bri02, Lemma 3].

Remark 5.6. In items 1. and 2. of Proposition 5.4, we may have M0,n(Z ′, η) = Mdeg(Z ′).
In particular, if r ≥ dimH0(Z,OZ(1)) − d this is always the case. Indeed, if f = (f : C →
Z, p1, · · · , pn) is a non degenerate map and r ≥ H0(Z,OZ(1)) − d, there exists no map φ : Or

Z →
OZ(1) with dim(φ(H0(Z,Or

Z))) = r such that the composition H0(Z,Or
Z)

φ→ H0(Z,OZ(1)) →
H0(C, f∗OZ(1)) vanishes.

We now apply the above results to linear sections of rational projective homogeneous spaces.
We first recall few facts on M0,n(Z, η) for Z a projective rational homogeneous space.

Theorem 5.7 (See [Tho98],[KP01],[Per02]). For Z a projective rational homogeneous space and
η effective, the moduli space M0,n(Z, η) is irreducible, rational and has rational singularities.
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Corollary 5.8. Let Z ⊂ P(V ) be a projective rational homogeneous space with Pic(Z) = ZOZ(1).
Write ω−1

Z = OZ(c1(Z)) with c1(Z) > 0. Let η ∈ H2(Z,Z) an effective class and set d = ⟨OZ(1), η⟩.
Let Z ′ ⊂ Z be a general linear section of codimension r < dimZ in Z.

1. If d = 1 then any irreducible component of M0,n(Z ′, η) is smooth of expected dimension.

2. If d = 1 then M0,n(Z ′, η) is non-empty for r ≤ c1(Z) − 2 and irreducible for r < c1(Z) − 2.

3. If d = 2 and r ≤ c1(Z) − 2, then M0,n(Z ′, η) is non-empty of expected dimension.

4. If d = 2 and r < c1(Z) − 2, then M0,n(Z ′, η) \Mdeg(Z ′) is non empty, has rational singu-
larities and is dense in M0,n(Z ′, η).

Proof. (1) For d = 1, there is no degenerate map and the moduli space of maps to homogeneous
spaces is smooth by a result of Landsberg and Manivel, see [LM03]. This proves the result.

(2) We may assume n = 1. Consider the map ev1 : M0,1(Z, η) → Z whose fiber Fz over
z ∈ Z is a smooth projective variety (by Landsberg and Manivel [LM03], in this paper the set of
lines in a variety X through a point x is denoted by Base|FF2

X,x|) of dimension c1(Z) − 2. For

z ∈ Z ′, the subset of elements in Fz that are contained in M0,1(Z ′, η) is given by a linear section
of codimension r in Fz (whose embedding is given by the projective space of lines through z). The
fiber is non-empty as soon as r ≤ c1(Z)− 2. Furthermore, for r < c1(Z)− 2, the fiber is connected
by [FH79] and thus M0,1(Z ′, η) is connected and since it is smooth by (1), we get the irreducibility.

For (3) and (4), we first remark that M0,n(Z ′, η) is non empty since it contains the locus of
double maps to a line and since the space of lines is non-empty by (2). We compute the dimension
dimMdeg(Z ′) of degenerate maps which is given by the dimension of double covers to lines in Z ′.
By (1), we get dimMdeg(Z ′) = dimZ + c1(Z) + n− 3 + 2 − 2r ≤ expdimM0,n(Z ′, η) with a strict
inequality for r < c1(Z) − 2. This proves the result, noting that in (4) the degenerate maps have
a too small dimension to form an irreducible component, while in (3) for r = c1(Z) − 2, the space
Mdeg(Z ′) will form an irreducible component.

Remark 5.9. We discuss on the condition r < c1(Z) − 2 in (2) and (4) above.

1. The conditions r ≤ c1(Z)− 2 and r < c1(Z)− 2 are not sharp in (2) above. Indeed, consider
Z = Gr(2, 5) and Z ′ ⊂ Z be a general linear section of codimension 4. Then Z ′ is a del Pezzo
surface of degree 5 and does contain lines. If we consider Z ′ ⊂ Z a general linear section of
codimension 3, then Z ′ is the Fano threefold of degree 5 and r = 3 = c1(Z) − 2. However, it
is well known that the Fano variety of lines in Z ′ is isomorphic to P2 and therefore irreducible
(see for instance [KPS16]).

2. The condition r < c1(Z) − 2 is sharp in (4) above. Indeed an easy dimension count shows
that dimMdeg(Z ′) = expdimM0,n(Z ′, η) so that degenerate stable maps form an irreducible
component. For example, consider again Z = Gr(2, 5) and Z ′ ⊂ Z the general linear section
of codimension 3 which is the Fano threefold of degree 5. It was proved in [FGP19] that for
d = 2, the space M0,n(Z ′, η) has two irreducible components, both of expected dimension,
one of which is formed by degenerate conics.

5.1.2 Lines in Y

We now apply the above results to a general hyperplane section Y in an adjoint or a quasi-minuscule
variety X. We start with basic results on lines.

Proposition 5.10. Let X be an adjoint or a quasi-minuscule variety with Pic(X) = Z and let
Y ⊂ X be a general hyperplane section. Let η ∈ H2(X,Z) with d = ⟨OX(1), η⟩ = 1.

Then M0,n(Y, η) is smooth irreducible of expected dimension.

Proof. If X is a projective space or a quadric, then all the assertions are true, so we may assume
that X is neither a projective space nor a quadric.

If X is not adjoint of type G2, we have c1(X) ≥ 4 and the result follows from Corollary 5.8.
For X adjoint of type G2, then c1(X) = 3 and we need to use a different technique. Note that
the Fano variety of lines is F (X) = G2/P2 and is a smooth quadric. Furthermore, our result on
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T -stable curves prove that all T -fixed points in F (X) also lie in F (Y ), the Fano variety of lines
in Y . Now since F is globally generated on all Bia lynicki-Birula cells, the restriction of the open
cell of F (X) is open and dense in F (Y ) and since it contains a unique T -fixed point it must be
connected, proving the result. Note that this proof works in all (co)adjoint cases.

We can give more precise results on lines. Let F (X) denote the Fano variety of lines inside X,
and let F (Y ) denote the Fano variety of lines inside Y . Note that we have F (X) = M0,0(X, η) and
F (Y ) = M0,0(Y, η) where ⟨η,OX(1)⟩ = 1 (in type A there are two families of lines). Clearly F (X)
admits an action of G, induced by the action of G on X. It turns out that F (X) is a homogeneous
variety when X is an adjoint variety; in [LM03], a complete description of F (X) when X is adjoint
is given (the result in [LM03] also applies in a more general case than X adjoint). In Table 9 we
report the list of Fano varieties F (X) when X is adjoint. From now on, we will leave aside the Cn

case because the geometry of P2n−1 is well known. Notice that in the An case we reported the two
families of curves corresponding to the two generators of H2(X,Z).

G g Adjoint variety Fano variety of lines
An = SLn+1 sln+1 Fl(1, n;n + 1) Fl(2, n;n + 1) ∪ Fl(1, n− 1;n + 1)
Bn = SO2n+1 so2n+1 OGr(2, 2n + 1) OF(1, 3; 2n + 1)
Dn = Spin2n so2n OGr(2, 2n) OF(1, 3; 2n)

G2 g2 G2/P1 G2/P2 = Q5

F4 f4 F4/P1 F4/P2

E6 e6 E6/P2 E6/P4

E7 e7 E7/P1 E7/P3

E8 e8 E8/P8 E8/P7

Table 9: Fano varieties of lines of adjoint varieties

In the coadjoint situation, the interesting cases are given by the Cn and the F4 groups, as
already remarked in the previous sections; the Fano variety of lines, even though it admits an
action of G, is not homogeneous in these two cases.

� X = IGr(2, 2n): the Fano variety F (X) is a subvariety of F (1, 3, 2n), that is the Fano variety
of lines of Gr(2, 2n). As a subvariety of F (1, 3, 2n), the variety F (X) is the zero locus of a
general section of the vector bundle U∗

1 ⊗ (U3/U1)∗; indeed, a general section of this bundle
is a non degenerate skew-symmetric form, and the condition that defines the zero locus is
exactly the one that ensures that the corresponding line is contained inside IGr(2, 2n). Notice
that F (X) contains the homogeneous variety IF(1, 3, 2n) as its hyperplane section.

� X = F4/P4: in this case, recall that X is a hyperplane section of E6/P6 ⊂ P(J3(O)). More-
over, by [LM03], the Fano variety of lines of E6/P6 is F (E6/P6) = E6/P5 ⊂ Gr(2, J3(O)).
Thus, F (X) ⊂ E6/P5 is the zero locus of a general section of U∗

2 |E6/P5
.

5.1.3 Conics in Y

We turn to the moduli space of stable maps of degree 2.

Theorem 5.11. Let X be an adjoint or a quasi-minuscule variety and let Y ⊂ X be a general
hyperplane section. Let η ∈ H2(X,Z) with d = ⟨OX(1), η⟩ = 2.

1. If X is not the adjoint variety of type G2, then M0,n(Y, η) is irreducible with rational singu-
larities outside of Mdeg(Y ) and of expected dimension.

2. If X is the adjoint variety of type G2, then M0,n(Y, η) has two irreducible components, both
of expected dimension, one of which is formed by degenerate conics.

Proof. We may assume that X is neither a projective space nor a quadric. In particular c1(X) ≥ 3
and Corollary 5.8 implies that M0,n(Y, η) is of expected dimension dimY + 2c1(Y ) + n− 3.

Note that degenerate conics are given by double covers of lines. In particular dimMdeg(Y ) =
dimY + c1(Y ) + n − 1 and in all cases except if c1(X) = 3 degenerate curves will not form an
irreducible component. The only case for which c1(X) = 3 is the adjoint variety of type G2.
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We are left to prove that M0,n(Y, η)\Mdeg(Y ) is irreducible. Since it has rational singularities
by Corollary 5.8, it is enough to prove that it is connected. Set MY = M0,n(Y, η) \Mdeg(Y ) and
MX = M0,n(X, η) \Mdeg(X) and recall that MY is the zero locus of a rank 3 vector bundle F on
MX . Recall also (e.g. from [Laz04, Remark 6.2.18]) that F is k-ample if OPMX

(F)(m) is globally

generated for some m > 0 and if the map PMX
(F) → P(H0(PMX

(F),OPMX
(F)(m)) has fibers of

dimension at most k. A result of Tu ([Tu90], see also [Laz04, Remark 7.2.11]) asserts that if F is
k-ample, the zero locus of a general section of F is connected if dimMX > Rk(F) + k. We claim
that F is 2c1(X) + n− 2 ample and since dimMX − Rk(F) − (2c1(X) + n− 2) = dimX − 4 > 0
the result will follow from this claim.

To prove the claim, first note that by construction F = π∗ev∗OX(1). For f ∈ MX let Cf be the
conic image of f and ⟨Cf ⟩ be the plane generated by this conic (this is indeed a plane since f is non
denegerate). We thus have PMX

(F) = {(f, x) | f ∈ MX , x ∈ ⟨Cx⟩}, the line bundle OPMX
(F)(1)

is globally generated and the map Φ : PMX
(F) → P(H0(PMX

(F),OPMX
(F)(1)) is simply given by

(f, x) 7→ x. Note that the map Φ is G-equivariant and that its image contains X as unique closed
G-orbit (in fact X is the unique closed G-orbit in P(V )). In particular, the dimension of the fibers
Φ−1(x) is maximal for x ∈ X.

Let x ∈ X, then Φ−1(x) = {f ∈ MX | x ∈ ⟨Cf ⟩}. Let f ∈ Φ−1(x) and P = ⟨Cf ⟩. If x ̸∈ Cf ,
then P ∩ X contains x and the conic Cf . But since X is cut out by quadrics, this implies that
P ⊂ X. In particular Φ−1(x) = {f ∈ Mx | x ∈ Cf} ∪ {f ∈ MX | x ∈ ⟨Cf ⟩ ⊂ X}. By a result of
Landsberg and Manivel [LM03] the dimension of planes contained in X is known and the second
part of this union has dimension smaller than 2c1(X) + n − 2. The first part is the fiber of the
evaluation map and has dimension 2c1(X) + n− 2 proving the claim.

5.2 Comparing Gromov-Witten invariants in X and Y

In this section we compare Gromov-Witten invariants in Y with Gromov-Witten invariants in X.
Note that for Gromov-Witten invariant of degree 1 or 2, since the moduli space M0,n(Y, η) has
expected dimension, the virtual class is the fundamental class and therefore, for σX , σ′

X , σ′′
X ∈

H∗(X,Z) and σY , σ
′
Y , σ

′′
Y ∈ H∗(Y,Z), we have by definition:

⟨σX , σ′
X , σ′′

X⟩Xη =

∫
M0,3(X,η)

ev∗
1σX ∪ ev∗

2σ
′
X ∪ ev∗

3σ
′′
X and

⟨σY , σ
′
Y , σ

′′
Y ⟩Yη =

∫
M0,3(Y,η)

ev∗
1σY ∪ ev∗

2σ
′
Y ∪ ev∗

3σ
′′
Y .

Lemma 5.12. Let j : Y → X be the inclusion and let η ∈ H2(X,Z) with ⟨η,OX(1)⟩ = 1.
Let Z,Z ′ ⊂ Y be two closed subvarieties such that Z ∩ Z ′ = ∅. Then for any τX ∈ H∗(X,Z)

we have ⟨[Z], [Z ′], j∗τX⟩Yη = ⟨j∗[Z], j∗[Z ′], τX⟩Xη .

Proof. Consider the following diagram:

M0,2(Y, η)

ev1,2

��

i // M0,2(X, η)

ev1,2

��
Y 2 j // X2.

Since any line in X meeting Y in two points is contained in Y , we have the equality i(ev−1
1,2(Z ×

Z ′)) = ev−1
1,2(j(Z) × j(Z ′)). Since furthermore both maps ev1,2 are flat outside the diagonal i.e.

over X2 \ ∆X and Y 2 \ ∆Y (in fact the above square is Cartesian away from the diagonals), we
get the equalities:

i∗ev∗
1,2([Z] × [Z ′]) = [ev−1

1,2(Z × Z ′)] = [ev−1
1,2(j(Z) × j(Z ′))] = ev∗1,2(j∗[Z] × j∗[Z ′]).

We thus have
⟨[Z], [Z ′], j∗τX⟩Yη =

∫
M0,3(Y,η)

ev∗
1,2([Z] × [Z ′]) ∪ ev∗

3j
∗τX

=
∫
M0,3(Y,η)

ev∗
1,2([Z] × [Z ′]) ∪ i∗ev∗

3τX
=
∫
M0,3(X,η)

ev∗
1,2j∗([Z] × [Z ′]) ∪ ev∗

3τX
= ⟨j∗[Z], j∗[Z ′], τX⟩Xη ,
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proving the result.

Proposition 5.13. Let σY , σ
′
Y ∈ H∗(Y,Z) and τX ∈ H∗(X,Z) with deg(τX) < c1(Y ) = c1(X)−1.

Let j : Y → X be the inclusion and let η ∈ H2(X,Z) with ⟨η,OX(1)⟩ = 1. Then we have
⟨σY , σ

′
Y , j

∗τX⟩Yη = ⟨j∗σY , j∗σ
′
Y , τX⟩Xη .

Proof. First note that the degree conditions on both sides agree so that these invariants can only be
simultaneously non-zero. Note also that if these invariants do not vanish, then deg(σY )+deg(σ′

Y ) =
dimY +c1(Y )−deg(τX) > dimY . In particular, for d = deg(σY ) and d′ = deg(σ′

Y ) fixed, the basis
([Yα])α of classes of Schubert varieties in H2d(Y,Z) and the basis ([Y −

β ])β of classes of Schubert

varieties in H2d′
(Y,Z) are such that Yα ∩ Y −

β = ∅. We may therefore assume that σY = [Z] and
σ′
Y = [Z ′] are effective classes with Z ∩ Z ′ = ∅. The result now follows from Proposition 5.13.

5.3 Quantum Chevalley formula

For simplicity of the exposition, we assume that X is adjoint and quasi minuscule with Pic(X) = Z.
The only case not treated is therefore the adjoint variety of type A. We will give a description of
QH(Y ) for Y ⊂ X a general hyperplane section for X adjoint of type A in the appendix.

We first prove that the previous comparison result together with a unique invariant in degree 2
for adjoint varieties gives a complete formula for the quantum multiplication by h, the hyperplane
class in Y . Let [pt] be the class of a point in Y and [line] be the class of a line in Y .

Lemma 5.14. Assume that X is adjoint or quasi-minuscule and let h be the hyperplane class in
Y . Then the only non-vanishing Gromov-Witten invariants of the form ⟨σY , σ

′
Y , h⟩Yη are obtained

for ⟨η,OX(1)⟩ = 1 or for the invariant ⟨[pt], [line], h⟩Yη for X adjoint and ⟨η,OX(1)⟩ = 2.

Proof. Set d = ⟨η,OX(1)⟩. The Gromov-Witten invariant ⟨σY , σ
′
Y , h⟩Yη vanishes unless we have

deg σY + deg σ′
Y + deg h = dimY + dc1(Y ). In particular dc1(Y ) ≤ dimY + 1.

For X coadjoint non-adjoint, this implies d ≤ 1. If X is adjoint then dimY = 2c1(Y ), we get
dc1(Y ) ≤ 2c1(Y ) + 1 and therefore d ≤ 2. Furthermore, for d = 2, we get deg(σY ) + deg(σ′

Y ) =
2 dimY−1. The only possibilities (up to exchanging σY and σ′

Y ) is therefore obtained for deg(σY ) =
dimY and deg(σ′

Y ) = dimY − 1, proving the result.

Proposition 5.15. For X adjoint and η ∈ H2(X,Z) with ⟨η,OX(1)⟩ = 2, we have

⟨[pt], [line], h⟩Yη = 2.

Proof. Note that ⟨[pt], [line], h⟩Yη = 2⟨[pt], [line]⟩Yη and this last invariant is the number of conics
passing through a given point and meeting a given line.

Let x = xΘ = [vΘ] and y = x−Θ = [v−Θ]. The unique conic in X passing through x and y is
explicitly given by [s2vΘ +st[vΘ, v−Θ]+ t2v−Θ] (this is also the closure of exp(s advΘ) ·x−Θ, s ∈ C).

Consider a general line L passing through y in X. Note that the space of all lines through
y is homogeneous under a Levi factor of G, so that L = SL2 ·y for some subgroup SL2 ⊂ G. In
particular there exists z ∈ b with ad2

z = 0 such that [exp(u adz)·v−Θ] ∈ L and [exp(u adz)·vΘ] = vΘ
for all u ∈ C. The locus S covered by all conics in X passing through xΘ and meeting L is therefore
the closure of {[exp(u adz) · (s2vΘ + st[vΘ, v−Θ] + t2v−Θ)] | s, t, u ∈ C}. A computation gives

exp(u adz)·(s2vΘ+st[vΘ, v−Θ]+t2v−Θ) = s2vΘ+stu[z, [vΘ, v−Θ]]+st[vΘ, v−Θ]+ut2[z, v−Θ]+t2v−Θ.

We work in the space W = ⟨vΘ, [z, [vΘ, v−Θ]], [vΘ, v−Θ], [z, v−Θ], v−Θ⟩ and the above vector is given
by [s2 : stu : st : ut2 : t2] ∈ P(W ) = P4. The locus S is therefore given by the following equations
in P(W ): x0x4−x2

2 = x1x4−x2x3 = x0x3−x1x2 = 0. The locus covered by conics in Y meeting x
and L is therefore the intersection of S with the hyperplane (h = 0). We know that this hyperplane
(h = 0) has to contain x and L so its restriction to P(W ) has to contain [1 : 0 : 0 : 0 : 0] and
[0 : 0 : 0 : a : b] for all [a : b] ∈ P1. In particular the restriction of the equation (h = 0) to P(W ) is
of the form λx1 + µx2 = 0. The intersection with S is therefore given by the union of the line L
with the conic in P(W ) given by the following equations:

λx1 + µx2 = λx3 + µx4 = λx0x3 + µx2
2 = 0.

In particular, there is a unique conic joining x and L in Y , proving the result.
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For x =
∑

α∈Φ xαα, recall the definition of the support Supp(x) of x and recall from the
discussion before Theorem 4.13 the definition of |x| = |Supp(x)| and of ∥x∥ = max{|xα| | α ∈ Φ}.
If P is a boolean property, we write δP the function such that

δP =

{
1 If P is true
0 If P is false.

Recall that the quantum Chevalley formula is well known for homogeneous spaces.

5.3.1 Adjoint case

We first consider the cases for which X is adjoint not of type A. Let hX be the hyperplane class
in X and recall the quantum Chevalley formula for X (see [FW04] or [CP11]). Recall also that α0

is the unique simple root with ⟨Θ∨, α0⟩ ≠ 0.

Theorem 5.16. Assume that X is adjoint not of type A and let α ∈ ℵ.

1. If α > 0, then hX ⋆ σα,X = hX ∪ σα,X + δα=α0q.

2. If α < 0 and α ̸= −Θ, then hX ⋆ σα,X = hX ∪ σα,X + |⟨Θ∨, α⟩|q|⟨Θ∨,α⟩|σsΘ(α),X .

3. If α = −Θ, then hX ⋆ σα,X = qσ−α0,X + 2q2.

We now prove the following result.

Theorem 5.17 (Adjoint Quantum Chevalley formula). Assume that X is adjoint not of type A
and let Y ⊂ X be a general hyperplane section. Let α ∈ ℵ.

1. If α > 0 and deg(σα) < c1(Y ) − 1, then h ⋆ σα = h ∪ σα.

2. If α > 0 and deg(σα) = c1(Y ) − 1, then h ⋆ σα = h ∪ σα + ∥α∥qδα0≤α.

3. If α is simple, then h ⋆ σα = h ∪ σα + qhδα0≤α.

4. If α < 0 and |Θ + α| ≥ 2, then h ⋆ σα = h ∪ σα + |⟨Θ∨, α⟩|q|⟨Θ∨,α⟩|σsΘ(α).

5. If α < 0 and |Θ +α| = 1, then h⋆σα = h∪σα + q(σα0 +σ−α0 +
∑

β∈Φℵ,⟨β∨,α0⟩<0 σ−β) + 2q2.

6. If α = −Θ, then h ⋆ σα = 2q2h + q
∑

γ∈Φ,⟨γ∨,α0⟩<0 |⟨γ∨, α0⟩|σ−sγ(α0).

Remark 5.18. In the above formulas, we want to emphasize the following:

1. For α simple, we have h ⋆ σα = h ⋆ σ−α.

2. If α = α0 − Θ, we have h ⋆ σα = h ∪ σα + qj∗σα0,X + 2q2.

3. If α = −Θ, the Chevalley formula in X gives h ⋆ σα = 2q2h + qh ∪ σ−α0
.

Proof. Note that the non quantum part of the product h ⋆ σα is given by the classical Chevalley
formula (see Corollary 4.18). We may thus write

h ⋆ σ = h ∪ σα +
∑

d>0,β∈ℵ

⟨h, σα, σ
∨
β ⟩Yd qdσβ .

(1) There is no quantum correction for degree reasons and the result follows.
(2) Since deg(σα) = c1(Y )−1, the only non-trivial Gromov-Witten invariant is ⟨h, σα, [pt]⟩Y1 =

⟨hX , j∗σα, [pt]⟩X1 . But because of the value of the degree, we have σα = j∗σα,X therefore j∗σα =
j∗j

∗σα,X = hX ∪ σα,X =
∑

β∈Φ, ⟨β∨,α⟩>0⟨β∨, α⟩σsβ(α),X . The roots sβ(α) appearing in the former

sum are simple and the invariant ⟨hX , σsβ(α),X , [pt]⟩X1 vanishes unless sβ(α) = α0 and is equal to
1 if sβ(α) = α0. This proves the result.

(3) If α is simple, the only non-vanishing Gromov-Witten invariants are in degree 1 and of the
form ⟨h, σα, [line]⟩Y1 = ⟨hX , j∗σ±α, [line]⟩X1 = ⟨hX , σ−α,X , [line]⟩X1 (note that the same occurs for
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σ−α which leads to the formula h ⋆ σα = h ⋆ σ−α for α simple given in Remark 5.18.(2)). But we
have ⟨hX , σ−α,X , [line]⟩X1 = δα=α0

, proving the result.
(4) Assume that α < 0 and |Θ + α| ≥ 2. Then deg(σα) ∈ [c1(Y ) + 1, 2c1(Y ) − 2]. The

only non vanishing Gromov-Witten invariants are in degree 1 and of the form ⟨h, σα, σ
∨
β ⟩Y1 with

deg(σβ) = deg(σα) + 1 − c1(Y ). In particular, for such invariants, we have σ∨
β = σ−

β = σw0(β).

Indeed, for β > 0, we have j∗σ
∨
β = j∗σ

−
β = σ−

β,X = σ∨
β,X = σw0(β),X = j∗σw0(β). Therefore, we have

⟨h, σα, σ
∨
β ⟩Y1 = ⟨h, σα, σw0(β)⟩Y1 = ⟨hX , σα,X , σw0(β),X⟩X1 = ⟨hX , σα,X , σ∨

β,X⟩X1 proving the result.
(5) If α < 0 and |Θ + α| = 1, then deg(σα) = 2c1(Y ) − 1 and σα = [line]. The only non-

trivial Gromov-Witten invariants in degree 1 are ⟨h, σα, σ±β⟩Y1 = ⟨hX , j∗σα, j∗σ±β⟩X1 where β is
a simple root. We thus have ⟨h, σα, σ±β⟩Y1 = ⟨hX , [line], σ−β,X⟩X1 = δβ,α0

, proving the formula
h ⋆ σα = h ∪ σα + q(σ∨

α0
+ σ∨

−α0
) + 2q2. The result follows by applying Exampe 4.39.

(6) If α = −Θ then deg(σα) = 2c1(Y ) and σα = [pt]. The only non-trivial Gromov-Witten in-
variants in degree 1 are ⟨h, σα, σβ⟩Y1 = ⟨hX , j∗σα, j∗σβ⟩X1 = ⟨hX , [pt], j∗σβ⟩X1 where deg(σβ) =
c1(Y ) − 1. In particular we have σβ = j∗σβ,X and thus j∗σβ = j∗j

∗σβ,X = hX ∪ σβ,X =∑
γ∈Φ, ⟨γ∨,β⟩>0⟨γ∨, β⟩σsγ(β),X . In the former sum, the roots sγ(β) are simple. The invariant

⟨hX , [pt], σsγ(β),X⟩X1 vanishes unless sγ(β) = α0 in which case the invariant is equal to 1. Since
this last condition is equivalent to β = sγ(α0), we thus get

h ⋆ σα = 2q2h + q
∑

γ∈Φ,⟨γ∨,α0⟩<0

|⟨γ∨, α0⟩|σ∨
sγ(α0)

.

Now σ∨
sγ(α0)

= σw0(sγ(α0)) and w0(sγ(α0)) = sw0(γ)(w0(α0)) = −s−w0(γ)(α0) since w0(α0) = −α0.

Since −w0(Φ) = Φ, and ⟨γ∨, α0⟩ = ⟨−w0(γ)∨,−w0(α0)⟩ = ⟨−w0(γ)∨, α0⟩, we get

h ⋆ σα = 2q2h + q
∑

γ∈Φ,⟨γ∨,α0⟩<0

|⟨γ∨, α0⟩|σ−sγ(α0),

finishing the proof.

Corollary 5.19. Assume that X is adjoint not of type A. Then we have, for all α ∈ Φℵ, the
equalities h ⋆ ([pt] − qσα0

− q2) = h ⋆ ([pt] − qσ−α0
− q2) = 0.

Recall the definiton of H(Y )na = Ker(j∗|HdimY (Y )), the non ambient part of the middle coho-
mology (see Definition 4.23). Then (Γα)α∈Φℵ is a basis of H(Y )na with Γα = σα − σ−α.

Corollary 5.20. Assume that X is adjoint not of type A. We have h ⋆ Γα = 0 for all α ∈ Φℵ.

Proof. Indeed for α ∈ Φℵ, we have h ⋆ σα = h ⋆ σ−α.

We now consider the endomorphisms EX = (hX ⋆−) on QH(X) and EY = (h ⋆−) on QH(Y ).
For k ∈ [0, c1(X) − 1], we set QHk(X) = ⊕i≥0H

2k+2ic1(X)(X,Q) and for k ∈ [0, c1(Y ) − 1], we set

QHk(Y ) = ⊕i≥0H
2k+2ic1(Y )(X,Q).

Set W = ⟨(Γα)α∈ℵ, [pt] − qσ−α0
− q2⟩, QH(Y )res = QH(Y )/W and πres : QH(Y ) → QH(Y )res

the projection. Since W ⊂ KerEY , the map EY restricts to a map ĒY : QH(Y )res → QH(Y )res.
Note that since W ⊂ QH0(Y ), the Z/c1(Y )Z-grading of QH(Y ) descends to a Z/c1(Y )Z-grading
on QH(Y )res and since h is homogeneous of degree 1, the map ĒY is homogeneous of degree 1. Set

QH(X)res =

c1(Y )−1⊕
k=0

QHk(X).

We define the following Q-linear map ג : QH(X)res → QH(Y )res via

H2k(X,Q)|ג =

{
πres ◦ j∗ for k ∈ [0, c1(Y ) − 1]
πres ◦ (j∗)−1 for k ∈ [c1(Y ) + 1,dimY ]

and (qX)ג = q. Note that this is well defined since for k ∈ [c1(Y ) + 1,dimY ], the map j∗ is an
isomorphism.
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Lemma 5.21. The map ג : QH(X)res → QH(Y )res is an isomorphism of Q-vector spaces.

Proof. This easily follows from the fact that the maps j∗ for k ∈ [0, c1(Y ) − 1] and j∗ for k ∈
[c1(Y ) + 1,dimY ] are isomorphisms and the definitions of QH(X)res and QH(Y )res.

Define the map ĒX : QH(X)res → QH(X)res by

ĒX |QHk(X) =

{
EX for k ̸= c1(Y ) − 1
E2

X for k = c1(Y ) − 1.

Note that QH(X)res has a Z/c1(Y )Z-grading induced by the grading on QH(Y )res via the isomor-
phism .ג The map ĒX is of degree 1 for this grading.

Proposition 5.22. We have the relation ĒY ◦ ג = ג ◦ ĒX .

Proof. Let τ ∈ H2k(X,Q) with k ∈ [0,dimY ]\{c1(Y )} and choose σ ∈ QH(Y ) with πres(σ) = .(τ)ג
If k ∈ [0, c1(Y )−2], then we may choose σ such that σ = j∗τ and we have EY (j∗τ) = EY (σ) =

h ∪ σ = j∗(hX ∪ τ) = j∗EX(τ) proving the result in this case.
If k = c1(Y ) − 1, then we may assume that τ = σα,X for some positive root α and choose

σ = σα = j∗τ . We have EY (σ) = h ∪ σ + ∥α∥qδα0≤α and ĒX(τ) = h2
X ⋆ τ = hX ⋆ (hX ∪ τ) =

hX ⋆ (
∑

β∈Φ,⟨β∨,α⟩<0 |⟨β∨, α⟩|σsβ(α)) = hX ∪ hX ∪ τ + q
∑

β∈Φ,⟨β∨,α⟩<0 |⟨β∨, α⟩|δα0=sβ(α) = hX ∪
hX ∪ τ + ∥α∥qδα0≤α. The result is true in this case using the following identities: j∗(h ∪ σ) =
hX ∪ j∗σ = hX ∪ j∗j

∗τ = hX ∪ hX ∪ τ .
If k ∈ [c1(Y ) + 1,dimY − 1], then we may assume that τ = σα,X and choose σ = σα with

α < 0 such that |Θ + α| ≥ 2. We have j∗σ = τ and EY (σ) = h ∪ σ + |⟨Θ∨, α⟩|qσsΘ(α) =
j−1
∗ (hX ∪ τ) + q|⟨Θ∨, α⟩|j∗(σsΘ(α),X) = (EX(τ))ג proving the result in this case.

Finally assume that k = dimY = dimX−1. We may assume that τ = σα0−Θ,X and σ = σα0−Θ.
We have j∗σ = τ and EY (σ) = [pt] + qj∗σα0,X + 2q2, therefore ĒY ((τ)ג) = ĒY (πres(σ)) =
qσ−α0

+ qj∗σα0,X + 3q2. On the other hand, we have ĒX(τ) = h2
X ⋆ τ = hX ⋆ (σ−Θ,X + qσα0,X) =

3q2 + qσ−α0,X + qhX ∪ σα0,X . The result follows since j∗j
∗σα0,X = hX ∪ σα0,X .

Corollary 5.23. We have KerEY = πres
Ker)ג)1− ĒX)).

Note that E
c1(X)
X stabilises QH(X)res. We set Ê

c1(X)
X = E

c1(X)
X |QH(X)res

Corollary 5.24. We have Ē
c1(Y )
Y = ג ◦ Êc1(X)

X ◦ .1−ג

Proof. We have Ē
c1(Y )
X = Ê

c1(X)
X .

Proposition 5.25. Let X be adjoint not of type A.

1. The radical of QH(X) is contained in KerEX .

2. The non-zero eigenvalues of EX have multiplicity one.

3. If X is quasi-minuscule, the minimal polynomial µEX
of EX is of the form µEX

(T ) =
TP (T c1(X)) with P having non-zero simple roots.

4. If X is not quasi-minuscule, the minimal polynomial µEX
of EX is of the form µEX

(T ) =
P (T c1(X)) with P having non-zero simple roots.

Proof. (1) See [PS21, Theorem 1.4] for quasi-minuscule cases. For X adjoint not quasi minuscule,
the radical is trivial (see [CP11, Theorem 6]).

(2) For exceptional groups, the result follows from the explicit presentation given in [CP11]. In
type Cn we have X = P2n−1 and QH(X) = Q[hX , q]/(h2n

X − q) proving the result. The types Bn

and Dn are slightly more complicated. Let

Σ2k =

k∑
i=0

x2i
1 x2k−2i

1 and F =

2n−2∑
i=0

xk
1x

2n−2−k
2 .
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It was proved in [CP11] on page 325 that in type Bn we have QH(X) = Q[x1, x2, q]S2/(Σ2n−2 +
4q, x1x2F ) where S2 = Z/2Z acts by exchanging the variables x1 and x2. Furthermore, we have
hX = x1 + x2. It was proved in [PS21, Corollary 5.8] that in type Dn, we have QH(X) =
Q[x1, x2, γ, q]S2/(x1x2γ, γ

2 + (−1)nΣ2n−4, (x
2
1 + x1x2 + x2

2)Σ2n−4 − x2
1x

2
2Σ2n−6 + 4q(x1 + x2)).

Again S2 = Z/2Z acts by exchanging the variables x1 and x2 and hX = x1 + x2. Resolving these
equations in x1 and x2 (this is done in [CP11, Page 325] and [PS21, Proposition 5.12]), the result
follows.

(3) and (4) follow from (1) and (2) and an explicit computation showing that the exponents of
T appearing in µEX

(T ) are multiples of c1(X) if X is not quasi-minuscule, and of type kc1(X) + 1
for k ∈ N if X is quasi-minuscule.

Corollary 5.26. The minimal polynomial µEY
of EY is µEY

= TP (T c1(Y )) and the non-zero
eigenvalues of EY have multiplicity one. In particular, the radical of QH(Y ) is contained in
KerEY .

Proof. Note that Q(T ) = TP (T c1(Y )) has simple roots so to prove the assertion on the minimal

polynomial, it is enough to prove that Q(EY ) = 0. Let σ ∈ QH(Y ), we have πres(P (E
c1(Y )
Y )(σ)) =

P (Ē
c1(Y )
Y )(πres(σ)) = Pג (Ê

c1(X)
X .((σ)1−ג)( Because of the form of µEX

, we have the inclusion

P (Ê
c1(X)
X ((σ)1−ג)( ∈ Ker ĒX , thus πres(P (E

c1(Y )
Y )(σ)) ∈ Ker ĒY and P (E

c1(Y )
Y )(σ) ∈ KerEY

proving the vanishing result.
Furthermore, as pairs of a vector space with an endormorphism, the two pairs (QH(Y )res, Ē

c1
Y )

and (QH(X)res, Ê
c1(X)
X ) are isomorphic and the second has non-zero eigenvalues of multiplicity

one. The same is therefore true for (QH(Y ), EY ) since W ⊂ KerEY . The last assertion follows
from this.

Corollary 5.27. Let X be adjoint not quasi-minuscule, then KerEY = W is of dimension |Φℵ|+1.

Proof. Follows from the fact that KerEX = 0.

The following result reproduces the analogous statement concerning the quantum cohomology
of quasi-minuscule varieties.

Proposition 5.28. If X is adjoint and quasi-minuscule (but not minuscule) not of type Dn nor
An, then QH(Y ) is not semi-simple.

Proof. We find an element σ ∈ Kerh \ {0} such that σ2 = 0. We proceed type by type. By
assumption G is simply laced.

In type E6, it is proved in [PS21, Theorem 1.4] that the radical of QH(X) is located in degrees
3, 4, 6, 7 and 10. Pick σX ∈ KerhX of degree 4, then there exists σ ∈ QH(Y ) such that
πres(σ) = .(σX)ג We have σ ∈ Kerh \ {0} and deg(σ) = 4. We deduce that σ2 ∈ Kerh and
deg(σ2) = 8. But our results imply that the degrees for which Kerh is non trivial are the same as
for KerhX . In particular, there is no non-trivial element in Kerh in degree 8 and σ2 = 0.

In type E7, it is proved in [PS21, Theorem 1.4] that the radical of QH(X) is located in degrees
4, 6, 8, 10, 12 and 16. Pick σX ∈ KerhX of degree 6, then there exists σ ∈ QH(Y ) such that
πres(σ) = .(σX)ג We have σ ∈ Kerh \ {0} and deg(σ) = 6. We deduce that σ3 ∈ Kerh and
deg(σ3) = 18 ≡ 2 modulo c1(Y ) = 16. But our results imply that the degrees for which Kerh is
non trivial are the same as for KerhX . In particular, there is no non-trivial element in Kerh in
degree 2 and σ3 = 0.

In type E8, it is proved in [PS21, Theorem 1.4] that the radical of QH(X) is located in degrees
6, 10, 12, 16, 18, 22 and 28. Pick σX ∈ KerhX of degree 10, then there exists σ ∈ QH(Y ) such
that πres(σ) = .(σX)ג We have σ ∈ Kerh \ {0} and deg(σ) = 10. We deduce that σ2 ∈ Kerh and
deg(σ3) = 20. But our results imply that the degrees for which Kerh is non trivial are the same
as for KerhX . In particular, there is no non-trivial element in Kerh in degree 10 and σ2 = 0.

Remark 5.29. In type Dn with n ≥ 4, the above technique does not work since it was proved in
[PS21, Lemma 5.13] that the radical of QH(X) is contained in KerhX and has non trivial elements
in degrees n − 2 and 2k for k ∈ [1, n − 2] (for n even there are two linearly independent element
of degree n− 2). In particular for n− 2 even, any power of an element in Kerh will have an even
degree, therefore occuring as a non trivial degree in Kerh (recall that c1(Y ) = 2n−4 is also even).
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On the other hand, recall the following result about adjoint not quasi-minuscule varieties.

Proposition 5.30 ([CP11]). Let X be adjoint not quasi-minuscule, then QH(X) is semi-simple.

In the last part of this section we will prove the analogous of the previous result for hyperplane
sections Y ⊂ X.

Theorem 5.31. Let X be adjoint not quasi-minuscule, then QH(Y ) is semi-simple.

According to a conjecture of Kuznetsov and Smirnov [KS21], we also expect the following result.

Conjecture 5.32. Let X be adjoint not quasi-minuscule.

1. Db(X) has a full rectangular Lefschetz collection of size c1(X) × (|Φℵ| + 1);

2. Db(Y ) has a rectangular Lefschetz collection of size c1(Y )×(|Φℵ|+1) and its residual category
has a completely orthogonal exceptional collection of size |Φℵ| + 1.

Remark 5.33. In [Kuz06] Kuznetsov has already shown that a hyperplane section of the adjoint
variety of type G2 admits a rectangular collection of size 2 × 3 and its residual category has a
completely orthogonal exceptional collection of size 3, as expected. This is done by showing that
the homological projective dual variety of G2/P2 exists and can be realized as a double cover of
P13 ramified along a sextic (the classical projective dual variety of G2/P2). The fact that the cover
is double allows to recover, as the residual category of Y ⊂ G2/P2, the derived category of two
points, i.e. a completely orthogonal exceptional collection of size 2.

In view of Theorem 5.31 it may be argued that a similar picture may hold for the other adjoint
not quasi-minuscule varieties. For instance, if Conjecture 5.32 holds and the homological projective
dual variety of F4/P1 exists, it should be realized as a triple cover of P51; if the analogy is pushed
further, this triple cover should be ramified along the classical dual projective variety of F4/P1,
which is a hypersurface of degree 24.

Let us now give a proof of Theorem 5.31. We start with some intermediate results. Let
A ⊂ QH(Y ) be the subalgebra generated by h. Recall the definition of H(Y )a = j∗ H(X) the
ambient cohomology and recall the following result from [Xia15, Corollary 3.2] (the statement is
written for complete intersections in Pn but the proof adapts verbatim).

Lemma 5.34. The subspace H(Y )a ⊂ QH(Y ) is stable under the quantum multiplication. In
particular A ⊂ H(Y )a.

Lemma 5.35. Let σ, τ ∈ H(Y ) and expand σ ⋆ τ in the Schubert basis. Then the coefficient of [pt]
in σ ⋆ τ is σ ∪ τ .

Proof. Any other term is of the form ⟨σ, τ, 1⟩Yd with d > 0 and it vanishes by definition of Gromov-
Witten invariants.

Proposition 5.36. Let X be adjoint non quasi-minuscule and let Y ⊂ X be a general hyperplane
section.

1. The intersection A ∩ KerEY has dimension 1.

2. There exists a unique σ ∈ A∩KerEY such that, in the expansion of σ in the Schubert basis,
the coefficient of the class of the point is 1.

3. For σ as above, there exists λ0 ∈ Q such that σ2 = λ0q
2σ and σΓ = λ0q

2Γ for all Γ ∈ H(Y )na.

4. The rational λ0 satifies the following:

(a) For G of type Bn or F4, we have λ0 < 0.

(b) For G of type G2, we have −λ0 = 3
2 and is not a quare in Q.
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Proof. (1) Recall from Corollary 5.26 that the non-zero eigenvalues of EY have multiplicities 1
and that its minimal polynomial has simple roots. If µ is the minimal polynomial of EY and χ is
its characteristic polynomial, this implies that deg(µ) − 1 = deg(χ) − dim KerEY . Thus dimA =
deg(µ) = deg(χ)+1−dim KerEY = dim QH(Y )+1−dim KerEY proving that dimA∩KerEY ≥ 1.

Recall from Corollary 5.27 that KerEY = W = ⟨[pt] − qσ−α0
− q2⟩ + H(Y )na. So if we have

dimA ∩ KerEY ≥ 2, then A ∩ H(Y )na is non trivial, contradicting Lemma 5.34.
(2) Let σ be non trivial in A ∩ KerEY , then σ = λ([pt] − qσ−α0

− q2) + qΓ with Γ ∈ H(Y )na
and by the above argument λ ̸= 0; dividing by λ we get the existence of σ. The uniqueness follows
from (1).

(3) Write σ as a polynomial in h. This is possible since σ ∈ A. We have σ =
∑N

k=0 akh
k

for some N and some ai ∈ Q[q, q−1]. Since σ ∈ KerEY and Γ ∈ H(Y )na ⊂ KerEY , we get
σ2 =

∑
k akh

kσ = a0σ and σΓ = a0Γ. Computing the degrees proves that a0 = λ0q
2 for some

λ0 ∈ Q.
(4.a) We compute the coefficient of [pt] in σ2. We have σ = [pt] − q2 − qσ−α0

+ qΓ with
Γ ∈ H(Y )na. Set σt = t([pt] − q2 − qσ−α0

) + qΓ so that σ = σ1. By Lemma 5.35, the coefficient of
[pt] in the expansion of σ2

t in the Schubert basis is −2t2q2 − 2q2tσ−α0
∪Γ + q2Γ∪Γ. On the other

hand, the coefficient of [pt] of λ0q
2σ is q2λ0. We get λ0 = −2 − 2σ−α0 ∪ Γ + Γ ∪ Γ.

We want to study the values of the quadratic form q(t,Γ) = −2t2 − 2tσ−α0 ∪ Γ + Γ ∪ Γ. Write
Γ =

∑
α∈ℵ tαΓα

For G of type Bn or F4, we have σ−α0
∪ Γ = tα0

and the matrix of the intersection form Γ ∪ Γ
is Cℵ − 4Iℵ. This proves that the matrix of the quadratic form q(t,Γ) (up to reordering the roots)
is equal to the matrix Cℵ − 4Iℵ with root system Dn in type Bn and root system A3 in type F4.
Since 4Iℵ − Cℵ is positive definite we get the result.

(4.b) In type G2, the minimal polynomial of hX is P (T ) = T 2 − 18qT − 27q2 (see [CP11]),
therefore σ is a multiple of h2 − 18qh− 27q2. By Chevalley formula, we have h2 − 18qh− 27q2 =
−18q2 − 9qσα1

− 9qσ−α1
+ 18[pt], therefore we have

σ = [pt] − 1

2
q(σα1

+ σα2
) − q2 =

1

18
h2 − qh− 3

2
q2

proving that λ0 = − 3
2 .

Now we can prove Theorem 5.31.

Proof of Theorem 5.31. Let x ∈ QH(Y ) be a nilpotent element. Recall from Corollary 5.26 that the
radical of QH(Y ) is contained in KerEY , thus x ∈ KerEY . We may assume that x is homogeneous
of degree dimY , thus it can be written as x = λσ+ qΓ with λ ∈ Q and Γ ∈ H(Y )na. If λ = 0, then
x = qΓ and Γ would be nilpotent in QH(Y ). By Lemma 5.35, the coefficient of [pt] in the Schubert
expansion of Γ2 is Γ∪Γ so we would then have Γ∪Γ = 0. Since the cup product is non-degenerate
(positive definite or negative definite) on H(Y )na, this is not possible. We may therefore assume
that λ ̸= 0.

Since Γ ∈ kerEY , we have Γ2 ∈ KerEY thus there exists µ ∈ Q and Γ′ ∈ H(Y )na such that
Γ2 = µσ + qΓ′. We compute x2 = λ2σ2 + 2λqσΓ + q2Γ2 = λ0λ

2q2σ + 2λ0λq
3Γ + µq2σ + q3Γ′ =

(λ0λ
2+µ)q2σ+(2λ0λq

3Γ+q3Γ′). Since σ ̸∈ H(Y )na, we get from x2 = 0 the equalities λ0λ
2+µ = 0

and 2λ0λΓ + Γ′ = 0.
Note that to compute µ, it is enough to compute the coefficient of [pt] in the expansion of Γ2

in the Schubert basis. By Lemma 5.35, we thus have µ = Γ ∪ Γ. In particular, we have

λ0 = − µ

λ2
= −Γ ∪ Γ

λ2
.

In types Bn and F4 the cup-product is negative definite on H(Y )na, thus Γ ∪ Γ < 0 and we get
λ0 > 0 contradicting Proposition 5.36.4.a. In type G2, the cup-product Γ∪Γ is twice a square since
H(Y )na has dimension 1 and from Proposition 5.36.4.b we would get that 3

4 = −λ0

2 is a square, a
contradiction.
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5.4 Quasi-minuscule case

We now consider the cases for which X is quasi-minuscule not adjoint. Recall the quantum Cheval-
ley formula for X in this case.

Theorem 5.37 (Quantum Chevalley formula for X, [FW04, CP11]). Assume that X is quasi-
minuscule not adjoint, let hX be the hyperplane class and let α ∈ ℵ. We have

hX ⋆ σα,X = hX ∪ σα,X + qδα≤θ−Θσα+Θ.

We now prove the following result.

Theorem 5.38 (Quasi-minuscule Quantum Chevalley formula). Let X be quasi-minuscule not
adjoint and let Y ⊂ X be a general hyperplane section. Let α ∈ ℵ.

1. If α > 0 is not simple, then h ⋆ σα = h ∪ σα.

2. If α is simple, then h ⋆ σα = h ⋆ σ−α.

3. If α < 0, then h ⋆ σα = h ∪ σα + δα≤θ−Θqj
∗σα+Θ,X .

Proof. (1) If α > 0 not simple, then deg(σα) < c1(Y ) − 1 and the result follows.
(2) If α is simple, then j∗σα = j∗σ−α and the only non-vanishing Gromov-Witten invariants are

obtained for lines and are of the form ⟨h, σα, σβ⟩Y1 . But we have ⟨h, σα, σβ⟩Y1 = ⟨hX , j∗σα, j∗σβ⟩X1 =
⟨hX , j∗σ−α, j∗σβ⟩X1 = ⟨h, σ−α, σβ⟩Y1 , proving the result.

(3) The only non-vanishing Gromov-Witten invariants are obtained for lines and are of the form
⟨h, σα, σβ⟩Y1 = ⟨hX , j∗σα, j∗σβ⟩X1 . Note that computing the degrees, we see that deg(σβ) ≥ c1(Y )−
1. Note that this implies deg(σβ) > dimY/2 except maybe in type C for which ±β is simple. If X is
not of type C or ±β is not simple we thus have ⟨hX , j∗σα, j∗σβ⟩X1 = ⟨hX , σα,X , σβ,X⟩X1 = δα+β=−Θ

and the result follows from the fact that σ∨
β = σ−β = j∗σ−β,X . The case where X is of type C

and ±β is simple only occurs if α = −θ. Since j∗σβ = j∗σ−β , we may assume that β is simple and
deduce that ⟨hX , j∗σα, j∗σβ⟩X1 = ⟨hX , j∗σα, j∗σ−β⟩X1 = ⟨hX , σα,X , σ−β,X⟩X1 = δα−β=−Θ. Thus we
obtain h ⋆ σ−θ = h ∪ σ−θ + q(σ∨

Θ−θ + σ∨
θ−Θ) = h ∪ σ−θ + q(j∗σΘ−θ,X) by Example 4.39.

Corollary 5.39. Assume that X is quasi-minuscule not adjoint, then h ⋆ Γα = 0 for all α ∈ Φℵ.

We now consider the endomorphisms EX = (hX ⋆−) on QH(X) and EY = (h ⋆−) on QH(Y ).
For k ∈ [0, c1(X) − 1], we set QHk(X) = ⊕i≥0H

2k+2ic1(X)(X,Q) and for k ∈ [0, c1(Y ) − 1], we set

QHk(Y ) = ⊕i≥0H
2k+2ic1(Y )(X,Q).

Note that the map j∗ : HdimY (Y,Q) → HdimY+2(X,Q) is surjective and define a right inverse
(j∗)−1 : HdimY+2(X,Q) → HdimY (Y,Q) by (j∗)−1(σ−α,X) = σ−α for α ∈ Φℵ. We define the
following Q-linear map ג : QH(X) → QH(Y ) via

H2k(X,Q)|ג =

{
j∗ for k ∈ [0,dimY/2]
(j∗)−1 for k ∈ [dimY/2 + 1,dimX]

Lemma 5.40. The map ג : QH(X) → QH(Y ) is an isomorphism of Q-vector spaces.

Proof. For k ̸= dimY/2, this easily follows from the fact that the maps j∗ for k ∈ [0,dimY/2 − 1]
and j∗ for k ∈ [dimY/2 + 1,dimY ] are isomorphisms. For k = dimY/2 the result follows from
Corollary 4.15.

Define the map ĒX : QH(X) → QH(X) by

ĒX |H2k(X,Q) =

{
EX for k ̸= dimY/2
E2

X for k = dimY/2.

Proposition 5.41. We have the relation EY ◦ ג = ג ◦ ĒX .
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Proof. Let α ∈ ℵ. If α > 0 not simple, then hX ⋆ σα,X = hX ∪ σα,X and h ⋆ (σα,X)ג = h ⋆ σα =
h ∪ σα = j∗(hX ∪ σα,X) proving the result in this case.

If α is simple then deg(σα,X) = dimY/2. We have h2
X ⋆ σα,X = hX ⋆ (hX ∪ σα,X) =

hX ⋆ (2σ−α,X +
∑

β∈Φℵ,⟨β∨,α⟩<0 σ−β,X) = hX ∪hX ∪σα,X + qX
∑

β∈Φℵ,⟨β∨,α⟩<0 δ−β≤θ−ΘσΘ−β,X +

2qXδ−α≤θ−ΘσΘ−α,X . On the other hand, we have h ⋆ (σα,X)ג = h ⋆ j∗σα,X = h ⋆ (σα + σ−α +∑
β∈Φℵ,⟨β∨,α⟩<0 σ−β) = h ∪ j∗σα,X + q

∑
β∈Φℵ,⟨β∨,α⟩<0 δ−β≤θ−ΘσΘ−β + 2qδ−α≤θ−ΘσΘ−α. The

result follows from this and the equality j∗(h ∪ j∗σα,X) = hX ∪ hX ∪ σα,X .
If α < 0, then hX ⋆σα,X = hX∪σα,X +qδα≤θ−Θσα+Θ. On the other hand, we have j∗σα = σα,X

and h ⋆ σα = h ∪ σα + qδα≤θ−Θσα+Θ and the result follows since j∗(h ∪ σα) = hX ∪ j∗σα,X and
σα+Θ = j∗σα+Θ,X .

Corollary 5.42. We have KerEY = Ker)ג ĒX).

Corollary 5.43. We have E
c1(Y )
Y = ג ◦ Ec1(X)

X ◦ .1−ג

Proof. Note that c1(X) > (dimX + 1)/2 thus c1(Y ) = c1(X) − 1 > dimY/2 + 1 and Ē
c1(Y )
X =

E
c1(X)
X ; the result follows.

Proposition 5.44. Let X be quasi-minuscule not adjoint.

1. The radical of QH(X) is contained in KerEX .

2. The non-zero eigenvalues of EX have multiplicity one.

3. The minimal polynomial µEX
of EX is of the form µEX

(T ) = TP (T c1(X)) with P having
non-zero simple roots.

Proof. (1) This is proved in [PS21, Theorem 1.4].
(2) There are only two cases to consider: X = IGr(2, 2n) and X = F4/P4. The latter case

is easily obtained from the explicit presentation given in [CP11]. For X = IGr(2, 2n), we have a
presentation QH(X) = Q[a1, a2, b1, · · · , bn−2, q]/I where I is the ideal generated by the relation

(1 + (2a2 − a21)x2) + a22x
4)(1 + b1x

2 + · · · + bn2
x2n−4) = 1 − qa1x

2n,

see [CMMPS19, Corallary 4.2]. We have hX = a1. Resolving this equation in a1 (see [CMMPS19,
Proposition 4.3]) proves the result.

(3) Follows from (1) and (2) and an explicit computation showing that the exponents of T
appearing in µEX

(T ) are of the form kc1(X) + 1 for k ∈ N if X is quasi-minuscule.

Corollary 5.45. The minimal polynomial µEY
of EY is µEY

= TP (T c1(Y )) and the non-zero
eigenvalues of EY have multiplicity one. In particular, the radical of QH(Y ) is contained in
KerEY .

Proof. Note that Q(T ) = TP (T c1(Y )) has simple roots so to prove the assertion on the minimal

polynomial it is enough to prove that Q(EY ) = 0. Let σ ∈ QH(Y ), we have P (E
c1(Y )
Y )(σ) =

Pג (E
c1(X)
X .((σ)1−ג)( Because of the form of µEX

, we have the inclusion P (E
c1(X)
X ((σ)1−ג)( ∈

KerEX thus we have P (E
c1(Y )
Y )(σ) ∈ KerEY proving the vanishing result.

Furthermore, as pairs of a vector space with an endormorphism, the two pairs (QH(Y ), Ec1
Y )

and (QH(X), E
c1(X)
X ) are isomorphic and the second has non-zero eigenvalues of multiplicity one.

The same is therefore true for (QH(Y ), EY ). The last assertion follows from this.

Corollary 5.46. Let X be quasi-minuscule not of type Cn or Dn, then QH(Y ) is not semi-simple.

Proof. The case where X is quasi-minuscule and adjoint follows from Proposition 5.28. We thus
prove the result for X quasi-minuscule not adjoint not of type Cn. The only case is X = F4/P4.
There is an element σ ∈ Kerh \ {0} with σ ∈ QH4(Y ). Then σ2 ∈ QH8(Y ) ∩ Kerh = 0.

Remark 5.47. We believe that QH(Y ) is also not semi-simple in types Cn and Dn but we are
not able to prove this using our technique.
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6 Appendix: the adjoint variety of type An

In this appendix, we compute quantum Chevalley formulas for Y ⊂ X a general hyperplane
section of X, the adjoint variety of type An. Note that Pic(X) = Z2: we have that X is a general
hyperplane section of the Segre embedding Pn × Pn∨ ⊂ P(sln+1). We have two maps p1 : X → Pn

and p2 : X → Pn∨. For i = 1, 2, let hi,X be the inverse image by pi of the hyperplane class. We
have ωX = OX(−n) and OX(1) = OX(h1,X + h2,X). Let j : Y ⊂ X be a general hyperplane
section and let hi = j∗hi,X .

Roots are indexed by pairs of integers 1 ≤ i < j ≤ n + 1 with αi,j = αi + · · · + αj−1. Let
[line1] = σ−α2,n+1

and [line2] = σ−α1,n
. For η ∈ H2(X,Z) we may identify η with the pair (d1, d2)

with di = ⟨η,OX(hi,X)⟩ via η = d1[line1] + d2[line2].
Note that Lemma 5.12 and Proposition 5.13 are true in type An. We extend Lemma 5.14 and

Proposition 5.15.

Proposition 6.1. The only non-vanishing Gromov-Witten invariants of the form ⟨σY , σ
′
Y , h⟩Yη

are obtained for ⟨η,OX(1)⟩ = 1 or for the invariants

⟨[pt], [linei], hj⟩Y(1,1) = 1 for all i, j ∈ [1, 2].

Proof. The fact that all invariants vanish except for ⟨η,OX(1)⟩ ≤ 2 is a degree computation and
similar to the proof of Lemma 5.14. Furthermore, if ⟨η,OX(1)⟩ = 2 then up to reordering we have
σY = [pt] and σ′

Y = [line1] or σ′
Y = [line2]. Note also that since there is no curve in X of degree

(2, 0) or (0, 2) meeting a general point, a general line and a general representative of h1,X or h2,X ,
we must have the vanishings ⟨[pt], [linei], hj⟩Y(2,0) = 0 = ⟨[pt], [linei], hj⟩Y(0,2) for all i, j ∈ [1, 2].

As in the proof of Proposition 5.15, the locus in X covered by conics passing through xΘ and
meeting the line (x−Θ, xαn−Θ) is the closure in P(sln+1) of the matrices of the form

−st 0 · · · 0 s2

0
...

...
... 0

0 0 · · · 0 0
−ut2 0 · · · 0 ust
−t2 0 · · · 0 st

 .

In particular, the same computation as in the proof of Proposition 5.15 shows that there is a
unique curve of class (1, 1) meeting a general representative of [pt] and [line1] giving the formulas
⟨[pt], [line1], h1⟩Y(1,1) = 1 = ⟨[pt], [line1], h2⟩Y(1,1). Formulas involving [line2] follow by symmetry.

In the following result, we set σα = 0 if α is not a root.

Theorem 6.2 (Quantum Chevalley formula). Let X be adjoint of type An and Y ⊂ X be a general
hyperplane section.

1. If j − i ≥ 3, then h1 ⋆ σαi,j
= σαi,j−1

and h2 ⋆ σαi,j
= σαi+1,j

.

2. We have h1 ⋆ σαi,i+2 = σαi + σ−αi + σ−αi−1 + σ−αi+1 + q1δi,1.
We have h2 ⋆ σαi,i+2

= σαi+1
+ σ−αi+1

+ σ−αi
+ σ−αi+2

+ q2δi,n−1.

3. We have h1 ⋆ σαi
= h1 ⋆ σ−αi

and h2 ⋆ σαi
= h2 ⋆ σ−αi

.

4. If j − i ≤ n − 2, then h1 ⋆ σ−αi,j = σ−αi−1,j + q1δi,1σΘ−αi,j and h2 ⋆ σ−αi,j = σ−αi,j+1 +
q2δj,n+1σΘ−αi,j .
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5. We have h1 ⋆ σ−α1,n
= q1(σαn

+ σ−αn
+ σ−αn−1

) + q1q2 and h1 ⋆ σ−α2,n+1
= σ−α1,n+1

+ q1q2.
We have h2 ⋆ σ−α2,n+1 = q2(σα1 + σ−α1 + σ−α2) + q1q2 and h2 ⋆ σ−α1,n = σ−α1,n+1 + q1q2.

6. We have h1 ⋆ [pt] = q1σ−αn−1,n+1
+ q1q2(h1 + h2) and h2 ⋆ [pt] = q2σ−α1,3

+ q1q2(h1 + h2).

Proof. We compute the mutiplication with h1, a similar argument works for the multiplication
with h2. For σ ∈ H∗(Y ), we write Coefσα

(σ) for the coefficient of σα in the expansion of σ in
the basis (σα)α∈ℵ. For σX ∈ H∗(X), we write Coefσα,X

(σX) for the coefficient of σα,X in the
expansion of σX in the basis (σα,X)α∈ℵ. We thus have

σ =
∑
α∈ℵ

Coefσα
(σ)σα and σX =

∑
α∈ℵ

Coefσα,X
(σX)σα,X .

(1) For j − i ≥ 3, we have σαi,j
= j∗σαi,j ,X and there is no quantum correction. In particular

h1 ⋆ σαi,j = h1 ∪ σαi,j = j∗(h1,X ∪ σαi,j ,X) = j∗σαi,j−1,X = σαi,j−1 .
(2) We have σαi,i+2 = j∗σαi,i+2,X . In particular h1∪σαi,i+2 = j∗(h1,X∪σαi,i+2,X) = j∗σαi,i+1,X =

j∗σαi,X = σαi
+ σ−αi

+ σ−αi−1
+ σ−αi+1

. The only non vanishing Gromov-Witten invariants are
⟨h1, σαi,i+2

, σ⟩Yη with η = (1, 0). We have ⟨h1, σαi,i+2
, σ⟩Yη = ⟨h1,X , j∗σαi,i+2

, j∗σ⟩Xη = ⟨h1,X , σαi,X+

σαi+1,X , j∗σ⟩Xη = δi,1Coef [pt](j∗σ) proving the first formula.
(3) This follows from the projection formula j∗(h1 ∪ σαi

) = h1,X ∪ j∗σαi
= h1,X ∪ j∗σ−αi

=
j∗(h1 ∪ σ−αi), the fact that j∗ is injective for deg(σαi) + 1 and the fact that ⟨h1, σαi , σ⟩Yη =

⟨h1,X , j∗σαi , j∗σ⟩Xη = ⟨h1,X , j∗σ−αi , j∗σ⟩Xη = ⟨h1, σ−αi , σ⟩Yη with η = (1, 0) are the only non-
vanishing Gromov-Witten invariants.

(4) We have j∗(h1∪σ−αi,j
) = h1,X ∪ j∗σ−αi,j

= j∗σ−αi−1,j
so the classical part follows from the

injectivity of j∗ in the corresponding degree. The only non-vanishing Gromov-Witten invariants
are of the form ⟨h1, σ−αi,j

, σ⟩Yη = ⟨h1,X , j∗σ−αi,j
, j∗σ⟩Xη = ⟨h1,X , σ−αi,j ,X , j∗σ⟩Xη with η = (1, 0).

We have ⟨h1,X , σ−αi,j ,X , j∗σ⟩Xη = δi,1CoefσΘ−αi,j ,X
((j∗σ)∨). The condition (j∗σ)∨ = σΘ−αi,j ,X

is equivalent to j∗σ = σw0(Θ−αi,j),X and in turn to σ = σw0(Θ−αi,j) and thus to σ∨ = σΘ−αi,j
,

proving the first formula.
(5) The classical part follows from h1,X ∪ σ−α1,n = 0 and h1,X ∪ σ−α2,n+1 = σ−α1,n+1 . The

term in q1q2 follows from Proposition 6.1 and we only need to compute degree 1 Gromov-Witten
invariants. The only non-vanishing Gromov-Witten invariants are of the form ⟨h1, σ−α1,n

, σ⟩Yη =

⟨h1,X , j∗σ−α1,n
, j∗σ⟩Xη = ⟨h1,X , σ−α1,n,X , j∗σ⟩Xη = Coefσ∨

αn,X
(j∗σ) and also ⟨h1, σ−α2,n+1

, σ⟩Yη =

⟨h1,X , j∗σ−α2,n+1
, j∗σ⟩Xη = ⟨h1,X , σ−α2,n+1,X , j∗σ⟩Xη = 0 with η = (1, 0). For σ an element in the

basis (σα)α∈Φℵ∪−Φℵ , the condition j∗σ = σ∨
αn,X

= σ−α1,X is equivalent to σ = σα1
or σ = σ−α1

.
We thus get h1 ⋆ σ−α1,n

= q1(σ∨
α1

+ σ∨
−α1

) + q1q2 and h1 ⋆ σ−α2,n+1
= σ−α1,n+1

+ q1q2. The result
follows from Example 4.39.

(6) We have h1 ∪ σ−α1,n+1 = 0 for degree reasons. The q1q2 terms follows from Proposition 6.1
as well as the fact that the only other non-vanishing Gromov-Witten invariants are of the form
⟨h1, σ−α1,n+1

, σ⟩Yη = ⟨h1,X , j∗σ−α1,n+1
, j∗σ⟩Xη = ⟨h1,X , σ−α1,n+1,X , j∗σ⟩Xη = Coefσ∨

−αn,X
(j∗σ). Note

that there exists τX ∈ H∗(X) such that σ = j∗τX and we have Coefσ∨
−αn,X

(j∗σ) = Coefσ∨
−αn,X

(hX∪
τX). We thus get h1 ⋆ [pt] = q1σ

∨
α1,3

+ q1q2(h1 + h2) = q1σ−αn−1,n+1 + q1q2(h1 + h2).

Remark 6.3. Using the above formula, we can check that setting q1 = q2 = 1 the algebra
QH(Y )/(q1 − 1, q2 − 1) is semi-simple for n = 2 and not semi-simple for n = 3. This agrees with
Conjecture 1.12.

Proposition 6.4. The quantum cohomology QH(Y )/(q1 − q2) is semi-simple when n is even.

Proof. The proof follows the same lines as the proof of Theorem 5.31. First of all notice that, since
n is even, q1 + (−1)nq2 ̸= 0 in general. From the results in [CP11], the algebra QH(X)/(q1 − q2) is
semi-simple, and from the presentation of the cohomology given in [CP11] one can check that the
eigenvalues of hX are all non-zero and with multiplicity one. Moreover the minimal polynomial of
EX (the multiplication-by-hX endomorphism) can be written as P (T c1(X)). Along the same lines
of Corollaries 5.26 and 5.27 and using Theorem 6.2, one can check that the non-zero eigenvalues of
EY (the multiplication-by-h endomorphism) have multiplicity one and KerEY = W := H(Y )na +
Q([pt] − q(σ−α1 + σ−αn) − q2). Thus the nilpotent elements of QH(Y )/(q1 − q2) are contained in
W .
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As in Proposition 5.36, if A denotes the subalgebra generated by h, there exists a unique
σ = ([pt] − q(σ−α1

+ σ−αn
) − q2) + qΓ ∈ A ∩ KerEY with Γ ∈ H(Y )na such that σ2 = λ0qσ and

σΓ = λ0q
2Γ, where λ0 can be shown to be equal to −2− 2(σ−α1 + σ−αn)∪ Γ + Γ∪ Γ. The matrix

of the quadratic form q(t,Γ) = −2t2− 2t(σ−α1 +σ−αn)∪Γ + Γ∪Γ is equal to the matrix Cℵ− 4Iℵ
with root system the affine root system of type Ân. Note that Cℵ is positive with a unique zero
eigenvalue (see [Kac83, Lemma 4.5]) so that the eigenvalues of Cℵ are real numbers λ ∈ [0, 4[
(because the non-zero eigenvalues are those of type An). Therefore the symmetric matrix 4Iℵ−Cℵ
is positive definite thus λ0 < 0.

Now, a nilpotent element x can always be written as x = λσ + qΓ′ with λ ̸= 0. As in the proof
of Theorem 5.31, the rational number λ0 satisfies λ0 = −Γ′∪Γ′

λ2 . But n being even, the dimension
dimY/2 = n− 1 is odd and the intersection product restricted to H(Y )na is negative definite. We
obtain that λ0 > 0, a contradiction.
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