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II. Cleaning information and extracting sensory descriptors
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Rule-based data extraction = application a particular set of rules and 
patterns to capture specific expressions and transform text into data

Rule creation: Based on a domain-specific lexicon including food related 
attributes grouped by categories

Rule application: 
• Normalization of Free-Comment to prepare raw text for NLP
• Extraction of attributes using regular expressions (sequences of 

characters that specify a search pattern used by string-searching 
algorithms)

• Contextualization of attributes using semantic rules

Rule refinement: Iterative refinement of rules by repetitive processing to 
improve accuracy and performance based on panel leader feedback
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Example of Free-Comment given by a consumer

This compote has a taste of peaches with large pieces giving 
it an "homemade" aspect. It is not acid but too swet and 
cloying.

/ compote / taste peach / large pieces / homemade aspect / 
not acid / too sweet / cloying
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Conversion of text to lower case

this compote has a taste of peaches with large pieces giving it 
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Removal of words less than 3 characters (except those in a 
predefined list)

this compote has a taste of peaches with large pieces giving it
an "homemade" aspect. It is not acid but too swet and 
cloying.

/ compote / taste peach / large pieces / homemade aspect / 
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Removal of special characters and multiple spaces

this compote has taste peaches with large pieces giving 
"homemade" aspect. not acid but too swet and cloying.

/ compote / taste peach / large pieces / homemade aspect / 
not acid / too sweet / cloying
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Spellchecking using hunspell (free spell checker and 
morphological analyzer library, available in many 
programming languages)

this compote has taste peaches with large pieces giving 
homemade aspect. not acid but too sweet and cloying.

/ compote / taste peach / large pieces / homemade aspect / 
not acid / too sweet / cloying
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Search for words/expressions of interest

• attributes (related to food products)

• quantifiers (related to perceived intensities, sizes or levels of 
appropriateness of the attributes)

• context words (additional information on the attributes)

this compote has taste peaches with large pieces giving homemade
aspect. not acid but too sweet and cloying.

/ compote / taste peach / large pieces / homemade aspect / not 
acid / too sweet / cloying
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Lemmatization = replacement of words/expressions by their 
canonical forms (singular, masculine)

this compote has taste peaches with large pieces giving 
homemade aspect. not acid but too-much sweet and cloying.

/ compote / taste peach / large pieces / homemade aspect / 
not acid / too sweet / cloying
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Association of quantifiers and context words with attributes 
(based on semantic-rules, recursive search)

this compote has taste+peach with large+piece giving 
homemade+aspect. not+acid but too-much+sweet and 
cloying.

/ compote / taste peach / large pieces / homemade aspect / 
not acid / too sweet / cloying
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Objective = to “make sense” of the extracted data and give information to 
the clustering algorithm to aggregate attributes without human intervention

Attributes are transformed into concepts organized according to a hierarchical 
structure defined in the domain-specific lexicon

• Peach is a flavor attribute, belonging to the “fruity” category, and “yellow 
fruit” sub-category ➔ Flavor>Fruity>Yellow-fruit>Peach (can be aggregated 
with “nectarine”)

• Acid is a basic taste attribute, associated with the negative quantifier “not” 
➔ Taste>Not-acid (≠ Taste>Acid)

• Homemade is a non-categorized attribute, associated with the context-
word “appearance” ➔ NC>Homemade-appearance
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Expression Attribute Modality Hierarchy Quantifier Context Concept

compote compote - - - -

taste peaches peach flavor fruity>yellow-
fruit

- taste flavor>fruity>yellow-fruit>peach-
taste

large pieces piece texture fracturable large - texture>fracturable>piece-large

homemade 
aspect 

homema
de

- - - aspect NC>homemade-aspect

too swet sweet taste - too-much - taste>too-much-sweet

not acid acid taste not - taste>not-acid

cloying cloying valence not-pleasant - - valence>not-pleasant>cloying

This compote has a taste of peaches with large pieces giving it an "homemade" aspect. It is 
not acid but too swet and cloying.
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Domain-specific lexicon 
(food products)

Includes generic and 
specific attributes
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1900 attributes organized into 
categories and sub-categories of 
attributes:

• Sensory categories: 
Appearance, Flavor, Taste, 
Texture, Trigeminal

• Affective categories: 
Positive/Negative valence 

• Other categories: Balance, 
Complexity, Familiarity, Evoked 
context, etc.

160 quantifiers organized into:

• Appropriateness: Too-
much/Right/Not-enough

• Intensity: Not/Few/Very

• Size: Small/Large

Derived from existing lexicons and 
ontologies

and updated by panel leaders 
through experimentations



Overview

I. The collected data and their encoding for statistical analysis

II. Cleaning information and extracting sensory descriptors

III. Semantic-based hierarchical structuration of extracted descriptors

IV. Aggregation of descriptors: semantic-constrained classification

V. Application: automated vs. manual encoding

VI. Conclusion

24



IV. Aggregation of descriptors: semantic-constrained classification
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Objective:
Find a partition of the descriptors such that the resulting product discrimination is maximized under
the constraint that each element of the partition contains descriptors with the same RootConcept.
Product discrimination is measured thanks to an approximation of the pvalue of the 𝜒𝑚𝑟

2 test1.

1Bilder, C. R., Loughin, T. M., & Nettleton, D. (2000). Multiple Marginal Independence Testing for Pick Any/C Variables. Communications in Statistics - Simulation
and Computation, 29(4), 1285–1316. https://doi.org/10.1080/03610910008813665
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➢ Same first dimension
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Conclusion

“Old-school” approach
• Expert system rather than machine learning (no need for large datasets to train AI)
• (Relatively) easy to implement
• More control on extracted data compared to pretrained models for natural language 

such as ChatGPT
Limitations (WIP)

• Only in French (at the moment)
• Issues with some contexts not always correctly handled
• Issues of classification with attributes having several meanings (e.g. sweet)
• Some loss of information compared to manual preprocessing

Promising results
• Computation time about 5 minutes for a dataset (one full day for the panel leader)
• Reproducible data preprocessing
• Combination of semantics and statistics with no human intervention

Will be available as a web app free for non-commercial use
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