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3. Multiscale formulation

2. Classical formulation

4. Numerical Results
Geometry : 8 x 8 x 8 conductive spheres (radius r = 40µm) surrounded  by 
a massive inductor. 

Material laws : conductivity σ = 10⁷Sm, nonlinear Fröhlich-Kennely law.

Conclusions:
 HMM yields accurate local fields and global quantities (Joule losses, voltage, 

etc.) for nonlinear eddy current problems with idealized SMC.
 is upscaled using fields of the magnetodynamic problem whereas          is 

obtained using fields of the magnetostatic problem.
 Adaptive relaxation should be used for the convergence of the nonlinear 

meso-problems and of macro-problem (if there is too much saturation).
 The HMM algorithm scales very well on clusters.

 Maxwell’s equations and constitutive law:

 Weak form:

 Discretization of the magnetic field:

 Electrical devices with soft magnetic composites (SMC) can operate at 
higher frequencies with reduced eddy current losses.

 SMC exhibit isotropic nonlinear/hysteretic behaviour.
 Classical numerical methods such as FEM are too costly and multiscale 

methods are more convenient to characterize SMC. In this research 
work, we used the heterogeneous multiscale method (HMM).

Scale separation : 
Length of the microstructure 
<< length of device / 
characteristic length of 
external loadings.

 At each iteration: 1 macroproblem and many microproblems (1 per Gauss 
point of the Macro mesh). Couple these problems (upscaling-downscaling).

Strong form :
 Macro :

 Meso : 

Weak form :
 Macro :

 Meso 1 : 

 Meso 2 : 

Upscaling of       using Meso 1:

Upscaling of         using problem Meso 2 and the finite difference method.

Upscaling :

Perspectives :
 Use of the HMM method to model closed magnetic circuits such as the 

transformers.
 Extension of the formulation to account for macroscale currents (e.g., problems 

with macroscale displacement currents).
 Use of the model order reduction (MOR) for further reduction of the 

computational cost.

I. Niyonzima¹, A. Marteau¹, G. Meunier¹, Ruth V. Sabariego², O. Chadebec¹, N. Galopin¹ and C. Geuzaine³
¹ Univ. Grenoble Alpes, CNRS, Grenoble INP, G2ELab, F-38000 Grenoble, France.
² KU Leuven, Dept. Electrical Engineering (ESAT), Leuven & EnergyVille, Genk, Belgium.
³ University of Liège, Dept. Electrical Engineering and Computer Science, Montefiore Institute B28, 

B-4000 Liège, Belgium.

1. Introduction

Abstract 
This paper deals with an h-conforming multiscale formulation for nonlinear eddy current problems in idealized soft magnetic composites using the 
heterogeneous multiscale method. The classical h-ϕ formulation is recalled before presenting the different components of the h-ϕ multiscale formulation 
including the governing weak forms, the upscaling of quantities of interest and details some on the numerical implementation. Validation results are then 
presented before a conclusion.

Implementation :
 Temporal discretization using the Backward Euler method
 Nonlinear problem solved using a relaxed Newton-Raphson scheme


