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Abstract

Achieving high mechanical performance in metallic materials requires precise control of the

inclusion population, and the treatment of liquid steel in gas-stirred ladles is crucial for inclusion

cleanliness in specialty steels. Tracking inclusion properties, such as size, chemical composition,

etc. is crucial in modeling of inclusion behavior during liquid metal treatment. A comprehensive

multi-variate population balance model (PBM) is developed to track the temporal evolution of the

inclusion population inside the ladle. The model is developed by incorporating micro-mechanisms

such as aggregation of inclusions, upward sedimentation of inclusions, interception of inclusions

by rising bubbles, and capture of inclusions in the slag at the top. The bivariate population balance

equation is solved using a weighted finite volume scheme to account for the chemical heterogene-

ity of inclusions. The simulation results, when applied to an industrial gas-stirred ladle operation,

show the efficiency of this modelling approach and offer a way to quantify the respective roles of

different mechanisms on inclusion removal rate. Furthermore, the PBM has produced new results

for multi-component inclusion systems, including the distribution of inclusions with respect to

their chemical components.

Keywords: Non-metallic inclusions, Gas-stirred ladle, Chemical composition, Population balance,
Finite volume scheme

1 Introduction

For a conventional steelmaking plant, the molten steel produced in a basic oxygen furnace or electric
furnace is poured into a gas-stirred ladle for alloying and refining prior to casting. The deoxidation
process occurs at the end of the primary metallurgy when deoxidizers, such as aluminium, silicium,
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or calcium, are introduced into the molten steel. This produces an excessive amount of oxide in-
clusions, which are non-metallic in nature, with their size ranging from nanometers to micrometers.
Controlling the amount and extent of these non-metallic inclusions (NMI) is crucial and challeng-
ing in producing and recycling high-performance steel. These NMIs are often considered harmful to
the quality and lifespan of final products and have detrimental effects on the mechanical and micro-
structural properties in general [1]. On the contrary, in few situations, the presence of well controlled
NMIs inside steel provides nucleation sites to acicular ferrite, which helps in the production of tailored
micro-structures [2]. For these reasons, it is crucial to track the temporal evolution of number, mass,
size distribution, chemical compositions, and morphology of the inclusion populations throughout the
production process.
This work is a development, using a multi-variate population balance modeling (PBM) approach, of
the inclusion population in a spatially homogeneous secondary steel ladle process. This work aims at
tracking the heterogeneity in chemical compositions of inclusions along with their size distribution,
mass, and number evolution, without commenting on the morphology of the inclusions.

2 Description of the process and state of the art

Gas-stirred ladle treatment of liquid metal is a widely used process in secondary steelmaking and
is known to be responsible for changes in the inclusion population. An elementary schematic of
the liquid steel treatment inside a gas-stirred ladle is illustrated in Fig. 1. The ladle is implanted
inside a sealed vessel, which undergoes degasification to remove dissolved gaseous components. Then
aluminium, silicium, or calcium are added into the ladle in the form of cored wires for the deoxidation
of dissolved oxygen. Additionally, argon gas is injected through one or more porous plugs to achieve
thermal and spatial homogeneity and to entrap NMIs by the bubble stream. During this process, the
inclusion particles are transported by the turbulent steel flow. Consequently, one can observe the
following mechanisms which impact the state of the inclusion population:

• the collision between inclusions, which results in either cluster-like aggregation, or agglomera-
tion if reconstruction of aggregate occurs leading potentially to morphology change [3].

• the attachment of inclusions on the surface of bubbles, which is called the flotation mechanism
and several authors have paid research effort for a better understanding and modeling of this
mechanism [4, 5]. It is assumed that the entrapped inclusions flow out of the bath with the
bubbles.

• the sedimentation of inclusions due to buoyancy forces. Since the density of NMIs is lower
than the liquid steel, the inclusions experience an upward motion.

• the capture of inclusions at the top slag layer due to Brownian motion and turbophoretic trans-
port.
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Figure 1: Schematic diagram of the liquid steel ladle refining facility.

Steel ladle modeling has already been the subject of many studies, mainly with the aim of controlling
the population of NMI. Until the late ’80s, research on inclusion cleanliness was focused on ther-
modynamic studies aimed to determine the experimental equilibrium slag-metal-inclusion [6]. Since
the ’90s, the knowledge of thermo-chemical equilibrium has been capitalized on and gave rise to
computing software, now widely used in the steelmaking industry to predict the composition of sta-
ble phase inclusions [2]. Furthermore, the emergence of CFD has allowed increasingly sophisticated
simulations of the multiphase flow in gas-stirred ladles. This type of work, lead by KTH in Stock-
holm [7] and the University of Urbana-Champaign [8], was considered as a benchmark in this field
in the early 2000s. Later on and thanks to the increase in computational power, population balance
models (PBM) have been coupled with CFD to track the size distribution of NMIs [2, 9–11]. In 2014,
Rimbert et al. [12] developed a reduced order multi-component population balance model to track
the NMI population of titanium aluminates in liquid steel. The authors considered nucleation-growth,
aggregation, and removal as the fundamental mechanisms of the process and accounted for different
chemical components thanks to the coupling with thermodynamic databases. In the same period, a
population balance model applied to gas-stirred ladle [13–17] called CIREM, has been developed
at IJL and coupled with CFD, to predict the evolution of inclusion size distribution over time. The
present work is based on this CIREM1 software.
On the other hand, another essential aspect of population balance modeling for inclusion removal is
the development of precise and efficient numerical methods to solve them. Due to their complex for-
mulation, population balance equations (PBE) are analytically solvable for only a small class of sim-
plified collision kernels. Several techniques are available in the literature to solve PBEs numerically.
Some popular methods are sectional methods [18–21], method of moments [22–26], and Monte Carlo
method [27, 28]. The Monte Carlo method is a probabilistic method that generates random numbers to
obtain statistical approximations of entities under consideration. Conversely, the method of moments
is a deterministic approach that formulates a system of algebraic equations that can be solved numer-
ically to obtain different moments of population. Although it is computationally less demanding, it

1InterDeposit Digital Number IDDN.FR.001.080025.000.S.P.2021.000.30635
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does not solve for the particle density function. Sectional techniques divide the entire domain into
smaller cells and directly predict the particle number density function in each class. While sectional
methods are computationally more demanding than the method of moments, they yield precise pre-
dictions of particle distribution in the population. Additionally, sectional methods are easily adaptable
to multi-variate systems, making them a popular choice in the research community.
From the above discussions, it appears that while a few studies were conducted with population bal-
ances to model the evolution of inclusions in size, none use multi-variate population balance models
and discuss the evolution of the chemical composition of inclusions in gas-stirred ladle. This work
investigates the evolution of different chemical components in NMIs and their size distribution with
time. Following the work of Kaur et al. [20], a comprehensive multi-variate population balance
model is developed by modifying the usual population balance equation (PBE) to simulate the inclu-
sion behavior of a spatially homogeneous gas-stirred steel ladle treatment of liquid steel. The detailed
description of the multi-variate model and the solution procedure are presented in Sections 3 and 4.
Section 5 concentrates on verifying the developed model and predicting new observations. Final
conclusions are summarized in Section 6.

3 Mathematical modeling of inclusion population

The behavior of the inclusion population is investigated by tracking the temporal evolution of the
population number density function. The general continuous multi-variate PBE to investigate the
homogeneously agitated ladle inclusion population can be written in the following integro-differential
form:

∂n(v⃗, t)

∂t
=

Bagg︷ ︸︸ ︷
1

2

∫ v⃗

0⃗

β(v⃗ − v⃗′, v⃗′, t)n(v⃗ − v⃗′, t)n(v⃗′, t) dv⃗′

− n(v⃗, t)

∫ ∞⃗

0⃗

β(v⃗, v⃗′, t)n(v⃗′, t) dv⃗′︸ ︷︷ ︸
Dagg

−S(v⃗)− C(v⃗)− Zb(v⃗) (1)

with the following initial condition:

n(v⃗, 0) = n0(v⃗) (2)

Here, v⃗ = (v1, v2, . . . , vd) is the internal property coordinate, where vr (r ∈ {1 . . . d}) are additive
properties of the inclusions. In this work, the internal properties are volume contents of each chem-
ical component in the inclusions so that the total volume of an inclusion of coordinate v⃗ is

∑
r vr.

Together, they define the chemical heterogeneity of the inclusion population. The number density
function (NDF) n(v⃗, t) denotes the number concentration (N ) of inclusions per unit of each internal
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property at coordinate v⃗, that is

n =
ddN∏d
r=1(dvr)

∣∣∣∣∣
v⃗

(3)

where d is the number of dimensions of the coordinate vector, that is here the number of chemical
components considered in the PBE. The unit of the NDF depends on the dimension of the internal
property coordinates. Noting d the number of the chemical components, the SI unit of the NDF n(v⃗, t)

is [#/m3d+3].
The first term in Eq. (1) denotes the rate of change in the NDF with respect to time. In this study,
the number density is assumed to be homogeneous in the gas stirred ladle, so that its rate of change
is driven by aggregation as well as recovery mechanisms represented as sink terms Zb, S and C, and
does not consider transport in the liquid metal flow.
The first two terms (Bagg and Dagg) on the right hand side of Eq. (1) denote the birth and death rate
of inclusions per unit ladle volume with property coordinates v⃗ due to the aggregation between inclu-
sions respectively. The function β(v⃗, v⃗′, t) is called the aggregation kernel and denotes the number
normalized rate of aggregation events per unit ladle volume between inclusions of chemical nature v⃗

and v⃗′ at time t. Furthermore, the aggregation kernel β is considered to be symmetric with its first
two arguments, since the collisions between inclusion pairs (v⃗, v⃗′) and (v⃗′, v⃗) are equivalent to each
other. Hence, in the collision of two inclusions, the death term (Dagg) removes two inclusions, one at
coordinate v⃗ and one at v⃗′, and the birth term (Bagg) creates a new inclusion at v⃗ + v⃗′.
The last three terms of PBE (1) are the removal rate of inclusions per unit ladle volume due to the
bubble-flotation mechanism (Zb), sedimentation (S), and deposition at the top boundary layer (C),
respectively. The detailed formulation of all these mechanisms is described in the following subsec-
tions.

3.1 Aggregation of inclusions

The aggregation mechanism is generally assumed to be a second-order rate process, where inclusions
collide and aggregate to form larger inclusions. In a homogeneously agitated steel ladle process, the
motion of dispersed inclusions in the liquid metal phase is driven by sedimentation and turbulent
transport. Due to the difference in densities between the liquid steel and inclusions (ρp < ρl), inclu-
sions tend to move upwards with a settling velocity that is strongly dependent on inclusion diameter:

used
p =

g|ρl − ρp|
18µl

d2p (4)

where the subscripts l and p respectively denote properties of liquid metal and inclusions. Further-
more, ρ denotes density and µ is the dynamic viscosity. Assuming inclusions remain globular, their
equivalent diameter can be estimated as the one of a sphere of the same volume as the inclusion.

dp =
6

π

(
d∑

r=1

vr

)1/3

(5)
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Consequently, population of inclusions of different sizes (or different densities) have different settling
velocities and will thus collide due to their relative velocities. The aggregation kernel due to the
sedimentation mechanism, so called the Stokes collision kernel, is derived from the relative settling
velocity between two inclusions by calculating its flux through a collision cross section defined so
that particles collide when the minimal distance between them is less than the sum of their radii [17].

βsed(v⃗, v⃗ ′) = π

(
dp + d ′

p

2

)2

|used
p − u′

p
sed| (6)

Furthermore, the aggregation kernel due to turbulent transport can be obtained from the Zaichik’s
model [29] and can be presented in a similar form:

βturb(v⃗, v⃗ ′) = 4
√
π

(
dp + d ′

p

2

)2(
U2

in + U2
sp

)1/2 (7)

where the corresponding velocity (U2
in + U2

sp)
1/2 considers two contributions Uin and Usp that respec-

tively denote the velocity difference between two particles in a turbulent flow due to their inertia and
due to their distance.
Finally, as a first approximation to account for both mechanisms, the inclusion aggregation kernel for
the liquid steel ladle process is constructed by adding the aggregation kernels due to sedimentation
and to turbulent transport:

β(v⃗, v⃗ ′, t) = βsed(v⃗, v⃗ ′) + βturb(v⃗, v⃗ ′) (8)

3.2 Capture at the free surface

Similarly to aggregation, capture of inclusions at the free surface is driven by the same two mechan-
ims: sedimentation and turbulent transport. The density difference between inclusions and the liquid
phase results in the upward sedimentation of inclusions with a velocity expressed in Eq. (4). When
particles reach the free surface, they get trapped in the slag layer and are thus recovered from the
liquid metal, which is represented by a sink term in the PBM. The inclusion flux depositing at this
interface is the product of the sedimentation velocity and the surface area of the free surface. Con-
sequently, the sink term per unit of volume due to the sedimentation, S in Eq. (1), can be written
as:

S(v⃗, t) =
used
p n(v⃗, t)Sslag

Vladle
=

d2p|ρl − ρp|g
18µl Hladle

n(v⃗, t) (9)

where, Hladle and Vladle are the height and total volume of the ladle, and Sslag is the surface area of the
free surface at its top.
Moreover, the model for the deposition velocity of inclusions in the boundary layer at the interface
with the slag is based on a general law for particle deposition initially developed by Wood et al. [30]
that accounts for both turbulent transport (or turbophoresis) and Brownian motion [31]. This deposi-
tion velocity depends on the shear velocity u∗, and two dimensionless numbers: the Schmidt number
Sc (for Brownian motion) and the particle Stokes number St (for turbophoresis). It is expressed as a
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sink term in the PBM in the same way as the sedimentation flux [16, 17], that is:

C(v⃗, t) =

(
5.7× 10−3 Sc−

2
3 + 4.5× 10−4 St2

)
u∗

Hladle
n(v⃗, t) (10)

3.3 Flotation

Argon injected at the bottom of the ladle flows to the free surface through the system in the form of
gas bubbles. Due to their low wettability in liquid steel, when in contact, inclusions strongly attach to
gas bubbles and rise to the surface along with the bubbles. This flotation phenomenon thus also con-
tributes to inclusion recovery from the liquid phase. This recovery mechanism is driven by collision
between inclusions and bubbles and follows the same collision dynamics that were considered for
aggregation, that is collisions due the relative buoyancy between inclusions and gas bubbles and col-
lisions due to turbulence. Consequently, the outflow rate of inclusions due to the flotation mechanism
of bubbles is expressed as:

Zb(v⃗, t) =
[
Ec β

sed
b + βturb

b

]
Nb n(v⃗, t) (11)

where, Nb denotes the numeral density of bubbles inside the system. Since the objective of this study
is to track the inclusion population only, a steady flow rate of argon is considered, resulting in a
constant value for Nb.
The collision rate between bubbles and inclusions, due to the sedimentation mechanism, can be writ-
ten using the same deterministic Stokes collision criterion that was used for aggregation in Eq. (6), but
because of the very large size ratio between gas bubbles and inclusions and because of the deformation
of rising bubbles, the expression is adjusted with a collision efficiency parameter Ec [32]:

βsed
b = π

(
db + dp

2

)2

|used
b − used

p | (12)

where subscript b denotes bubble properties and the efficiency parameter is defined as

Ec =
c dp
db

(13)

with c is the shape coefficient of the gas bubble. In practice, the value of c is chosen to be 1.7 for
spherical cap bubbles and 3 for spherical bubbles [32].
Regarding turbulence driven collision, inclusions are much smaller than the bubbles (dp ≪ db) and
their inertia compared to the bubbles is negligible. Consequently, the Saffman and Turner’s collision
kernel [33] can be readily applied, leading to the following equation:

βturb
b =

√
8π

15

(
db + dp

2

)3(
ρlϵ

µl

)1/2

(14)

where ϵ is the average dissipation rate of the turbulence.
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4 Finite volume scheme

In order to solve and predict the temporal evolution of the inclusion population inside the steel ladle,
one needs to solve the multi-variate PBE (1) with rate functions (9), (10) and (11) precisely. The most
important task is to solve the multi-variate aggregation mechanism with good accuracy. For this study,
the aggregation model is solved using a modified finite volume discretization approach based on the
work of Kaur et al. [20]. The details of the finite volume scheme and its utilization in the gas-stirred
ladle are discussed in the following subsections.

4.1 Pure batch aggregation

For numerical treatment, it is essential to truncate the domains of integration in a finite range. Let us
consider the finite upper limit of the inclusion property coordinates be L⃗ = {L1, L2, . . . , Ld}. Then
the truncated continuous form of the multi-variate pure batch aggregation PBE is

∂n(v⃗, t)

∂t
=

1

2

∫ v⃗

0⃗

β(v⃗ − v⃗′, v⃗′, t)n(v⃗ − v⃗′, t)n(v⃗′, t) dv⃗′ − n(v⃗, t)

∫ L⃗

0⃗

β(v⃗, v⃗′, t)n(v⃗′, t) dv⃗′ (15)

Now, let us discretize the computation domain Λ =
∏d

r=1[0, Lr[ into I =
∏d

r=1 Ir number of smaller
cells λi =

∏d
r=1[vir−1/2, vir+1/2[, where i ∈ 1, 2, . . . , I , with the general convention v1r−1/2 = 0

and vIr+1/2 = Lr for r = 1, 2, . . . , d. Furthermore, we denote the co-ordinates of the pivot point

of the i-th cell as v⃗i = (vi1 , vi2 , . . . , vid), where vir =
vir−1/2 + vir+1/2

2
. A simple schematic of the

discretization scheme is illustrated in Fig. 2. The pivot point is considered as the representative of the
cell, i.e., all inclusions present inside the cells are concentrated at the pivot point with the following
properties (for i-th cell):

• Volume coordinates [m3]: v⃗i = (vi1 , vi2 , . . . , vid).

• Volume of each inclusion [m3]: vi =
d∑

r=1

vir .

• Number concentration of inclusions [#/m3]: Ni =

∫
λi

n(v⃗, t) dv⃗.

• Volume concentration of each chemical component r [-]: Vir =

∫
λi

vr n(v⃗, t) dv⃗.

• Composition coordinates [-]: V⃗i = (Vi1 , Vi2 , . . . , Vid).

Several discretization schemes exist in the literature to solve the PBE (15), which are already dis-
cussed in the introduction section. The applicability of a numerical method depends on the accuracy
in predicting crucial particle properties, such as mass conservation, number evolution, conservation
of chemical heterogeneity, etc. In 2017, Kaur et al. [20] proposed a weighted discretization model of
PBE (15) in number form, which directly calculates the particle number distribution inside cells and
concurrently preserves the time evolution of total number of particles and conserves the total mass of
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Figure 2: Schematic diagram of the domain discretization.

the particles. However, it was also shown that the scheme does not conserve individual composition
masses in general, which is one crucial drawback of the number forms in general. In steelmaking
processes, it is critical to track the mass distribution of chemical components and the structural het-
erogeneity of NMI populations, which are also the main objectives of this study. For this, we use
the modified form of PBE (composition form) and use a modified version of weighted finite volume
scheme of Kaur et al. [20]. The composition form of the continuous PBE can be written by multiply-
ing both sides of PBE (15) with the property coordinate v⃗ in the following form:

∂[v⃗ n(v⃗, t)]

∂t
=

v⃗

2

∫ v⃗

0⃗

β(v⃗− v⃗′, v⃗′, t)n(v⃗− v⃗′, t)n(v⃗′, t) dv⃗′− v⃗ n(v⃗, t)

∫ ∞⃗

0⃗

β(v⃗, v⃗′, t)n(v⃗′, t) dv⃗′ (16)

Ԧ𝑣
𝑖−
1
2

Ԧ𝑣
𝑖+
1
2

Ԧ𝑣
𝑗−

1
2

Ԧ𝑣
𝑗+

1
2

Ԧ𝑣
𝑘−

1
2

Ԧ𝑣
𝑘+

1
2

𝑣𝑖
𝑣𝑗 𝑣𝑘𝑣𝑖 + 𝑣𝑗

𝑃𝑖𝑗

Figure 3: Schematic diagram of the aggregation mechanism to explain the need of weighted FVS.

During aggregation, for unstructured meshing, the aggregate of two inclusions may appear at some
non-pivot position of a cell. For example, in Fig. 3, the aggregation event of v⃗i and v⃗j results in the
emergence of an inclusion with property v⃗i+ v⃗j inside the k-th cell, which is non-identical to the pivot
element v⃗k. This disrupts moments preservation of the continuous PBE. These issues can be resolved
by adding appropriate weight functions while discretizing the composition form of PBE (16) in the
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following form:

dV⃗i

dt
=

1

2

∑
(j,k)∈Qi

βj,k (v⃗j + v⃗k)
V⃗j

v⃗j

V⃗k

v⃗k
wj,k −

I∑
j=0

βj,k V⃗i
V⃗j

v⃗j
wi,j (17)

This is a system of (I × d) nonlinear ordinary differential equations, which upon solving provides
an estimation of component-wise volume of each cell. The set Qi is the collection of particle pairs,
which falls in the i-th cell when aggregated. All the vector multiplication and divisions in the FVS (17)
indicate component-wise operations. The corresponding weight functions are

wi,j =



Ψ

(
V⃗i

v⃗i

)
Ψ

(
V⃗j

v⃗j

)

2Ψ

(
V⃗i

v⃗i

V⃗j

v⃗j

)
−Ψ

(
v⃗i + v⃗j
v⃗lij

V⃗i

v⃗i

V⃗j

v⃗j

) , if v⃗i + v⃗j ≤ v⃗I

0, otherwise.

(18)

Here Ψ is a linear arithmetic operator and is used to estimate the number of inclusions in each cell in
the following manner:

Ni = Ψ

(
V⃗i

v⃗i

)
(19)

The formulations (17) and (18) become invalid when dealing with cell pivots that contain zero el-
ements. For instance, if the r-th coordinate of the i-th cell pivot v⃗i is zero, i.e., vir = 0, then the
corresponding volume of chemical component r, denoted by Vir , is also zero. This happens when the
population contains particles that do not contain any amount of some component, such as inclusions
of single chemical nature, just after they precipitate and before they interact with other species. As a

result, the ratio
Vir

vir
becomes undefined in the expressions (17) and (18). To overcome this issue, we

propose an approach to estimate these undefined ratios
(
Vir

vir

)
by calculating the average of only the

definite ratios
Vik

vik
, where vik ̸= 0.

Additionally, in their research article, Kaur et al. [20] utilized the arithmetic mean operator as their
choice for Ψ. However, this choice also encounters the same problem of indeterminate ratios men-
tioned earlier. Moreover, the arithmetic mean operator assigns equal weights to all component coor-
dinates, which can introduce significant inaccuracies when dealing with a wide range of component
coordinate values. For instance, consider a bi-component inclusion with volume coordinates (vi1 , vi2)
and composition coordinates (Vi1 , Vi2), where vi1 << vi2 and subsequently Vi1 << Vi2 . In this case,

the ratio
Vi1

vi1
will suffer from more rounding off and truncation errors during simulation compared to

the other component ratio
Vi2

vi2
. The equal weighted arithmetic mean operator will exacerbate these

numerical errors. To address this issue, we propose prioritizing the components based on their com-
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position coordinate proportions, which mitigates the impact of numerical errors and indeterminate
factors. We present our modified formulation as follows:

Ni = Ψ

(
V⃗i

v⃗i

)
=

∑d
k=1 Vik∑d
k=1 vik

=
d∑

k=1

(
vik∑d
r=1 vir

)
Vik

vik
(20)

This modification resolves the occurrence of indeterminate ratios and incorporates weights based on
the volume coordinate proportions, ensuring numerical stability.
Finally, it is also mathematically demonstrated [20] that the Finite Volume Scheme given by Eq. (17)
conserves the total mass of each chemical composition and preserves the temporal evolution of the
total number for a batch aggregation process. This is due to the fact that the FVS approach accurately
accounts for the production and consumption rates of chemical species, as well as their fluxes through
the boundaries of each cell. This enables the scheme to accurately predict the behavior of the system
over time, while ensuring that the overall mass of each chemical composition remains constant.

4.2 Population balance model for the inclusion population inside ladle

In order to solve the PBE (1) corresponding to the inclusion population (including all mechanisms)
numerically, we can follow a similar line to the previous description and obtain the following discrete
formulation as

dV⃗i

dt
=

1

2

∑
(j,k)∈Qi

βj,k (v⃗j + v⃗k)
V⃗j

v⃗j

V⃗k

v⃗k
wj,k −

I∑
j=0

βj,k V⃗i
V⃗j

v⃗j
wi,j

−

(Ec β
sed
b + βturb

b

)
Nb −

d2i |ρl − ρp|g
18µl Hladle

−

(
5.7× 10−3 Sc−

2
3 + 4.5× 10−4 τ 2p

)
u∗

Hladle

 V⃗i (21)

with the similar weight functions as Eq. (18). It is important to note that the additional sink terms
in Eq. (21) are expressed at pivot points and only influence the rate of change of the death term in
V⃗i. They do not introduce or remove data at the pivot locations, nor do they necessitate any special
treatments.

5 Results and discussion

This section is devoted to establishing the accuracy and efficiency of the proposed multi-variate PBM
Eq. (21) of the inclusion population. Consequently, this section is divided into three subsections. Sub-
section 5.1 discusses the selection of optimal level of discretization by comparing the proposed model
predictions against results available in the literature. Due to the unavailability of multi-variate models
of inclusions in gas-stirred ladles in the literature, the univariate CIREM-0D model of Bellot et al. [17]
is taken as reference case. In this study, the authors developed a univariate PBM of the gas-stirred
ladle process to track the inclusion population. The volume of inclusion particles was considered the
only internal property coordinate, and no effect of chemical heterogeneity was considered. A typical
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60 t stirred ladle system with high stirring intensity was simulated with a total inclusion content of
0.176 kg/m3. Further, it was considered that the inclusion particles are homogeneously distributed
in the system with an initial log-normal size distribution. The initial volume density distribution of
the inclusion population in the ladle is illustrated in Fig. 4. To provide a clear understanding, the
mathematical formulation for calculating the volume density function for the entire ladle system is
presented below:

Φ(v⃗, t) =
d∑

r=1

vr n(v⃗, t)Vladle (22)

This volume density function (Φ) is a dimensionless quantity for univariate distributions, is the in-
verse of a volume [m−3] for bivariate distributions. In the following sections, for the purpose of
verification, the multi-variate population densities have been converted during post-processing into
their univariate form based on inclusion volume that enables the calculation and comparison of the
volume density distributions. Finally, the reference case, CIREM-0D, solves the univariate PBM
using the Cell Average Technique (CAT) of Kumar et al. [18].
Subsection 5.2 verifies the developmental accuracy and applicability of the proposed PBM against
CIREM-0D results for different test cases. Finally, some new predictions for a bivariate system, i.e.,
for inclusion particles with different chemical components are presented and discussed in Subsec-
tion 5.3.
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Figure 4: Initial volume density distribution of the inclusion population.

5.1 Selection of discretization level

To ensure accurate and efficient calculations, the adequate level of discretization is assessed. Bellot
et al. [17] discretized the computational domain into 20 geometric grid points and solved it using
the CAT. As a first step, to facilitate comparison, the proposed multi-variate model is restricted to
univariate case and solved with the same discretization up to a process time of 300 s. Fig. 5 displays
the comparison of the final volume density distribution obtained from the weighted FVS and the
CAT [17]. Although both methods produce similar trends for the volume density distribution, they
are not equivalent in nature. Therefore, the accuracy of the discretization levels was examined, and
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Fig. 5 further illustrates the comparison of the volume density distributions obtained for 40 grid points,
which shows good agreement between the CAT and FVS results.
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Figure 5: Comparison of volume density distribution at 300 s for different discretization levels.

To further evaluate the appropriate level of discretization for the FVS model, L1 and L2 errors [34]
are calculated as well as the computer simulation time for different numbers of cells. The results
from the CAT with 60 grid points are chosen as the reference case and compared to other schemes
and different numbers of cells. The results are tabulated in Table 1. The error values decrease as the
number of pivot points increases and show comparable results for 40 cells. Interestingly, while the
computer simulation time for the CAT implementation rapidly increases as the grid points increase,
the FVS simulation time remains within control for larger grid numbers.

Table 1: Error and simulation time.

Method # of pivots L1 Error L2 Error Simulation time [s]

CAT
20 0.031 0.014 0.298
40 0.006 0.003 0.378
60 – – 19.586

FVS
20 0.107 0.047 0.095
40 0.0112 0.005 0.170
60 0.008 0.003 0.386

The accuracy of the new PBM with weighted FVS and 40 grid points is further substantiated by
plotting the frequency of different particulate mechanisms at 300 s. During the process, inclusions are
continuously eliminated from the system due to mechanisms such as flotation (capture by bubbles),
sedimentation, and deposition at the top slag layer. The effect of all these mechanisms and their
elimination rates, computed from the new FVS model and CAT model, are plotted in Figures 6a
and 6b. The resulting figures shows that the proposed PBM and 1D FVS reproduce CIREM-0D
results with great precision. Additionally, it can be observed that the aggregation mechanism plays a
dominant role compared to other mechanisms such as flotation, sedimentation, and capture at the top
slag, respectively by 1, 3, and 5 orders of magnitude approximately (see Fig. 6a). The signs (-) and
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(+) for the aggregation mechanism indicate the net reduction or production of particles of each size
class that is calculated using the following equation:

Fagg(i) =

∫
Vladle

[Bagg(i)−Dagg(i)] dV (23)

Moreover, the temporal evolution of the inclusion elimination rates due to different removal mecha-
nisms are compared on Fig. 6b that illustrates excellent agreement between the results of CAT and
FVS. Since the average inclusion size increases with time and all the elimination rates are highly
dependent on inclusion size, the elimination rates for all mechanisms also increase with time. This
phenomenon is correctly portrayed in Fig. 6b. Additionally, the elimination rate of the flotation mech-
anism is higher than the sedimentation and deposition mechanisms by orders of almost 10 and 103,
respectively. This analysis confirms the ability of reproduction of the proposed PBM against the uni-
variate CIREM-0D results [17]. These thorough investigations of the accuracy and efficiency of the
developed population balance model show that the univariate version of the proposed model provide
reliable and efficient results for 40 geometrically distributed cells.
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Figure 6: Comparison of (a) frequency of mechanisms after 300 s as a function of inclusion size and
(b) temporal evolution of elimination rates due to different recovery mechanisms.

5.2 Verification of the proposed PBM

As discussed earlier, the model and results of the CIREM-0D program from the work of Bellot et
al. [17] were considered for verification purpose. In order to check the applicability of multi-variate
population balance model (21) with the weighted FVS (17) against CIREM-0D results, three different
setups are considered.
The first setup is the one discussed in the former subsection, in which the multi-variate setup is
restricted to a univariate model with inclusion volume as the internal coordinate. The other two setups
consider bivariate populations, i.e., the inclusions are made of two different chemical components C1

and C2. The corresponding internal coordinate of the inclusions is (v1, v2), which means an inclusion
with v1 and v2 volumes of composition C1 and C2, respectively. For a comparative analysis with the
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CIREM-0D, the same initial particle size distribution as CIREM is considered and distributed among
both components as:

• Case 50-50: 50% pure C1 inclusions + 50% pure C2 inclusions.

• Case 80-20: 80% pure C1 inclusions + 20% pure C2 inclusions.

So-called pure inclusions are inclusions with one of their internal volume coordinate equal to zero.
Furthermore, it is essential to note that if we project these cases to one-dimension, i.e. the chem-
ical nature of the initial inclusions is not considered, only their volume is, these two test cases are
equivalent to the univariate case. For this reason, cases 50-50 and 80-20 can be viewed as direct gen-
eralization of CIREM-0D to bivariate systems. With these setups, all the cases are solved for a 300 s
of process time to check the accuracy and efficiency of the developed PBM.
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Figure 7: Comparison of (a) volume density distribution at 300 s as a function of inclusion diameter
and (b) temporal evolution of number of inclusions.

The comparison of the final volume density distribution obtained from the proposed model with the
weighted FVS solver for univariate and bivariate (50-50 and 80-20) cases and univariate CIREM
with CAT solver are illustrated in Fig. 7a. To ease comparison, the density distributions for bivariate
cases are plotted for the total volume of inclusions as a function of inclusion diameter. The figure
clearly portrays excellent agreement between the univariate CIREM-0D results and the proposed
PBM predictions for both univariate and bivariate cases. The temporal evolution of the total number
of inclusions in the system is also presented in Fig. 7b. This figure shows that the reduction rate of
total inclusion number for both cases 50-50 and 80-20 are precisely in line with the univariate results
of CIREM (CAT) and FVS. This is due to the simple fact that both bivariate cases are just multi-
variate extensions of the univariate system, and the developed multi-variate FVS model is accurate in
predicting this trend.
Similarly, the temporal evolution of the total mass of inclusions in the ladle is exhibited in Fig. 8a,
which displays consistent predictions between all simulation cases. Furthermore, the temporal evolu-
tion of total masses of individual chemical components for both bivariate cases is illustrated in Fig. 8b.
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Figure 8: Comparison of (a) volume density distribution at 300 s as a function of inclusion diameter
and (b) temporal evolution of number of inclusions.

Both figures clearly illustrate mass loss of both chemical components due to the sink terms such as
sedimentation, flotation, and deposition at the top slag layer due to turbulent transport. Additionally,
since sink terms only depend on the inclusion volume, not on their chemical composition, the masses
of each chemical component keep their initial ratio (50:50 and 80:20) during the whole simulation
for both bivariate cases (see Fig. 8b). Furthermore, to prove that the mass reduction of NMIs is only
due to the sink mechanisms and not due to the numerical diffusion in the developed weighted FVS,
an additional pure aggregation process has been simulated by turning off all the sink terms. The
corresponding evolution of mass of all inclusions and their compositions for both bivariate cases is
illustrated in Figures 9a and 9b. These figures prove that the weighted FVS model of aggregation
accurately conserves the masses of all individual components along with the total mass of inclusions.
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Figure 9: Comparison of evolution of total chemical compositions: (a) case 50-50 (b) case 80-20.

5.3 Predictions for bivariate systems

This section presents and analyzes new predictions corresponding to the previously discussed bivari-
ate cases. Specifically, cases 50-50 and 80-20 were simulated for a longer period of 800 s to show the
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effects of initial chemical composition and size distribution on the final distribution. The temporal
evolution of the volume density distributions of mixed inclusions and of pure inclusions for both cases
are illustrated in Figures 10 and 11.
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(a) Case 50-50: 60 s
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(b) Case 50-50: 340 s
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(c) Case 50-50: 800 s
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(d) Case 80-20: 60 s
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(e) Case 80-20: 340 s
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(f) Case 80-20: 800 s

Figure 10: Temporal evolution of volume density distributions at different time instances.
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Figure 11: Temporal evolution of volume density distributions of inclusions with pure compositions
at different times.

Case 50-50 starts with equal masses of pure compositions C1 and C2 which follow a log-normal
distribution in size. Since no specific attraction rules were considered for the composition of inclu-
sions during collision, Fig. 10(a), (b), and (c) exhibit symmetric trends. The results demonstrate that
the size of inclusions grows with time, and most inclusions concentrate on the region where NMIs
are composed of equal amounts of both compositions. Since the total volume of an inclusion i is
vi = vi1 + vi2 , the biggest inclusions are in the top right hand corner of the plots in Fig. 10. The
iso-size lines, which indicate inclusions of the same size, are perpendicular to the red line represent-
ing the 50-50 composition. The largest aggregates in the distribution are aligned with the 50-50 line.
However, for smaller sizes, the distribution exhibits two symmetric peaks. One possible explanation
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for this observation is that due to starting with solely pure inclusions, a significant number of pure
inclusions persist, especially during the early stages, and most aggregation events involve pure inclu-
sion. Among these aggregation events, only the aggregation between two pure inclusions of distinct
components and the same size result in exactly 50-50 aggregates. As a result, the majority of aggrega-
tion events lead to non 50-50 aggregates. In contrast, for larger aggregates that are result of successive
aggregation steps, this effect vanishes, and their composition resembles the average composition of
the initial population.
Case 80-20 yields non-symmetric pattern of the volume density, as depicted in Fig. 10(d), (e), and
(f). The peak of the distribution continuously shifts towards the right hand side as time progresses
and approaches the red line, which represents inclusions composed of 80% composition C1 and 20%
composition C2. This is due to starting with 80% C1 inclusions, leading to a higher occurrence of
aggregation between pure C1 inclusions. The chemical components preserve their initial ratios during
the process simulation. Even after 800s, the ratio of the mass of C1 to the total mass of C1 and C2 is
still 0.799. The slight decrease in this ratio is due to the transient evolution of inclusion population,
where larger aggregates that are more effectively removed tend to contain slightly more C1 than C2,
as illustrated in Fig. 10(e), but this effect remains very limited. After multiple aggregations, the ridge
line of the volume distribution approaches the 80-20 (red) line for the largest aggregates. However,
the peak of the distribution surpasses the 80-20 line and corresponds to a composition that is closer
to 95% C1-5% C2, as shown in Fig. 10(d). This behavior can be explained in the same way as in case
50-50.
The effect of removal of inclusions is visible in Fig. 11, which displays the volume density of pure
inclusions, that correspond to the axes of the distributions shown in Fig. 10. In both cases, the peak of
the size distributions gradually shifts towards smaller sizes over time. Although this shift is subtle, the
total volume of pure inclusions decreases significantly, as evidenced by the evolving vertical scales in
Fig. 11(a), (b), and (c). These observations confirm the dominance of aggregation over other removal
mechanisms, as also observed in Fig. 6a.
Furthermore, to substantiate the occurrence of aggregation and other removal mechanisms, mass per-
centages of inclusions with different chemical natures are illustrated in Fig. 12. Three distinct chemi-
cal compositions are tracked: pure inclusions (either C1 or C2), and inclusions composed of 50%±3%
and 80%±3% of C1. The mass percentage of pure NMIs only decreases over time due to both ag-
gregation and removal mechanisms: pure NMIs aggregating with any other composition produce
non-pure NMI aggregates. Additionally, we observe that the percentage of pure non-mixed inclu-
sions decreases at a faster rate in the case 50-50 compared to the case 80-20. This can be attributed
to the fact that case 80-20 starts with 80% pure C1 inclusions, resulting in more aggregation between
pure C1 inclusions that produce pure C1 aggregates. In contrast, case 50-50 has an equal presence
of both pure C1 and C2 inclusions, making the system more likely to create aggregates with mixed
chemical nature. Furthermore, in line with the composition of the initial populations, we observe a
rapid increase in the population of mixed inclusions consisting of 50% C1 and 80% C1 for the cases
50-50 and 80-20, respectively.
The above-discussed examples make it clear that the developed PBM for inclusions in a gas-stirred
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(a) Case 50-50 (b) Case 80-20

Figure 12: Temporal evolution of mass percentage of inclusions with different chemical compositions.

ladle is able to capture the evolution of univariate and multi-variate inclusion populations in steel
ladle refining processes. The model successfully tracks the changes in chemical composition of in-
clusions and effectively represents these transformations in the size distribution. This demonstrates
the potential and applicability of multi-variate population balance modeling in steelmaking processes.
Moreover, beyond applicability of the method for inclusions in steelmaking processes, these results
provide valuable insights into the characteristics and evolution of inclusion populations over time.
Particularly notable is the observation that while the largest aggregates contain both components and
reflect the initial proportion of the two components, the peak of the distribution does not. This is
due to the fact that even after 800 s of treatment, pure inclusions have not fully disappeared, and the
resulting population is a balance between production of new mixed aggregates and removal of large
aggregates. Because inclusion removal is efficient for larger inclusions, even to the point that it is
even visible on pure inclusion size distributions, there is no wide gap in size between mixed aggre-
gates resulting from the combination of pure inclusions and the biggest inclusions. Most size classes
are highly sensitive to the initial size distributions of pure inclusions, and only the largest aggregates
accurately reflect the ratio of chemical composition among the initial populations. Inclusion popula-
tions after 300 s, and even 800 s, are thus still strongly influenced by the initial conditions. Therefore,
to effectively capture the behavior of inclusions in a steel ladle, the inclusion population cannot be
approximated as a homogeneously mixed particle population. A full multi-variate representation is
required, which justifies the development of the presented population balance method and its appli-
cation to steelmaking ladle processes.

6 Conclusions

A comprehensive multi-variate population balance model of the homogeneous gas-stirred ladle pro-
cess is presented to track the temporal evolution of the inclusion population. This is the first appli-
cation of multi-variate population balance to steel ladle refining. To achieve this, an extension of an
existing finite volume scheme is presented to resolve the multivariate PBM, enabling the consideration
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of particles composed of a single component.
The physical mechanisms governing NMI behavior in a steel ladle have been implemented in this
extended finite volume scheme, and the predictions of this model have been validated against results
for univariate populations produced with the state-of-the-art simulation software CIREM.
While focusing on the methodological aspects, this investigation lead to interesting preliminary find-
ings regarding inclusions in a steel ladle. Even without considering the impact of the chemical nature
of inclusions on their aggregation kinetics, heterogeneity from the initial distribution induce long term
heterogeneity of inclusion population, even after prolonged processing when the total mass of inclu-
sions has significantly decreased. Inclusions are continuously removed while aggregation occurs, and
due to this fundamentally transient behavior in the ladle, predicting heterogeneity in the final popu-
lation becomes challenging. Most inclusions are multi-component, but the ratio of each component
evolves within the size distribution and over time, and the prevalent classes of inclusions in the final
distribution do not reflect the chemical composition of the initial pure populations.
Real inclusions (such as solid fractal-shaped alumina aggregating with calcium oxides) can form
phases of different physical nature (such as globular calcium aluminates). To account for such physics
in the model, inclusion behaviour must be related to their chemical composition. Inclusions also
interact with the liquid phase, and their growth, dissolution, or chemical composition evolves with the
composition of the carrying liquid. Furthermore, the chemical composition of inclusions can affect
their propensity to aggregate, as different affinities between components come into play. Although
it is hard to feed multi-variate population balances of inclusions in steel ladle with physical models
to relate their change in behavior to their chemical evolution, these initial findings show that this is
a necessary step to improve predictions, since the inclusion population never reaches an equilibrium
state where inclusions could be assumed to share most of their chemical and mechanical properties.
So far, the scientific literature remains sparse on interaction models between inclusions and their
impact on the temporal evolution of inclusion populations. This is a major point to address in order
to improve the understanding, modeling, and eventual optimization of steelmaking processes.
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