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ABSTRACT
Solvers for Curriculum-Based Course Timetabling were until re-
cently difficult to configure and evaluate because of the limited
number of benchmark instances. Recent work has proposed new
real-world instances, as well as thousands of generated ones that
can be used to train configurators and for machine learning appli-
cations. The less numerous real-world instances can then be used
as a test set. To assess whether the generated instances exhibit
sufficiently similar behavior to the real ones, we choose to con-
sider a basic indicator: feasibility. We find that 38 % of the artificial
instances are infeasible versus 6 % of real-world ones, and show
that a feasibility prediction model trained on artificial instances
performs extremely poorly on real-world ones. The objective of this
paper is therefore to be able to predict which generated instances
behave like the real-world instances in order to improve the quality
of the training set. As a first step, we propose a selection procedure
for the artificial training set that produces a feasibility prediction
model that works as well as if it were trained on real-world in-
stances. Then, we propose a pipeline to build a selection model that
picks artificial instances that match the infeasibility behavior of the
real-world ones.

CCS CONCEPTS
•Computingmethodologies→Discrete space search;Machine
learning.
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1 INTRODUCTION
The goal of Automatic Algorithm Configuration (AAC) [10] is to
find the best configuration of an algorithm that generalizes well
to new data. To do this, training set instances are used to fit the
algorithm configuration and evaluate its performance, while the
test set instances are used to measure the generalization ability of
the algorithm configuration. By using a separate test set, we can
ensure that the algorithm’s performance is not over-optimized for
the training data, and that it can generalize well to new data. In
addition to this, there need to be a sufficient number of instances
in both sets, and the instances need to be reasonably diverse.

Finding real-world instances for combinatorial optimization
problems can be difficult due to the complexity of the problems,
the availability of data, and the diversity of the problems. Never-
theless, it is important to strive for realistic instances in order to
evaluate and improve optimization algorithms and ensure that they
can be applied effectively in practice. One way around the lack
of real-world instances is to use generated, or artificial, ones. In
particular, in the context of AAC, the available real-world instances
can form the test set, while artificial instances form the training set.
For this strategy to work effectively, the artificial instances need
to behave as closely as possible to real-world instances in order to
good configurations that work on real-world data.

In this paper we focus on Curriculum-Based Course Timetabling
(CB-CTT), a variant of the University Timetabling, where a curricu-
lum is a set of courses followed by all students that belong to it. It
is an NP-hard problem that has been explored both in the academic
literature [5–7, 9] and during scheduling competitions such as the
International Timetabling Competition (ITC).

The initial widely available benchmark for CB-CTT, proposed
for ITC 2007, contained only 21 (real-world) instances. Many publi-
cations and algorithms have been proposed that only consider this
limited set of instances, including our own work [3, 4]. Recently,
De Coster et al. [2] studied algorithm selection for the CB-CTT.
To select the best solver, they compiled a long-awaited larger set
of real-world instances and generated thousands of artificial ones
based on characteristics derived from descriptive features of the
real-world instances.

Our initial exploration of those new artificial instances revealed
that they did not all seem to behave like the real-world instances
when considering feasibility, even though the instance generator
discarded instances deemed infeasible based on their descriptive
characteristics. In particular, we noticed that the initial solution
constructor of Müller [8], which won the ITC 2007, often failed
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to produce a feasible solution within 5 minutes, whereas in the
competition itself this was the budget for the whole solving process.

In light of this, this paper proposes the following contributions:
1) an analysis of the feasibility and distribution of features of the
proposed instances; 2) a model for feasibility prediction based on
instance features; 3) a pipeline for filtering out problematic artifi-
cial instances, i.e., keeping only ones that match the infeasibility
behavior of the real-world instances.

2 CB-CTT
The Curriculum-Based Course Timetabling (CB-CTT) is a schedul-
ing problem [11] that belongs to the family of University Timetabling
problems. Its formulation and set of constraints was formalized for
ITC 2007, a competition held for the PATAT 2007 conference.

With CB-CTT, students follow one curriculum. A curriculum is
a package of courses. Courses are sets of lectures and are linked
to only one referent teacher. The problem is scheduled over a lim-
ited number of days, divided into periods or timeslots. One period
corresponds to the duration time of one lecture. In CB-CTT, a so-
lution consists in scheduling lectures in timeslots and available
rooms following 4 hard and 4 soft constraints. Hard constraints
must be respected, for example all lectures must be scheduled. On
the contrary soft constraints can be violated. A solver’s objective is
to minimize the number of violations. These soft constraints repre-
sent the wished for characteristics of the timetables. The objective
function is an weighted sum of room capacity, minimum working
days, curriculum compactness and room stability.

Instance Features. Nine instance features usually used to describe
timetabling problems [1] are computed from the instance data :
number of lectures, teachers, courses, curricula, rooms periods
per day, days, timeslots and number of unavailable constraints
(number of timeslots where teachers are unavailable). We also add
a feature, called space, for the product of rooms and timeslots which
represents the number of scheduling options for a lecture if we do
not take into account hard constraints.

Real-world and Artificial Instances. There are 21 real-world in-
stances that have been proposed for the International Timetabling
Competition 2007. Among them, there are easily solvable ones and
others that violate many soft constraints. These instances have
been widely used in the literature since 2007 to evaluate the per-
formance of solvers. In 2022, De Coster et al. [2] compiled a larger
set of 82 real-world instances and presented a method to gener-
ate artificial instances based on 16 instance features and Principal
Component Analysis (PCA). They use PCA because preliminary
analyses have shown that the instance features are interrelated.
Thus, if the number of hours of lessons increases, consequently the
number of rooms also increases. Feature values are generated using
a Gaussian Kernel on the data from the 82 real-world instances.
The Gaussian Kernel is an estimator that takes the values of one
variable and estimates the closest normal distribution to it. Obvious
impossible instances are removed.

Feature distributions are similar between the two sets of in-
stances but more spread out for the artificial instances. This be-
havior is explained by the properties of the Gaussian distribution
estimator, which allows more extreme values. In Figure 1, the PCA
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Figure 1: PCA Artifial vs Real and Feasible vs Impossible

on the left highlights that the instance generator succeeded in cre-
ating fairly similar problems, with the artificial instances filling in
gaps between and around real-world ones.

In summary, we can see that regarding the distribution of fea-
tures, the artificial instances are quite close to the real-world in-
stances, except concerning the spread, which is more important.
However, the PCA shows clearly the effects of the use of a Ker-
nel Gaussian during the generation process [2]. Indeed, artificial
data fill all the space created by real-world problems. That is why
instances are generated in regions without real-world instances.

3 EXPERIMENTAL PROTOCOL
We use the constructor proposed by Müller [8] to generate initial so-
lutions for each instance. It is very fast, taking less than 1 second for
over 80 % of the instances. In order to have a diversity of solutions,
the constructor is run 30 times with different random seeds on each
of the 7024 problem instances. The time budget is set to 5 minutes
and an instance is considered infeasible if no solution is produced
within that time frame. Instance features are also extracted.

We use random forests as predictive models: they are easy to im-
plement and have fairly robust default parameters. One drawback
of this method, and many other models, is its difficulty to properly
handle an unbalanced dataset. That corresponds to a dataset where
one class largely outnumbers the other. That is why all models in
this paper are trained on a balanced dataset obtained via undersam-
pling, i.e., considering a smaller number of the over-represented
class. The models are evaluated w.r.t. 3 metrics: specificity, sensitiv-
ity, and accuracy.

4 FEASIBILITY ANALYSIS
To better understand the behaviors that could explain the feasibil-
ity, it is essential to analyze CB-CTT instances. Furthermore, we
oppose artificial and real-world sets in order to hypothesize on
their future usefulness. Indeed, the aim of generating instances is
to build complex methods trained on a large number of problems.
If these instances are too different from real-world problems, then
the methods will not be very useful.

Only 6% of the real-world instances are infeasible (5 out of 82).
Therefore infeasibility is not only due to the generator. In contrast,
38% of the generated instances are infeasible (2572 out of 6942).

Figure 2 shows the distribution of the values of a subset of 4
representative instance features for real and generated instances.
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Figure 2: Subset of scaled instance feature distributions

Values are scaled by the MinMax standardization process. Infeasible
instances seem to have higher values for all features, except for
number of Days and Timeslots. These observations are confirmed
by Wilcoxon tests with a threshold of 5%. The Wilcoxon results
show that, except for Timeslots, distributions are all significantly
different. This difference could be leveraged by a predictive model,
although it is less pronounced on artificial instances.

On the right PCA visualization of Figure 1, we observe several
feasible and infeasible instances overlapping in a cluster of points
more in the center. However, many infeasible instances are located
in the rightmost area, away from the cluster. That confirms the
instance features can discriminate feasibility.

5 FEASIBILITY PREDICTION
Feasibility Models. Our goal is to create the most robust predic-

tion model possible. Moreover, we want the model to be tested on
real-world data because it will be used on future new real-world
instances. So three models are created in total. All models are called
𝐹𝑃𝑋 for feasibility models trained on subset of instances of type 𝑋 .

The first model, 𝐹𝑃𝑅 , is trained on 82 real-world instances. Due
to the small amount of data it has, it is our reference for comparing
the two other models and not a feasibility model per se. The second
one is called 𝐹𝑃𝐴 , and is trained on the generated instances. 𝐹𝑃𝐴𝐶
is the third model built. Contrary to 𝐹𝑃𝐴 , it is trained only on
a selection of instances, as described below. The construction of
𝐹𝑃𝑅and 𝐹𝑃𝐴𝐶 is presented in Figure 3 (A, B).

One hypothesis for the difference in feasibility between artificial
and real-world instances is that the generator added instances that
were impossible because of the generation process and not due to
their constraints or solving difficulty. Nevertheless, some generated
instances are likely more similar to real instances, in terms of fea-
sibility. Thus, an instance selection process is used and, we create
the 𝐹𝑃𝐴𝐶model trained on those instances.

First, 𝐹𝑃𝑅 is used to predict the feasibility of the generated data
set. Then, the instances which are well-predicted by 𝐹𝑃𝑅 are kept to
train 𝐹𝑃𝐴𝐶 . Our hypothesis is simple: if a generated instance is well-
predicted by a model specialized for real-world instances, then its
feasibility should be the same as for the real-world instances. This
protocol selects 58% of the generated instances, i.e. 4446 problems.

Figure 4 shows no significant difference between the sets of
selected and not selected artificial instances. However, there are
slight shifts in the distribution between not selected artificial and
real instances.

Table 1: Mean values for 3 metrics of the feasibility models
on real-world instances.

Model Accuracy Sensitivity SpecificityTrain Test

𝐹𝑃𝑅 3-Fold 0.81 0.78 0.67 0.9
𝐹𝑃𝑅 LOOCV 0.75 1 1 1
𝐹𝑃𝐴 0.82 0.36 0.33 0.6
𝐹𝑃𝐴𝐶 0.77 0.77 0.76 0.93

Model Evaluation. Three models have been proposed and now
they are evaluated on their ability to predict the feasibility of real-
world instances. 𝐹𝑃𝐴 and 𝐹𝑃𝐴𝐶 are built and evaluated several
times. Each time a different subset of the training set is used and
is balanced to have the same number of impossible and feasible
instances. The use of different training subsets increases robustness.
Accuracy corresponds to the proportion of well-predicted real-
world instances. 𝐹𝑃𝑅 is evaluated via 3-fold cross-validation. Given
the few real instances, 𝐹𝑃𝑅 is also tested by a leave-one-out cross-
validation (LOOCV).

Table 1, with the average results of each model, shows that 𝐹𝑃𝑅
is a useful model. As it is our reference model for prediction on
real instances, it confirms our hypothesis and our analyses on the
discriminating power of instance features. Accuracy is good, with
0.78 for 3-fold cross-validation and perfect for LOOCV. 𝐹𝑃𝐴 can
predict the feasibility of a problem if it is artificial (train) but fails
to predict real-world feasibility (test). That confirms a difference
in the behavior or profile of these two sets despite the rigorous
process used by De Coster et al. [2]. Indeed, the accuracy of this
scenario is 0.36, which means that a random classification would
be more efficient. This behavior is logical if we take into account
the difference between the behaviors noted during the analyses. In
contrast, 𝐹𝑃𝐴𝐶 , built using only selected training instances, has a
score of 0.77. This matches the performance of 𝐹𝑃𝑅 .

Prediction of Selected Artificial Instances. Let us now consider a
model that avoids having to compute the feasibility of all generated
instances and that depends on another model as was the case before.
It would be enough to have an initial artificial data sample belonging
to two classes: selected or not.

To build the dataset we use 𝐹𝑃𝑅 that tells which artificial in-
stances to choose according to the prediction, Section 5. If an in-
stance is well-predicted then it is selected. Following this process,
we create a dataset of artificial instances. Then we create a balanced
training set of selected and not selected that represents almost 66%
of data. A random forest model, called 𝑆𝑒𝑙𝑒𝑐𝑡𝑜𝑟 , is built using this
training set. It is evaluated using 3-fold cross-validation, giving a
sensibility of 0.73, a specificity of 0.86, and an accuracy of 0.82.

Pipeline Validation. We present a pipeline (Figure 5) that includes
two models in sequence and evaluate the feasibility prediction of
the whole pipeline. The objective of this pipeline is to show that we
can use it as is in future work to create a filter that remains efficient
despite two models in sequence. In order to obtain statistically
robust results, the pipeline is executed 30 times.
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𝐹𝑃𝑅 is trained on a balanced training set from the real-world
set. Then 𝐹𝑃𝑅 is used to select the generated instances. Generated
instances, whose feasibility has been well-predicted, are selected.
𝑆𝑒𝑙𝑒𝑐𝑡𝑜𝑟 is trained using a balanced training set from these selected
instances. Then it is tested on all remaining instances. The gener-
ated instances predicted as selected are put aside. They represent
the training set of the final feasibility prediction model: 𝐹𝑃𝐴𝑆 . Fi-
nally, we test this model on all real-world instances. The process
is repeated 30 times. Each iteration contains two balanced train-
ing sets: for 𝐹𝑃𝑅 and 𝑆𝑒𝑙𝑒𝑐𝑡𝑜𝑟 . So repeating iteration checks the
robustness of the pipeline. Finally, the mean performance of the
feasibility prediction using this pipeline is a mean sensitivity of
0.74, specificity of 0.80 and accuracy of 0.74.

6 CONCLUSION
We address the issue that the available artificial instances for CB-
CTT do not necessarily behave like the benchmark real-world in-
stances, especially when feasibility is considered. Indeed, we show
that 38 % of the artificial instances are infeasible versus 6 % of real-
world ones, and find that a feasibility prediction model trained on

artificial instances performs extremely poorly on real-world ones.
This difference in behavior is problematic on many levels, but espe-
cially when we need to use artificial instances as a training set for
AAC, or more generally, for machine learning applications, since
we want the training to have the same characteristics as the test
composed of the far less numerous real-world instances.

We present an analysis of descriptive feature instances, and
propose a selection procedure for the artificial training set that
produces a feasibility prediction model that works as well as if it
were trained on real-world instances. The resulting random forest
model has good accuracy, about 0.77, the same as a model trained
on real-world instances. We propose a pipeline to build a selection
model that picks artificial instances that match the infeasibility
behavior of the real-world ones, delivering an accuracy of 0.82.

The next step in this research is to use the selected instances to
actually perform Automatic Algorithm Configuration. Initial results
show that we can find better configurations for the state-of-the-art
hybrid local search solver and that these configurations are actually
algorithmically simpler than the default configuration.
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