
HAL Id: hal-04197479
https://hal.science/hal-04197479

Submitted on 6 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

SphereDRUNet: A Spherical Denoiser for
Omnidirectional Images

Rita Fermanian, Thomas Maugey, Christine Guillemot

To cite this version:
Rita Fermanian, Thomas Maugey, Christine Guillemot. SphereDRUNet: A Spherical Denoiser for
Omnidirectional Images. ISMAR 2023 - 22nd IEEE International Symposium on Mixed and Aug-
mented Reality, Oct 2023, Sydney, Australia. IEEE, pp.1-6, 2023. �hal-04197479�

https://hal.science/hal-04197479
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


SphereDRUNet: A Spherical Denoiser for Omnidirectional Images
Rita Fermanian * Thomas Maugey † Christine Guillemot ‡

Inria Rennes – Bretagne-Atlantique

Figure 1: Omnidirectional image denoising performed on (a) Equirectangular projection (ERP) with the state-of-the-art denoiser
DRUNet re-trained on ERP images and on (b) the Sphere using our proposed SphereDRUNet. The denoised equirectangular
image has lost high frequency elements such as the details on the leaves or the stains on the train, whereas denoising the sphere
successfully removes noise while also recovering details.

ABSTRACT

Image denoising is a primary pre-processing task in image pro-
cessing. Although it has garnered significant research attention in
the context of traditional 2D images, omnidirectional image de-
noising has received relatively limited attention in the literature.
Furthermore, extending processing models and tools designed for
2D images to the sphere presents many challenges due to the inher-
ent distortions and non-uniform pixel distributions associated with
spherical representations and their underlying projections. In this
paper, we address the problem of omnidirectional image denoising
and we aim to study the advantage of denoising the spherical im-
age directly rather than its mapping. We introduce a novel network
called SphereDRUNet to denoise spherical images using deep learn-
ing tools on a spherical sampling. We show that denoising directly
the sphere using our network gives better performance, compared
to denoising the projected equirectangular images with a similarly
learned model.

Index Terms: Omnidirectional images—Inverse problems—
Denoising—On-the-sphere learning

1 INTRODUCTION

From wavelet thresholding to advanced deep-learning architectures,
image denoising is a classical yet still one of the most widely ex-
plored topics in image processing. Denoising an image is the process
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of recovering a clean image x, having a noisy measurement y, such
that y = x+ ϵ; ϵ being the noise degradation. While different types
of noise may arise in a given image due to several physical factors,
the Central Limit Theorem [30] establishes that their accumulation
often leads to a Gaussian distribution. Hence, the most popular
assumption is that ϵ is an additive white Gaussian noise (AWGN)
with standard deviation σ.

Throughout the past decades, multiple methods have been devel-
oped to solve image denoising. Traditional methods include non-
local self similarity methods [3], such as BM3D [5] and LSSC [17],
sparse representations such as NCSR [8], gradient models [20, 26]
and Markov random field (MRF) models [13, 14]. Nevertheless,
with the advancement of deep learning, many convolutional neu-
ral networks have been designed for denoising. These networks
not only successfully outperform the traditional methods, but also
are often computationally more effective during the test. Some of
the most popular architectures are DnCNN [36], NLRN [16] and
DRUNet [35]. The latter outperforms the state-of-the-art denoising
algorithms. However, despite the massive work that has been done
to denoise traditional 2D images, very little effort has been dedicated
to omnidirectional image denoising.

In this paper, we address the problem of denoising omnidirec-
tional images. Omnidirectional images, also known as spherical
images, are high-resolution visual contents that cover a 360-degree
field of view capturing the light field converging to a single point.
They are captured by catadioptric or fish-eye based systems that are
able to cover a whole hemisphere. Thanks to their human-friendly
nature, they have gained a particular attention in the domains of Aug-
mented Reality (AR) and Mixed Reality (MR). These cameras often
suffer from inherent distortion and increased noise due to their wide
field of view and unique optical characteristics. Consequently, the
quality of captured omnidirectional images can be compromised by
noise artifacts, limiting the accuracy of subsequent computer vision



tasks in AR/MR. Therefore, omni-directional image denoising is a
crucial pre-processing step to enhance the quality of the visual data
used in AR/MR applications.

However, only a few works have addressed the problem of denois-
ing omnidirectional images in the literature. Bigot et al. [2] adapt
the Wiener filter and Tikhonov regularization to spherical images for
the denoising application. Demonceaux et al. [6] denoise catadiop-
tric inputs corrupted by White Gaussian noise by proposing a new
neighborhood for Markov random fields (MRF) adapted for omnidi-
rectional images. Furthermore, Alibouch et al. [11] adapt the Stein
block thresholding method to omnidirectional images to remove
additive white Gaussian noise. Finally, Phan et al. [23] solve poisson
denoising by using a space-variant total-variation regularization on
catadioptric images.

These methods use conventional techniques and are primarily
tailored to address the challenges presented by catadioptric inputs,
thus they depend on the nature of the acquisition. However, omni-
directional images rely on a specific geometry which is the sphere,
and considering the sphere makes the approach more agnostic to the
image acquisition.

On the other hand, in order to take advantage of computing tools
and methods that have been developed for 2D images, omnidirec-
tional images are often mapped to two-dimensional planar represen-
tations using equirectangular projection (ERP) [27] or cubemap pro-
jection (CMP) [18]. These non-linear mappings induce significant
deformations leading to non-uniform spatial resolution, therefore
the use of algorithms designed to process perspective 2D images
without exploiting the true geometry behind the spherical framework
yields limited results.

A commonly adopted approach for processing omnidirectional
images involves applying two-dimensional processing techniques to
their corresponding mappings, typically using the equirectangular
projection [7, 19, 21, 31]. These algorithms are often taking into
account the distortions caused by the underlying mapping.

An alternative approach is to work directly on the sphere to cir-
cumvent issues related to sampling distortion. However, spherical
processing necessitates the specific design of processing tools to
effectively address challenges arising from this geometry. Recently,
Bidgoli et al. [1] have introduced a novel framework to perform
an on-the-sphere learning for omnidirectional images. They solve
spherical convolution in the pixel domain and reach the same filter
expressiveness, consistency and complexity of 2D CNNs. Hence-
forth, we use the term ”spherical” to refer to operations conducted
directly on the sphere.

In this paper, we address the problem of omnidirectional image
denoising on the sphere, which is an essential pre-processing step
in AR/MR tasks. Our main goal is to show that image denoising
gives better performance when it is performed directly on the sphere
rather than via a mapping, even though it raises many challenges.
Furthermore, we introduce a novel deep spherical denoiser (Sphere-
DRUNet) by transforming the architecture of the DRUNet [35]
using the elementary convolutional modules proposed by OSLO.
Our network takes directly spherical inputs rather than equirectan-
gular projections. We evaluate the performance of SphereDRUNet
in comparison with the initial DRUNet retrained and applied on
Equirectangular data. Our results show that working on the sphere
leads to a significant performance gain for the task of image denois-
ing. This also confirms that the OSLO solution can be successfully
extended to inverse problems such as denoising. We further compare
our SphereDRUNet to a graph-based convolution network and con-
firm that the convolution approach that we use is more efficient. The
main contributions of this paper are two-folds: (i) We introduce the
first spherical denoiser CNN designed and trained specifically for
omnidirectional images, which gives promising results for different
noise levels and (ii) we show that working directly on the sphere
gives better denoising results rather than processing the projections.

The remaining of the paper is organized as follows. In Section II,
we elaborate spherical convolutions and explain the reasons behind
choosing OSLO. We then detail the architecture of our proposed
SphereDRUNet in Section III and present the comparison framework.
In Section IV we show experimental results and validate the benefit
of our approach. Finally, we conclude in Section V.

2 RELATED WORK

2.1 Spherical convolution
Extending conventional processing tools, such as convolutions de-
signed for perspective imagery, to work effectively on spherical
surfaces is not a straightforward task. In fact, the implementation
of spherical convolutions comes with many challenges. First, con-
sidering registered images, a convolution is desired to be rotation
equivariant for any rotation around the polar axis. Second, the fil-
ters should be able to increase their convolutional range and have
anisotropic responses to ensure expressiveness. Finally, compu-
tational efficiency in spherical convolutions is very important for
real-time processing and memory limitation.

Although different approaches for spherical convolutions have
been proposed such as spectral learning [4, 24], 2D processing [28]
and graph or multi-graph based representations [12, 22, 33], it hasn’t
been possible to assure these 3 key properties simultaneously to
guarantee a proper spherical convolution. To overcome the limita-
tions of existing methods, Bidgoli et al. [1] have proposed a novel
framework for spherical processing (OSLO) where all aforemen-
tioned properties are successfully satisfied. For this purpose, they
sample the sphere using HEALPix [9] and define the convolution in
the pixel domain.

(a) Nside=1 (b) Nside=2 (c) Nside=8 (d) Nside=16

Figure 2: Visualization of HEALPix sampling over the Sphere. (a)
Base resolution. (b) First resolution. (c) Third resolution. (d) Fourth
resolution

2.2 HEALPix sampling
Hierarchical Equal Area isoLatitude Pixelation (HEALPix) [9] is
a sampling method for spherical data that produces a configura-

Figure 3: Spherical convolution in the pixel domain proposed by [1].
Each color represents a weight corresponding to a certain orientation.
Filter weights remain the same, regardless of the position of the kernel
on the sphere.



tion where the pixels are arranged in a diamond-shaped pattern.
HEALPix starts by forming the base resolution and divides the sur-
face of the sphere into 12 equal-area regions, each representing a
specific area on the sphere. Then, each of these regions is iteratively
partitioned into 2x2 equal-area sub-pixels, until reaching the target
resolution. The HEALPix kth resolution is defined by a parameter
Nside=2k and has a total of Npix=12N2

side = 12 x 2k x 2k pixels
(Fig. 2). Each pixel in the final arrangement has eight adjacent neigh-
bors (only 24 pixels have seven neighbors, which is far from having
a significant effect taking into account the resolution for an omnidi-
rectional image). This ensures the regularity of the neighborhood,
which is a fundamental condition for an expressive and effective
convolution. Furthermore, the relative distance and orientation be-
tween neighboring pixels remains consistent throughout the entire
sphere. Thus, HEALPix offers a rigid structure that was further
proved in [1]. Both the regularity and the rigidity of the sampling
method are essential properties to ensure an expressive and effective
convolution.

2.3 On-the-sphere Learning for Omnidirectional Images
(OSLO)

On-the-sphere Learning for Omnidirectional Images (OSLO) pro-
poses a new framework that defines all necessary operators to build a
CNN on the sphere. The method samples the sphere using HEALPix
and performs convolutions in the pixel domain. Pooling, stride,
skip-connections and patching are defined as well. The advantage of
OSLO is that the convolutions are rotation equivariant, expressive
and efficient at the same time.

In fact, let Ni(k) be the index assigned to the kth neighbor for
node i ( k = 1, ..., 8 for a total of 8 adjacent neighbors of a vertex).
Let Lin and Lout denote respectively the number of input and output
features in the convolution. The convolution operation for an output
feature l (1 ≤ l ≤ Lout) is defined as:

xl
i = ⟨θ0, xi⟩+

8∑
k=1

⟨θk, xNi(k)⟩ · wNi(k),i (1)

where θk represents the learnable filter weights and xi is the input
data/features at point i. wNi(k),i is set to 0 when the neighbor Ni(k)
is missing and to 1 otherwise, in order to deal with the 24 exceptions
of the pixels that have a missing adjacent neighbor.

The described convolution is anisotropic and consistent all over
the sphere. The same weights are applied to compute the convolution
output regardless of the position of the kernel on the sphere (Fig. 3).
Yet, it only supports 1-hop neighborhood. In order to increase the
potential size of kernels and extend the local support to n-hop neigh-
borhood, the authors propose an iterative computation of the 1-hop
convolution with a proper aggregation method such as concatenation,
addition or max aggregation. This makes the convolution highly
expressive. Furthermore, the convolution being in the pixel domain,
it simply consists in translating the filter over the sphere, hence the
complexity linearly increases with the number of pixels.

For these reasons, we choose OSLO to work on the sphere for
omnidirectional image denosing. Further information about the other
operations can be found in [1].

3 SPHERICAL IMAGE DENOISING

The main objective of this paper is to explore whether omnidirec-
tional image denoising is more efficient when performed directly
on the sphere, compared to using a projection. For this purpose, we
choose the DRUNet [35], which is a state-of-the-art Gaussian de-
noiser for perspective images, and use OSLO to transfer its architec-
ture to the sphere. Hence, a novel spherical denoiser SphereDRUNet
is obtained, which can be used to denoise spherical images corrupted
with any noise level. By considering the sphere, our approach can

be applied to all types omnidirectional images, regardless of their
acquisition characteristics.

DRUNet is a bias-free model, which has been observed to be
effective for generalization of denoisers over unseen noise levels.
The model takes as input a noise level map and integrates Residual
blocks (ResNet [10]) into U-Net [25]. It consists of four scales
having 64, 128, 256 and 512 number of channels in each of the
layers. Each scale in the downscaling consists of 4 residual blocks
followed by a 2x2 strided convolution (SConv) whereas a 2x2 trans-
posed convolution (TConv) is followed by 4 residual blocks during
the upscaling. Four skip connections are set between 2x2 strided
convolutions (SConv) downscaling and 2x2 transposed convolutions
(TConv) blocks at each of the four scales.

We transfer DRUNet to the sphere using the OSLO framework.
The architecture of the resulting SphereDRUNet is shown in Fig. 4.
We use 1-hop neighborhood convolution for all the layers because
all convolutions in DRUNet are of size 3x3. 2D stride operations
of size 2x2 amount to stride 4 on the sphere. For implementation
purposes, we replace the 2x2 transpose convolution by the sub-pixel
convolution of size 4 (pixel-shuffle) since both unpooling methods
have equivalent performance. Skip connections are set between the
strided convolutions and the sub-pixel convolutions.

The network takes a noise level map as input along with the
sphercial image. We note that various different approaches exist
to estimate the noise level from the noisy image, including region-
based methods, variational methods, as well as wavelet or transform
domain methods [15].

3.1 Training details
For the purpose of a fair comparison between denoising a spherical
image and its projection, we adapt our training framework to that of
the DRUNet. We use the SUN360 equirectangular image dataset [32]
and consider 2105 images for training, 22 images for validation and
43 images for testing. All images in the initial dataset have a spatial
size of 9104x4552. For each epoch of the training, we degrade the
training ERP images by AWGN with a random noise level σ chosen
from [0,50], and concatenate a uniform map filled with σ having
the same size as the ERP image. We perform HEALPix sampling
of resolution 10 (i.e. 12,582,912 pixels) of the original image, the
noisy image and the concatenation. SphereDRUNet takes as input
the concatenated data in the spherical form, and learns to denoise
the image by minimizing the l1 loss between the estimated clean
image and the ground-truth image using the ADAM optimization.
The learning rate is set to 5e-5 and decreased by half every 50,000
iterations. The gradient update is performed once every 8 patches,
patches being of resolution 8 (28 x 28 pixels). Finally, we train our
network for a total of 25 epochs. Note that most of the modifications
to the training framework compared to that of the DRUNet are
essentially driven by the higher resolution of omnidirectional images
in contrast to perspective images.

Furthermore, since our goal is to study denoising directly on the
sphere compared to denoising the equirectangular image, applying
the DRUNet trained on perspective images to ERP projections might
not seem fair. Therefore, we re-train the DRUNet on ERP images in
the same way as we trained the SphereDRUNet. In order to reduce
the unfair bias caused by the presence of ground-truth images in ERP
format, we resize the ERP images to 5056x2528 (12,781,568 pixels)
so that both ERP and HEALPix have almost the same number of
pixels.

3.2 Comparison framework
As discussed earlier, we proposed SphereDRUNet, a novel spherical
denoising CNN and we re-trained the DRUNet with ERP images
in order to apply it on spherical projections. We want to compare
the performance of these two approaches in order to study whether
omnidirectional image denoising is more efficient on the sphere or



Figure 4: Architecture of the SphereDRUNet network with OSLO-based convolution.

on a corresponding projection. We also include a comparison with a
cubemap projection: we map the equirectangular image to the six
faces of a cube and each face is denoised with the DRUNet. We then
reconstruct the ERP image by combining the six planes.

To avoid a biased comparison, for testing both spherical and
mapping-based approaches, we first corrupt the high-resolution
equirectangular input with Gaussian noise. Then, we downsam-
ple the corrupted image to get a HEALPix sampling of resolution 10
(12,582,912 pixels with Nside = 210) and resize the ERP image to
5056x2528 (12,781,568 pixels) in order to match the resolution of
the HEALPix sampling. Thus, both test images are generated from
the same corrupted input.

For quantitative evaluation, we calculate the Spherical PSNR
(S-PSNR) [34] and the Weighted to Spherically uniform PSNR
(WS-PSNR) [29]. The former maps the output and the ground-truth
images (ERP or sphere) to a sphere by uniformly sampling 655,362
points, and computes the mean error between them to simulate
the PSNR on the sphere. The sampling process for the S-PSNR
calculation is different than the HEALPix sampling, hence the metric
is not biased. S-PSNR is seen to be an estimation of the overall
quality experienced by viewers across all potential views. On the
other hand, in the calculation of the WS-PSNR, the mean squared
error is weighted by the size of each pixel, as follows:

WS-PSNR = 10log(
MAX2

I

W-MSE
), (2)

where MAXI is the maximum pixel intensity in the image, and
W-MSE is given as:

W-MSE =

∑W−1
x=0

∑H−1
y=0 ((Î(x, y)− Igt(x, y))2.w(y)∑W−1

x=0

∑H−1
y=0 w(y)

. (3)

W and H denote the width and height of the image, Î and Igt

represent respectively the reconstructed and the ground-truth images
and w(y) represents the weight of the corresponding pixel in the
weight matrix.

We also show portions of mollweide projections of the denoised
images for some visual comparison.

Table 1: Quantitative results of denoising Equirectangular, Cubemap
and Spherical data in terms of WS-PSNR [dB].

Noise level σ*255

10 20 30 40 50

Sphere + SphereDRUNet 40.78 37.33 35.43 34.14 33.16
ERP + DRUNet (trained on ERP) 39.85 35.38 32.46 30.15 28.16
CMP + DRUNet (trained on ERP) 30.30 29.65 28.73 27.61 26.38

4 EXPERIMENTAL RESULTS

We perform denoising of omnidirectional images corrupted with an
Additive White Gaussian noise (AWGN) of noise level σ ∗ 255 ∈
[10, 20, 30, 40, 50]. Table 1 and Table 2 show respectively the WS-
PSNR and the S-PSNR of denoised equirectangular, cubemap and
spherical images of the testing dataset. We can see that the on-the-
sphere solution with our SphereDRUNet significantly outperforms
denoising the equirectangular and the cubemap projections. This
gain is even more important when the noise level is high. Fig. 1,
Fig. 5 and Fig. 6 show a visual comparison of the denoised ERP and
spherical images for a degradation of noise level σ= 30/255 and σ=
50/255. We observe that the DRUNet smoothes the ERP images and
can not recover the high frequency details while the images denoised
using SphereDRUNet on the sphere have less distortion and do not
lose information (i.e. recover high frequency details such as texture).
This is probably because in order to recover an equirectangular
image with spatial distortions, a network needs a larger amount
of weights to reconstruct high frequency components compared to
recovering the same high frequency element on the sphere. For
instance, a line on the sphere remains a line regardless of its position,
whereas it can take different forms on the ERP depending on where
it lies, so a network needs more weights to recover the same high
frequency components on the ERP compared to the sphere.

4.1 Spherical convolution: OSLO-based vs. graph-
based (DeepSphere)

Our hypothesis that omnidirectional image denoising is more effi-
cient when performed on the sphere is verified. One popular ap-
proach to operate directly on irregular topology relies on graph
signal processing. For the sake of completeness, we also want
to prove that the OSLO-based spherical convolution that we have



Figure 5: Zoomed portions of the mollweide projection of the Equirect-
angular image denoised by the DRUNet that was re-trained on ERP
images and the Spherical image denoised by our SphereDRUNet.
AWGN of σ = 30/255 was added on the original image.

Figure 6: Zoomed portions of the mollweide projection of the Equirect-
angular image denoised by the DRUNet that was re-trained on ERP
images and the Spherical image denoised by our SphereDRUNet.
AWGN of σ = 50/255 was added on the original image.

chosen is the best approach. For this purpose, we consider a graph-
based baseline: the DeepSphere architecture [22]. DeepSphere is
also defined on the HEALPix sampling, but uses max-pooling and
graph-based convolutions approximated by Chebyshev polynomial
formulation. We re-train the same SphereDRUNet architecture with
graph-based convolutions in the same training framework as our
OSLO-based SphereDRUNet. For computational reasons, both net-
works are trained and evaluated on HEALPix images of resolution 8
(786,432 pixels) in this case.

Fig. 7 shows denoising results of spherical images restored
with the OSLO-based SphereDRUNet and the graph-based Sphere-
DRUNet. We can see that the graph-based convolution approach
fails to recover the clean image from the noisy measurement. This
limitation arises from the inherent nature of the graph, where the
lack of directional information restricts the learning process to a
single weight per neighborhood. By contrast, our OSLO-based ap-

Table 2: Quantitative results of denoising Equirectangular, Cubemap
and Spherical data in terms of S-PSNR [dB].

Noise level σ*255

10 20 30 40 50

Sphere + SphereDRUNet 22.28 20.47 19.49 18.83 18.32
ERP + DRUNet (trained on ERP) 21.65 19.78 18.73 17.98 17.40
CMP + DRUNet (trained on ERP) 17.43 17.08 16.78 16.50 16.25

Table 3: Quantitative results of denoising Equirectangular images with
the initial DRUNet network trained to denoise perspective 2D images
and the DRUNet that we re-trained on ERP inputs. Results are in
terms of WS-PSNR [dB].

Noise level σ*255

10 20 30 40 50

ERP + DRUNet (trained on ERP) 39.85 35.38 32.46 30.15 28.16
ERP + DRUNet (trained on 2D images) 39.53 35.19 32.33 30.03 28.07
Gain 0.32 0.19 0.13 0.12 0.09

proach demonstrates superior performance, successfully recovering
the clean image from the noisy measurement. This highlights the im-
portance of anisotropic filters and the effectiveness of the directional
information embedded in the OSLO-based convolution, leading to
enhanced denoising capabilities.

Figure 7: Denoising results of spherical images restored with the
OSLO-based SphereDRUNet (proposed network) and graph-based
SphereDRUNet. Results are in terms of WS-PSNR [dB].

4.2 Ablation study: training a denoiser on the equirect-
angular projection

Mapping-based solutions are a widely adopted approach when it
comes to omnidirectional image processing. The reason is sim-
ple: 2D processing tools can be easily applied to these projections.
However, traditional 2D operations (such as CNN tools) can not
effectively process omnidirectional images, because these mappings
display a significant distortion. In this section, we further demon-
strate the limits of mapping-based learning. Table 3 shows the results
(in terms of WS-PSNR [dB]) of denoising ERP images with the ini-
tial DRUNet network trained to denoise 2D images and the DRUNet
that we re-trained on equirectangular projections. We observe that
the performance of the DRUNet network does not greatly enhance
when we re-train it over spherical projections compared to the initial
DRUNet that was trained to denoise 2D images. For instance, the
gain is only 0.09 dB for σ = 50/255, vs. a gain of 5.09 dB when we
consider a processing on the sphere. This comparison further con-
firms that two-dimensional convolutions are not able to successfully
learn spherical features. Due to their inherent flat nature, they cannot
capture the curvatures and non-planar characteristics of spherical
surfaces. Thus, 2D learning tools do not generalize well on 360
mappings in the task of denoising.

5 CONCLUSION

In this paper, we target omnidirectional image denoising, a critical
pre-processing step in AR/MR applications. Our study investigates
the effectiveness of performing denoising directly on the sphere, as
opposed to employing a projection. To address this, we introduce
SphereDRUNet, a novel approach that transfers a state-of-the-art



Gaussian denoiser to the sphere using the OSLO-based convolu-
tion. Notably, our network is the first spherical CNN that is trained
specially for omnidirectional image denoising. Additionally, it has
shown promising denoising results on the sphere for different noise
levels. Our research demonstrates that denoising the spherical im-
age gives superior results compared to denoising a corresponding
mapping such as the equirectangular or the cubemap projections.
This can be explained by the fact that a network needs less weights
to recover the same high frequency components on the sphere com-
pared to a projection. Future work includes leveraging our denoiser
in spherical Plug-and-play algorithms to solve different inverse prob-
lems.
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