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A R T I C L E I N F O A B S T R A C T

Editor: Anastasia Volovich We investigate a deformation of 𝑤1+∞ algebra recently introduced in [1] in the context of Celestial CFT that we 
denote by 𝑊1+∞ algebra. We obtain the operator product expansions of the generating currents of this algebra 
and explore its supersymmetric and topological generalizations.

1. Introduction

Celestial holography provides new powerful tools for studying quantum gravity by applying a holographic principle to asymptotically flat 
spacetimes (AFS) [2]. It was shown in [3–5] that each of the soft theorems (the linear relations between scattering amplitudes of soft particles, i.e., 
the particles with energy 𝜔 → 0) in gauge theory and gravity in AFS is associated with an infinite number of symmetries and conservation laws on 
the celestial sphere. The known symmetries do not close under commutation, implying an infinite tower of soft theorems. Moreover, it has been also 
argued that the soft theorems in AFS are related to measurable gravitational memory effects via Fourier transform [6,7] together with a discussion 
towards its experimental setups [8].

In the recent works [4,9,10], it has been shown that the soft currents exhibit the so-called 𝑤1+∞ symmetry [11,12], where the infinite tower of 
soft symmetries can be organized into a single symmetry based on the wedge algebra of 𝑤1+∞. Along this direction, it has been pointed out in [1]

that one can consider a more general setup, which involves non-minimal couplings in the bulk on the operator product expansions (OPEs) of soft 
currents in the Celestial Conformal Field Theory (CCFT). The corresponding algebra of the currents provides a deformation of 𝑤1+∞ algebra, that 
we call 𝑊1+∞ algebra. Although 𝑊1+∞ algebra bears semblance to 𝑊1+∞ algebra [12], it shows several specific properties that we briefly review in 
Section 3.1.

A purpose of this paper is to obtain a deeper understanding of algebraic aspects of 𝑊1+∞ algebra. First, we derive the OPEs for the generating 
currents of 𝑊1+∞ algebra by generalizing the approaches used for 𝑊1+∞ algebra. This results in Theorem 3.4 in Section 3.2. Secondly, we explore 
further generalization of 𝑊1+∞ algebra. In particular, we introduce an  = 2 supersymmetric extension of 𝑊1+∞ algebra in Section 4.1, and we 
identify a BRST operator (Theorem 4.2) in Section 4.2. Finally, based on the OPEs for  = 2 𝑊∞ algebra together with the BRST operator, we 
construct the generators of the topologically twisted version 𝑊∞ algebra (Theorem 4.3) in Section 4.1. In Section 5, we conclude by discussing 
potential issues and future directions.

2. Background: soft current OPEs in CCFT

Let us discuss the basics of the soft current in CCFT. We follow the notation of [13].

Definition 2.1 (Soft current). Let ℎ,ℎ̄ be a positive-helicity conformal primary celestial operator with conformal spin 𝑠 ∈ 1
2ℤ>0 and conformal 

dimensions (ℎ, ̄ℎ) =
(
𝑘+𝑠
2 ,

𝑘−𝑠
2

)
, where we denote the scaling dimension by 𝑘 = 𝑠, 𝑠 − 1, 𝑠 − 2, … . The soft current is defined by
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𝐻𝑘,𝑠(𝑧, �̄�) ∶= lim
Δ→𝑘

(Δ − 𝑘)ℎ,ℎ̄(𝑧, �̄�) = lim
𝜖→0

𝜖 𝑘+𝑠
2 ,

𝑘−𝑠
2
(𝑧, �̄�), (2.1)

where (𝑧, ̄𝑧) is the codimension-two celestial sphere coordinate.

We start from the OPEs for these soft currents from a three-point interaction [10]:

ℎ1 ,ℎ̄1
(𝑧, �̄�)ℎ2 ,ℎ̄2

(0,0) ∼ 1
𝑧

∑
𝑝

𝐶𝑝(ℎ̄1, ℎ̄2)�̄�𝑝ℎ1+ℎ2−1, ℎ̄1+ℎ̄2+𝑝(0,0), (2.2)

where 𝑝 ∶= 𝑑𝑉 − 4 with 𝑑𝑉 being a bulk dimension of the three-point interaction coupling particles, 𝐶𝑝(ℎ̄1, ̄ℎ2) denotes the OPE coefficients and 
“~“means equality modulo expressions regular as (𝑧, ̄𝑧) → (0, 0). Taking the limit 𝜖→ 0 as in (2.1), one obtains the OPE for soft currents shown in 
[10]:

𝐻𝑘1 ,𝑠1 (𝑧, �̄�)𝐻𝑘2 ,𝑠2 (𝑤, �̄�) ∼ −
∑
𝑝

𝜅𝑠1 ,𝑠2 ,−𝑠𝐼
2

1
𝑧−𝑤

∞∑
𝛼=0

(�̄�− �̄�)𝛼+𝑝

𝛼!
×
(
−2ℎ̄1 − 2ℎ̄2 − 2𝑝− 𝛼

−2ℎ̄2 − 𝑝

)
𝜕𝛼𝐻𝑘1+𝑘2+𝑝−1,𝑠1+𝑠2−𝑝−1(𝑤, �̄�), (2.3)

where 𝜅𝑠1 ,𝑠2 ,−𝑠𝐼 is the coupling constant of the relevant three-point amplitude, �̄� ∶= 𝜕

𝜕�̄�
and 𝑠𝐼 = 𝑠1 + 𝑠2 − 𝑝 − 1.

We use the following antiholomorphic mode expansion of the celestial currents:

𝐻𝑘,𝑠(𝑧, �̄�) =
−ℎ̄∑
𝑛=ℎ̄

𝐻𝑘,𝑠
𝑛 (𝑧)�̄�−𝑛−ℎ̄ =

𝑠−𝑘
2∑

𝑛= 𝑘−𝑠
2

𝐻𝑘,𝑠
𝑛 (𝑧)

�̄�𝑛+
𝑘−𝑠
2

, (2.4)

where each 𝐻𝑘,𝑠
𝑛 (𝑧) is a 2D symmetry-generating conserved current whose Ward identity provides a soft theorem.1 Note that we have a 𝑧-dependence 

(but not �̄�) for the Fourier modes of the celestial currents.

The OPE and the commutation relations constitute an equivalent description of the corresponding algebra. We define the following commuta-

tor [1].

Definition 2.2 (2D-commutator).

[
𝐻
𝑘1 ,𝑠1
𝑚 ,𝐻

𝑘2 ,𝑠2
𝑛

]
(𝑤) ∶= ∮ 𝑤

d𝑧
2𝜋 i∮ 𝜖

d �̄�
2𝜋 i

�̄�𝑚+ℎ̄1−1∮ 𝜖

d �̄�
2𝜋 i

�̄�𝑛+ℎ̄2−1𝐻𝑘1 ,𝑠1 (𝑧, �̄�)𝐻𝑘2 ,𝑠2 (𝑤, �̄�) , (2.5)

where ∮
𝑤

and ∮
𝜖

denotes the integration over the contours around 𝑤 and 0 respectively.2

Proposition 2.3 (Algebra of celestial currents [1]). The following algebraic relation holds for the celestial current modes defined in (2.4),

[
𝐻
𝑘1 ,𝑠1
𝑚 ,𝐻

𝑘2 ,𝑠2
𝑛

]
(𝑤) = −

Max(𝑠1+𝑠2+1,0)∑
𝑝=Max(𝑠1+𝑠2−3,0)

𝜅𝑠1 ,𝑠2 ,−𝑠𝐼
2

𝑝∑
𝑥=0

[
(−1)𝑝−𝑥

(
𝑝

𝑥

)
×
(
𝑚+ 𝑛− ℎ̄1 − ℎ̄2 − 𝑝
𝑚− ℎ̄1 − 𝑝+ 𝑥

)(
−𝑚− 𝑛− ℎ̄1 − ℎ̄2 − 𝑝

−𝑚− ℎ̄1 − 𝑥

)]
𝐻
𝑘1+𝑘2+𝑝−1,𝑠1+𝑠2−𝑝−1
𝑚+𝑛 (𝑤).

(2.6)

For the gauge theory currents, we replace 12𝜅𝑠1 ,𝑠2 ,−𝑠𝐼 ↦ i𝑓𝑎𝑏𝑐 in the formula (2.6), where 𝑓𝑎𝑏𝑐 is the structure constant, associated with the gauge symmetry.

3. 𝑾𝟏+∞ algebra and its structure

3.1. The commutation relations

In the absence of higher-derivative corrections (fixed 𝑝 in the expansion (2.6)), the soft currents for gravity and gauge theory obey the OPE 
relations of the generating currents of the 𝑤1+∞ algebra [4,9,10]. Its supersymmetric extension has been also discussed [10,13,14].

Let us consider the effect of non-minimal couplings in the bulk on the OPEs of soft currents [1]. We use the light transform of the celestial 
operator [15]:

�̄�
[ℎ,ℎ̄(𝑧, �̄�)

]
= ∫

ℝ

d �̄�
2𝜋 i

1
(�̄�− �̄�)2−2ℎ̄

ℎ,ℎ̄ (𝑧, �̄�) (3.1)

to redefine the currents.

Definition 3.1 (𝑊1+∞ currents). We define

𝑊 𝑞,𝑠(𝑧, �̄�) ∶= Γ (2𝑞) �̄�
[
𝐻𝑠+2(1−𝑞),𝑠(𝑧, �̄�)

]
, (3.2)

where 𝑞 = 1, 32 , 2, … for particles with helicity 𝑠 > 0 and Γ(𝑥) is the Gamma function.

1 Note that (2.4) holds in the MHV sector. Beyond it the polynomial becomes infinite and we should change the lower limit to −∞ [1].
2

2 See [1, App. C] for more detailed discussion.
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This implies the following mode expansion

𝑊 𝑞,𝑠(𝑧, �̄�) =
−ℎ̄∑
𝑚=ℎ̄

𝑊 𝑞,𝑠
𝑚 (𝑧) �̄�−𝑚−ℎ̄ (3.3)

and

𝑊 𝑞,𝑠
𝑚 (𝑧) = (−𝑚+ 𝑞 − 1)! (𝑚+ 𝑞 − 1)!𝐻𝑠+2(1−𝑞),𝑠

𝑚 (𝑧) . (3.4)

Using these currents, we can simplify the commutator (2.6) and obtain:

Proposition 3.2 (𝑊1+∞ algebra [1]). 𝑊1+∞ current modes obey the following algebraic relation,

[
𝑊

𝑞1 ,𝑠1
𝑚 , 𝑊

𝑞2 ,𝑠2
𝑛

]
= −

Max(𝑠1+𝑠2+1,0)∑
𝑝=Max(𝑠1+𝑠2−3,0)

𝜅𝑠1 ,𝑠2 ,−𝑠𝐼
2

𝑁
(
𝑞1, 𝑞2,𝑚, 𝑛, 𝑝

)
𝑊

𝑞1+𝑞2−𝑝−1,𝑠1+𝑠2−𝑝−1
𝑚+𝑛 , (3.5)

where 𝑞1, 𝑞2 = 1, 32 , 2, … for particles with helicities 𝑠1, 𝑠2 > 0, 𝑚, 𝑛 ∈ℤ and

𝑁
(
𝑞1, 𝑞2,𝑚, 𝑛, 𝑝

)
∶=

𝑝∑
𝑥=0

(−1)𝑝−𝑥
(
𝑝

𝑥

)
[𝑚+ 𝑞1 − 1]𝑝−𝑥 [−𝑚+ 𝑞1 − 1]𝑥 × [𝑛+ 𝑞2 − 1]𝑥 [−𝑛+ 𝑞2 − 1]𝑝−𝑥, (3.6)

with ascending and descending Pochhammer symbols

(𝑎)𝑛 ∶= 𝑎(𝑎+ 1)…(𝑎+ 𝑛− 1) = (𝑎+ 𝑛− 1)!
(𝑎− 1)!

, (3.7a)

[𝑎]𝑛 ∶= 𝑎(𝑎− 1)…(𝑎− 𝑛+ 1) = 𝑎!
(𝑎− 𝑛)!

. (3.7b)

Note that the coefficient 𝑁
(
𝑞1, 𝑞2,𝑚, 𝑛, 𝑝

)
vanishes in (3.5) for specific values of 𝑝.

We call this 𝑊1+∞ algebra.3 In the absence of higher-derivative corrections (fixed 𝑝), this algebra is reduced to 𝑤1+∞ algebra [9,10,14]. The 𝑊1+∞
algebra (3.5) bears semblance to 𝑊1+∞ algebra, which is also given by a deformation of 𝑤1+∞ [12]. The key difference is that the truncation of 𝑊1+∞
algebra (3.5) occurs naturally, due to the absence of massless higher spin fields, while it is provided by non-trivial zeroes of the hypergeometric 
function 𝜙𝑞1 ,𝑞22𝑟 for 𝑊1+∞ [12].

We have the coefficient function 𝑁
(
𝑞1, 𝑞2,𝑚, 𝑛, 𝑝

)
for 𝑊1+∞ algebra as in 𝑊1+∞ algebra. For further calculations, we will use another represen-

tation:

Lemma 3.3 ([12]). The coefficient function 𝑁
(
𝑞1, 𝑞2,𝑚, 𝑛, 𝑝

)
is rewritten in the following form,

𝑁
(
𝑞1, 𝑞2,𝑚, 𝑛, 𝑝

)
=

𝑝∑
𝑥=0

(−1)𝑝−𝑥
(
𝑝

𝑥

)
[2𝑞2 − 2 − 𝑥]𝑝−𝑥 (2𝑞1 − 1 − 𝑝)𝑥 × [𝑚+ 𝑞1 − 1]𝑝−𝑥 [𝑛+ 𝑞2 − 1]𝑥. (3.8)

3.2. The OPEs for 𝑊1+∞ algebra

In this Section, we provide the OPE for 𝑊1+∞ algebra. For this purpose, we apply the procedure described in [16] originally used for 𝑊1+∞
algebra. In the context of CCFT, we have to take into account a �̄�-dependence, in contrast to the original situation discussing the chiral currents [16]. 
We apply the following steps:

1. We define a new function

𝑀
(
𝑞1, 𝑞2,𝑚, 𝑛, 𝑝

)
∶=

𝑝∑
𝑥=0

(−1)−𝑥
(
𝑝

𝑥

)
[2𝑞2 − 2 − 𝑥]𝑝−𝑥 (2𝑞1 − 1 − 𝑝)𝑥 𝑚𝑝−𝑥 𝑛𝑥. (3.9)

This function generates the terms of 𝑁
(
𝑞1, 𝑞2,𝑚, 𝑛, 𝑝

)
of total degree 𝑝.

2. We replace the coefficient in the 𝑊 -commutator (3.5) as follows,

𝑁
(
𝑞1, 𝑞2,𝑚, 𝑛, 𝑝

)
↦𝑀

(
𝑞1, 𝑞2,

𝜕

𝜕�̄�
,
𝜕

𝜕�̄�
, 𝑝
)
, (3.10)

from which we can extract the OPE from the commutation relation of the generators.

3. We add the factors, (−1), 1
�̄�−�̄� and 1

𝑧−𝑤 to capture the corresponding poles and comply with the Definition 2.2.

Here is the main result of this paper.

Theorem 3.4 (OPE for 𝑊1+∞-currents). The OPE for the 𝑊 -currents (3.2) has the following form:

𝑊 𝑞1 ,𝑠1 (𝑧, �̄�)𝑊 𝑞2 ,𝑠2 (𝑤, �̄�) ∼
∑
𝑝

𝜅𝑠1 ,𝑠2 ,−𝑠𝐼
2

1
𝑧−𝑤

𝑝∑
𝑥=0

(−1)−𝑥
(
𝑝

𝑥

)
(2𝑞1 − 1 − 𝑝)𝑥[2𝑞2 − 2 − 𝑥]𝑝−𝑥 𝜕

𝑝−𝑥
�̄�

�̄�𝑥�̄�

(
𝑊 𝑞1+𝑞2−1−𝑝, 𝑠1+𝑠2−𝑝−1(𝑤, �̄�)

�̄�− �̄�

)
. (3.11)
3

3 The currents (3.2) are referred to as 𝑊1+∞-like currents in [1]. In this regard, our 𝑊 𝑞,𝑠 corresponds to their 𝑊 𝑞,𝑠.
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Proof. We substitute the expression (3.11) to Definition 2.2. The expression takes the form[
𝑊

𝑞1 ,𝑠1
𝑚 ,𝑊

𝑞2 ,𝑠2
𝑛

]
(𝑤) = ∮

𝑤

d𝑧
2𝜋 i∮ 𝜖

d �̄�
2𝜋 i

�̄�𝑛+𝑞2−1∮ 𝜖

d �̄�
2𝜋 i

�̄�𝑚+𝑞1−1𝑊 𝑞1 ,𝑠1 (𝑧, �̄�)𝑊 𝑞2 ,𝑠2 (𝑤, �̄�) . (3.12)

The integral part is

∮ 𝜖

d �̄�
2𝜋 i

�̄�𝑛+𝑞2−1 𝜕𝑥

𝜕�̄�𝑥 ∮ 𝜖

d �̄�
2𝜋 i

�̄�𝑚+𝑞1−1
𝜕𝑝−𝑥

𝜕�̄�𝑝−𝑥

(
𝑊 𝑞1+𝑞2−1−𝑝, 𝑠1+𝑠2−𝑝−1(𝑤, �̄�)

�̄�− �̄�

)

= (−1)𝑝−𝑥(𝑝− 𝑥)!∮ 𝜖

d �̄�
2𝜋 i

�̄�𝑛+𝑞2−1 𝜕𝑥

𝜕�̄�𝑥

[
𝑊 𝑞1+𝑞2−1−𝑝, 𝑠1+𝑠2−𝑝−1(𝑤, �̄�)∮ 𝜖

d �̄�
2𝜋 i

�̄�𝑚+𝑞1−1 (�̄�− �̄�)−𝑝+𝑥−1
]

= (−1)−1+𝑚+𝑞1 (𝑝− 𝑥)!
[−𝑝+ 𝑥− 1]−𝑚−𝑞1

(−𝑚− 𝑞1)! ∮ 𝜖

d �̄�
2𝜋 i

�̄�𝑛+𝑞2−1

× 𝜕𝑥

𝜕�̄�𝑥

[
𝑊 𝑞1+𝑞2−1−𝑝, 𝑠1+𝑠2−𝑝−1(𝑤, �̄�) �̄�−𝑝+𝑥−1+𝑚+𝑞1

]
. (3.13)

We use a Fourier decomposition (3.3):

𝑊 𝑞1+𝑞2−1−𝑝, 𝑠1+𝑠2−𝑝−1(𝑤, �̄�) =
−ℎ̄∑
𝑗=ℎ̄

𝑊
𝑞1+𝑞2−1−𝑝, 𝑠1+𝑠2−𝑝−1
𝑗

(𝑤) �̄�−𝑗−ℎ̄

=
∑
𝑗

𝑊
𝑞1+𝑞2−1−𝑝, 𝑠1+𝑠2−𝑝−1
𝑗

(𝑤) �̄�−𝑗−𝑞1−𝑞2+1+𝑝, (3.14)

with ℎ̄ = 𝑞1 + 𝑞2 − 1 − 𝑝. Then we use an elementary formula

d𝑥

d 𝑡𝑥
(𝑡𝑛) = 𝑛!

(𝑛− 𝑥)!
𝑡𝑛−𝑥 = [𝑛]𝑥 𝑡𝑛−𝑥, (3.15)

for the 𝑥-th derivative over �̄� in (3.13):

𝜕𝑥

𝜕�̄�𝑥

[
𝑊 𝑞1+𝑞2−1−𝑝, 𝑠1+𝑠2−𝑝−1(𝑤, �̄�) �̄�−𝑝+𝑥−1+𝑚+𝑞1

]
(3.14)
=

∑
𝑗

𝜕𝑥

𝜕�̄�𝑥

[
𝑊

𝑞1+𝑞2−1−𝑝, 𝑠1+𝑠2−𝑝−1
𝑗

(𝑤) �̄�𝑥+𝑚−𝑗−𝑞2
]

(3.15)
=

∑
𝑗

[𝑥+𝑚− 𝑗 − 𝑞2]𝑥 𝑊
𝑞1+𝑞2−1−𝑝, 𝑠1+𝑠2−𝑝−1
𝑗

(𝑤) �̄�𝑚−𝑗−𝑞2 . (3.16)

We substitute (3.16) into (3.13), and the integral over �̄� provides

∑
𝑗

[𝑥+𝑚− 𝑗 − 𝑞2]𝑥 𝑊
𝑞1+𝑞2−1−𝑝, 𝑠1+𝑠2−𝑝−1
𝑗

(𝑤)∮
𝜖

d �̄�
2𝜋 i

�̄�𝑚+𝑛−𝑗−1 =
∑
𝑗

[𝑥+𝑚− 𝑗 − 𝑞2]𝑥 𝑊
𝑞1+𝑞2−1−𝑝, 𝑠1+𝑠2−𝑝−1
𝑗

(𝑤)𝛿𝑗, 𝑚+𝑛

= [𝑥− 𝑛− 𝑞2]𝑥𝑊
𝑞1+𝑞2−1−𝑝, 𝑠1+𝑠2−𝑝−1
𝑚+𝑛 (𝑤). (3.17)

The last integral is

∮
𝑤

d𝑧
2𝜋 i

1
(𝑧−𝑤)

= 1. (3.18)

Bringing together (3.12), (3.13), (3.17) and (3.18), we have

[
𝑊

𝑞1 ,𝑠1
𝑚 ,𝑊

𝑞2 ,𝑠2
𝑛

]
(𝑤) = −

∑
𝑝

𝜅𝑠1 ,𝑠2 ,−𝑠𝐼
2

𝑝∑
𝑥=0

(−1)−𝑥
(
𝑝

𝑥

)
(2𝑞1 − 1 − 𝑝)𝑥[2𝑞2 − 2 − 𝑥]𝑝−𝑥

× (−1)−1+𝑚+𝑞1 [𝑥− 𝑛− 𝑞2]𝑥
(𝑝− 𝑥)!

(−𝑚− 𝑞1)!
[−𝑝+ 𝑥− 1]−𝑚−𝑞1𝑊

𝑞1+𝑞2−1−𝑝, 𝑠1+𝑠2−𝑝−1
𝑚+𝑛 (𝑤). (3.19)

Now, using the definitions of the Pochhammer symbols (3.7a)-(3.7b) and their relation

[𝑎]𝑛 = (−1)𝑛(−𝑎)𝑛 = (𝑎− 𝑛+ 1)𝑛, (3.20)

we can transform:

[𝑥− 𝑛− 𝑞2]𝑥 = (−1)𝑥(−𝑥+ 𝑛+ 𝑞2)𝑥 = (1 − 𝑛− 𝑞2)𝑥 = (−1)𝑥[𝑛+ 𝑞2 − 1]𝑥; (3.21a)

(𝑝− 𝑥)!
(−𝑚− 𝑞1)!

[−𝑝+ 𝑥− 1]−𝑚−𝑞1 =
(𝑝− 𝑥)!

(−𝑚− 𝑞1)!
(−1)−𝑚−𝑞1 (𝑝− 𝑥+ 1)−𝑚−𝑞1

= (−1)−𝑚−𝑞1+𝑝−𝑥[𝑚+ 𝑞1 − 1]𝑝−𝑥. (3.21b)

Substituting (3.21a), (3.21b) to (3.19), we arrive at the final result

[
𝑊

𝑞1 ,𝑠1
𝑚 ,𝑊

𝑞2 ,𝑠2
𝑛

]
(𝑤) = −

∑
𝑝

𝜅𝑠1 ,𝑠2 ,−𝑠𝐼
2

𝑝∑
𝑥=0

(−1)𝑝−𝑥
(
𝑝

𝑥

)
(2𝑞1 − 1 − 𝑝)𝑥 [𝑛+ 𝑞2 − 1]𝑥
4

× [2𝑞2 − 2 − 𝑥]𝑝−𝑥[𝑚+ 𝑞1 − 1]𝑝−𝑥𝑊
𝑞1+𝑞2−1−𝑝, 𝑠1+𝑠2−𝑝−1
𝑚+𝑛 (𝑤)
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(3.8)
= −

∑
𝑝

𝜅𝑠1 ,𝑠2 ,−𝑠𝐼
2

𝑁
(
𝑞1, 𝑞2,𝑚, 𝑛, 𝑝

)
𝑊

𝑞1+𝑞2−1−𝑝, 𝑠1+𝑠2−𝑝−1
𝑚+𝑛 (𝑤). □ (3.22)

4. Supersymmetric and topological generalizations

The  = 2 supersymmetric 𝑊∞ algebra can be twisted to construct a topological 𝑊∞ algebra [17], which has been also discussed in the context 
of CCFT in particular for 𝑤∞ algebra [14]. Here we apply a similar construction for 𝑊1+∞ algebra (3.5). For this purpose, we first construct an 
 = 2 supersymmetric extension of 𝑊∞ algebra.4

4.1.  = 2 supersymmetric extension

The general structure of the  = 2 super 𝑊∞ algebra can be schematically drawn as follows [18]:

𝑊𝑊 ∼𝑊 𝑊 �̃� ∼ 0 𝐺±𝐺± ∼ 0

�̃� �̃� ∼ �̃� 𝐺±𝐺∓ ∼𝑊 ⊕�̃� (4.1)

𝑊𝐺± ∼𝐺± �̃� 𝐺± ∼𝐺±

Here 𝑊 are 𝑊∞ currents, �̃� are 𝑊1+∞ currents (𝑊1+∞ ×𝑊∞ subalgebras constitute a bosonic sector of the new superalgebra), and 𝐺± are fermionic 
currents. In order to have this structure for 𝑊∞ algebra, we define the fermionic currents 𝐺𝑞+ and 𝐺𝑞−:

{𝐺𝑞1−𝑚 ,𝐺
𝑞2+
𝑛 } = −

∑
𝑝

𝜅𝑠1 ,𝑠2 ,−𝑠𝐼
2

𝑁(𝑞1, 𝑞2,𝑚, 𝑛, 𝑝)
(
𝑏𝑚,𝑛,𝑝𝑞1 ,𝑞2 ,𝑥

𝑊
𝑞1+𝑞2−𝑝−1
𝑚+𝑛 + (−1)𝑝�̃�𝑚,𝑛,𝑝𝑞1 ,𝑞2 ,𝑥

̃̃𝑊
𝑞1+𝑞2−𝑝−1
𝑚+𝑛

)
, (4.2)

with additional structure constants 𝑏𝑚,𝑛,𝑝𝑞1 ,𝑞2 ,𝑥
and �̃�𝑚,𝑛,𝑝𝑞1 ,𝑞2 ,𝑥

(unknown at the moment). Here 𝑊 are 𝑊∞ currents, ̃̃𝑊 are 𝑊1+∞ currents. For the fermionic 
current 𝐺𝑞±, we require 𝑠 ∈ ℤ>0 +

1
2 so that they generate the fermionic sector of the algebra. Using the Theorem 3.4, we may switch (4.2) to the 

OPE form:

Corollary 4.1. The OPE of the fermionic currents of  = 2 𝑊∞ algebra is given by

𝐺𝑞1−(𝑧, �̄�)𝐺𝑞2+(𝑤, �̄�) ∼
∑
𝑝

𝜅𝑠1 ,𝑠2 ,−𝑠𝐼
2

1
𝑧−𝑤

𝑝∑
𝑥=0

(−1)−𝑥
(
𝑝

𝑥

)
(2𝑞1 − 1 − 𝑝)𝑥

× [2𝑞2 − 2 − 𝑥]𝑝−𝑥�̄�
𝑝−𝑥
�̄�

𝜕𝑥�̄�

[
1

(�̄�− �̄�)

(
𝐵𝑝,𝑥𝑞1 ,𝑞2

𝑊 𝑞1+𝑞2−1−𝑝(𝑤, �̄�) + (−1)𝑝�̃�𝑝,𝑥𝑞1 ,𝑞2
̃̃𝑊 𝑞1+𝑞2−1−𝑝(𝑤, �̄�)

)]
, (4.3)

where the new coefficients 𝐵𝑝,𝑥𝑞1 ,𝑞2 and �̃�𝑝,𝑥𝑞1 ,𝑞2 which are independent of the Fourier degrees (𝑚, 𝑛), are determined from 𝑏𝑚,𝑛,𝑝𝑞1 ,𝑞2 ,𝑥
and �̃�𝑚,𝑛,𝑝𝑞1 ,𝑞2 ,𝑥

in the same way via 
the function 𝑀

(
𝑞1, 𝑞2,

𝜕

𝜕�̄�
,
𝜕

𝜕�̄�
, 𝑝
)

from 𝑁
(
𝑞1, 𝑞2,𝑚, 𝑛, 𝑝

)
as before.

In order to calculate some particular values of the structure constants 𝐵𝑝,𝑥𝑞1,𝑞2 and �̃�𝑝,𝑥𝑞1 ,𝑞2 in (4.3), we may use explicit realizations of our currents. 
Let us introduce ghost fields with the following OPE:

𝑏𝑖(𝑧, �̄�)𝑐𝑗 (𝑤, �̄�) ∼
1

𝑧−𝑤
𝛿𝑖𝑗

�̄�− �̄�
. (4.4)

Then we introduce an explicit realization of the 𝑊1+∞ currents (3.11) with 𝑞 ≥ 2:

𝑊 𝑞,𝑠(𝑧, �̄�) ∶=
∑
𝑘≥0

𝜅𝑠1 ,𝑠2 ,−𝑠0 (𝑞 + 2)∶ �̄��̄�𝑐𝑘(𝑧, �̄�)𝑏𝑞−1+𝑘(𝑧, �̄�)∶ + 𝜅𝑠1 ,𝑠2 ,−𝑠0 (𝑘+ 1)∶ 𝑐𝑘(𝑧, �̄�)�̄��̄�𝑏𝑞−1+𝑘(𝑧, �̄�)∶ +… , (4.5)

where 𝑠0 ∶= 𝑠𝐼 (𝑝 = 1) = 𝑠1 + 𝑠2 − 2, ∶ ⋅ ∶ means normal-ordered product and … states for the terms of the form ∶ �̄�𝛼
�̄�
𝑐𝑘(𝑧, ̄𝑧)�̄�

𝛽
�̄�
𝑏𝑞−1+𝑘(𝑧, ̄𝑧)∶ with total 

degree 𝛼 + 𝛽 ≥ 2. Similarly, we use the anticommuting ghosts �̃�𝑖(𝑧, ̄𝑧) and 𝑐𝑗 (𝑤, �̄�) to construct a realization of the 𝑊∞ algebra, where we denote the 
currents by ̃̃𝑊 𝑞,𝑠(𝑧, ̄𝑧).

Using Wick’s theorem and (4.4), one can check that the currents 𝑤𝑞 , for which the terms given in (4.5) constitute the complete expression, i.e.

𝑤𝑞(𝑧, �̄�) ∶= −√𝜅𝑠1 ,𝑠2 ,−𝑠0 ∑
𝑘≥0

(𝑞 + 2)∶ �̄��̄�𝑐𝑘(𝑧, �̄�)𝑏𝑞−1+𝑘(𝑧, �̄�)∶ + (𝑘+ 1)∶ 𝑐𝑘(𝑧, �̄�)�̄��̄�𝑏𝑞−1+𝑘(𝑧, �̄�)∶ (4.6)

generate the 𝑤1+∞ algebra [19]5:

𝑤𝑞1 (𝑧, �̄�)𝑤𝑞2 (𝑤, �̄�) ∼ −𝜅𝑠1 ,𝑠2 ,−𝑠0 (𝑞1 + 𝑞2 − 2)𝑤
𝑞1+𝑞2−2(𝑤, �̄�)
(�̄�− �̄�)2

− 𝜅𝑠1 ,𝑠2 ,−𝑠0 (𝑞1 − 2) 𝜕𝑤
𝑞1+𝑞2−2(𝑤, �̄�)
�̄�− �̄�

. (4.7)

The OPE (4.7) coincides with the main OPE (3.11) in 𝑝 = 0 approximation (with no higher-derivative corrections). Hence, in general, the currents 
(4.5) generate the algebra (3.11). The expression for the explicit realization is given by

4 The notation “super 𝑊∞” (and not “1 +∞”) comes from the fact that the corresponding supersymmetric algebra should contain both 𝑊1+∞ ×𝑊∞ as a bosonic 
sector.
5

5 Here, no central term is considered.
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𝑊 𝑞,𝑠(𝑧, �̄�) ∶=
∑
𝑘,𝑛≥0
𝛼+𝛽=𝑛

𝛼
𝑞,𝑘

𝛼,𝛽
∶ �̄�𝛼�̄� 𝑐𝑘(𝑧, �̄�)�̄�

𝛽
�̄�
𝑏𝑞−1+𝑘(𝑧, �̄�)∶ , (4.8)

where

𝛼
𝑞,𝑘

0,1 = −√𝜅𝑠1 ,𝑠2 ,−𝑠0 (𝑞 + 2), (4.9)

𝛼
𝑞,𝑘

0,1 = −√𝜅𝑠1 ,𝑠2 ,−𝑠0 (𝑘+ 1), (4.10)

…

Now, in addition to the anticommuting ghosts 𝑏𝑖(𝑧, ̄𝑧), 𝑐𝑗 (𝑧, ̄𝑧) for 𝑊 𝑞,𝑠 and �̃�𝑖(𝑧, ̄𝑧), 𝑐𝑗 (𝑧, ̄𝑧) for ̃̃𝑊 𝑞,𝑠, we introduce the commuting ghosts 𝛽𝑖(𝑧, ̄𝑧), 
𝛾𝑗 (𝑧, ̄𝑧) for 𝐺𝑞−(𝑧, ̄𝑧) and 𝛽𝑖(𝑧, ̄𝑧), �̄�𝑗 (𝑧, ̄𝑧) for 𝐺𝑞+(𝑧, ̄𝑧) [19]:

𝛽𝑖(𝑧, �̄�)𝛾𝑗 (𝑤, �̄�) ∼ 𝛽𝑖(𝑧, �̄�)�̄�𝑗 (𝑤, �̄�) ∼
1

𝑧−𝑤
𝛿𝑖𝑗

�̄�− �̄�
, (4.11a)

�̄�𝑖(𝑧, �̄�)𝛽𝑗 (𝑤, �̄�) ∼ 𝛾𝑖(𝑧, �̄�)𝛽𝑗 (𝑤, �̄�) ∼ − 1
𝑧−𝑤

𝛿𝑖𝑗

�̄�− �̄�
. (4.11b)

Using this, one can calculate

𝐺𝑞1−(𝑧, �̄�)𝐺𝑞2+(𝑤, �̄�) ∼
2𝜅𝑠1 ,𝑠2 ,−𝑠0
�̄�− �̄�

𝑊 𝑞1+𝑞2−1(𝑤, �̄�) − 2𝜅𝑠1 ,𝑠2 ,−𝑠0
(𝑞1 + 𝑞2 − 2)
(�̄�− �̄�)2

̃̃𝑊 𝑞1+𝑞2−1(𝑤, �̄�)

− 2𝜅𝑠1 ,𝑠2 ,−𝑠0
(𝑞1 − 1)
(�̄�− �̄�)

𝜕

𝜕�̄�
̃̃𝑊 𝑞1+𝑞2−1(𝑤, �̄�) +… (4.12)

or, in the anticommutator form (using mode expansions):

{𝐺𝑞1−𝑚 ,𝐺
𝑞2+
𝑛 } = 2𝜅𝑠1 ,𝑠2 ,−𝑠0𝑊

𝑞1+𝑞2−1
𝑚+𝑛 − 2𝜅𝑠1 ,𝑠2 ,−𝑠0 [𝑚(𝑞2 − 1) − 𝑛(𝑞1 − 1)]̃̃𝑊 𝑞1+𝑞2−1

𝑚+𝑛 +… (4.13)

By comparing (4.12) and (4.3), we can finally determine some values of the structure constants 𝐵𝑝,𝑥𝑞1 ,𝑞2 and �̃�𝑝,𝑥𝑞1 ,𝑞2 and conditions for them:

𝐵1,0
𝑞1 ,𝑞2

= 0, (4.14a)

�̃�1,0
𝑞1 ,𝑞2

= −2 ⋅
(2𝑞1 + 𝑞2 − 3)

(𝑞2 − 1)
, (4.14b)

𝐵1,1
𝑞1 ,𝑞2

= 0, (4.14c)

�̃�1,1
𝑞1 ,𝑞2

= −2, (4.14d)

…

Further structure constants may be obtained by the following algorithm. First, one needs to build a realization of the higher-order terms of the 
algebra OPE. For this purpose, it would be helpful to consider terms with 𝛼 + 𝛽 ≥ 2 in (4.8). After OPE calculation 𝑊 𝑞1 ,𝑠1 (𝑧, ̄𝑧)𝑊 𝑞2 ,𝑠2 (𝑤, �̄�), using 
Wick’s theorem and expanding, one can compare the obtained expression with our result (3.11), and thereby determine 𝛼𝑞,𝑘

𝛼,𝛽
for some further 𝛼, 𝛽. 

Then, using the obtained 𝛼𝑞,𝑘
𝛼,𝛽

, one can similarly construct realizations of the fermionic currents 𝐺𝑞,𝑠± and repeat the procedure to calculate the 
structure constants 𝐵𝑝,𝑥𝑞1 ,𝑞2 and �̃�𝑝,𝑥𝑞1 ,𝑞2 .

Here we calculated some particular values of the structure constants (4.14a)-(4.14d) and provided an algorithm to do it for the cases 𝑝, 𝑥 > 1, 
while its practical implementation might require more effort from the calculation point of view.

4.2. Topological twist

The first step towards the topological twist is to define the BRST operator:

Theorem 4.2 (BRST operator for super 𝑊∞). The BRST operator for the super 𝑊∞ algebra is given by

𝑄 =𝐺3∕2+
−1∕2(𝑧), (4.15)

where the lower index numerates the Fourier mode coefficient.

Proof. The BRST operator is given by the contour integral of the fermionic current,

𝑄 = ∮
𝜖

d �̄�
2𝜋 i

𝐺3∕2+(𝑧, �̄�) =
∑
𝑟
∮
𝜖

d �̄�
2𝜋 i

𝐺
3∕2+
𝑟 (𝑧) �̄�−𝑟−3∕2

=
∑
𝑟

𝐺
3∕2+
𝑟 (𝑧)𝛿𝑟,−1∕2 =𝐺

3∕2+
−1∕2(𝑧). □ (4.16)

We again note that we have an additional �̄�-dependence for celestial currents. Now let us proceed to determine the generators of the topological 
6

𝑊∞ algebra.
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Theorem 4.3 (Generators of topological 𝑊∞ algebra). We define the new generators by

𝑉 𝑞(𝑤, �̄�) ∶= {𝑄,𝐺𝑞−(𝑤, �̄�)} , (4.17)

which are BRST-exact and hence generate a topological algebra. They are given by

𝑉 𝑞(𝑤, �̄�) =
∑
𝑝

𝜅𝑠1 ,𝑠2 ,−𝑠𝐼
2

1
𝑧−𝑤

𝜕𝑝

𝜕�̄�𝑝

(
(−1)𝑝𝐵𝑝,𝑝3∕2,𝑞𝑊

− 1
2 +𝑞−𝑝(𝑤, �̄�) + �̃�𝑝,𝑝3∕2,𝑞

̃̃𝑊
− 1

2 +𝑞−𝑝(𝑤, �̄�)
)
. (4.18)

Proof. The definition (4.17) can be re-written as follows:

𝑉 𝑞(𝑤, �̄�) = ∮̄
𝑤

d �̄�
2𝜋 i

𝐺3∕2+(𝑧, �̄�)𝐺𝑞−(𝑤, �̄�). (4.19)

To obtain 𝐺3∕2+(𝑧, ̄𝑧)𝐺𝑞−(𝑤, �̄�), we use the OPE (4.3) for the case 𝑞1 =
3
2

, 𝑞2 =∶ 𝑞 ∈ℤ∕2 and take the derivative over �̄�:

𝐺3∕2+(𝑧, �̄�)𝐺𝑞−(𝑤, �̄�) ∼
∑
𝑝

𝜅𝑠1 ,𝑠2 ,−𝑠𝐼
2

1
𝑧−𝑤

𝑝∑
𝑥=0

(
𝑝

𝑥

)
(2 − 𝑝)𝑥[2𝑞 − 2 − 𝑥]𝑝−𝑥(𝑝− 𝑥)!

× 𝜕𝑥

𝜕�̄�𝑥

[
(�̄�− �̄�)−𝑝+𝑥−1

(
(−1)𝑝𝐵𝑝,𝑥3∕2,𝑞𝑊

− 1
2 +𝑞−𝑝(𝑤, �̄�) + �̃�𝑝,𝑥3∕2,𝑞

̃̃𝑊 − 1
2 +𝑞−𝑝(𝑤, �̄�)

)]
. (4.20)

The integration over �̄� gives:

∮̄
𝑤

d �̄�
2𝜋 i

1
(�̄�− �̄�)𝑝−𝑥+1

= 𝛿𝑝,𝑥 (4.21)

This allows us to remove the sum over 𝑥 and obtain

𝑉 𝑞(𝑤, �̄�) =
∑
𝑝

𝜅𝑠1 ,𝑠2 ,−𝑠𝐼
2

1
𝑧−𝑤

𝜕𝑝

𝜕�̄�𝑝

(
(−1)𝑝𝐵𝑝,𝑝3∕2,𝑞𝑊

− 1
2 +𝑞−𝑝(𝑤, �̄�) + �̃�𝑝,𝑝3∕2,𝑞

̃̃𝑊 − 1
2 +𝑞−𝑝(𝑤, �̄�)

)
. □ (4.22)

Now let us discuss the algebraic relations. We re-write (4.17) in terms of the Fourier modes

𝑉 𝑞
𝑚 (𝑤, �̄�) ∶=

{
𝑄,𝐺

𝑞−
𝑚+1∕2(𝑤)

}
, (4.23)

to compute the following commutator:

[𝑉 𝑞1
𝑚 ,𝑉

𝑞2
𝑛 ]

(4.23)
=

[{
𝐺

3∕2+
−1∕2(𝑧), 𝐺

𝑞1−
𝑚+1∕2(𝑧)

}
,
{
𝐺

3∕2+
−1∕2(𝑧), 𝐺

𝑞2−
𝑛+1∕2(𝑧)

}]
=

{
𝐺

3∕2+
−1∕2(𝑧),

[
𝐺
𝑞2−
𝑛+1∕2(𝑧),

{
𝐺

3∕2+
−1∕2(𝑧), 𝐺

𝑞1−
𝑚+1∕2(𝑧)

}]}
+

{
𝐺
𝑞2−
𝑛+1∕2(𝑧),

[{
𝐺

3∕2+
−1∕2(𝑧), 𝐺

𝑞1−
𝑚+1∕2(𝑧)

}
, 𝐺

3∕2+
−1∕2(𝑧)

]}
=

{
𝐺

3∕2+
−1∕2(𝑧),

[
𝐺
𝑞2−
𝑛+1∕2(𝑧),

{
𝐺

3∕2+
−1∕2(𝑧), 𝐺

𝑞1−
𝑚+1∕2(𝑧)

}]}
, (4.24)

where we used the Jacobi identity. The conditions for the Jacobi identity to hold in the case of 𝑊1+∞ were obtained in [1]:

𝜅0,1,1

𝜅−2,2,2
=
𝜅1,1,2

𝜅0,2,2
;

𝜅−1,1,1

𝜅−1,1,2
=

𝜅1,1,1

3𝜅1,1,2
; 𝜅−1,1,1 = 𝜅0,0,1; 𝜅20,1,1 = 2𝜅1,1,1𝜅−1,1,1. (4.25)

We assume that the conditions are the same for the super 𝑊∞, hence the Jacobi identity holds here as well. However, it might be possible to refine 
these conditions using the provided explicit realizations (4.8) in future work.

Hence from (4.1) we see that the right-hand side of (4.24) leads to 𝑉 𝑞

𝑙
again. We can write

[𝑉 𝑞1
𝑚 ,𝑉

𝑞2
𝑛 ] =

∑
𝑝

�̂�(𝑞1, 𝑞2,𝑚, 𝑛, 𝑝)𝑉
𝑞1+𝑞2−𝑝−1
𝑚+𝑛 , (4.26)

where structure constants �̂� could be expressed in terms of 𝑏𝑚,𝑛,𝑝𝑞1 ,𝑞2 ,𝑥
and �̃�𝑚,𝑛,𝑝𝑞1 ,𝑞2 ,𝑥

from (4.2).

In the same way, we can obtain other relations for the generators, and thus the full structure of topological 𝑊∞ algebra is given in the form:

[𝑉 𝑞1
𝑚 ,𝑉

𝑞2
𝑛 ] =

∑
𝑝

�̂�(𝑞1, 𝑞2,𝑚, 𝑛, 𝑝)𝑉
𝑞1+𝑞2−𝑝−1
𝑚+𝑛 , (4.27a)

[𝑉 𝑞1
𝑚 , �̂�

𝑞2
𝑛+1∕2] =

∑
𝑝

�̂�(𝑞1, 𝑞2,𝑚, 𝑛, 𝑝)�̂�
𝑞1+𝑞2−𝑝−1
𝑚+𝑛+1∕2 , (4.27b)

{𝐺𝑞1
𝑚+1∕2,𝐺

𝑞2
𝑛+1∕2} = 0. (4.27c)

Although determining the structure constants �̂� is difficult in general, we are able to compare them with a specific example. It has been known 
that 𝑊∞ is reduced to 𝑤∞ as follows: rescaling the generators

𝑣𝑞𝑚 → 𝜆𝑞−2𝑉 𝑞
𝑚 , 𝐺𝑞𝑚 → 𝜆𝑞−2�̂�𝑞𝑚, (4.28)
7

and then taking the limit 𝜆 → 0 with 𝑝 = 1. Hence, from (4.27a) and (4.27b), we obtain
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[𝑣𝑞1𝑚 , 𝑣
𝑞2
𝑛 ] = �̂�(𝑞1, 𝑞2,𝑚, 𝑛,1)𝑣

𝑞1+𝑞2−2
𝑚+𝑛 , (4.29a)

[𝑣𝑞1𝑚 , �̂�
𝑞2
𝑛+1∕2] = �̂�(𝑞1, 𝑞2,𝑚, 𝑛,1)�̂�

𝑞1+𝑞2−2
𝑚+𝑛+1∕2. (4.29b)

Compared with the results obtained in [14], we conclude that

�̂�(𝑞1, 𝑞2,𝑚, 𝑛,1) =𝑚(𝑞2 − 1) − 𝑛(𝑞1 − 1). (4.30)

5. Conclusion and outlook

In this work, we investigated a deformation of 𝑤1+∞ that we call 𝑊1+∞ algebra (3.5), which was previously obtained in [1] in the context of 
CCFT. Despite being different from the known 𝑊1+∞, this algebra shares several common properties, which allows us to apply analogous approaches 
to study its algebraic structure. In particular, we obtained the OPE for 𝑊1+∞-algebra (Theorem 3.4, Section 3.2).

We constructed the BRST operator of  = 2 supersymmetric 𝑊∞-algebra (Theorem 4.2) and then obtained the generators of the topological 
𝑊∞-algebra (Theorem 4.3) in Section 4.2. We determined the structure constants 𝐵𝑝,𝑥𝑞1 ,𝑞2 and �̃�𝑝,𝑥𝑞1 ,𝑞2 in (4.3) in several particular cases and outline 
the possible algorithm of treatment the others. Along this direction, calculating the structure constants in more cases (by, for example, practical 
implementation of the provided in 4.1 algorithm), or even obtaining a closed-form expression might be a subject of future work.

It would be also important to revisit the issue of physical interpretation of the supersymmetric and topological generalizations, presented in this 
paper in the context of CCFT and compare them to the known results concerning the interpretation of 𝑊 -symmetry in CCFT in the non-commutative 
setup [20–23].
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