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INTRODUCTORY PARAGRAPH 

 It is well-known that food cue reactivity (FCR) is positively associated with body mass 

index (BMI)1 and weight change2, but the mechanisms underlying these relationships are 

incompletely understood. One prominent theory of craving posits that the elaboration of a 

desired substance through sensory imagery intensifies cravings, thereby promoting 

consumption3. Olfaction is integral to food perception, yet the ability to imagine odors varies 

widely4. Here we test in a basic observational study if this large variation in olfactory imagery 

drives FCR strength to promote adiposity in 45 adults (23 male). We define odor imagery ability 

as the extent to which imagining an odor interferes with the detection of a weak incongruent 

odor (the “interference effect”5). As predicted in our preregistration, the interference effect 

correlates with the neural decoding of imagined, but not real, odors. These perceptual and 

neural measures of odor imagery are in turn associated with FCR, defined by the rated craving 

intensity of liked foods and cue-potentiated intake. Finally, odor imagery exerts positive indirect 

effects on changes in BMI and body fat percentage over one year via its influences on FCR. 

These findings establish odor imagery as a driver of FCR that in turn confers risk for weight 

gain. 

 

MAIN TEXT 
Mental imagery has been proposed to play a critical role in the amplification of cravings3, 

yet not all sensory modalities are similarly imaginable. The self-reported ability to imagine sights 

and sounds is nearly universal, whereas the ability to imagine odors varies widely4,6,7. We 

previously demonstrated that the self-reported vividness of imagined olfactory, but not visual, 

stimuli positively correlates with BMI8. These data raise the possibility that odor imagery ability 

confers risk for FCR and weight gain; however, evidence for the extent to which this self-report 

measure reflects actual odor imagery is limited5,9. Also unknown is whether perceptual or neural 

measures of odor imagery ability are related to FCR, BMI, and weight gain susceptibility (Fig. 1). 

Odor imagery ability has been quantified as the extent to which imagining an odor 

decreases the detectability of a weak incongruent odor5. In the current basic observational 

study, our first goal was to determine if this interference effect – a performance-based 

perceptual measure of odor imagery ability5 – is associated with self-reported imagery ability 

and the decoding of odor quality from functional magnetic resonance imagining (fMRI) patterns 

evoked by imagined odors in the piriform cortex (Fig. 1a). Participants were instructed to 

imagine the smell or sight of a rose or cookie (or nothing at all) while trying to determine which 
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of two samples contained either the same odor (matched trial) or the other odor (mismatched 

trial) at their detection threshold level (Fig. 1e). Interference was calculated by subtracting 

detection accuracy (% trials correct) in mismatched trials from that in matched trials of each 

imagery condition (Fig. 1f). In line with prior work5, an interference effect was observed for odor, 

but not visual, imagery (Fig. 1f). This odor interference effect correlated positively with self-

reported ability to imagine odors and flavors, but not visual stimuli (Extended Data Fig. 1). 

Further, the difference in detection accuracy on matched versus mismatched trials of the visual 

imagery condition did not correlate with self-reported odor (r33 = 0.306, pcorrected = 0.2205), flavor 

(r33 = 0.247, pcorrected = 0.4557), or visual (r33 = 0.155, pcorrected = 1.000) imagery.  

Next, we used fMRI to assess brain responses to rose and cookie odors (or clean air) 

interspersed with trials in which participants were instructed to imagine these same odors while 

sniffing clean air (Fig. 2a). Since odor quality is encoded in the primary olfactory cortex across 

distributed patterns of activation10, we performed multi-voxel pattern analyses (MVPA) in left 

and right piriform cortex regions of interest (ROIs; Fig. 2b). Specifically, we tested whether 

distinct patterns for the real and/or imagined odors could be decoded using two methods: a 

support vector machine (Fig. 2c) and split-half voxel correlations (Fig. 2d). The decoding of 

actual odors in the right piriform cortex (mean accuracy = 63.2%, chance = 50%) was 

significantly greater than chance and significantly better than decoding in the left piriform cortex 

(Fig. 2e). This finding aligns with the well-documented right hemispheric dominance in 

olfaction11,12. We did not observe significant decoding of imagined odors or cross-modal 

decoding between the real and imagined odors (Fig. 2e–f). We note that one-third of the 

participants did not exhibit discriminable patterns for real odors. This is expected in decoding 

analyses due to natural anatomical variations13 limiting the detection of well-known spatial 

olfactory codes10,14. Therefore, for the subsequent analyses, we tested decoding in the right 

piriform cortex using voxel correlations (decoding method #2) in the limited sample wherein 

clear discriminable patterns for real odors were observed. The results remain largely unchanged 

when including the full sample (Supplementary Table 1). 

To determine if the decoding of imagined odor quality was associated with our 

perceptual measure of odor imagery ability (Fig. 1a), we correlated it against the interference 

effect. A strong positive association was identified (Fig. 2g). By contrast, there were no 

significant correlations between odor imagery and the decoding of fMRI patterns evoked during 

actual odor presentations or in the cross-modal datasets (Fig. 2h–i). Importantly, when we ran 

similar analyses for the left and right primary visual cortices as control regions, no significant 
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effects were observed (Extended Data Fig. 2; Supplementary Table 1). Finally, univariate 

responses in the piriform cortex during odor imagery (Extended Data Fig. 3) were not 

associated with the odor imagery measures, including after small-volume correction (no 

suprathreshold clusters). Collectively, these data show a strong and specific correspondence 

between all three measures of odor imagery ability, supporting their validity. They also 

demonstrate that odor imagery is associated with the successful activation of distinct imagined 

odor quality codes in the right piriform cortex. 

We next tested whether our perceptual (i.e., the interference effect) and neural (i.e., right 

piriform decoding of imagined odors) measures of odor imagery ability were associated with 

FCR. FCR was quantified using validated measures of craving15 and cue-potentiated intake16, 

as well as ventral striatal (VS) responses to the cookie odor (Fig. 1b). First, participants rated 

the strength of their craving in response to the presentation of 90 palatable food images15. Food 

craving was not significantly related to the perceptual or neural measures of odor imagery ability 

(Fig. 3a–b) or to the decoding of actual odors in the right piriform cortex (Supplementary Table 

2). However, the rated liking of the foods depicted in the pictures was variable and correlated 

with craving (Supplementary Table 3). We therefore reasoned that odor imagery may intensify 

cravings specifically for foods that are liked and constructed a linear regression model to test for 

the presence of an interaction between odor imagery and food liking on the average craving 

rating. As predicted, the interaction was significant for the perceptual measure of odor imagery 

ability (F41 = 8.516, pcorrected = 0.0114), but it did not survive correction for multiple comparisons 

for the neural measure (F26 = 3.367, pcorrected = 0.1560). Using a tertiary split to separate 

participants based on their average food liking, we found a strong positive association between 

the perceptual measure of odor imagery ability and food craving for highly liked foods (Fig. 3c). 

A follow-up analysis using a linear mixed effects model with the individual ratings for each of the 

90 foods rather than participant averages also revealed a significant interaction effect (F1,3996 = 

7.571, p = 0.0060) whereby cravings for liked but not disliked foods were more intense in 

individuals with vivid odor imagery. Collectively, these data suggest that odor imagery interacts 

with liking to invigorate cravings. 

To assess cue-potentiated food intake, we performed a validated bogus taste test16. 

Participants were instructed to sample and compare the sensory properties of two plates of 

cookies. The purpose of the test (not revealed to participants) was to quantify the amount eaten. 

Separate linear regressions adjusted for sex (males ate more) and cookie liking ratings – which 

were positively correlated with the amount consumed (Supplementary Table 3) – revealed that 
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both the perceptual (Fig. 3d) and neural (Fig. 3e) measures of odor imagery ability were 

significant predictors of intake. By contrast, food craving and right piriform decoding of actual 

odors were unrelated to cookie consumption (Supplementary Tables 2–3), even after adjusting 

for sex and liking. The latter finding indicates that the association is specific to odor quality 

codes evoked during imagery. Finally, VS reactivity to the food odor was not related to any 

measure of odor imagery or perception, or to food craving or intake (all pFWE-SVC [family-wise 

error, small-volume corrected] ≥ 0.247). Thus, odor imagery was associated with behavioral 

measures of FCR, but not with VS reactivity.  

Finally, we sought to determine if odor imagery is associated with current adiposity or 

change in adiposity over one year. Current adiposity was defined using BMI and body fat 

percentage (Fig. 1b); no significant associations were observed (Supplementary Table 4). This 

conflicted with the positive correlation between BMI and self-reported odor imagery ability 

observed in our prior study8 (wherein body fat percentage and the perceptual and neural 

measures of odor imagery were not assessed). However, the variance in BMI differed 

significantly across the two studies (two-sample F-test for equality of variances: F44,24 = 2.454, p 

= 0.0208); with the current study including class I, II and III obesity (BMI: M = 26.12, SD = 6.81, 

Range = 18.32–53.44 kg/m2  versus), and the prior study only class I (BMI: M = 24.25, SD = 

4.35, Range = 17.70–34.06 kg/m2). When we excluded the four individuals with class II/III 

obesity (BMI ≥ 35 kg/m2) from our current sample, consistent with the prior report, a weak 

positive relationship emerged between BMI and the self-report measure of odor imagery (r39 = 

0.333, puncorrected = 0.0334), suggesting that the association might be nonlinear. However, this 

effect did not survive correction for multiple comparisons (pcorrected = 0.1002) after further 

correlating BMI with the perceptual (r39 = 0.222, pcorrected = 0.4872) and neural (r25 = 0.226, 

pcorrected = 0.7683) measures of odor imagery. Thus, in contrast to our prediction, no significant 

associations were observed between current adiposity and odor imagery ability, though we 

cannot exclude the possibility of a nonlinear relationship with the self-report measure. Lastly, we 

tested for associations between olfactory perception or FCR and current adiposity. The only 

significant effect we observed was a negative correlation between the cookie odor detection 

thresholds and BMI (Supplementary Table 5). These data demonstrate that neither odor imagery 

ability nor FCR is related to current adiposity in our sample. 

 With respect to changes in adiposity (BMI or body fat percentage), no relationships were 

observed for any measure of odor imagery or perception (Extended Data Fig. 4; Supplementary 

Table 5). However, there were significant associations with FCR. Specifically, food intake 
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predicted change in body fat percentage (Fig. 3f), but it was not significant for change in BMI (r39 

= 0.263, pcorrected = 0.1928). Food craving predicted change in BMI (Fig. 3g), but not change in 

body fat percentage (r41 = 0.229, pcorrected = 0.2804). Given the associations between odor 

imagery ability and FCR (Fig. 3c–e), and between FCR and changes in adiposity (Fig. 3f–g), we 

reasoned that there might be indirect effects17,18 of odor imagery ability on changes in adiposity 

via FCR. This was in line with our a priori hypothesis that odor imagery strengthens FCR to in 

turn influence risk for weight gain (Fig. 1c–d). 

 Consistent with our planned analyses, both the perceptual (Fig. 4a) and neural (Fig. 4b) 

measures of odor imagery indirectly predicted change in body fat percentage via cue-

potentiated intake. To assess the indirect effect of odor imagery on change in BMI via craving, 

we used moderated mediation to account for the effect of liking on the association between odor 

imagery ability and craving (Fig. 4c). This was an unplanned but data-driven secondary 

analysis, and therefore is possibly underpowered. Specifically, food liking was included as a 

moderator of the a-path. The index of moderated mediation – indicating whether the strength of 

the indirect effect between odor imagery and change in BMI via craving depended on the level 

of liking – was significant. This was driven by a significant conditional a × b indirect effect in 

individuals with high, but not low or moderate, food liking (Fig. 4c). In other words, better odor 

imagery ability resulted in greater changes in BMI through heightened craving in individuals who 

liked such high-fat/high-sugar foods. Taken together, these models provide evidence that odor 

imagery ability drives variation in FCR strength, which in turn influences risk for increased 

adiposity. 

 Mental imagery is thought to help optimize adaptive behavior through simulations of 

future actions based on past experiences19. Food choice depends upon a complex integration of 

internal and external signals20; imagining what to eat may contribute by enabling simulations of 

the predicted sensory pleasure and eventual nutritive value of eating a potential energy source. 

Recent preclinical work demonstrates that food odor exposure stimulates lipid metabolism, but 

only in fasted animals with functioning olfactory memory21. Perhaps olfactory memory – a key 

component of imagery – has the same effect on preparing the body for anticipated intake in 

humans and enhancing motivation for food.  

Our study contributes novel insights into the neurobiology of olfaction. We demonstrated 

that odor imagery ability is reflected in the successful activation of imagined odor quality codes 

in the right piriform cortex. This finding was observed in the subset of individuals for whom the 

decoding of real odors could be achieved, suggesting that it was not attributable to expected 
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inter-subject anatomical variation limiting the ability to decode fMRI patterns in this region13. We 

also showed that risk for FCR is associated with these odor quality codes evoked during 

imagery but not during real perception. This specificity raises important questions about why 

and how quality coding differs in real and imagined olfaction, as well as why imagery rather than 

perceptual ability drives FCR. One possible explanation is that imagined odors only reactivate 

odor identity while real odors reactivate odor identity plus the coding of the physiochemical 

odorant properties known to occur across separate subpopulations of piriform cortex neurons22. 

Similar distinctions are observed between imagined and actual coding in other sensory 

modalities23,24. Therefore, this may account for our below-chance cross-modal decoding and 

lack of association between real odorant coding and the odor imagery measures. 

Many conflicting associations have been reported between olfaction and current BMI or 

risk for weight gain in humans25–30, including abnormal brain responses to taste and odor cues 

in obesity31,32. Here we observed a negative correlation between BMI and the cookie odor 

detection thresholds. Though this is a potential limitation of our study, detection thresholds do 

not necessarily map onto suprathreshold perceptions33 (e.g., intensity and liking). It also is not 

clear how poorer detection might contribute to the indirect link between odor imagery and 

adiposity change via FCR that we observed. Furthermore, olfactory function or perception – 

defined as detection thresholds, piriform decoding of actual odor quality, and suprathreshold 

odor ratings – were unrelated to any measure of odor imagery ability, FCR, or adiposity change 

(Supplementary Tables 2–6). Thus, our results suggest that olfactory imagery and its 

accompanying multivariate activity patterns in the piriform cortex rather than perception per se 

may drive prospective changes in adiposity through FCR, though we cannot rule out univariate 

contributions from brain networks involved in related processes such as decision making, 

reward, and inhibition32. 

We cannot explain why neither FCR nor odor imagery ability were associated with 

current BMI in our study. However, it is possible that there is an unknown factor such as self-

control in our sample counteracting the expected association. Likewise, a similar compensatory 

mechanism may account for the lack of direct effects between odor imagery ability and changes 

in adiposity that we observed. Future work that includes a more comprehensive assessment of 

resiliency factors is therefore needed. It is also important to determine if the observed effects 

extend to other imagined odor or flavor qualities and whether strategies aimed at intervening 

with odor imagery might prove to be effective targets for weight loss. Nevertheless, our findings 

suggest that in an environment laden with food cues, the ability to vividly imagine their smells 

drives overeating and craving for liked foods, which in turn promotes increased adiposity. 
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METHODS 

Participants 

 The current study was classified as basic observational research in humans and did not 

meet the National Institutes of Health definition of a clinical trial. A flow diagram depicting the 

number of individuals at each stage of the study (e.g., eligibility, recruitment, completion, 

analysis) is provided in Extended Data Fig. 5. Participants were recruited from the local New 

Haven, CT, USA community and university population via flyer and social media 

advertisements. Individuals interested in this study or other previous studies in our lab filled out 

an online form using Qualtrics software versions October 2020–June 2022 (Qualtrics, Provo, 

UT, USA) to indicate through self-report initial information such as their sex assigned at birth, 

age, estimated BMI, drug use, etc. We pre-screened subjects in this database to identify 

individuals aged 18–45 and free from known taste or smell dysfunction, dieting behaviors, food 

restrictions, nicotine or drug use, serious medical conditions including metabolic, neurologic, 

and psychiatric disorders or medications used to treat these, cognitive deficits or memory loss 

that could impact mental imagery, and any MRI-contraindications (e.g., being left-handed, 

pregnant, or having metal in the body). We then assessed for further eligibility with follow-up 

email questions (e.g., to ensure that these people did not note any new disorders or drug use, 

recent smell loss due to COVID-19, or intent to leave the greater New Haven, CT area). To 

capture similar individuals across a range of BMIs, we used stratification to minimize differences 

in sex, race, ethnicity, age, and household income among participants recruited into 2 BMI 

groups (low BMI < 25 and high BMI ≥ 25 kg/m2).  

For the perceptual measure of odor imagery ability, 36 participants completed all 

imagery conditions based on an a priori power analysis performed in G*Power version 

3.1.9.634,35 to replicate the interference effect (d = 0.722) from the prior task validation5 in the 

low and high BMI groups (n = 18 each) at 0.80 power (alpha = 0.05, two-tailed test, two 

dependent means). Twelve additional participants were then recruited to complete only the odor 

imagery condition and all other study measures (with one excluded from scanning due to 

extreme claustrophobia). This was sufficient to achieve 0.80 power (n = 42, alpha = 0.05, two-

tailed test, bivariate normal model) for the effect observed between self-reported odor imagery 

ability and obesity risk (r = 0.42) in previous work8 and for the ability of FCR measures to predict 

longer-term changes in eating and weight (r = 0.42) from a prior meta-analysis2. Data from three 

participants were removed due to an inability to obtain proper odor thresholds such that their 

detection accuracies fell below chance level (less than 50% correct responses). Participant 
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characteristics of the final sample (N = 45) by BMI group are provided in Supplementary Table 

7.  

 

Stimuli 

Odors included “phenylethyl alcohol white extra” (rose, #001059147) and “cookie dough” 

(cookie, #10610208) from International Flavors and Fragrances (IFF; New York, NY, USA) 

diluted in food-grade propylene glycol. Rose and cookie were selected for us by IFF after we 

requested odors that were highly volatile, discernable, and equally pleasant. We also wanted 

both odors to have a “sweet note,” with one being edible and one inedible. Although rose flavor 

is used in some food cultures, ratings of odor edibility were not significantly associated with any 

measure of odor imagery ability in the current study (Supplementary Table 4). Ratings of odor 

liking also did not significantly differ for the rose and cookie odors in our sample (Extended Data 

Fig. 6d). The bogus taste test consisted of eight “Grandma’s Homestyle Chocolate Chip 

Cookies” broken into bite-sized pieces across two plates (for a total of ~280g or ~1360 kcal) 

presented alongside a 16 fl oz water bottle.  

 

Experimental Procedures 

The study consisted of three behavioral sessions and one fMRI scan at baseline, along 

with a follow-up session one year later. Full data collection from the first (baseline) to last 

(follow-up) sessions spanned 10/6/2020–6/3/2022. The fMRI scan was scheduled between 

8:00am-1:00pm, and all other sessions took place between 8:00am-8:00pm. We ensured that 

food craving and intake were assessed between the hours of 11:30am-7:00pm. Individuals were 

instructed to arrive to all sessions neither hungry nor full, but at least one-hour fasted. Data 

collection and analysis were not performed blind to the conditions of the experiments.  

Behavioral Sessions 

Training and Scales. Participants were first trained to make computerized ratings in 

PsychoPy version 3.036 by practicing with imagined sensations (e.g., the taste of your favorite 

chocolate) and real stimuli (e.g., the brightness of the ceiling light or the pressure of a weight). 

Intensity and liking were rated with the vertical category-ratio general Labeled Magnitude Scale 

(gLMS)37–39 and Labeled Hedonic Scale (LHS)40, respectively. The gLMS ratings were log base 

10 transformed prior to any analyses. All other ratings were made on horizontal visual analog 
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scales (VAS). Familiarity and edibility were rated from “not at all familiar” to “more familiar than 

anything” and from “not at all” to “more than anything” in response to “how much do you want to 

eat this?”, respectively. Internal state ratings for hunger, fullness, thirst, anxiety, and need to 

urinate were made from “not at all [hungry/full/etc.]” to “more [hungry/full/etc.] than anything.” 

Subjective hunger was calculated as the difference of VAS ratings for hunger – fullness. 

Participants also practiced one odor run in a mock MRI simulator in the lab. 

Adiposity. Body weight was measured with an electronic scale and height with a digital 

stadiometer to calculate BMI. Bioelectric impedance analysis (Seca Medical Body Composition 

Analyzer mBCA 525, Hamburg, Germany) was used to obtain body fat percentage; values were 

divided by 21 for females and by 31 for males to adjust for sex. 

Questionnaires. Participants completed the Vividness of Olfactory Imagery41 and 

Vividness of Visual Imagery7 Questionnaires (VOIQ/VVIQ) in which they imagined odors/visual 

objects across 16 scenarios and rated the vividness of their mental imagery from one “perfectly 

clear and as vivid as normal smell/vision” to five “no image at all – you only know you are 

thinking of an odor/object.” Both inventories were reverse scored such that higher sums 

reflected larger self-reported imagery ability. Participants also did a modified Vividness of Food 

Imagery Questionnaire (VFIQ)8 that was similar to the VOIQ but focused on the ability to 

imagine external food odors (e.g., of cookies in the oven) and flavors in the mouth (e.g., of 

eating cookies, which also rely on olfaction). Total weekly metabolic equivalent task-minutes 

(MET-minutes) from the International Physical Activity Questionnaire (IPAQ)42 was used to 

assess habitual exercise. MET-minutes for each type of physical activity represent the total 

minutes dedicated to the activity times the estimated energy expenditure during the activity as a 

multiple of resting energy expenditure (e.g., vigorous activities count toward a higher MET score 

than moderate activities). Total score from an American version of the Dietary Fat and Free 

Sugar Short Questionnaire (DFS)43 was measured to quantify high-fat/high-carbohydrate intake.  

Perceptual Task of Odor Imagery Ability. Detection thresholds for the rose and cookie 

odors were first determined using a 16-step dilution series (4% odor by volume to 1.22ppm) in a 

2-alternative forced-choice staircase procedure44. In a within-subjects and counterbalanced 

design, blindfolded participants then completed three imagery conditions (odor, visual, and 

none) of a validated perceptual task5. During odor and visual imagery, they were instructed to 

imagine the smell or sight of one odor type (e.g., rose) while trying to determine which of two 

samples “smelled stronger.” In matched trials, the two samples contained: (1) the same odor as 

the imagined type – e.g., rose – at their detection threshold level, and (2) the odorless propylene 
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glycol diluent. In mismatched trials, the two samples were: (1) the incongruent odor – e.g., 

cookie, and (2) the odorless diluent. In the no imagery condition, odor detection trials were 

performed in the absence of imagery. The odor and visual imagery conditions contained 25 

matched and 25 mismatched trials per odor (100 total), and the no imagery condition consisted 

of 25 trials per odor (50 total), all counterbalanced for presentation order (i.e., sample one 

contained the odor in 50% of trials). The interference effect (perceptual measure of odor 

imagery ability) was calculated by subtracting detection accuracy (% trials correct) in 

mismatched trials from that in matched trials of the odor imagery condition. The potential 

presence of a visual interference effect was also determined by subtracting detection accuracy 

in mismatched trials from that in matched trials of the visual imagery condition. As none was 

observed (Fig. 1f), the “interference effect” always refers to the odor rather than visual imagery 

condition. 

Food Cue Reactivity. Cue-induced craving strength was rated in response to 90 

palatable food pictures15 on a horizontal VAS from “I do not want it at all” to “I crave it more than 

anything,” and the average was calculated. Items included familiar American snacks and meals, 

such as pizza and doughnuts. For cue-potentiated intake, participants completed a bogus taste 

test16 in which they were instructed to eat as much as they liked while comparing the sensory 

properties of two plates of cookies (e.g., which tastes sweeter/saltier, is fresher, or has better 

quality chocolate). They were not explicitly told that the cookies were identical and that the 

primary aim was to quantify the grams consumed. Data from two participants were excluded 

from this measure after eating more than 3 SD above the group mean. Following the food 

craving and intake paradigms, participants also rated their liking on the LHS40 and frequency of 

consumption in a typical month on a VAS (labels: 1 or less/month, 2/month, 3/month, 1/week, 

2/week, 3–4/week, 5–6/week, 1/day, 2 or more/day) for each stimulus.  

fMRI Session 

Participants underwent fMRI scanning while performing a task in an event-related design 

with six trial types: smell rose, cookie, or clean air; and imagine rose, cookie, or clean air. Each 

trial began with a 5s auditory cue of “smell” or “imagine” followed by the name of the odor (e.g., 

“rose”) and the countdown “three, two, one, sniff.” We instructed participants to sniff in each trial 

prompted by the auditory cue to equate attentional demands. Odor/clean air delivery (3s) was 

time-locked to sniff onset. Trials were separated by intertrial intervals of 7–17s (mean = 10s). 

Participants completed 30 pseudorandomized trials per run (five of each type) and five runs per 

scan. Runs were ~9min long and separated by ~2min breaks to minimize olfactory habituation. 
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Stimuli were delivered at concentrations matching individual ratings of moderate intensity on the 

gLMS with a custom MRI-compatible olfactometer that has been described in detail previously45 

(also see the Supplementary Methods). 

fMRI data were acquired with a Siemens 3 Tesla Magnetom Prisma scanner using a 32-

channel head coil. Images were collected at an angle of 30° off AC-PC to reduce susceptibility 

artifacts in olfactory regions. Sagittal T1 anatomical images (repetition time TR = 1900ms, echo 

time TE = 2.52ms, 176 slices, field of view FOV = 250mm, voxel size = 1×1×1mm) and 

functional echo-planar images (EPIs) with a multiband blood-oxygen-level dependent (BOLD) 

sequence (TR = 2100ms, TE = 40ms, 72 slices, flip angle = 85°, FOV = 192mm, voxel size = 

1.5×1.5×1.5mm, multiband acceleration factor = 4) were obtained.  

Follow-Up Session  

The primary goal of the follow-up session was to assess changes in adiposity. All but 

one participant returned to the lab approximately one year later (days elapsed from first to last 

session: M = 363.17, SD = 7.33, range = 340 – 378) and repeated the adiposity, questionnaire, 

and FCR measures, but not the odor imagery measures. Follow-up data from one participant 

was excluded after they began a strict diet and lost more than 3 SD above the group mean in 

weight change from the baseline to follow-up sessions.  

 

Data Analyses 

Behavioral Analyses 

Pearson correlations, linear regressions, linear mixed effects models, ANOVAs, and 

Student’s t-tests were performed in MATLAB 2020a (Mathworks, Natick, Massachusetts, USA). 

For ANOVAs assessing the interaction of two variables, we included in the model each of the 

two variables independently, the interaction of the two, and any control variables indicated in the 

text. Variables of interest with outliers > 3 SD above or below the group mean were removed if 

they changed the nature of the results. Data distribution was assumed to be normal, but this 

was not formally tested. All statistical tests were two-sided. Corrections for multiple comparisons 

were made by adjusting the p-value for the number of tests at each step using the Bonferroni 

method. The only exception was in determining variables that should be included as covariates. 

In these limited cases (e.g., the associations between food intake and sex or food liking), 

correction for multiple comparisons was not performed to err on the side of caution. Data were 

plotted in Prism version 9.4.1 (GraphPad Software, San Diego, CA, USA). For test-retest 
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reliability, intraclass correlation coefficient estimates and 95% CIs were calculated in SPSS 

based on single measure, absolute agreement, 2-way mixed models. All measures showed 

moderate to good reliability (Supplementary Table 8). For details of the sniff analyses (reported 

in Extended Data Fig. 7 and Supplementary Table 9), see the Supplementary Methods. 

Mediation and moderated mediation models were tested with bootstrapping (10000 

samples, 95% CIs) using the “PROCESS” macro version 4.146 models 4 and 7 implemented in 

SPSS Statistics version 28 (IBM, Chicago, IL, USA). Significant effects were supported by 

confidence intervals (CIs) excluding zero within the lower and upper bounds. The selection of 

these models is described in the Supplementary Methods. 

fMRI Analyses 

Preprocessing. The fMRI data were preprocessed and analyzed using FSL version 

5.0.10 (FMRIB Software Library, Oxford, UK47 and SPM12 (Statistical Parametric Mapping, 

Wellcome Centre for Human Neuroimaging, London, UK) implemented in MATLAB R2019b. 

Functional EPIs were realigned to the mean and unwarped using fieldmaps, slice-time 

corrected, and motion-corrected with the FSL tool MCFLIRT48. The anatomical T1 image was 

coregistered to the mean EPI and spatially normalized to the standard MNI-152 reference with 

unified segmentation in SPM12. Prior to the univariate analyses, the resulting nonlinear 

deformation fields were applied to the EPI images, which were then smoothed with a 3mm full-

width-half-maximum Gaussian kernel.  

First Level Models. General linear models (GLMs) were estimated for each participant 

and run, separately for the normalized and smoothed EPI data (for univariate analyses) and the 

non-normalized and non-smoothed EPI data (for decoding analyses). In each, the 6 trial types 

(smell rose/cookie/clean air and imagine rose/cookie/clean air) were modeled with a canonical 

hemodynamic response function as events of interest with onsets time-locked to the start of 

odor/clean air delivery and durations of 3s. The following nuisance regressors were also 

included: 24 motion parameters (the six SPM realignment parameters for the current volume, 

six for the preceding volume, plus each of these values squared49, the mean signal extracted 

from the ventricular cerebrospinal fluid computed with fslmeants, a matrix of motion-outlier 

volumes identified using fsl_motion_outliers (threshold = 75th percentile plus 2.5 times the 

interquartile range and/or greater than 1mm of framewise displacement50), and the 

preprocessed sniff trace down-sampled to the scanner temporal resolution with decimation. A 

128s high-pass filter was applied to remove low-frequency noise and slow signal drifts. 



 14 

Univariate Analyses. As there was no main effect of odor type (rose/cookie) on fMRI 

activity (pFWE [cluster-level family-wise error corrected across the whole brain] ≥ 0.3214), we 

collapsed across the odorants in the subsequent univariate analyses (Extended Data Fig. 3 and 

Supplementary Tables 10–13), aside from testing VS reactivity to smelling the food odor. The 

following contrast images were created at the single-subject level and averaged across the five 

runs: smell odor (rose + cookie) > smell clean air, imagine odor > imagine clean air, imagine 

odor > smell clean air, smell odor > imagine odor, and imagine odor > smell odor. The contrasts 

of smell cookie > smell rose and smell cookie > smell clean air were also created toward 

assessing VS reactivity.  

Group-level random effects analyses were conducted with one-sample t-tests 

thresholded at puncorrected < 0.001 and a cluster size of at least five contiguous voxels. 

Conjunction analyses were performed for the contrasts smell odor > smell clean air and imagine 

odor > imagine clean air using the conjunction null hypothesis. Effects were considered 

significant at pFWE < 0.05. We also regressed the perceptual measure of odor imagery ability 

(i.e., the interference effect) against whole-brain BOLD responses to imagining odors > 

imagining clean air, imagining odors > smelling clean air, and imagining odors > smelling odors. 

Here we considered whole-brain effects and those significant in the piriform cortex at a peak-

level of pFWE-SVC < 0.05, family-wise error small-volume corrected for multiple comparisons in our 

two ROIs (see below). The pFWE-SVC values were subsequently Bonferroni corrected for the two 

SVC searches. Finally, for VS reactivity, we regressed variables of interest against whole-brain 

BOLD responses in the contrasts of smelling cookie > smelling rose and smelling cookie > 

smelling clean air. We considered effects significant in a bilateral ventral striatum mask derived 

from Bartra et al. (“positive > negative effects of subjective valuation on BOLD”)51 at pFWE-SVC < 

0.05. The anatomical labels were determined jointly from the “Atlas of the Human Brain”52, an 

adult maximum probability atlas prepared with SPM12 (www.brain-development.org)53, and the 

Automated Anatomical Labeling Atlas 354.  

Decoding Analyses. The ROIs for the decoding analyses included the left and right 

piriform cortices independently created from the Neurosynth55 meta-analytic functional map for 

the term “olfactory” (74 studies with 2021 activations, downloaded 9/15/2021). Activations from 

this map were restricted to a threshold of z = 6 to ensure separability of the piriform clusters 

from other nearby regions (e.g., the insula). Control regions for the decoding analyses included 

the left and right primary visual cortices from the Automated Anatomical Labeling Atlas 354 

(“calcarine fissure and surrounding cortex”). The ROIs and control regions were converted from 

http://www.brain-development.org/
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MNI space to each subject’s native EPI space (voxel size = 1.5×1.5×1.5mm). This resulted in 

clusters of 190 and 111 voxels for the left and right piriform ROIs, respectively.  

MVPA was performed using The Decoding Toolbox56 version 3.999E implemented in 

SPM12. For the first decoding method (support vector machine or SVM classification), separate 

voxel-wise patterns were created for smelling and imagining the rose and cookie odors by 

extracting the parameter estimates from the first level GLMs and subtracting the mean activity 

across the conditions in each run. This resulted in one rose and one cookie fMRI pattern per 

condition and run (e.g., smell rose and smell cookie) for training or testing in a cross-validated 

approach. Feature selection was used to identify the top class-discriminative voxels in each ROI 

or control region with an ANOVA, restricted to the number of voxels in each ROI maximally 

available for all subjects. An SVM from the Library for Support Vector Machines (LIBSVM) 

package57 was trained to decode rose versus cookie using patterns of BOLD activation for 

smelling the odors in four of five scan runs. The SVM was then tested for its accuracy to predict 

these odor types from the patterns in the left-out run. These steps were repeated for training 

and testing on the imagined odor patterns, and for training on smelled odors and testing on 

imagined odors (and vice versa, averaged for the cross-modal condition). SVM accuracies were 

compared to chance (50%) in one-sample t-tests to assess group-level significance. SVM 

accuracies for the decoding of real odors in the left versus right piriform cortex were also directly 

compared with a paired-samples t-test to assess the laterality of the effect.  

While reliable and a standard approach, this form of run-wise MVPA provides a relatively 

insensitive outcome metric that is not well-suited for correlation analyses (see the 

Supplementary Methods). For a more sensitive measure, we used a second decoding method: 

split-half voxel correlations. The first BOLD run was treated as an odor localizer, which resulted 

in an equivalent number of even and odd runs remaining for decoding (2 each). The voxels for 

each subject and ROI or control region were functionally ranked according to their t values in 

the contrast of smelling odor > smelling clean air from the localizer. Again, the N-most odor-

active voxels maximally available for all subjects were selected. The split-half voxel correlations 

were then analyzed for the within-odor (e.g., smelling rose in even runs versus smelling rose in 

odd runs) minus the between-odor (e.g., smelling rose in even runs versus smelling cookie in 

odd runs) fMRI patterns in each ROI or control region. In line with our SVM analyses, we 

performed separate tests for real, imagined, and cross-modal odors. The resulting correlation 

values were Fisher’s Z transformed and compared to zero in one-sample t-tests to assess 

group-level significance. They were also tested in correlations against the perceptual measure 
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of odor imagery ability. The latter analyses were performed in all individuals and separately 

restricted to those with discriminable neural patterns for actual odors in each ROI or control 

region, defined as within-odor minus between-odor voxel correlation Z-values > 0. See the 

Supplementary Methods for our reasoning behind this restriction. 

 
Inclusion and Ethics Statement 

Where applicable, this research conforms to the recommendations of the Global Code of 

Conduct. All participants provided written informed consent and were compensated. The study 

was conducted in accordance with the standards laid out in the Declaration of Helsinki. The 

study procedures were approved by the Yale Human Investigations Committee (Institutional 
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FIGURE LEGENDS 

 

Fig. 1: Study overview and the perceptual measure of odor imagery ability. 

(a) Our first goal was to correlate three measures of odor imagery ability: a validated perceptual 

measure5, a self-report measure (the Vividness of Olfactory Imagery Questionnaire or VOIQ41), 

and a new neural measure based upon the piriform decoding of imagined odor quality. 

(b) Our second goal was to correlate odor imagery ability with three measures of FCR: cue-

induced craving from an established paradigm15, cue-potentiated intake in a bogus taste test16, 

and ventral striatal reactivity to a food odor versus a nonfood odor or clean air. Our third goal 

was to correlate odor imagery ability with both current and one-year changes in adiposity.  
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(c) We hypothesized that in response to learned food cues, individuals with a better ability to 

imagine odors would experience stronger cravings that compel them to overeat and gain weight. 

In contrast, individuals with a worse ability to imagine odors would experience weaker cravings 

that have a low impact on their eating and weight. 

(d) We predicted that odor imagery ability would have an indirect effect on adiposity change via 

FCR. 

(e) In the adapted perceptual task5 to quantify odor imagery ability, participants were instructed 

to imagine the smell or sight of a rose/cookie or nothing at all while trying to detect either the 

same (matched trial) or the other (mismatched trial) odor at their detection threshold level 

(determined prior to the test). 

(f) As in previous work5, we found that odor imagery impairs mismatched odor detection without 

improving matched detection (i.e., the “interference effect”) using two-sided tests (t-statistics) of 

fixed effects in linear mixed effects models. See the Supplementary Results for further analyses 

behind establishing this perceptual measure of odor imagery ability. Box-and-whisker plots 

represent single participants from the minimum to maximum (whiskers) around the 25th to 75th 

percentiles (box limits), along with the median (center line) and mean (+ symbol) of the data. 

n.s., not significant. *post-hoc pairwise comparisons: pcorrected < 0.05 (2 tests comparing odor or 

visual matched versus mismatched detection); **post-hoc pairwise comparisons: pcorrected < 0.05 

(3 tests comparing odor mismatched, visual mismatched, and no imagery detection). 
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Fig. 2: Decoding of imagined, but not actual, odors in the right piriform cortex provides a 
neural measure of odor imagery ability. 

(a) Overview of the fMRI paradigm. After an auditory cue, participants either smelled rose or 

cookie odors (or clean air) or imagined these odors while sniffing clean air. 

(b) Decoding ROIs.  

(c) For the first decoding method, support vector machines (SVMs) were trained and tested to 

classify rose versus cookie over five cross-validated (CV) iterations. In the “smell/imagine odor” 

conditions, SVMs were trained and tested on voxel patterns from the same modality. For cross-

modal decoding, the SVM was trained and tested on real versus imagined patterns.  
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(d) For the second decoding method, split-half Fisher’s Z-transformed voxel correlations 

calculated between-odors (e.g., smelling rose in even runs versus smelling cookie in odd runs) 

were subtracted from those calculated within-odors (e.g., smelling rose in even versus odd 

runs). 

(e–f) SVM accuracies (e) and voxel correlations (f) for smelling actual odors were only 

significant in the right piriform cortex at the group-level (t43 = 2.991, pcorrected = 0.0184; t43 = 

3.342, pcorrected = 0.0056). SVM accuracies were also significantly greater in the right than left 

piriform cortices (t43 = 2.407, p = 0.0205). Neither decoding measure was significant for 

imagined or cross-modal odors in the ROIs tested. 

(g–i) The perceptual measure of odor imagery correlated with right piriform decoding of 

imagined (g), but not real (h) or cross-modal (i), odors using voxel correlations. Right piriform 

decoding of imagined odors was unrelated to any demographics, olfactory function or 

perception, sniff parameters, hunger, or dietary habits (Supplementary Table 4). 

Box-and-whisker plots represent single participants from the minimum to maximum (whiskers) 

around the 25th to 75th percentiles (box limits), along with the median (center line) and mean (+ 

symbol) of the data. Scatterplots depict single participants and the 95% CI around the line of 

best fit. Linear relationships were tested with two-tailed Pearson’s r correlations. L, left; R, right; 

Pir, piriform cortex. *p < 0.05 test for laterality; **pcorrected < 0.05 (4 tests per condition across the 

2 ROIs + 2 control regions; see Extended Data Fig. 2); ***pcorrected < 0.05 (18 tests comparing 

decoding versus the interference effect; see Supplementary Table 1). 
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Fig. 3: Better odor imagery ability is associated with stronger cravings for liked foods 
and greater intake. 

(a–b) Food craving did not correlate with the perceptual (a) or neural (b) measures of odor 

imagery ability. 

(c) There was a significant interaction between food liking and the perceptual measure of odor 

imagery ability on craving (pcorrected = 0.0114). Following a tertiary split to separate participants 

by their average food liking, the interference effect was unrelated to food craving in the low and 

moderate food liking groups. By contrast, there was a positive correlation in the high food liking 

group. In addition, accounting for subjective hunger ratings – which were positively correlated 

with food craving (Supplementary Table 3) – did not impact the results. No other variables of 

interest were associated with food craving (Supplementary Tables 2–3). Low liking group: mean 

LHS rating = –0.17, range = –66.60 to 11.68; Moderate liking group: mean LHS rating = 19.52, 

range = 11.83 to 27.98; High liking group: mean LHS rating = 37.69, range = 29.85 to 48.98. 
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(d–e) Both the perceptual (d) and neural (e) measures of odor imagery were significant 

predictors of cue-potentiated food intake adjusted for sex (males ate more) and cookie liking 

ratings, which were positively correlated with the amount consumed (Supplementary Table 2). 

No other variables of interest were associated with intake (Supplementary Tables 2–3). 

(f–g) Food intake positively correlated with change in body fat percentage (f), whereas food 

craving positively correlated with change in BMI (g). Accounting for age – which was positively 

associated with change in BMI (Supplementary Table 6) – did not impact these results. Changes 

in adiposity were also unrelated to sex, household income, olfactory function or perception, food 

liking, dietary habits, or changes in physical activity over the year (Supplementary Tables 5–6). 

Scatterplots depict single participants and the 95% CI around the line of best fit. Linear 

relationships were tested with two-tailed Pearson’s r correlations. R, right; Pir, piriform; LHS, 

Labeled Hedonic Scale40. *post-hoc comparison: pcorrected < 0.05 (3 tests comparing food craving 

to the interference effect after the tertiary split for food liking); **pcorrected < 0.05 (2 tests per 

measure of FCR or adiposity change).  
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Fig. 4: Odor imagery ability indirectly predicts changes in BMI and body fat percentage 
via food cue reactivity. 

(a–b) Testing the mediation models for the perceptual (a) and neural (b) measures of odor 

imagery ability revealed no direct effects between odor imagery ability and change in body fat 

percentage. By contrast, the indirect effects via intake were significant. These models were 

controlled for sex and cookie liking since these were the only variables of interest correlated 

with food intake (Supplementary Tables 2–3).    

(c) Testing the moderated mediation model for the perceptual measure of odor imagery ability 

again revealed no direct effect of odor imagery ability on change in BMI. However, the index of 

moderated mediation was significant (𝛽 = 0.161, SE = 0.104, CI [0.007, 0.441]). This was driven 

by a significant conditional a × b indirect effect in individuals with high, but not with low (𝛽 = –

0.079, SE = 0.103, CI [–0.347, 0.055]) or moderate (𝛽 = 0.033, SE = 0.103, CI [–0.347, 0.158]), 

food liking. This model was controlled for hunger (with food liking included as a moderator of the 

a-path) since these were the only variables of interest correlated with food craving 

(Supplementary Tables 2–3).  
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Bold font denotes significant effects at p < 0.05 according to CIs [lower limit, upper limit] 

excluding zero. Significant indirect effects are further highlighted in red.  
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