
HAL Id: hal-04197515
https://hal.science/hal-04197515

Preprint submitted on 6 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Solving security models with perfect observability
Paolo Zappala, Amal Benhamiche, Matthieu Chardy, Francesco De Pellegrini,

Rosa Figueiredo

To cite this version:
Paolo Zappala, Amal Benhamiche, Matthieu Chardy, Francesco De Pellegrini, Rosa Figueiredo. Solv-
ing security models with perfect observability. 2023. �hal-04197515�

https://hal.science/hal-04197515
https://hal.archives-ouvertes.fr

Solving security models with perfect observability

Paolo Zappala1,2, Amal Benhamiche1, Matthieu Chardy1, Francesco De
Pellegrini2, and Rosa Figueiredo2

1 Orange Innovation, Orange, 44 Avenue de la République, Châtillon, 92320, France
{name.surname}@orange.com

2 LIA, Avignon Université, 301 Rue Baruch de Spinoza, Avignon, 84140, France
{name.surname}@univ-avignon.fr

Abstract. Sequential models with perfect observability represent sit-
uations in which communication is public and observable by all the
agents. Such models are applied within different domains of security, such
as intrusion detection, blockchain protocols and wiretap channels. The
extensive-form game is the representation used to identify the solution
of these models. To date, the literature provides methods to identify spe-
cific solutions for small-size extensive-form games. We provide the first
method to identify all solutions that is also scalable with the size of the
games.

Keywords: Security models · Extensive-form games · Perfect observ-
ability.

1 Introduction

In this work we consider security models whose main assumption is perfect ob-
servability. In this context, the agents involved can observe each other’s actions
and react accordingly. Let us provide some examples of applications:

– an intruder attack [2]; when a user attacks a target system, she performs
some actions that are observed by the latter. The back-and-forth of inputs
and outputs provided by the user and the system can be represented by a
model with perfect observability;

– a blockchain protocol [11]; one of the main features of blockchain is that
all valid actions must be observable by all the nodes; thus any attack to a
blockchain protocol can be modeled within a framework of perfect observ-
ability;

– a wiretap channel [5]; when a malicious user tries and intercepts a communi-
cation, she has perfect observation of the actions of the two agents involved
in the broadcast;

– an ephemeral network [7]; in ephemeral networks the local revocation of a
malicious node is determined with a vote in sequence;

– an attack-defense tree [3]; this category of models describes security weak-
nesses of a system and the possible countermeasures.

2 Zappala et al.

Extensive-form games. The common representation of models with perfect
observability is the extensive-form game with perfect information [4]. In a game,
a finite set of agents, called players, observe in turns each other’s actions and
pick one of the possible subsequent actions available to them. Every player picks
a strategy, i.e., she selects an action whenever it is due during the game. The
standard solution concept is the Nash equilibrium (NE) [6], i.e., a combination
of strategies such that no player has an incentive to change their own unilater-
ally. The number of strategies grows exponentially in the size of the extensive
form game [12], which makes brute-force algorithms not viable in large games.
Every game admits at least one specific NE, called subgame perfect equilibrium
(SPE) [8]. Since this specific equilibrium can be computed recursively with the
backward induction algorithm, it is often used as the solution of reference of the
game (cf., e.g., [7]).

Actually, the choice to limit the set of solutions to the SPE is forced by the
absence of practical methods to compute the other Nash equilibria, and it is not
supported by further assumptions. In ephemeral networks, the local revocation is
assumed to be modeled according to the SPE, even if it is understood that there
are possibly many other outcomes [7]. In blockchain protocols, only the Nash
equilibria with given properties are selected [11], but no method is provided to
compute them in large instances.

Contribution. In this work, we provide a method to enumerate all the Nash
equilibria of an extensive-form game. To our knowledge, it is the first of its kind
that can be applied to any game, no matter what is its structure or its utility
function. Moreover, differently from the backward induction, that provides the
SPE, our method does not have a recursive structure and it can be parallelized.
This allows it to be deployed also in large games. In Section 2 we introduce
extensive-form games and Nash equilibria. In Section 3 we provide a more com-
pact definition of the games and show the method for the enumeration of the
Nash equilibria. In Section 4 we prove that the method does identify the Nash
equilibria. Section 5 ends the paper with perspective on further applications.

2 Extensive-form games

In this section we provide the definitions for extensive-form games with perfect
information [1]. In order to express the observability of the actions, we consider
extensive-form games in finite number of stages, that are set in chronological
order. At every stage there exists a designated player i ∈ I who observes a
history h′, i.e., the sequence of actions occurring up to that stage. We denote
by I the set of players of the game. At a give stage, the designated player
has available a set of actions A(h′). We denote by P (h′) the designated player
observing the history h′. When the set of available actions is empty (A(h′) = ∅)
the game ends, i.e., the sequence of actions leading to this stage h′ corresponds to
an outcome of the game. We call H ′ the set of histories and H ⊂ H ′ the set of the
outcomes. Every outcome is evaluated by every player i ∈ I through a function,
called utility function, ui : H → R. We also write hA ≻i hB for hA, hB ∈ H

Solving security models with perfect observability 3

when ui(hA) > ui(hB), or hA ∼i hB when ui(hA) = ui(hB). Let us denote
by h′ + h′′ = (a1, a2, . . . , am′ , b1, b2, . . . , bm′′) the concatenation of two vectors
of actions h′ = (a1, a2, . . . , am′) and h′′ = (b1, b2, . . . , bm′′). We also denote by
h′′′ = h′ ∩ h′′ the lowest common prefix of the two vectors of actions h′ and h′′,
shortly referred as prefix in the following. The full definition of extensive-form
game is therefore:

Definition 1 (extensive-form game). An extensive-form game is a tuple Γ =
⟨I,A, H ′, H, P, u⟩, where:

– I = {1, . . . , N} is the set of players;
– H ′ is the set of histories with ∅ ∈ H ′;
– A : h′ ∈ H ′ → A is a function that provides for every history a set of actions

A, i.e., for all a ∈ A, we have h′ + (a) ∈ H ′;
– H = {h ∈ H ′|A(h) = ∅} ⊂ H ′ is the set of outcomes;
– P : H ′ \ H → I is a function that indicates which player P (h′) ∈ I acts

after observing the history h′ ∈ H ′ \H;
– u = (ui)i∈I , with ui : H → R the utility function of player i ∈ I.

Remark. Since in the literature the representation of the game is the game-
tree of possible histories, it is customary to call a node a history observed by
a player. Analogously, we alternatively call an outcome the final node (or leaf)
and the vector of actions leading to it.

Every agent has a strategy for every scenario she may have to face. Formally,
a strategy is a function that maps every history observed by a player to an
action.

Definition 2 (strategy). Given a game Γ = ⟨I,A, H ′, H, P, u⟩ and a player
i ∈ I, let H ′

P=i = {h′ ∈ H ′ \H|P (h) = i} be the histories at which the player
i acts. A strategy si ∈ Si is a function si : h

′ ∈ H ′
P=i 7→ a ∈ A(h′) that maps

every observed history h′ ∈ H ′
P=i to one of the actions a ∈ A(h′) available to

the player.

We call strategy profile a N -tuple of strategies s = ⟨s1, s2, . . . , sN ⟩, one for
each player. We denote by S = S1×S2×· · ·×SN the set of all strategy profiles.
If every player chooses a strategy, one single action is picked at every history;
therefore, given a strategy profile, the actions chosen by the players lead to a
single outcome. We denote by s 7→ h the outcome h ∈ H of a strategy profile
s ∈ S. When a player picks a strategy, she limits the set of possible outcomes.
We define such specific set in Definition 3.

Definition 3 (outcomes of a strategy). Given a game Γ = ⟨I,A, H ′, H, P, u⟩
and a strategy si ∈ Si of a player i ∈ I, the set of outcomes H(si) ⊂ H of strategy
si is

H(si) = {h ∈ H|∃s′ ∈ S, s′i = si, s
′ 7→ h}.

We also write H(⟨sj⟩j∈J) := ∩j∈JH(sj) to indicate the possible outcomes of
a vector of strategies ⟨sj⟩j∈J for some players J ⊂ I. We write ⟨sj⟩j∈J = s−i

4 Zappala et al.

ALGORITHM 1: Backward induction (BI)
Input: A game Γ = ⟨I,A, H ′, H, P, u⟩ and its root h0 = ∅ ∈ H ′.
Output: The set of subgame perfect equilibria SPE.
if |H| = 1 then

SPE = H ;
else

i = P (h0) ; // The player acting at the root
⟨Γ k, SPEk, h′

k⟩ak∈A(h0) ← ∅;
for ak ∈ A(h0) do

Γ k = Γ (h0 + (ak)) ; // The subgame that follows actions ak

SPEk = BI(Γ k) ;
h′
k ∈ argminh′∈SPEk ui(h

′) ; // The lowest utility ui a SPE can
achieve in Γ k

end
SPE = {h ∈ ∪SPEk|∀k, h ⪰i h

′
k} ; // Outcome h is preferred by

player i to any other SPE
end

when J = I \ {i}. Clearly for a strategy profile s ∈ S the set H(s) = {h} is
a singleton. Furthermore, with some abuse of notation, let ui(s) := ui(s 7→ h)
denote the utility of player i under a certain strategy profile s. A strategy profile
is a Nash equilibrium if no player can increase her utility by changing unilaterally
her strategy.

Definition 4 (Nash equilibrium). Given a game Γ = ⟨I,A, H ′, H, P, u⟩, a
strategy profile ⟨si⟩i∈I is a Nash equilibrium if for every i ∈ I and for all si ∈ Si

it holds ui(si, s−i) ≥ ui(si, s−i).

One method to identify all Nash equilibria is to list all the strategies and
verify the condition of Definition 4. However, the number of strategies is often
exponential in the number of outcomes [12]. Therefore, when the game is large
and has a significant amount of outcomes, brute force is nowhere used as a
method to identify the Nash equilibria.

The most known algorithm to identify Nash equilibria in extensive-form
games is the backward induction (BI, cf. Algorithm 1). However, the backward
induction algorithm provides only a specific subset of Nash equilibria, i.e., the
subgame perfect equilibria (SPE). A subgame perfect equilibrium is a Nash equi-
librium for every subgame [8], i.e., the part of the tree having one of the node
of the game as root. Every extensive-form game with perfect recall and perfect
information admits a subgame perfect equilibrium. The backward induction se-
lects, starting from the leaves of the tree, the outcomes that are most favourite
by the player acting at a given node. The value of the corresponding outcomes
thus propagates upwards towards the root of the tree as exemplified next.

Example. Let us consider the game Γ represented by tree of Fig. 1a. The
preferences of the players w.r.t. the outcomes are indicated in the caption. Let

Solving security models with perfect observability 5

1

3

1

h1 h2

2

h3 h4

L

2

h5 h6
3

h7 h8

R
a)

{h2}

{h2}

{h2}

h1 h2

{h3, h4}

h3 h4

{h5}

h5 h6

{h8}

h7 h8

b)

Fig. 1. Example. a) 3-player game in extensive form. Preferences of the players over
the outcomes are respectively: u1 : h6 ≻1 h7 ≻1 h8 ≻1 h3 ≻1 h4 ≻1 h2 ≻1 h1 ≻1 h5,
u2 : h5 ≻2 h8 ≻2 h7 ≻2 h6 ≻2 h2 ≻2 h3 ∼2 h4 ≻2 h1 and u3 : h8 ≻3 h7 ≻3 h6 ≻3

h2 ≻3 h5 ≻3 h3 ≻3 h1 ≻3 h4. b) Application of the backward induction to the game.
The subgame perfect equilibrium of the game is h2.

us compute the subgame perfect equilibria of the game by applying the BI al-
gorithm. The computation are shown in Fig. 1b. The algorithm starts from the
leaves of the tree. Player 1 prefers h2 to h1 (h2 ≻1 h1), player 2 has no strict pref-
erence between h3 and h4 (h3 ∼2 h4) and player 3 prefers h8 to h7 (h8 ≻3 h7).
The outcomes h2, {h3, h4} and h8 are the SPE of the respective subgames. At
the second stage of the tree, players 3 and 2 prefer respectively h2 to h3 and h4

(h2 ≻3 h3 ∼3 h4), h5 to h6 and h8 (h5 ≻2 h8 ≻2 h6). Finally, at the root of the
tree, player 1 prefers h2 to h5 (h2 ≻1 h5). The (here unique) subgame perfect
equilibrium of the game is h2.

Subgame perfect equilibria have two drawbacks. On one side, they do not
always represent the Nash equilibrium that most fits a real-case scenario [9]. On
the other side, they can only be identified by a recursive algorithm which is not
practical when the game is too large.

6 Zappala et al.

Outcomes of Nash equilibria. The method presented hereafter let us identify
the outcomes of all Nash equilibria. Let us consider a strategy profile s ∈ S.
We recall that its realisation is the only element h ∈ H belonging to the set of
its possible outcomes H(s). For any strategy profile originated by a unilateral
deviation s′ ∈ S it must hold s′i ̸= si and s′−i = s−i for one and only one i ∈ I.
Therefore the realisation of any possible unilateral deviation, namely h′ ∈ H,
belongs to the set of possible outcomes H(s−i) of the strategies s−i ∈ S−i =
×j∈I\{i}Sj of all players but the one deviating i ∈ I. Formally, the realisation
of a Nash equilibrium over the sets of outcomes is characterized by the following

Lemma 1. Given a game Γ = ⟨I,A, H ′, H, P, u⟩, an outcome h ∈ H is a real-
isation of a Nash equilibrium if and only if there exists a strategy profile s ∈ S
such that H(s) = {h} and for each i ∈ I and h′ ∈ H(s−i) it holds ui(h) ≥ ui(h

′).

Proof. The direct implication is obvious. For the converse let us consider the
strategy profile s ∈ S whose existence is assumed in the statement. Observe that

H(s−i) \ {h} = {h′ ∈ H|∃s′i ∈ Si, s = ⟨si, s−i⟩ 7→ h′, h′ ̸= h}

is the set of the outcomes of the strategy profiles of type s′ where s′ = ⟨s′i, s−i⟩,
s′i ̸= si, i.e., of strategy profiles which are unilateral deviations from s. Hence, for
any such strategy profile it holds ui(s

′
i, s−i) = ui(h

′) ≤ ui(h) = ui(si, s−i). ⊓⊔

3 Method to identify Nash equilibria

In this section we provide a graph-based method to identify all Nash equilibria.
We focus on a target outcome h ∈ H and we discuss whether it is the reali-
sation of a Nash equilibrium or not. Since the target h can be chosen among
all the outcomes of the game, without exceptions, it is possible to identify all
the equilibria of the game. We need first to introduce some mathematical tools
to analyse extensive-form games and then we use them to introduce the new
algorithm. Section 4 will be devoted to the proof that the algorithm provides
positive answer if and only if h is the realisation of a Nash equilibrium.

One of the features of extensive-form games with perfect information is that,
given two outcomes, there is only one player who can determine which of the two
can be selected. For instance, in the game of Fig. 1 it is player 1 who determines
whether h3 or h6 is attained. Indeed, if player 1 selects action L at the root,
h6 cannot be reached. On the other hand, if player 1 chooses action R, h3 will
not be reached. Since the Nash equilibrium relies on the concept of unilateral
deviation, we mark this definition:

I : H ×H → I where I(h, h′) = P (h ∩ h′).

The function I : H ×H → I maps the pair of outcomes h, h′ ∈ H with h ̸= h′

to the player I(h, h′) that separates their paths from the root of the game tree.
We recall that h ∩ h′ is the node that separates the paths from the root to
respectively h and h′. In the example, I(h3, h6) = 1.

Solving security models with perfect observability 7

h1

h2

h3

h4

h9

h5

h6

h7

h8

h10

Fig. 2. Problem of the maximal excluding clique [MC]. Let us consider problem
[MC] with H = {h1, h2, h3, h4, h5, h6, h7, h8, h9, h10} and X = {h5, h6, h7, h8, h10}. A
vertex set that induces a maximal clique and solves [MC] is C = {h2, h3, h4}.

The second definition to be introduced comes from graph theory [11]. The
problem of the maximal excluding clique requires to identify a maximal excluding
clique on a subset of vertices of the graph. We recall that a maximal clique is a
clique that is not a subset of any another clique.

Problem 1. [MC] Existence of a maximal clique excluding a set of ver-
tices
Input. ⟨H,E,X⟩ defining a graph ⟨H,E⟩ and a subset of vertices X ⊂ H.
Output. Is there a vertex set C ⊂ H \ X that induces a maximal clique on
⟨H,E⟩?

Example. Let us consider the graph of Fig. 2. The set of vertices is H =
{h1, h2, h3, h4, h5, h6, h7, h8, h9, h10}. The set of vertices to be excluded is X =
{h5, h6, h7, h8, h10}. The problem of the maximal excluding clique require to
determine if there exists a maximal clique in H \X. A set of vertices that solves
[MC] is C = {h2, h3, h4}, because they induce a maximal clique on the graph.

Provided the aforementioned definitions, we can thus introduce Algorithm 2
to determine whether a target outcome is a Nash equilibrium.

Having fixed the target outcome h ∈ H, Algorithm 2 partitiones the remain-
ing outcomes h′ ∈ H\{h} according to the player I(h, h′) that separates the path
from the root to them. We can thus define define the set of potential deviations
of a given player i ∈ I from h

Hi = {h′ ∈ H \ {h}|i = I(h, h′)}.

Example. Let us fix the target outcome h = h3 in Fig. 1. The set of potential
deviations are respectively H1 = {h5, h6, h7, h8}, H2 = {h4} and H3 = {h1, h2}.

8 Zappala et al.

ALGORITHM 2: (NE) Determining whether an outcome is a reali-
sation of a Nash equilibrium

Input: A game Γ , the set of its outcomes H, the function I : H ×H → I and
an outcome h ∈ H.

Output: Is h a realisation of a Nash equilibrium?
boolean = True ; // A boolean value determining whether h is a
realisation of a NE

for i ∈ I do
Hi ← {h′ ∈ H \ {h}|I(h, h′) = i};
Xi ← {h′ ∈ Hi|ui(h) < ui(h

′)};
E|Hi = {(h, h′) ∈ Hi|I(h, h′) = i};
if Output of Problem 1 with input ⟨Hi, Xi, E|Hi⟩ is negative then

boolean = False;
end

end

If there is a unilateral deviation of a player i ∈ I, it reaches an outcome
belonging to the set Hi. Whether the player i has an incentive to deviate to an
element h′ ∈ Hi, it depends exclusively on the value of the utility ui(h

′). Indeed,
if ui(h) < ui(h

′), player i has an incentive to deviate from h to h′, otherwise it
does not. The set of potential deviations for which player i has an incentive to
deviate is thus

Xi = {h′ ∈ Hi|ui(h) < ui(h
′)}.

Example. Given h = h3 the target outcome of the game of Fig. 1. The sets of
outcomes for which a player has an incentive to deviate are respectively X1 =
{h6, h7, h8}, X2 = ∅ and X3 = {h2}.

The sets Hi are potential deviations, i.e., player i can possibly deviate to
one of the outcomes belonging to Hi. However, player i can reach an outcome
h′ ∈ Hi only if the other players have a multistrategy that leads to h′. If none
of the outcomes reachable for player i do not belong to Xi, then she does not
have any incentive to deviate to them. For instance, in the game of Fig. 1 player
1 can unilaterally deviate from h3 to h8 if both player 2 and 3 go right.

We devote Section 4 to the construction of such multistrategies. We later show
that all the outcomes reachable for a player i must have the property that is her
the player deviating the paths from the root to them. Formally, given C ⊂ Hi

the outcomes reachable for player i, then for all h′, h′′ ∈ C it holds I(h′, h′′) = i.
Moreover, as we show in the next section, such property is maximal, i.e., there
is no other outcome that can be added to C such that the property still holds.

The formal representation of this property is the undirected graph having the
outcomes Hi as vertices and E|Hi

= {(h, h′) ∈ Hi|I(h, h′) = i} as edges. The
sets of outcomes reachable for player i form maximal cliques over such graph
⟨Hi, E|Hi

⟩. Finally, Algorithm 2 determines for all i ∈ I whether there is a set
C ⊂ Hi \Xi forming a maximal clique on ⟨Hi, E|Hi⟩. As we show in Section 4,

Solving security models with perfect observability 9

this property is sufficient and necessary for the players not to have an incentive
to deviate unilaterally and thus for h to be a realisation of a Nash equilibrium.

Example. Let us apply Algorithm 2 to discuss if h3 is the realisation of a
Nash equilibrium. Let us fix i = 1: we have H1 = {h5, h6, h7, h8} and X1 =
{h6, h7, h8}. Since for all h′ ∈ X1 we have that I(h5, h

′) ̸= 1 = i, the set {h5}
solves Problem 1. Let us now consider i = 2; since H2 = ∅, Problem 1 has trivially
positive answer. Finally, let i = 3: we have H3 = {h1, h2} and X3 = {h2}. Since
I(h1, h2) = 1 ̸= 3 = i, we have that {h1} solves Problem 1 with positive answer.
Therefore h3 is a realisation of a Nash equilibrium. The backward induction
algorithm could not identify such outcome, because it is not a subgame perfect
equilibrium (cf. Section 2).

Problem 1 is solved with the following linear system [12]:

xh′ + xh′′ ≤ 1 h′, h′′ ∈ Hi \Xi, (h
′, h′′) /∈ E∑

h′:(h′,h′′)/∈E

xh′ ≥ 1 ∀h′′ ∈ Xi

xh′ ∈ {0, 1} ∀h′ ∈ Hi \Xi.

Complexity. We recall that an enumeration of the Nash equilibria in practice
cannot be done with brute force, because it require to list an exponential number
of strategies. On the other hand, Algorithm 2 can be represented with an undi-
rected graph with |H| vertices and O(|H|2) edges. The function I : H ×H → I
requires to always compare two paths whose length depends on the depth of the
tree, which is always lower than the number of outcomes O(|H|) [12]. Differ-
ently from brute force methods, Algorithm 2 relies on a representation which is
scalable with the size of the game.

Parallelizable. Beside brute-force algorithms, the only method to compute
at least one Nash equilibrium is the backward induction [8], which identifies the
subgame perfect equilibria of the game. Such method is recursive and thus cannot
be parallelized. Moreover, there is no way to simplify the algorithm, since every
node must be explored [10]. On the other hand, Algorithm 2 can be parallelized
and relies on Problem 1, whose complexity varies with the structure of the tree
and the value of utility function [12]. Empirical results show that in two-player
games Problem 1 is trivial in the majority of cases [12].

Applications. Let us consider some examples of extensive-form games with
perfect information introduced in Section 1:

– an intruder attack [2]; intrusion detection is modeled with a zero-sum game,
whose goal is to avoid that the intruder wins; our method allows to analyse
every outcome corresponding to an attack carried out with success and prove
that they are not equilibria;

– a blockchain protocol [11]; the method of analysis of blockchains requires to
assess the properties of a single outcome [11], i.e., the one corresponding
to the protocol’s outcome. Such result is often not corresponding to the
subgame perfect equilibrium. Algorithm 2 provides a method to analyse it
without building the tree of the game nor computing other equilibria;

10 Zappala et al.

– a wiretap channel [5]; results in the literature provide only the subgame per-
fect equilibrium, while Algorithm 2 allows to compute all equilibria; because
of space limits, we leave this computation to future works;

– an ephemeral network [7]; the analysis of the vote in sequence in ephemeral
networks relies on the subgame perfect equilibrium; however, in reality the
players can create coalitions which correspond to different equilibria; Algo-
rithm 2 allows to compute such equilibria;

– an attack-defense tree [3]; similarly to the intrusion detection, the game is
zero-sum and thus the analysis can be performed for the cases that the
attacks are carried out with success.

4 Technical analysis of the method

In this section we show that Algorithm 2 determines if an outcome h ∈ H is the
realisation of a Nash equilibrium.

The proof relies on Lemma 1. First, we characterise the outcomes of a strategy
H(si) (cf. Definition 3), given a strategy si ∈ Si of a player i ∈ I. The function
I : H ×H → I, which is key for Algorithm 2, characterises the outcomes of the
strategies.

Theorem 1. Given a game Γ = ⟨I,A, H ′, H, P, u⟩ and two outcomes h, h′ ∈ H,
the following three propositions are equivalent:

1. i = P (h ∩ h′);
2. There is no si ∈ Si such that h, h′ ∈ H(si);
3. There exists a set of strategies s−i ∈ S−i such that h, h′ ∈ H(s−i).

Proof. Let us represent outcomes h and h′ as the two sequences of actions leading
to them, i.e., h = (ak)k∈{1,...,K} and h′ = (a′k)k∈{1,...,K′}, respectively. We denote
hr and h′r the histories which are the prefix of size r of h and h′, respectively.
By definition the prefix h ∩ h′, of size r, is the history such that hr = h′r for
r ≤ r and hr+1 ̸= h′r+1.

(1) ⇒ (3). Let us consider strategy profile s = ⟨sj ∈ Sj⟩j∈I defined as follows:
sj(h

r) = ar+1 and sj(h
′r) = a′r+1 for all r ̸= r such that respectively P (hr) = j

or P (h′r) = j. For all other nodes of the game tree, the actions are chosen at
random. Let us consider two strategies si, s′i ∈ Si of player i = P (h∩h′) and such
that si(ar) = ar+1 and s′i(a

′
r) = a′r+1. By construction ⟨s1, . . . , si, . . . , sN ⟩ 7→ h

and ⟨s1, . . . , s′i, . . . , sN ⟩ 7→ h′ and thus for all j ̸= i it holds h, h′ ∈ H(sj).
(2) ⇒ (1). We prove it by contradiction. If P (h ∩ h′) = j ̸= i we would have

that, since (1) ⇒ (3), there exists si ∈ Si such that h, h′ ∈ H(si), against the
assumptions in (2).

(3) ⇒ (2). If there is a strategy si ∈ Si such that h, h′ ∈ H(si), then we have
{h, h′} ⊆ H(s), i.e., strategy profile ⟨si, s−i⟩ would have more than one outcome,
which is absurd. ⊓⊔

In order to define the set of possible outcomes H(si) of a strategy si ∈ Si of
a player i ∈ I, it is possible to use directly function I to select which elements

Solving security models with perfect observability 11

1

2

h1

c

h2

d

a

3

h3

e

h4

f

b
h1

h2 h3

h4

2 1

1

1

1 3

a) b)

Fig. 3. Example of graph form. a) Game in extensive form. b) Game in graph form.

h ∈ H can or cannot belong to H(si). We therefore represent the game as a
complete graph whose vertex set is made by the outcomes H and each edge
(h, h′) ∈ H2 is labeled with the label of player I(h, h′).

Definition 5. Given an extensive-form game Γ = ⟨I,A, H ′, H, P, u⟩ the graph
form ⟨H, I, u⟩ is described by the complete edge-labeled graph with vertex set H,
where every edge (h, h′) ∈ H2 with h ̸= h′ has label I(h, h′) = P (h∩ h′) ∈ I and
the utility function u : H → RN .

Example. Let us observe the game of Fig. 3 with its graph form. In this game
each player acts at only one node, therefore we represent with sa the strategy
that chooses action a. The paths from the root to outcomes h1 and h3 are split
by player 1, who can choose whether to go left (strategy sa) or to go right
(strategy sb). We thus write I(h1, h3) = 1 and we assign the label 1 to arc
(h1, h3). Analogously, the paths belonging to outcomes h3 and h4 are split by
player 3 who can go either left (strategy se) or right (strategy sf). Therefore we
write I(h3, h4) = 3, assigning label 3 to arc (h3, h4).

Now, we define the set of outcomes of a strategy by using the function I :
H ×H → I. According to Theorem 1, the graph form contains all the possible
values of function I(h, h′) for every couple of outcomes (h, h′) ∈ H ×H of the
game.

Let us analyse our example and then conclude how to characterize the set of
outcomes of a strategy directly on the graph of the game.

Example. For the game of Fig. 3a let us enlist all the strategies, their possible
outcomes and then observe the corresponding labelling on the graph. Player 1 has
two strategies: sa and sb. If player 1 picks strategy sa the only possible outcomes
are H(sa) = {h1, h2}, while if she picks strategy sb we have H(sb) = {h3, h4}.
Player 2 has two strategies: sc and sd. If player 2 chooses strategy sc, she limits
the possible outcomes to H(sc) = {h1, h3, h4}, while if she chooses sd we have
H(sd) = {h2, h3, h4}. Finally for player 3 we have that H(se) = {h1, h2, h3}
and H(sf) = {h1, h2, h4}. Let us consider the graph form depicted in Fig. 3b
and remove all arcs with the same label i ∈ I. Formally, let us define the graph
⟨H,E| ̸=i⟩ for each player i ∈ I, with E| ̸=i = {(h, h′) ∈ H2 : I(h, h′) ̸= i}
excluding all the arcs (h, h′) ∈ E such that I(h, h′) = i. Let us consider i = 1 and
observe the strategies s1 = sa and s1 = sb. Their outcomes H(sa) = {h1, h2} and

12 Zappala et al.

H(sb) = {h3, h4} form cliques over ⟨H,E| ̸=1⟩. This is compliant with Theorem 1,
for which given a strategy si for all elements h, h′ ∈ H(si) we have that I(h, h′) ̸=
i and thus (h, h′) ∈ E |̸=i. Moreover, as proved next, we conclude that such cliques
are maximal.

The above argument can be made stronger: not only the outcomes of a strat-
egy si ∈ Si form a maximal clique over ⟨H,E |̸=i⟩, but also for every set C ⊂ H
inducing a maximal clique on ⟨H,E| ̸=i⟩ there is a corresponding strategy si ∈ Si

with such set of outcomes C = H(si).

Lemma 2. Given an extensive-form game Γ = ⟨I,A, H ′, H, P, u⟩ and its graph
form ⟨H, I, u⟩, let us consider ⟨H,E |̸=i⟩ the graph with H as vertices and E |̸=i =
{(h, h′) ∈ H2, I(h, h′) ̸= i} for some player i ∈ I. There is a bijection between
the set of maximal cliques of ⟨H,E |̸=i⟩ and the set of the set of outcomes of the
player’s strategies H(Si) = {H(si)|si ∈ Si}.

Proof. Let C ⊂ H induce a maximal clique on graph ⟨H,E |̸=i⟩. Let us define a
strategy si ∈ Si such that C ⊂ H(si). We use the same constructive argument
as done in Theorem 1: for all h ∈ C, and for all k-prefix hk such that P (hk) = i,
we can fix si(h

k) = ak such that hk + (ak) = hk+1; indeed, since C is a clique,
for every other h′ ∈ C such that hk is a prefix of h′ we have that hk+1 is a prefix
also for h′. For all remaining nodes of the tree, actions can be fixed at random.
Let h′′ ∈ H \ C: by construction there is h ∈ C such that I(h, h′) = i, so that
h′′ ̸∈ H(si) and thus H(si) = C.

We now prove the opposite, i.e., the outcomes of a strategy of player i ∈ I
define a maximal clique over ⟨H,E| ̸=i⟩. Consider a strategy si ∈ Si and the
set of its outcomes H(si). We apply Theorem 1: for every h, h′ ∈ H(si) it
holds I(h, h′) ̸= i. By definition, all the elements h, h′ ∈ H(si) are connected in
⟨H,E| ̸=i⟩, i.e., H(si) forms a clique. If this clique is not maximal, there exists
C ⊂ H with H(si) ⫋ C that induces a maximal clique over ⟨H,E| ̸=i⟩. As
done before, we define s′i ∈ Si a strategy such that H(s′i) = C. We have thus
H(si) ⫋ H(s′i). This is absurd. Indeed, since si ̸= s′i, there exists hk ∈ H(s′i)
with P (hk) = i such that si(hk) ̸= s′i(h

k). Let us consider an element h ∈ H(si)
such that hk + si(h

k) is a prefix of h: such element exists because the subgame
Γ k starting from node hk + si(h

k) must be not empty. We have that h ∈ H(si)
and h /∈ H(s′i), hence proving the contradiction. ⊓⊔

The above result characterises the players’ strategies in terms of a structural
property of the graph form of the game. Let us recall that Lemma 1 defines a
realisation of the Nash equilibria over the set of outcomes of the strategies, which
are then characterised on the graph in Lemma 2. We combine the two lemmas
to discuss over the graph whether a candidate outcome h ∈ H is the realisation
of a Nash equilibrium s ∈ S.

Theorem 2. Given a game in its graph form ⟨H, I, u⟩, let us consider ⟨H,E| ̸=i⟩
defined for each player i ∈ I. An outcome h ∈ H is a realisation of a Nash
equilibrium if and only if there are sets {Ci ⊂ H}i∈I that induce maximal cliques
respectively over the graphs {⟨H,E| ̸=i⟩}i∈I such that:

Solving security models with perfect observability 13

i. h ∈ ∩i∈ICi;
ii. ∀h′ ∈ H \ {h} and i = I(h, h′) at least one of the two conditions holds: a)

ui(h) ≥ ui(h
′) or b) h′ /∈ ∩j∈I\{i}Cj.

Proof. Let us consider a strategy s ∈ S as for Lemma 1. First, for all i ∈ I
it must hold h ∈ H(si). Second, for any other outcome h′ ̸= h, if I(h, h′) = i
we have that h ∈ H(si) implies that h′ /∈ H(si) (cf. Theorem 1). Therefore the
only condition that allows h′ ∈ H(s−i) = ∩j∈I\{i}H(sj) is that I(h, h′) = i.
Any outcome h′ ̸= h must thus fulfill at least one of the two conditions: a)
ui(h) ≥ ui(h

′) no matter if h ∈ ∩jH(sj) or not, or b) h′ /∈ ∩jH(sj). Finally,
from Lemma 2 we know that the existence of every set H(si) depends on the
existence of a set Ci = H(si) that forms a maximal clique on graph ⟨H,E| ̸=i⟩.

⊓⊔

Example. Let us apply Theorem 2 to the graph of Fig. 3b for outcome h2 ∈ H.
Three cliques have to be identified C1, C2 and C3. The only set inducing a maxi-
mal clique on ⟨H,E |̸=1⟩ such that h2 belongs to it is C1 = {h1, h2}. Analogously,
the only maximal clique on ⟨H,E |̸=2⟩ including h2 is C2 = {h2, h3, h4}. Finally,
the maximal cliques on ⟨H,E |̸=3⟩ are C3 = {h1, h2, h3} and C3 = {h1, h2, h4}.
Therefore h1 ∈ C1 ∩ C3 and the condition u2(h2) ≥ u2(h1) is necessary. On the
other hand, either h3 ∈ C2 ∩ C3 and h4 ∈ C2 or h4 ∈ C2 ∩ C3 and h3 ∈ C2.
One of the two conditions between u1(h2) ≥ u1(h3) and u1(h2) ≥ u1(h4) must
be fulfilled. Finally, h2 is a realisation of a Nash equilibrium if and only if
u2(h2) ≥ u2(h1) and either u1(h2) ≥ u1(h3) or u1(h2) ≥ u1(h4).

We now state a property of the graph of the game, which will be helpful in
the following arguments.

Lemma 3 (Triangle property). Given a game in its graph form ⟨H, I, u⟩ let
us consider three outcomes h, h′, h′′ ∈ H. If I(h, h′′) ̸= I(h′′, h′), then either
I(h, h′) = I(h, h′′) or I(h, h′) = I(h′′, h′).

Example. Let us consider three vertices in the graph of Fig. 3b, for instance
vertices h1, h2 and h3. The arcs (h1, h3) and (h2, h3) have label 1, while the arc
(h1, h2) has label 2. The outcome h3 is separated at the root by h1 and h2 and
therefore shares with them the same label i = 1. Being the separation held at
the same stage, h3 must share the same label with h1 and h2. With a similar
argument it is possible to show that among three outcomes there is always one
which is separated by the other two at the same stage. Formally, since it is
impossible that three paths in a tree share three different intersections, it is
possible to prove that no triangle in the graph of a game has three different
labels.

The graph form of a game labels every pair of outcomes with the unique
player who can be decisive in choosing among them. In order for an outcome
h ∈ H to be the realisation of a Nash equilibrium (cf. Theorem 2), any possible
outcome h′ ∈ H \ {h} resulting from a deviation in terms of strategies must
be either not incentivised, i.e., ui(h) ≥ ui(h

′), or not be a realisation of an
unilateral deviation, i.e., there are at least two players having strategies that

14 Zappala et al.

do not include h′ as possible outcome. The first condition is easily verified by
checking the values of the utility function for each tagged player i. Let us focus
on the second condition: for any other outcome h′ ̸= h with I(h, h′) = i we
have to find sets {Cj}j∈I\{i} inducing maximal cliques on the respective graphs
{⟨H|E̸=j⟩}j∈I\{j} such that for at least one j ∈ I \{i} we have that h′ /∈ H(sj).
The aim of the Algorithm 2 is to verify the existence a set of maximal cliques such
to prevent that any outcome not meeting the first condition ui(h) ≥ ui(h

′) at
some player i belongs to the intersection of all cliques but the one corresponding
to player i. Algorithm 2 allows, given a game in graph form ⟨H, I, u⟩, precisely
to determine if an outcome h ∈ H is the realisation of a Nash equilibrium. In
the following paragraphs we develop the steps that lead to the design of the
algorithm:

– The graph ⟨H,E⟩ is partitioned into subgraphs {⟨Hi, E⟩}i∈I , where H =
∪i∈I{Hi} ∪ {h} and Hi = {h′ ∈ H, I(h, h′) = i} are the outcomes of the
possible unilateral deviations of player i;

– Any set Cj ⊂ H inducing a maximal clique over ⟨H,E| ̸=j⟩ is shown to
be a union of sets Cj = ∪i∈I\{j}Cj |Hi

inducing maximal cliques over the
respective subgraphs {⟨Hi, E |̸=j⟩}i∈I\{j} (cf. Lemma 4); the problem can be
thus analysed on every subgraph ⟨Hi, E |̸=j⟩;

– The problem of existence of multiple sets {Cj |Hi
⊂ Hi}j∈I\{i} inducing

maximal cliques over the respective subgraphs {⟨Hi, E| ̸=j⟩}j∈I\{i} is proved
to be equivalent to the problem of existence of a set Ci ⊂ Hi inducing a
maximal clique over ⟨Hi, E|=i⟩ (cf. Lemma 5);

– Algorithm 2 thus checks for all i ∈ I that on every subgraph ⟨Hi, E|=i⟩ there
is a set Ci ⊂ Hi inducing a maximal clique such that none of the elements
that do not meet the first condition Xi = {h′ ∈ Hi, ui(h) < ui(h

′)} belong
to Ci, i.e., such that Ci ∩Xi = ∅ (cf. Problem 1).

Induced subgraphs of deviations. From now on the object of the inquire is a
target outcome h ∈ H and whether or not it is the realisation of some Nash
equilibrium s ∈ S. For the sake of example we shall use the graph form of
Fig. 4 which corresponds to the game of Fig. 1. Let us group all the outcomes
that can be potential unilateral deviations of the same player in the sets Hi. In
the following we call alternatively unilateral deviation the strategy s′i ̸= si that
differs from the one used at the Nash equilibrium s ∈ S and the realisation h′ of
the new strategy profile s′ = (s′i, s−i) 7→ h′.

In order to simplify the condition of Theorem 2, we analyse the relation-
ship between maximal cliques and the subgraphs induced by sets of possible
deviations {Hi}i∈I .

Example. Fig. 5 shows the graph of Fig. 4 induced over respectively H1 =
{h5, h6, h7, h8}, H2 = {h4} and H3 = {h1, h2}. Let us suppose that we are given
for all j ∈ I the set of outcomes Cj of a strategy sj ∈ Sj inducing a maximal
clique over graph ⟨H,E |̸=j⟩.

The first observation is that, in order for the designated h ∈ H to be an
outcome of the strategy profile s ∈ S, it must hold h ∈ Cj for every j ∈ I.

Solving security models with perfect observability 15

h1

h2

h3

h4 h5

h6

h7

h8

1
3

3

1

1

1

3

3

1

1

1

2 1

1

1

1

1

1

1

2
2

2 2

2

3

H2

H3 H1

Fig. 4. Graph form of game of Fig. 1. Given h = h3 as target outcome, we have
H1 = {h5, h6, h7, h8}, H2 = {h4} and H3 = {h1, h2}. In the example the chosen strat-
egy profile s ∈ S is such that H(s1) = C1 = {h1, h3, h4}, H(s2) = C2 = {h1, h2, h3, h5}
and H(s3) = C3 = {h3, h4, h5, h6, h7}. Preferences of the players over the out-
comes are respectively: u1 : h6 ≻1 h7 ≻1 h8 ≻1 h3 ≻1 h4 ≻1 h2 ≻1 h1 ≻1 h5,
u2 : h5 ≻2 h8 ≻2 h7 ≻2 h6 ≻2 h2 ≻2 h3 ∼2 h4 ≻2 h1 and u3 : h8 ≻3 h7 ≻3 h6 ≻3

h2 ≻3 h5 ≻3 h3 ≻3 h1 ≻3 h4.

By definition of Hj , we have that Cj ∩ Hj = ∅, because all of its elements are
incompatible with h with respect to player i.

Example. In Fig. 5 we observe C1 ∩H1 = ∅, C2 ∩H2 = ∅ and C3 ∩H3 = ∅.
Any set Cj that verifies the assumptions of Theorem 2 includes solely elements
of outcome sets Hi for i ̸= j.

The second observation is that the elements in Cj ∩ Hi for any i ̸= j form
a maximal clique also on the induced graph ⟨Hi, E| ̸=j⟩, i.e., with Hi as set of
vertices and E |̸=j = {(h, h′) ∈ H2

i |I(h, h′) ̸= j}.
Example. Let us consider C3 = {h3, h4, h5, h6, h7} and let us analyse C3∩H1

and C3 ∩ H2. The element h4 is the only element of C3 ∩ H2 and therefore
forms a maximal clique within H2. The elements {h5, h6, h7} ⊂ C3 belong to

16 Zappala et al.

h5

h6 h7

h8

2 2

2

2

22 3

H1

h1 h2

h4

1

H2

H3

a) b)

c)

Fig. 5. Induced subgraphs. The candidate outcome is h = h3. We show graph of
Fig. 4 induced over a) H1 = {h5, h6, h7, h8} b) H2 = {h4} and c) H3 = {h1, h2}. We
recall that the chosen s ∈ S in the example is such that H(s1) = C1 = {h1, h3, h4},
H(s2) = C2 = {h1, h2, h3, h5} and H(s3) = C3 = {h3, h4, h5, h6, h7}.

h5

h6 h7

h8

2 2

2

2

2

H1

h5

h6 h7

h8

H1

a) b)

Fig. 6. Removing arcs from a induced graph. a) Induced graph ⟨H1, E |̸=3⟩ b)
Induced graph ⟨H1, E|=1⟩.

H1 = {h5, h6, h7, h8}. Let us observe the induced graph ⟨H1, E| ̸=3⟩ in Fig. 6a.
The outcomes h7 and h8 are not connected since I(h7, h8) = j = 3. The elements
C3 ∩H1 = {h5, h6, h7} form indeed a maximal clique within ⟨H1, E |̸=3⟩.

With the following lemma we show that it is equivalent to look for a maximal
clique over the graph ⟨H,E| ̸=j⟩ and looking for N − 1 maximal cliques on the
N − 1 respective graphs {⟨Hi, E |̸=j⟩}i∈I\{j}.

Lemma 4 (Partition). Given a game in its graph form ⟨H, I, u⟩, a player i ∈ I
and the graph ⟨H,E| ̸=j⟩, every set Cj inducing a maximal clique over the graph
⟨H,E |̸=j⟩ is the union Cj = ∪i∈I\{j}Cj |Hi

of the disjoint sets Cj |Hi
= Cj ∩Hi

inducing maximal cliques over ⟨Hi, E |̸=j⟩.

Proof. We recall that Hi = {h′ ∈ H|I(h, h′) = i} is the set of possible deviations
from the target outcome h ∈ H. It is enough to prove that within the main
graph ⟨H,E |̸=j⟩ every two elements hi′ , hi′′ belonging to two different sets of
possible deviations, i.e., hi′ ∈ Hi′ and hi′′ ∈ Hi′′ with i′, i′′ ∈ I \ {j} and
i′ ̸= i′′, are always connected. Formally, we need to show that it always holds
(hi′ , hi′′) ∈ E| ̸=j , i.e., I(hi′ , hi′′) ̸= j. Given the designated h ∈ H, we observe
that I(h, hi′) = i′ and I(h, hi′′) = i′′. For the triangle property of Lemma 3
either I(hi′ , hi′′) = i′ ̸= j or I(hi′ , hi′′) = i′′ ̸= j, which concludes the proof. ⊓⊔

Solving security models with perfect observability 17

Example. Let us consider again the graph of Fig. 4 with candidate outcome
h = h3. Let us characterise a generic maximal clique C2, i.e., the set of outcomes
of a strategy s2 ∈ S2 of player j = 2 that admits h3 ∈ H(s2) = C2 as possible
outcome. By hypothesis we have to fix h3 ∈ C2 and h4 /∈ C2, since H2 = {h4}.
Let us consider thus H1 = {h5, h6, h7, h8} and H3 = {h1, h2}. Given any edge
(h′, h′′) ∈ H1 ×H3, the label I(h′, h′′) ̸= 2 again from Lemma 3. In this specific
case I(h′, h′′) = 1 for every pair of elements. Any candidate strategy s2 ∈ S2

for a Nash equilibrium s ∈ S having s 7→ h3 as realisation has therefore a set of
outcomes H(s2) = C2 = {h3} ∪ (C2|H1) ∪ (C2|H3), where C2|H1 and C2|H3 are
sets of elements that induce a maximal clique respectively on ⟨H1, E |̸=2⟩ and
⟨H3, E| ̸=2⟩.

Theorem 2 requires to identify for every j ∈ I a maximal clique over the
graph ⟨H,E |̸=j⟩. Thanks to the latest result, it is possible to check the existence
of such maximal clique on every induced graph ⟨Hi, E| ̸=j⟩. We thus rewrite the
necessary and sufficient condition on the induced subgraphs: for all i ∈ I there
must be a set Cj |Hi inducing a maximal clique for every player j ∈ I \ {i} such
that none of the possible deviations h′ ∈ Xi ⊂ Hi belongs to the intersection of
the maximal cliques ∩j∈I\{i}Cj |Hi

.
Example. In Fig. 6a we have that X1 = {h6, h7, h8} and the induced sets over

H1 = {h5, h6, h7, h8} that induce maximal cliques are respectively C2|H1 = {h5}
and C3|H1 = {h5, h6, h7}. The property (∩j∈I\{i}Cj) ∩Xi = ∅ is fulfilled, since
(C2 ∩ C3)|H1

= {h5} and X1 = {h6, h7, h8} have no elements in common.
Let us discuss the properties of the intersection ∩j∈I\{i}Cj |Hi

: these are
the possible unilateral deviations of player i, given the strategies of the other
players ∩j∈I\{i}Cj |Hi = H(s−i) for some s−i ∈ S−i. Let us observe that given
the possible outcomes ∩j∈I\{i}Cj |Hi it is the player i ∈ I who chooses which
one is to be the deviation. In other words, it is intuitive that for every pair of
elements h, h′ ∈ ∩j∈I\{i}Cj |Hi

it must hold I(h, h′) = i. Let us show that this
property is maximal and thus that identifying an intersection of maximal cliques
∩j∈I\{i}Cj |Hi is equivalent to identifying a set Ci inducing a maximal clique over
Hi.

Lemma 5. Given a game in graph form ⟨H, I, u⟩, a player i ∈ I and the induced
subgraph ⟨Hi, E⟩ on the set of possible deviations Hi and a set Ci ⊂ Hi, the two
conditions are equivalent:

– Ci induces a maximal clique over graph ⟨Hi, E|=i⟩, where E|=i = {(h, h′) ∈
H2

i |I(h, h′) = i};
– There are sets {Cj |Hi

}j∈I\{i} inducing maximal cliques over the graphs
{⟨Hi, E |̸=j⟩}j∈I\{i} such that Ci = ∩j∈I\{i}Cj |Hi

.

Proof. For sake of clarity, in the proof we drop the subscript |Hi
from Cj |Hi

.
We first prove the direct implication. Let Ci induce a maximal clique over

⟨Hi, E|=i⟩ and for all j ∈ I\{i} a set Cj with Ci ⊂ Cj induce maximal clique over
the graphs ⟨Hi, E |̸=j⟩. The sets {Cj} are well defined because for all h′, h′′ ∈ Ci
it holds I(h′, h′′) = i ̸= j. We observe that for every h′, h′′ ∈ ∩jCj it holds
I(h′, h′′) = i and thus Ci ⊂ ∩jCj . Since Ci is a maximal clique, Ci = ∩jCj .

18 Zappala et al.

Now let us prove the opposite, i.e., let us show that Ci = ∩jCj induces a
maximal clique over ⟨Hi, E|=i⟩. For all h′, h′′ ∈ Ci it holds I(h′, h′′) = i, i.e., Ci
induces a clique on ⟨Hi, E|=i⟩. Let us show that it is maximal. By contradiction,
there is C′

i ⊃ Ci forming a maximal clique over {Hi, E|=i}. With a similar argu-
ment used for Lemma 2 we prove that this is absurd. ⊓⊔

Let us observe the induced graph ⟨H1, E|=1⟩ of Fig. 6b. There are no edges
with label 1 and therefore all the maximal cliques are the single vertices. This
means that players 2 and 3 can identify strategies such that player 1 is forced to
pick only the vertex chosen by them.

We can thus show that Algorithm 2 determines whether an outcome is a
realisation of a Nash Equilibrium or not.

Theorem 3. Given a game in its graph form ⟨H, I, u⟩ and an outcome h ∈ H as
input, Algorithm 2 determines whether h is a realisation of a Nash equilibrium.

Proof. Let us define the set of possible unilateral deviations Hi = {h′ ∈ H, I(h, h′) =
i}, with Hi = Vi ∪ Xi as in Algorithm 2. Theorem 2 states that the necessary
and sufficient condition for h to be a realisation of a Nash equilibrium is the
existence of sets {Ci}i∈I inducing maximal cliques over the respective graphs
{⟨H,E| ̸=i⟩}i∈I such that h ∈ ∩i∈ICi and ∩j∈I\{i}Cj ⊂ Vi. The previous results
let us simplify such condition up to the excluding clique problem: for sake of clar-
ity, hereafter let us summarise the argument. For Lemma 4 the condition is equiv-
alent to verifying for all i ∈ I the existence of sets {Cj |Hi

⊂ Hi}j∈I\{i} inducing
maximal cliques over graphs {⟨Hi, E| ̸=j⟩}i∈I such that ∩j∈I\{i}Cj |Hi

⊂ Vi. Fi-
nally, for Lemma 5 this condition is equivalent to verifying for all i ∈ I the
existence of a set Ci ⊂ Vi that induces a maximal clique over ⟨Hi, E|=i⟩, hence
the proof. ⊓⊔

5 Conclusions

In this work, we focused on security models with perfect observability. In the
literature, the representation of such models is in the form of an extensive-form
game, whose solution concept is the Nash equilibrium. However, to date, such
representation is not convenient computationally because, to the best our knowl-
edge, there exist no efficient methods to compute all Nash equilibria of extensive
form games. In fact, the only known method in this field is the backward in-
duction algorithm, which provides a subset of Nash equilibria. The lack of other
methods for computing Nash equilibria has limited the analysis of security mod-
els with perfect observability. In Section 2 we have thus introduced an algorithm
to determine whether or not an outcome of the game is the realisation of a pure
Nash equilibrium. The algorithm has an efficient representation, i.e., it does not
require to enumerate the game strategies. Furthermore, it relies on a graph the-
oretical problem whose instances are often easy to compute, as verified for the
vast majority of outcomes we have tested. Moreover, this algorithm is paralleliz-
able, a condition that is key in order to scale the solution method for larger
games.

Solving security models with perfect observability 19

In Section 2 we have showed how our method applies to provide better
insights on several known security models which are solved by means of an
extensive-form game representation. Due to space limits, we did not provide the
detailed analysis of such models. We plan to apply the proposed algorithm to
those classes of problems and to deduce more insights on their solutions as part
of future works.

References

1. Alós-Ferrer, C., Ritzberger, K., Alós-Ferrer, C., Ritzberger, K.: Discrete extensive
forms. The Theory of Extensive Form Games pp. 131–161 (2016)

2. Kantzavelou, I., Katsikas, S.: A generic intrusion detection game model in it secu-
rity. In: Trust, Privacy and Security in Digital Business: 5th International Confer-
ence, TrustBus 2008 Turin, Italy, September 4-5, 2008 Proceedings 5. pp. 151–162.
Springer (2008)

3. Kordy, B., Mauw, S., Melissen, M., Schweitzer, P.: Attack–defense trees and two-
player binary zero-sum extensive form games are equivalent. In: Decision and Game
Theory for Security: First International Conference, GameSec 2010, Berlin, Ger-
many, November 22-23, 2010. Proceedings 1. pp. 245–256. Springer (2010)

4. Kuhn, H.W., Tucker, A.W.: Contributions to the Theory of Games. No. 28 in II,
Princeton University Press (1953)

5. Mukherjee, A., Swindlehurst, A.L.: Jamming games in the mimo wiretap channel
with an active eavesdropper. IEEE Transactions on Signal Processing 61(1), 82–91
(2012)

6. Nash Jr, J.F.: Equilibrium points in n-person games. Proceedings of the national
academy of sciences 36(1), 48–49 (1950)

7. Raya, M., Manshaei, M.H., Félegyházi, M., Hubaux, J.P.: Revocation games in
ephemeral networks. In: Proceedings of the 15th ACM conference on Computer
and communications security. pp. 199–210 (2008)

8. Selten, R.: Spieltheoretische behandlung eines oligopolmodells mit nach-
frageträgheit: Teil i: Bestimmung des dynamischen preisgleichgewichts. Zeitschrift
für die gesamte Staatswissenschaft/Journal of Institutional and Theoretical Eco-
nomics 2(H.), 301–324 (1965)

9. Selten, R.: The chain store paradox. Theory and decision 9(2), 127–159 (1978)
10. Szymanik, J.: Backward induction is ptime-complete. In: Logic, Rationality, and

Interaction: 4th International Workshop, LORI 2013, Hangzhou, China, October
9-12, 2013, Proceedings 4. pp. 352–356. Springer (2013)

11. Zappalà, P., Belotti, M., Potop-Butucaru, M., Secci, S.: Game theoretical frame-
work for analyzing blockchains robustness. In: 35th International Symposium on
Distributed Computing. p. 25 (2021)

12. Zappalà, P., Benhamiche, A., Chardy, M., De Pellegrini, F., Figueiredo, R.: Graph-
based approach for enumerating the Nash equilibria of a two-player extensive-form
game (May 2023), https://hal.science/hal-04093334, working paper or preprint

