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Abstract Graph protection using mobile guards has received a lot of at-
tention in the literature. It has been considered in different forms, including
Eternal Dominating set, Eternal Independent set, and Eternal Vertex Cover
set. In this paper, we introduce and study two new models of graph protection,
namely Eternal Feedback Vertex sets (EFVS ) and m-Eternal Feedback Vertex
sets (m-EFVS ). Both models are based on an initial selection of a feedback
vertex set (FVS ), where a vertex in FVS can be replaced with a neighbor-
ing vertex such that the resulting set is a FVS too. We prove bounds for
both the eternal and m-eternal feedback vertex numbers on, mainly, distance
graphs, circulant graphs, and grids. Also, we deduce other inequalities for both
parameters on cycles, complete graphs and complete bipartite graphs.

Keywords Graph protection, eternal security problem, bipartite graphs,
distance graphs, grids

Mathematics Subject Classification (2020) Combinatorics

1 Introduction

The use of mobile guards to protect a graph is a problem that has already been
initiated and studied in the literature [1]. The problem consists in defending
the vertices, as well as edges, of a graph G against any attack using defense
units, called guards, stationing at the vertices of G.

A protection problem can be modeled by a two-player game between a
defender and an attacker. The defender chooses the set of vertices needed to
hold the guards in the first turn, and must defend any attack on any vertex,
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Université Claude Bernard Lyon 1, UFR-Informatique,
Lab LIRIS, 43 bd du 11 Novembre 1918, F-69622, 69100, Villeurbanne, France. E-mail:
{nour.dyab, hamamache.kheddouci}@univ-lyon1.fr, mohammad.lalou@u-bourgogne.fr



2 Nour DYAB et al.

by finding a new guard configuration at each turn. On the other hand, the
attacker chooses at each turn the location of the attack. An attack is defended
if a guard can be moved to the attacked vertex across one edge. The defender
wins the game if each sequence of attacks is successfully defended, the attacker
wins otherwise. We note that the sequence of attacks may be infinite in length.

Several variants of the problem have been studied in the literature, includ-
ing eternal dominating set [1], eternal independent set [2], and eternal vertex
cover set [3]. In this paper, we define two new variants of graph protection,
namely Eternal Feedback Vertex Sets (EFVS ) and m-Eternal Feedback Vertex
Sets (m-EFVS ). The two variants are modeled in the same way using a two-
player game, with the particular condition that the set of vertices chosen by
the defender must be, at the same time, a feedback vertex set (FV S) and a
dominating set (DS) in all turns. In other words, the Eternal Feedback Vertex
Set on a graph can be seen as an infinite game between a defender and an at-
tacker, where the defender chooses a set of guards Fi, such that for any i ≥ 1,
Fi is a feedback vertex set. At turn i, the attacker chooses a vertex ri, called
an attack, in V \ Fi−1 and the defender must defend the attack by moving
to ri a guard on a vertex vj adjacent to ri. The new guards configuration is
Fi = Fi−1∪{ri}\{vj}. The sets Fi, for any i ≥ 1, are also dominating sets. In
the case where the defender protects vertices by moving more than one guard,
we talk about m-Eternal Feedback Vertex Sets.

Protecting a graph with mobile guards is a problem that has already been
studied in many recent papers with different situations, such as eternal dom-
inating [1], eternal independent [4], and eternal vertex cover sets [3], etc. It
involves the placement of mobile guards on the vertices of a graph in order to
protect them against any attack. We are mainly interested in protecting graphs
against infinite sequences of attacks executed one at a time. Good surveys of
these topics can be found in [5,6].

The study of graph protection started with the domination theory (a thor-
ough survey of this theory can be found in [7]). In 2004, Burger et al. [1] stud-
ied, for the first time, the eternal dominating problem, where it was called
infinite order domination, and sometimes referred to as the one-guard moves
model. The set of vertices Di holding the guards, for each turn i, is required
to be a dominating set, and Di+1 is obtained from Di by moving one guard to
the attacked vertex from an adjacent vertex in Di. The authors proved that
the size of a smallest eternal dominating set of a graph G, called eternal dom-
inating number, lies between the independence and clique covering numbers,
i.e. α(G) ≤ γ∞(G) ≤ θ(G). Many other results have also been obtained [1].

Goddard et al. [2] computed the eternal domination number for some par-
ticular classes of graphs, and showed that for any graph G, if α(G) = 2, then
γ∞(G) ≤ 3. They also presented a new variant of the eternal domination
problem, known as m-eternal domination set, and referred to as guards move
model. For this model, each Di, i > 1, is required to be a dominating set, and
Di+1 is obtained from Di by allowing each guard to move to a neighboring
vertex, i.e. each guard in Di may move to an adjacent vertex. The size of a
smallest m-eternal dominating set of G, known as the m-eternal domination
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number and denoted γ∞m , has been computed for grids and many other classes
of graphs [5].

In [8], authors dealt with eternal domination on directed graphs. They
studied both parameters, γ∞ and γ∞m , on this class of graphs, and proved that
computing the oriented eternal dominating number is NP-hard. Also, they gen-
eralized known results on graphs to digraphs. Many other dominating models
have been defined in the recent years, such as the eternal total domination
and eternal connected domination [9].

Similarly, the eternal independent set problem was introduced by Hartnell
et al. [4] and also studied in [10]. They defined it with the two variants, one
guard move model and many guards move model, and the two parameters, the
eternal and m-eternal independent number (α∞ and α∞m ) have been studied
on different classes of graphs leading to several results [4,10].

Our main focus in this work is to compute both parameters, eternal feed-
back vertex (EFV) and m-eternal feedback vertex (m-EFV) numbers, namely
F∞ and F∞m , corresponding to the smallest eternal and m-eternal feedback
vertex set, on some particular classes of graphs. We organized the paper as
follows. In Section 2, we present different definitions and notation we use in the
rest of the paper. In Section 3, we provide formal definitions for our new mod-
els. Then, we compare the two parameters, F∞ and F∞m , with known graph
parameters in Section 4. In Section 5, we deduce some inequalities for F∞ and
F∞m on cycles, complete graphs and complete bipartite graphs, and provide a
detailed study for distance graphs, circulant graphs and grids. We close up the
paper with a conclusion and some future problems to be considered.

2 Definitions and Notations

In this paper, all graphs are considered finite, without multiple edges and
without loops. For a graph G = (V,E), V is the vertex set and E is the edge
set. For each vertex v ∈ V , let N(v) denote the open neighborhood of v, i.e
N(v) = {u ∈ V | vu ∈ E}, and N [v] = N(v) ∪ {v}. Given a subset of nodes
S ⊆ V , S is an independent set of G if there is no edge uv for every u, v ∈ S.
The independence number α(G) is the size of a largest independent set of G.
A set S is a dominating set of G if

⋃
v∈S

N [v] = V . The domination number

γ(G) is the size of a smallest dominating set of G. A set S ⊆ V is said to be a
feedback vertex set (FV S) if its removal results in a forest. We denote by F (G)
the minimum cardinality over all FV S, i.e. F (G) = min{ |S|, S is a FV S}.
A minimum feedback vertex set (MFV S) is a FV S of cardinality F (G).

We denote the path graph, cycle graph and complete graph, of order n, by
Pn, Cn and Kn, respectively, and the complete bipartite graph with partite
sets of cardinalities n and m by Kn,m.

A graph G = (V,E), where V = {v1, v2, ..., vn}, is a distance graph, denoted
Pn(D), if it is defined on a set of distances D = {d1, . . . , dk}, where di is a
positive integer, and two distinct vertices vi, vj ∈ V being adjacent if and only
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if |i − j| ∈ D. We sometimes omit the brackets and we write Pn(d1, . . . , dk)
instead of Pn({d1, . . . , dk}). A graph G with V = {v1, v2, ..., vn} is a circulant
graph, denoted Cn(D), if it is defined on D = {d1, d2, ..., dk}, where the set of
neighbors of a given vertex vi is {vk|k = (i ± dj) mod n, j = 1, 2, ..., k}, such
that 1 ≤ d1 < d2 < · · · < dk ≤ n

2 . We sometimes omit the brackets and we
write Cn(d1, . . . , dk) instead of Cn({d1, . . . , dk}).

Given two graphs G and H, we denote the cartesian product of G and H
by G×H.

3 Eternal and m-Eternal Feedback Vertex Sets

In the same way as the eternal dominating problem [1,2], we introduce the
Eternal Feedback Vertex Set Problem (EFVS ) as the problem of protecting a
graph using mobile guards, where the subset of vertices holding guards must
be, at each turn, both a feedback and a dominating set.

In our variant, we consider the case where the attack is defended if a guard
moves to the attacked vertex across only one edge. Using the two-players game
model, first, the defender chooses a set F0 of k vertices which hold the guards.
At turn i, the attacker attacks by choosing a vertex ri ∈ V \ Fi−1, and the de-
fender must defend the attack by moving to ri a guard from an adjacent vertex
vi. The new guards configuration is Fi = Fi−1∪{ri}\{vi}. The defender wins
the game if any infinite sequence of attacks is defended. The eternal feedback
vertex number, denoted F∞(G), is the minimum number of guards necessary
for the defender to win, and the eternal feedback vertex set is a set that can
initially be chosen by the defender in a winning strategy.

Let G = (V,E) be a graph. The set EFV S(G), of eternal feedback vertex
sets of G, is the greatest set of subsets of V such that for every subset S ∈
EFV S(G) and every r ∈ V \ S, there is a vertex v ∈ S such that vr ∈ E and
S∪{r}\ {v} ∈ EFV S(G). The size of a smallest eternal feedback set of G is the
eternal feedback vertex number F∞(G), i.e F∞(G) = min{|S|, S ∈ EFV S}.

For the m-Eternal Feedback Vertex Problem1, it is the variant where the
defender is authorized to move several guards at a time. It is defined in the
same way as the EFV S, except that when the attack occurs, each guard is
allowed to move to a neighboring vertex through only one hop. Several guards
movement can be considered either to defend the attacked vertex, or to make
a better position of guards for the coming turns.

Let G = (V,E) be a graph and let S1, S2 ⊂ V be two subsets. A multi-
move f from S1 to S2 is a one-to-one mapping from S1 to S2 such that for
every x ∈ S1, we have f(x) = x or (x, f(x)) ∈ E. The set MEFV S(G) of m-
eternal feedback vertex sets of G is the greatest set of subsets of V such that
for every S ∈ MEFV S(G) and every r ∈ V (G) \ S, there is a multimove f
such that r ∈ f(S) and f(S) ∈MEFV S(G). The size of a smallest m-eternal

1 Notice that the m in m-eternal does not represent a value.
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feedback vertex set of G is the m-eternal feedback vertex number F∞m (G); i.e
F∞m (G) = min{|S|, S ∈MEFV S}.

Considering the cycle graph C6 where V = {v1, v2, v3, v4, v5, v6} (see Figure
1). Removing any vertex from C6 results in a path, i.e. a minimum feedback
vertex set contains only one vertex. The smallest dominating set of C6 must
contain at least two vertices. Thus, we must start the game with at least two
guards, and as a defender, we choose two vertices to hold the guards. Without
loss of generality, let F1 = {v2, v5} be the initial set of guards. Assume that the
attacker choose vertex v3, so the defender must move the guard from v2 to v3.
The new configuration F2 = {v3, v5} is not a dominating set (see Figure 1a),
and so using only two guards the defender will lose the game. If we start the
game with three guards, and without loss of generality, let F1 = {v2, v4, v6}
(see Figure 1b). A guard on a shaded vertex can move to an unshaded neighbor,
and the resulting guard configuration induces a dominating feedback vertex
set. Figure 1b illustrates the case where v3 is attacked and the guard moves
from v2 to v3.

v
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v
6

v
5

v
4

(a) A non-EFV S of C6
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v
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v
3

v
6

v
5

v
4

(b) An EFV S of C6

Fig. 1: C6, the guards are placed on the black shaded vertices

One can notice that F∞(P3) = 2 and F∞(C3) = 1. Figure 2 illustrates
possible configurations on the house graph G, where F∞(G) = 2.

4 EFVS and m-EFVS on general graphs

On general graphs, the following observation, comparing the two numbers
F∞ and F∞m with some known graph parameters, comes directly from the
definitions of the EFV S and m-EFV S.

Observation 1 Let G be a general graph, then

F∞(G) ≥ F∞m (G) ≥ F (G). (1)

Given the result comparing both the eternal domination and m-eternal
domination numbers of a graph G with the domination and independent num-
bers of G:
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Fig. 2: Eternal feedback vertex set on house graph (shaded vertices are guards).

Theorem 2 [1,2,11] For any graph G, we have

γ(G) ≤ γ∞m (G) ≤ α(G) ≤ γ∞(G) ≤
(
α(G) + 1

2

)
.

and based on the fact that each eternal (resp. m-eternal) feedback vertex
set is an eternal (resp. a m-eternal) dominating set, the following inequalities
hold:

Theorem 3 Let G be any graph, then γ∞m (G) ≤ F∞m (G) and γ∞(G) ≤ F∞(G).

Consequently, we have the following corollary:

Corollary 1 For any graph G, α(G) ≤ γ∞(G) ≤ F∞(G).

The relation between the eternal and m-eternal feedback vertex numbers
of a graph and its induced subgraphs is given by the following:

Proposition 1 For any graph G, and any induced subgraph H of G, we have

F∞(G) ≥ F∞(H) and F∞m (G) ≥ F∞m (H).

Proof For the first inequality, we suppose that F∞(G) < F∞(H). Thus, for
any EFV S F of G, F is not an eternal FVS of H. On the other hand, the
sequence of attacks in G restricted to the induced subgraph H requires only
F∞(G) guards, which is a contradiction. The same proof is used for the second
inequality. �

It was proved in [8] that the eternal (resp. m-eternal) dominating number
of a graph is the sum of the eternal (resp. m-eternal) dominating number of
its components. This is trivially true also for the eternal (resp. m-eternal)
feedback number for any graph.

Corollary 2 Given a graph G consisted of the connected components G1, G2, ..., Gi,
i > 0, we have:

F∞(G) =
∑
i=1

F∞(Gi), and F∞m (G) =
∑
i=1

F∞m (Gi).
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5 EFVS and m-EFVS on particular classes of Graphs

In this section, we compute F∞ and F∞m on some particular classes of graphs.
First, we note that for any acyclic graph G, it is trivial to see that the feedback
vertex number is equal to zero, hence finding an eternal feedback vertex set
for G is equivalent to find an eternal dominating set.

For cycles, complete graphs, and complete bipartite graphs, we have the
following observations:

Observation 4 Given a cycle Cn and a complete graph Kn, for any n ≥ 3,
and given a complete bipartite graph Kn,m, where V = A ∪ B, |A| = n and
|B| = m, then:

1. bn2 c ≤ F
∞(Cn) ≤ dn2 e.

2. F∞m (Cn) = dn3 e.
3. F∞(Kn) = F (Kn) = n− 2.
4. F∞(Kn,m) = n+m− 3.
5. F∞m (Kn,m) = max{n,m}.

For cycles, removing any vertex produces a path graph, thus finding the
eternal feedback vertex number is equivalent to finding the eternal domination
number. For m-Eternal FVS, an example on C12, Figure3, illustrates that
F∞m = dn3 e.

v
3i+1

v
3i

v
3i+2

v
3i+2

v
3i

v
3i+1

(a) Guard clockwise move

v
3i+1

v
3i+1v

3i
v
3i

v
3i-2

v
3i-2

(b) Guard anti-clockwise move

Fig. 3: Example of m-Ethernal Feedback Vertex Set on C12. The guards are
placed on the black shaded vertices.

In a complete graph Kn, any three vertices form a cycle, so any feedback
vertex set must contain at least n − 2 vertices and thus both eternal and m-
eternal feedback vertex numbers of a complete graph are equal to its feedback
vertex number.
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Now, for complete bipartite graphs whereA = {v1, ..., vn} andB = {u1, ..., um},
a cycle vivjukul is obtained for all i, j, k, l ≥ 1. So we can see that, at all turns,
we must place the guards in such a way that if A holds less than n−2 guards,
then B must contain at least m−1 guards. Therefore, the only way to get this
is to place n+m−3 guards. Figure 4b shows that if we use less than n+m−3
guards to protect a complete graph, Kn,m, a cycle will be obtained.

v
1 2 nv v

3
v

A

u
1

u
2

u
m

B

(a) EFV S of Kn,m

u
1

u
2

u
m

v
1 2 nv v

3
v

A

B

j
v

(b) non-EFV S of Kn,m

Fig. 4: Kn,m, the guards are placed on the black shaded vertices, and the blue
nodes holding the guard before moving.

In the case of m-Eternal FVS, all vertices of A (or B; we select the max-
imum) must hold guards (see Figure 5). Note that each partition in Kn,m is
an independent set, and so no cycle is obtained by removing a set partition.

u
1

u
2

u
m

v
1 2 n

v v
3

v
i

v

B

A

(a) Moving one guard from B to A.

u
1

u
2

u
m

v
1 2 n

v v
3

v
i

v

B

A

(b) All guards move from B to A.

Fig. 5: Kn,m, the guards are placed on the black shaded vertices, and blue
nodes are guard positions before moving.

5.1 Distance graphs and Circulant graphs

Along this section, we use the following bonds of the minimum feedback vertex
set number, F , of different families of distance and circulant graphs, summa-
rized in Table 1 [13].
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F (Pn(D)) F (Cn(D))
D Lower bound Upper bound Lower bound Upper bound

{1, 2, 4} 4bn
8
c dn

2
e 4bn

8
c dn+4

2
e

{1, t} dn−t
3
e dn−2

3
e dn+1

3
e dn+t

3
e+ 1

{1, s, t} d 2n−s−t
5
e dn

2
e d 2n+1

5
e dn+t

2
e

{1, 2, 3, ..., t}
{
b n
t+1
c(t− 1) if n = 0, 1 mod(t = 1)

n− 2b n
t+1
c − 2 otherwise

n− 2b n
t+1
c − 1 n− 2b n

t+1
c

Table 1: Bounds of MFV S on distance graphs and circulant graphs.

We note that hereafter, for figures, we illustrate only edges needed to ex-
plain the proofs, and so the other edges can be easily deduced from the defi-
nition of the graph class.

5.1.1 Distance Graphs

Depending on the values of D, we first consider the particular case where
D = {1, 2, 4}, and then the more general cases where D = {1, t}, and D =
{1, 2, 3, . . . , t}, where t is a non-negative integer.

Case 1. D = {1, 2, 4}.

Given a distance graphs Pn(D) of n vertices, where two distinct vertices
vi, vj are adjacent in Pn if and only if |i− j| ∈ {1, 2, 4}.

Theorem 5 For any integer n, we have F∞(Pn(1, 2, 4)) = 5bn8 c.

Proof Let F1 be any EFV S of a distance graph G = Pn(1, 2, 4). According to
Proposition 5 in [13], there are two possible cases for F1:

(i) Only two vertices over the first six are in F1. In this case, it is obligatory
to choose vertices v1 and v4, as removing them is the only possibility to
get an acyclic graph. Suppose that any other vertex is attacked, without
loss of generality let be v0. To defend v0, we must move the guard either
from v1 to v0, or from v4 to v0. In both cases, at least one cycle will be
generated, such as v1v2v3 for the first move and v2v3v4 for the second move
(see Figure 6). For illustration, if we assume that the guard moves from
v1 to v0, then the new guard configuration is {v0, v1}. According to the
construction of Pn(1, 2, 4), v1 is adjacent to v2, v2 is adjacent to v3 and v1
is adjacent to v3. Hence, a cycle is generated by {v1, v2, v3}.

v
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v
4

v
5

v
0

v
1

v
2

v
3

v
4

v
5

v
0

v
1

Fig. 6: P6(1, 2, 4), guards are on black shaded vertices.
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(ii) At least three vertices over the first six are in F1. We arbitrary choose three
non-consecutive vertices to hold guards in the first turn, considered as a
minimum eternal FV S for P6(1, 2, 4). Consider now the first 12 vertices
of G, and suppose that we apply the same strategy on each 6 vertices. A
counter example can be occurred as follows. Without loss of generality and
as we consider a game with infinite turns, let’s suppose that at turn i, we
have Fi = {v0, v3, v5, v6, v8, v11}, and vertex v7 is attacked. All possible
guard moves will generate at least one cycle. In fact, if the guard is moved
from v3 to v7, v5 to v7, v6 to v7, v8 to v7, or v11 to v7, we get respectively
cycle v2v3v4, v1v2v4v5, v2v4v6, v8v9v10, or v9v10v11 (see Figure 7).

Fig. 7: The different possible cycles generated while defending an attack on
vertex v7 of P12(1, 2, 4).

So, for this case, we must fix the guards on vertices v6 and v7 to protect
them. Accordingly, we can see that in general at least 5 vertices must be
selected to hold guards for each 8 vertices. Consider F1 is obtained by any
FV S of three vertices selected from the six first vertices (for each block
of 8 vertices), with the addition of the two vertices v6 and v7, we can see
easily that the defender can avoid any attack (see Figure 8).
Knowing that we are in the eternal variant of the feedback vertex problem,
we can see that this example can be generalized for a large n, and thus the
defender can win the game starting with 5 guards on each consecutive 8
vertices, and hence F∞(Pn(D)) = 5bn8 c.

�



Eternal Feedback Vertex Sets: A New Graph Protection Model Using Guards 11

v
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v
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v
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FVS

v
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v
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v
12

v
13

v
8

v
9

v
14

v
15

FVS

Fig. 8: A winning configuration for Pn(1, 2, 4), guards are on black shaded
vertices.

The following corollary follows directly from Table 1, Equation (1) and
Theorem 5.

Corollary 3 For any integer n, 4bn8 c ≤ F
∞
m (Pn(1, 2, 4)) ≤ 5bn8 c.

Case 2. D = {1, t}.

This is the case where edges of the distance graph are constructed for each
distance t, besides the unit distance.

In [14], the authors proved the following lemma.

Lemma 1 [14] Let G be a path graph with n vertices, then γ∞(Pn) = dn2 e.

Theorem 6 For any integers n and t, such that 1 ≤ t < n, we have :

F∞(Pn(1, t)) = dn
2
e+ 1.

Proof If t ≥ n, then Pn(1, t) is a path (an acyclic graph), so we are in the case
where F (Pn(1, t)) = 0, and F∞(Pn(1, t)) = γ∞(Pn(1, t)). For the case where
t ≤ n and n ≥ 2t, we have two possible cases.

(i) n mod t = 0. Depending on the parity of n
t , we have two cases.

(a) n
t is even. We partition the graph into n

t blocks, namely T1, T2, ..., Tn
t
, of

t vertices each. Let V (Ti) = {vi1, vi2, ..., vit} for all 1 ≤ i ≤ n
t . According

to Lemma 1, we have γ∞m (Pn) = dn2 e. Thus, F∞(Pn) ≥ F∞m (Pn) ≥ dn2 e
(Equation 1). On the other hand, and as paths are a subclass of distance
graphs (a distance graph Pn(1, t) is a path with some extra edges), so
we have F∞(Pn(1, t)) ≥ F∞(Pn) ≥ dn2 e.
First, we prove that F∞(Pn(1, t)) > dn2 e. For that, we show that any
subset F of G of dn2 e vertices cannot be an EFV S. Without loss of

generality, let F = {v2k+1
l , 0 ≤ k ≤ n

2t , 1 ≤ l ≤ t} since starting with
any other subset of vertices of cardinality dn2 e as a guard configura-
tion, we inevitably end up with configuration F after some number of
turns (note that we consider an infinite game). In fact, for instance
where G = P16(1, 4), we let F1 = {v11 , v12 , v23 , v24 , v31 , v32 , v43 , v44}. After a
sequence of attacks on vertices v13 , v

1
4 , v

3
3 , and v34 found in blocks T1 and

T3 respectively, the guards should be arranged on T1 and T3 (see Figure
9). We denote this configuration F , and we have just to prove that F ,
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which is clearly of cardinality dn2 e, is not an EFV S. Assume that the
defender starts the game with F , and the attacker chooses to attack

vertex v
n
t
1 . The defender has only two choices to avoid the attack, ei-

ther by moving the guard from vertex v
n
t −1
1 to v

n
t
1 , which results in

cycle v
(n/t)−2
1 v

(n/t)−2
2 ...v

(n/t)−2
t v

(n/t)−1
1 (see Figure 10); or by moving

the guard from v
n
t −1
t to v

n
t
1 , which results in a non-dominating guard

configuration F ′ = F \ {v
n
t −1
t } ∪ {v

n
t
1 }. Hence F is not an EFV S, and

so F∞(Pn(1, t)) 6= dn2 e.

1 4

v v1 1

2
v 1

1 4
v v3 4

4
v2

1
T

2
T

3
T

4
T

3
v2

3
v1

3
v4

2
v

4
v 3

3
v 33

Fig. 9: P16(1, 4), the guards are moved from blue vertices after an attack on
the two last vertices of blocks T1 and T3. Black shaded vertices are guard
positions after attacks (which results in a F configuration).

v
t
1

T
1

T2
T(n/t)-1 T(n/t)

v
1
1

v
1
2

Fig. 10: Pn(1, t), the guards are on black shaded vertices.

Second, we show that F∞(Pn(1, t)) = dn2 e + 1. For that, let F ′ =

F ∪ {v
n
t
t } be the set that holds the guards in the initial turn. We have

|F ′| = |F |+ 1 = dn2 e+ 1, and F ′ is a dominating FV S of G (since F is
a dominating FV S). Starting the game with F ′, the defender will win
the game by applying the following strategy. Depending on the block of
the attacked vertex, we have two defense strategies: (a′) where k = 1,
i.e. the attack occurs on the two first consecutive blocks, the defender
can move the guard from v1l to v2l when v2l is attacked, for all 1 ≤ l ≤ t.
(b′) where k ≥ 2, we deal with each attacked vertex according to its
position in the block. If vertices v2kl , for 2 ≤ l < t, are attacked then
the defender can move the guard from v2k−1l to v2kl . If vertices v2kt are

attacked, the guard can be moved from v2k+1
1 to v2kt . Finally, vertices

v2k1 are protected by moving the guard from v2kt to v2k1 . Note that all
the obtained guard configurations F ′ are dominating FV S as G \ F ′
has no chord of length t joining two consecutive blocks. Thus, fixing a



Eternal Feedback Vertex Sets: A New Graph Protection Model Using Guards 13

guard on v
n
t
t allows to deal with the non-domination encountered above

(where F∞(Pn(1, t)) = dn2 e).
(b) n

t is odd. As above, we partition the graph into n
t blocks, say T1, T2, ..., Tn

t
,

of t vertices each. Let G′ be the graph obtained from G by removing
vertices of the last block Tn

t
, where n′ = n − t is the number of ver-

tices of G′. We deal with G′ as follows. We have n′

t is even, and so

F∞(G′) = dn
′

2 e+ 1. For a wining strategy, we have to just choose any
dominating set of cardinality t

2 for block Tn
t
. We note that block Tn

t
is a

path graph with t vertices, and as F (Tn
t
) = 0 so any eternal dominating

set is an EFV S. Accordingly, we have:

F∞(G) ≤ F∞(G′) + F∞(Tn
t
) ≤ dn

′

2
e+ 1 +

t

2
≤ dn

2
e+ 1.

Now, we assume that there exists an EFV S of G with cardinal less
than dn2 e+1. There is at least dn

′

2 e+1 guards for G′, so the path graph
G[Tn

t
] will be protected by less than d t2e, which leads to a contradiction,

i.e. after some moves of the guards, we necessarily get three consecutive
vertices in Tn

t
without guards. And hence F∞(G) = dn2 e+ 1.

(ii) n mod t 6= 0. We partition the graph into dnt e blocks, T1, ..., Tdnt e, each
of t vertices except the last block, Tdnt e, contain r < t vertices. Similar to
case (i), we deal with two cases according to the parity of dnt e.
(a) dnt e is even. Let G′ = G \ Tdnt e be the graph obtained from G by

deleting the last block, and let n′ be the number of vertices of G′.
We use the same strategy as in case (i)(b) on graph G′, and we have

F∞(G′) = dn
′

2 e + 1. In fact, Tdnt e is a path graph with r < t vertices,
thus the last block can be defended by d r2e guards. Hence,

F∞(G) ≤ F∞(G′) + F∞(Tdnt e) = dn
′

2
e+ 1 + dr

2
e = dn

2
e+ 1.

Now, we assume that the defender can win the game with less than
dn2 e+1 guards. We know that for a winning strategy, it is obligatory to

have at least dn
′

2 e+1 to protect G′ in each turn of the game. And so the
path graph Tdnt e is supposed to be protected by less than d r2e guards,
which leads to a contradiction as this is results in a non-dominating
guard configuration. And hence, F∞(G) = dn2 e+ 1.

(b) dnt e is odd. Similarly, we let G′ be the graph obtained from G by re-
moving the last r vertices. We use exactly the same proof as in (ii)(a),
except that in this case we deal with G′ according to (i)(a).

�

We note that the proof of Theorem 6 present as well a linear solving algo-
rithm of the EFV S problem on Pn(1, t).

Directly from [13], Equation (1) and Theorem 6, we get the following corol-
lary.
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Corollary 4 For any n and t, and G = Pn(1, t) we have:
bn−t2 c ≤ F

∞
m (G) ≤ dn2 e+ 1, if n

2 ≤ t ≤ n.
bn+2

4 c ≤ F
∞
m (G) ≤ dn2 e+ 1, if n

3 ≤ t ≤
n
2 .

bn−t3 c ≤ F
∞
m (G) ≤ dn2 e+ 1, if t ≥ 2 and n ≥ t.

Case 3. D = {1, 2, 3, ..., t}.

In this case, the graph is more dense and contains all edges established
between each pair of vertices considering all possible distances less or equal
than t.

Theorem 7 Let G = Pn(1, 2, 3, ..., t). For any n ≥ 5 and t ≤ n−2
2 , we have :

F∞(Pn(D)) =

{
b n
t+1c(t− 1) n mod (t+1) = 0,1,

(n− 2)b n
t+1c − 2 otherwise.

Proof Directly from Table 1 and Observation 1, we have:

F∞(Pn(D)) ≥ F (Pn(D)) ≥

{
b n
t+1c(t− 1) n mod (t+1)= 0,1

(n− 2)b n
t+1c − 2 otherwise.

To prove the equality it is sufficient to prove that the FV S constructed in
[13] can be an initial EFV S for a wining strategy. Let G = Pn(1, 2, 3, ..., t),
we decompose G into q blocks of (t + 1) vertices each, and one block with r
vertices, where n = q(t + 1) + r, q ≥ 1 and 0 ≤ r ≤ t + 1, and let vsi denote
the ith vertex in block s, for i ≥ 0 and s ≥ 1.

Let F = {vsi , 2 ≤ i ≤ t, 1 ≤ s ≤ q} ∪ {vsi , 2 ≤ i ≤ r − 1, 1 ≤ s ≤ q}. F is a
FV S of G. In fact, the graph obtained from G after removing the vertices of F
is an acyclic graph. All the chords that join the vertices of the two consecutive
blocks are removed except the chord that join the vertices vs1 and vs+1

0 , for all
s ≥ 1. Thus, G[V \ F ] is a path graph (see Figure 11).

0 1 t
0

v v v v
1 1 1 2

Fig. 11: The vertices of F are shaded

Assume that each vertex of F holds a guard, we can see that the first two
vertices of each block are not in F , i.e vsi ∈ F for all i ≥ 2 and vsi /∈ F for
i = 0, 1 (see Figure 11). Thus, F is a dominating set of G, and all vertices
are protected by at least one guard. For instance, vertex vs1 is protected by
vs2 and vs0. We suppose that the first vertex on the block is attacked, without
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loss of generality, let be v10 , so the defender can avoid this attack with many
ways, such as through moving a guard from v1t to v10 (no cycle is obtained)
(see Figure 12).

0 1 t 0
v v v v

1 1 1 2

Fig. 12: Pn(1, 2, ..., t), EFV S is shaded

Generalizing this model of protection to all the other blocks ensures that
the new guard configurations, after each turn, is a dominating FV S, and the
defender can avoid any attack. Therefore, starting with F , where |F | = q(t−1)
if n mod (t+ 1) = 0, 1, and |F | = q(t− 1) + r− 2 otherwise, the defender wins
the game, and the theorem is proved.

�

By Equation (1) and Theorem 7 the following corollary follows.

Corollary 5 Let n ≥ 5 and t ≤ n−2
2 , then

F∞m (Pn(D)) =

{
b n
t+1c(t− 1) n= 0,1 mod (t+1)

(n− 2)b n
t+1c − 2 otherwise.

5.1.2 Circulant Graphs

In this section, we consider the class of circulant graphs, and we deal with two
cases, depending on the set of distance D, namely the case when D = {1, s, t}
and when D = {1, t}, where s and t are assumed satisfies 1 < s < t ≤ n

2 .

We first establish the relationship between both parameters, F∞ and F∞m ,
on distance and circulant graphs. We have, by definition, distance graphs are a
subclass of circulant graphs, i.e circulant graph is a distance graph with some
extra edges (chords), so the following corollary holds.

Corollary 6 For any n ≥ 1 and any set D,

F∞(Pn(D)) ≤ F∞(Cn(D)), and F∞m (Pn(D)) ≤ F∞m (Cn(D)).

For the general case, where D = {1, s, t}, the set of neighbors of a vertex
vi is {vk|k = (i ± w) mod n,w = 1, s, t, and j = 1, 2, . . . , n}, where n is the
number of vertices in the graph. The following bounds immediately follows
from Corollary 6, Equation (1) and Table 1.

Corollary 7 For any integers n, s and t, with t ≤ n−1
2 and 2 ≤ s < t,

d 2n+1
5 e ≤ F

∞
m (Cn(1, s, t)) ≤ F∞(Cn(1, s, t)).
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For the case where D = {1, t}, the set of neighbors of a vertex vi is {(i ±
w) mod n,w = 1, t, and j = 1, 2, . . . , n}.

Theorem 8 For any n ≥ 5 and t < n
2 , we have:

F∞(Cn(1, t)) = dn
2
e+ 1.

Proof From Corollary 6 and Theorem 6, we have F∞(Cn(1, t)) ≥ dn2 e+ 1. To
prove the equality, let G = Cn(1, t), and let H = Pn−t(1, t) be the subgraph of
G induced by {t, t+ 1, ..., n− 1}. Directly from Theorem 6, we get F∞(H) =
dn−t2 e + 1. On the other hand, for the cycle graph induced by the first t
vertices {v0, v1, ..., vt−1} of G, we can find an EFV S of size at most d t2e.
Therefore, there is an eternal feedback vertex set for Cn(1, t) of size at most(
dn−t2 e+ 1

)
+
(
d t2e
)

= dn2 e+ 1. Hence, F∞(Cn(1, t)) = dn2 e+ 1.
�

Using Equation (1) and Theorem 8, we obtain the following corollary.

Corollary 8 For any n ≥ 5 and t < n
2 , F∞m (Cn(1, t)) = dn2 e+ 1.

5.2 Grids

We compute F∞ on a grid graph G = Pn × Pm obtained by the product of
two paths Pn and Pm. Let assume that n ≤ m for all n,m > 1.

Theorem 9 Let G be a grid, such that G = Pn×Pm, and let n ≤ m. F∞(G)
is computed as follows:

F∞(G) =

{
m×n

2 , if n or m is even,

dm2 e × n, else.

Proof Let G = Pn×Pm, with n rows and m columns. We label the vertices of
G according to their positions, such that vi,j is the vertex obtained on row i
and column j, where i ≤ n and j ≤ m. There are two possible cases depending
on the parity of n and m.

(i) n or m is even. First, let suppose that n and m are even. We assume that
F = {vi,2k−1|i, k ≥ 1} is the set of vertices chosen by the defender to hold
the guards in the initial turn. F is a dominating feedback vertex set (we
choose the vertices of each odd column), and |F | = n×m

2 . For an attack
on any vertex vi,j /∈ F , say vi,2k where k ≥ 1, the defender can remove a
guard from the vertex vi,2k−1 to vi,2k, and the new guard configuration is
FV S and dominating. Also, if at turn i, vertex vi,2k−1 /∈ Fi is attacked,
then moving a guard from vi,2k to vi,2k−1 ensures defending the attack.
Thus, by applying this strategy, the defender will win the game.
Now, suppose that the defender starts the game with a number of guards
less than n×m

2 , so using the same strategy, there is a turn k where the
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new configuration will no longer be a domination. In fact, without loss
of generality let F ′ = F \ {v3,1} be the set obtained from F by deleting a
vertex, say v3,1. If v2,4 is attacked, then if the guard moves from v2,3 to v2,4,
so the new guard configuration is non-domination (v1,3 is not protected by
any guard), see Figure 13a for an example when n = m = 4. Otherwise, for
n > 4, if the guard moves from v2,5 to v2,4, then as n is even, after a series
of attacks, all possible moves lead to a non-dominating configuration. And
hence we get the result that the minimal number of guards is n×m

2 .
In what follows, we generalize this result for any subset making an EFV S
for G. In doing so, we first show that this is true for the particular case of
grids, namely P2×P2, and then we generalize it for Pm×P2 and Pn×Pm,
for any n,m.
For P2 × P2, which is a cycle graph of length four, and using Observation
4,1, we have F∞(P2×P2) = n

2 = 4
2 = n×m

2 . To prove that F∞(P2×Pm) =
n×m

2 = m is true for all m, we proceed by induction. We assume that it is
true for all m, and prove it for m+ 2. Let G = P2×Pm+2 be a grid graph,

and assume that F∞(G) < 2×(m+2)
2 = m + 2. Let G′ = P2 × Pm be the

subgraph induced by the first m columns of G, and G′′ be the subgraph
induced by the last two columns. We have F∞(G′′) = F∞(P2 × P2) =
2, and from the hypothesis of induction we have F∞(G′) = 2×m

2 = m.
Thus, we contradict our assumption, F∞(G) < m + 2 (note that there is
a turn where the subgraph G′′ will hold only one guard which is a non-
dominating configuration). Therefore, we need at least m+ 2 guards, and
so F∞(P2 × Pm) = m.
Now, we similarly generalize the result for all n and m. By induction,
we suppose that it is true for any n and m, and prove that it remains
for n′ = n + 2 and any m. Let G = Pn′ × Pm be a grid graph, where
n′ = n + 2, and n and m are even. And let G1 be the subgraph induced
by the first n rows of G. We have G′ = Pn × Pm, and so F∞(G′) = n×m

2
(induction hypothesis). On the other hand, we have G′′ = G[V (G)\V (G′)]
is P2 × Pm, and so F∞(G′′) = m (which we have already proved). So

assuming that F∞(Pn′×Pm) is less than n′×m
2 leads to a contradiction. In

fact, in this case, the defender must move a guard from G′ to G′′ to avoid
an attack which results in a non dominating guard configuration. Figure 13
illustrates the case of P4×P4. As we can see such a graph must be defended
by 4×4

2 = 8. The same prove can be used for the case where n is odd and
m is even. For the case when n is even and m is odd, we deal with this case
in the same manner as the previous one, by switching between the rows
and columns. We let F = {v2k−1,j |k, j ≥ 1} be the set of vertices chosen
by the defender in the initial turn. F is a dominating feedback vertex set,
and |F | = n×m

2 (we choose the vertices of each odd row). For an attack
on any vertex v2k,j , where k ≥ 1, the defender can move the guard from
v2k−1,j to v2k,j and the new guard configuration is dominating FV S after
any turn of the game. And thus, F is an EFV S.
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v
1,1

v
2,1

v
3,1

v
4,1

not protected

(a) non-EFV S of P4 × P4

v
1,1

v
2,1

v
3,1

v
4,1

(b) EFV S of P4 × P4

Fig. 13: P4×P4, the guards are placed on the black shaded vertices, and blue
nodes are guard positions before moving.

(ii) n and m are odd. We assume that the defender begin the game with F ′ =
{vi,2k+1, i ≥ 1, k ≥ 0} (we choose all vertices of odd columns). F ′ is a
dominating feedback vertex set and |F ′| = dm2 e × n. After any attack on
vertices vi,2k+2, the defender can move guards from vi,2k+1 to vi,2k+2, and
the new guard configuration is dominating FV S after any turn, which is a
wining strategy starting with F ′. Thus, F∞(G) ≤ dm2 e × n. To prove the
equality, we decompose graph G into two subgraphs, G1 and G2, such that
G1 = Pn−1 × Pm is the grid subgraph induced by the n − 1 rows and m
columns, and G2 is the path graph induced by the last row and column of
G.
From case (i), we have F∞(G1) = (n−1)(m)

2 , (note that (n− 1) is even and
(m) is odd), and G2 is a path graph with m vertices, so F∞(G2) = dm2 e.
Figure 14 illustrate the case where n = m = 5, G = P5 × P5.
This complete the proof.

v
5,1

v
1,1

v
2,1

v
3,1

v
4,1

(a) EFV S of P5 × P5

v
5,1

v
1,1

v
2,1

v
3,1

v
4,1

(b) non-EFV S of P5 × P5

Fig. 14: P5×P5, the guards are placed on the black shaded vertices, and blue
nodes are guard positions before moving.

�

6 Conclusion

In this paper, we proposed and studied new models of graph protection, namely
Eternal Feedback Vertex Set and m-Eternal Feedback Vertex Set. Because of
their difficulty, we considered the two problems in this first work, on relatively
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simple classes of graphs. We deduced some inequalities for F∞ and F∞m on
general graphs, cycles, complete graphs and complete bipartite graphs. Also,
we computed both parameters on distance graphs, circulant graphs and grids.
For future work, It is worthy to consider the general case of the problems where
guards can be moved for more than one hop, as well as, to compute the two
parameters, F∞ and F∞m , for these new variants on other classes of graphs,
in particular those usually used for modeling games, such as k-dimensional
graphs.
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