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Characteristic Polynomials in Coupled Matrix Models

Nicolas Babinet and Taro Kimura

Institut de Mathématiques de Bourgogne, Université Bourgogne Franche-Comté

Abstract

We study correlation functions of the characteristic polynomials in coupled matrix models
based on the Schur polynomial expansion, which manifests their determinantal structure.
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1 Introduction and summary

1.1 Introduction

Random Matrix Theory (RMT) has been playing an important role over the decades in the
both of physics and mathematics communities [Meh04, For10, ABDF11, EKR15]. Applying the
analogy with Quantum Field Theory (QFT), the asymptotic behavior appearing in the large
size limit (large N limit) is interpreted as a classical behavior as the parameter 1/N plays a role
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of the Planck constant. From this point of view, it is an important task to explore the finite N
result to understand the quantum 1/N correction and also the non-perturbative effect beyond
the perturbative analysis. The purpose of this paper is to show the finite N exact result of a
class of the correlation functions in the generalized two-matrix model, what we simply call the
coupled matrix model, which contains various models coupled in the chain. See, e.g, [IZ80, EM98,
BEH02, BEH03b, BEH03a, BE03, BGS09] and also [Eyn05, Ber11, Ora11] for the development
in this direction. We will show that this model can be analyzed using its determinantal structure,
which is a key property to obtain the finiteN exact result. In this paper, we in particular consider
the correlation function of the characteristic polynomials in the coupled matrix model. It has
been known in the context of RMT that the characteristic polynomial plays a central role in the
associated differential equation system through the Riemann–Hilbert problem and the notion of
quantum curve. In addition, the characteristic polynomial is essentially related to various other
important observables in RMT, e.g., the resolvent, the eigenvalue density function, etc. See,
e.g., [Mor94, BH00, FS03, SF03, AV03, BDS03, BS06] and also [BH11] for earlier results in this
direction.

1.2 Summary of the results

We state the summary of this paper. In Section 2, we introduce the generalized coupled matrix
model defined as the following formal eigenvalue integral,

ZN =
1

N !2

∫ ∏
k=L,R

dXk e− trVk(Xk)
N∏
i<j

(xk,i − xk,j) det
1≤i,j≤N

ω(xL,i, xR,j) (1.1)

for arbitrary potential functions Vk(x) and a two-variable function ω(x, y). See Definition 2.1 for
details. We then show that this eigenvalue integral is reduced to the determinant of the norm
matrix of the corresponding two-variable integral. We also show that biorthogonal polynomials,
which diagonalize the norm matrix, simplify the formulas. We mention in Section 2.4 that the
analysis shown there is straightforwardly applied to the coupled matrix generalization of the
polynomial ensemble [KS14] defined for a set of arbitrary functions, containing various known
models, e.g., the external source model [BH16]. See also [Bor98]. In Section 3, we study the
correlation function for the coupled matrix model. In Section 3.1, we show the Schur polynomial
average, which will be a building block of the characteristic polynomials discussed throughout
the paper. In Sections 3.2 and 3.3, we explore the correlation function of the characteristic
polynomial and its inverse, and show that they are concisely expressed as a determinant of the
biorthogonal polynomial and its dual. We remark that these results are natural generalization
of the earlier results on the one-matrix model case. In Section 4, we consider the pair correlation
function, which involves both the characteristic polynomials coupled with XL and XR. In this
case, the correlation functions are again expressed as a determinant, while the corresponding
matrix element is written using the Christoffel–Darboux (CD) kernel and its dual.
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2 Coupled matrix model

In this paper, we explore the coupled matrix model defined as follows.

2



Definition 2.1 (Partition function). Let Vk(x) (k = L,R) be a polynomial function and
ω(xL, xR) be a two-variable function. Let (Xk)k=L,R = (xk,i)k=L,R,i=1,...,N be a set of formal
eigenvalues. Then, we define the partition function of the coupled matrix model,

ZN =
1

N !2

∫ ∏
k=L,R

dXk e− trVk(Xk)∆N (XL) det
1≤i,j≤N

ω(xL,i, xR,j)∆N (XR) , (2.1)

where we denote the Vandermonde determinant by

∆N (X) =

N∏
i<j

(xi − xj) . (2.2)

Remark 2.2. We formally consider the eigenvalues (xk,i) as complex variables, and thus their
integration contour is taken to provide a converging integral, which is not unique in general.
In this paper, we do not discuss the contour dependence on the partition function, so that we
always consider the eigenvalue integral as a formal integral.

Throughout the paper, we frequently use the following identity.

Lemma 2.3 (Andréief–Heine identity). Let (fi(x))i=1,...,N and (gi(x))i=1,..., be the sequences of
integrable functions on the domain D. Denoting dX = dx1 · · · dxN , the following identity holds,

1

N !

∫
DN

dX det
1≤i,j≤N

fi(xj) det
1≤i,j≤N

gi(xj) = det
1≤i,j≤N

(∫
D

dx fi(x)gj(x)

)
, (2.3)

which is called the Andréief–Heine (AH) identity.

Proposition 2.4 (Hermitian matrix chain models). Let (Mk)k=1,...,` be a set of ` Hermitian
matrices of rank N . The following matrix chain models are reduced to the coupled matrix model
of the form of (2.1):

Zpot =

∫ ∏
k=1,...,`

dMk e− trVk(Mk)
`−1∏
k=1

etrMkMk+1 , (2.4a)

ZCauchy =

∫ ∏
k=1,...,`

dMk e− trVk(Mk)
`−1∏
k=1

det(Mk ⊗ 1N + 1N ⊗Mk+1)
−N . (2.4b)

We call them the potential-interacting matrix chain and the Cauchy-interacting matrix chain,
respectively.

Proof. Diagonalizing each Hermitian matrix using the unitary transform for k = 1, . . . , `,

Mk = UkXkU
−1
k , Xk = diag(xk,1, . . . , xk,N ) , Uk ∈ U(N) , (2.5)

the matrix measure is given by

dMk =
dUk dXk

N !(2π)N
∆N (Xk)

2 , dXk =
N∏
i=1

dxk,i , (2.6)

where we denote the Haar measure of each unitary matrix by dUk. We remark that the factors
(2π)N and N ! are interpreted as the volumes of the maximal Cartan torus U(1)N ⊂ U(N), and
the symmetric group SN , which is the Weyl group of the unitary group U(N).

For the potential-interacting chain, we may use the Harich-Chandra–Itzykson–Zuber formula [IZ80],∫
U(N)

dU etrUXU
−1Y =

cN
∆N (X)∆N (Y )

det
1≤i,j≤N

exiyj (2.7)
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where the constant factor cN = Γ2(N + 1) =
∏N−1
j=0 j! is chosen to be consistent with the

normalization of the group integral,
∫
U(N) dU = 1. Then, we obtain

Zpot =
c`−1N

N !`

∫ ∏
k=1,...,`

dXk

(2π)N
e− trVk(Xk)∆N (X1)

(
`−1∏
k=1

det
1≤i,j≤N

exk,ixk+1,j

)
∆N (X`)

=
c`−1N

N !2

∫ ∏
k=1,`

dXk

(2π)N
e− trVk(Xk)∆N (X1) det

1≤i,j≤N

∫ ∏
k=2,...,`−1

dxk
2π

e−Vk(xk)
`−1∏
k=1

exkxk+1

∆N (X`) ,

(2.8)

where we apply the AH identity (Lemma 2.3) for (Xk)k=2,...,`−1. Identifying (X1, X`) = (XL, XR)
and

ω(x1, x`) =

∫ ∏
k=2,...,`−1

dxk
2π

e−Vk(xk)
`−1∏
k=1

exkxk+1 , (2.9)

we arrive at the expression (2.1) up to an overall constant.

For the Cauchy-interacting chain, we remark the relation [BGS09]

det(Mk ⊗ 1N + 1N ⊗Mk+1)
−N diagonalization−−−−−−−−−→

∏
1≤i,j≤N

1

xk,i + xk+1,j

=
1

∆N (Xk)∆N (Xk+1)
det

1≤i,j≤N

(
1

xk,i + xk+1,j

)
. (2.10)

Therefore, we may write the Cauchy-interacting chain partition function as

ZCauchy =
1

N !`

∫ ∏
k=1,...,`

dXk

(2π)N
e− trVk(Xk)∆N (X1)

`−1∏
k=1

det
1≤i,j≤N

(
1

xk,i + xk+1,j

)
∆N (X`) . (2.11)

Similarly, applying the AH identity for (Xk)k=2,...,`−1, and identifying (X1, X`) = (XL, XR) with

ω(x1, x`) =

∫ ∏
k=2,...,`−1

dxk
2π

e−Vk(xk)
`−1∏
k=1

1

xk + xk+1
, (2.12)

we arrive at the expression (2.1). This completes the proof.

Remark 2.5. We can in general obtain the coupled matrix model (2.1) from the matrix chain if
the nearest-neighbor interaction is given in the determinantal form

1

∆N (Xk)∆N (Xk+1)
det

1≤i,j≤N
I(xk,i, xk+1,j) (2.13)

after the diagonalization. We also remark that the supermatrix model

Zsusy =
1

N !2

∫
dX dY e− trV (X)+trV (Y )∆N (X)2∆N (Y )2

∏
1≤i,j≤N

(xi − yj)−2

=
1

N !2

∫
dX dY e− trV (X)+trV (Y ) det

1≤i,j≤N

(
1

xi − yj

)2

(2.14)

has a closed form to the partition function (2.1), but it does not belong to the coupled matrix
model of our current interest.
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2.1 Determinantal formula

We show that the partition function (2.1) is written in a determinantal form. In order to show
this, we introduce the notations.

Definition 2.6. We define the inner product with respect to the potentials VL,R(xL,R),

( f | ω | g ) =

∫ ∏
k=L,R

dxk e−Vk(xk)f(xL)ω(xL, xR)g(xR) . (2.15)

For a set of arbitrary monic polynomials (pi(x), qi(x))i∈Z≥0
, where pi(x) = xi + · · · and qi(x) =

xi + · · · , we define the norm matrix,

Ni,j = ( pi | ω | qj ) . (2.16)

Proposition 2.7. The coupled matrix model partition function (2.1) is given as a rank N
determinant of the norm matrix,

ZN = det
1≤i,j≤N

NN−i,N−j . (2.17)

Proof. Noticing that the Vandermonde determinant is written as a determinant of arbitrary
monic polynomials,

∆N (XL) = det
1≤i,j≤N

pN−j(xL,i) , ∆N (XR) = det
1≤i,j≤N

qN−j(xR,i) , (2.18)

the partition function (2.1) is evaluated as a rank N determinant,

ZN =
1

N !2

∫ ∏
k=L,R

dXk e− trVk(Xk) det
1≤i,j≤N

pN−j(xL,i) det
1≤i,j≤N

ω(xL,i, xR,j) det
1≤i,j≤N

qN−j(xR,i)

= det
1≤i,j≤N

∫ ∏
k=L,R

dxk e−Vk(xk)pN−i(xL)ω(xL, xR)qN−j(xR)


= det

1≤i,j≤N
NN−i,N−j , (2.19)

where we apply the AH identity for XL,R. This completes the proof.

Remark 2.8 (Biorthogonal polynomial). Specializing the monic polynomials to the biorthogonal
polynomials,

(Pi | ω | Qj ) = hiδi,j , (2.20)

the norm matrix is diagonalized Ni,j = hiδi,j , so that the partition function is given by

ZN =

N−1∏
i=0

hi . (2.21)

2.2 Christoffel–Darboux kernel

Definition 2.9 (Christoffel–Darboux kernel). We define the Christoffel–Darboux (CD) kernel
associated with the coupled matrix model,

KN (xR, xL) = e−VL(xL)−VR(xR)
N−1∑
i,j=0

qi(xR)
(
N−1

)
i,j
pj(xL)

= e−VL(xL)−VR(xR)
N−1∑
i=0

Qi(xR)Pi(xL)

hi
=

N−1∑
i=0

ψi(xR)φi(xL) . (2.22)
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We denote the inverse of the norm matrix by
(
N−1

)
i,j

, and define the biorthonormal functions,
that we call the wave functions, by

φi(x) =
e−VL(x)√

hi
pi(x) , ψi(x) =

e−VR(x)√
hi

qi(x) . (2.23)

Proposition 2.10. The probability distribution associated with the partition function (2.1) is
written using the CD kernel,

PN (XL,R) =
Z−1N
N !2

∏
k=L,R

e− trVk(Xk)∆N (XL) det
1≤i,j≤N

ω(xL,i, xR,j)∆N (XR)

=
1

N !2
det

1≤i,j≤N
ω(xL,i, xR,j) det

1≤i,j≤N
KN (xR,i, xL,j) , (2.24)

which obeys the normalization condition∫ ∏
k=L,R

dXk PN (XL,R) = 1 . (2.25)

Definition 2.11 (Expectation value). We define the expectation value with respect to the
probability distribution function PN (XL,R) as follows,

〈O(XL,R) 〉 =

∫ ∏
k=L,R

dXk PN (XL,R)O(XL,R) . (2.26)

2.3 Operator formalism

Definition 2.12. We define an inner product symbol,

〈 f | g 〉 =

∫
dx f(x)g(x) , (2.27a)

〈 f | ω | g 〉 =

∫
dxL,R f(xL)ω(xL, xR)g(xR) . (2.27b)

We remark that, compared with the previous notation (2.15), this definition does not depend
on the potential function.

Then, the orthonormality of the wave functions (φi, ψi) defined in (2.23) is expressed as

〈φi | ω | ψj 〉 =

∫
dxL,R φi(xL)ω(xL, xR)ψj(xR) = δi,j , (2.28)

where we write

φi(x) = 〈φi | x 〉 , ψi(x) = 〈x | ψi 〉 , ω(xL, xR) = 〈xL | ω̂ | xR 〉 . (2.29)

together with the completeness condition

1 =

∫
dx |x〉 〈x| . (2.30)

In this operator formalism, the CD kernel is given by a matrix element of the operator
defined as

KN (xR, xL) = 〈xR | K̂N | xL 〉 , K̂N =

N−1∑
i=0

|ψi〉 〈φi| . (2.31)
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Introducing infinite dimensional vectors∣∣φ〉 =
(
|φ0〉 |φ1〉 |φ2〉 · · ·

)T
,

∣∣ψ〉 =
(
|ψ0〉 |ψ1〉 |ψ2〉 · · ·

)T
, (2.32)

together with the projection matrix

(ΠN )i,j =

{
1 (i = j ∈ [0, . . . , N − 1])

0 (otherwise)
(2.33)

the CD kernel operator is written as

K̂N =
∣∣ψ〉ΠN

〈
φ
∣∣ . (2.34)

In the limit N →∞, we have

lim
N→∞

KN (xR, xL) =

∞∑
i=0

ψi(xR)φi(xL) = 〈xR | ω−1 | xL 〉 =: ω̃(xR, xL) , (2.35)

such that ∫
dz ω(x, z)ω̃(z, y) =

∫
dz ω̃(x, z)ω(z, y) = δ(x− y) . (2.36)

Proposition 2.13. The CD kernel is self-reproducing

K̂N · ω̂ · K̂N = K̂N , tr
(
ω̂ · K̂N

)
= N , (2.37)

and therefore the correlation functions are in general determinantal (Eynard–Mehta’s theo-
rem [EM98]).

2.4 Polynomial ensemble

We consider a generalization of the coupled matrix model, that we call the coupled polynomial
ensemble, which is a coupled version of the polynomial ensemble introduced in Ref. [KS14]. We
define the following generalized coupled matrix model partition functions.

Definition 2.14. Let (fk,i)k=L,R,0=1,...,N−1 be a set of arbitrary functions. We define the poly-
nomial ensemble partition functions as follows,

ZN,fL =
1

N !2

∫
dXL,R e− trVR(XR) det

1≤i,j≤N
fL,N−i(xL,j) det

1≤i,j≤N
ω(xL,i, xR,j)∆N (XR) , (2.38a)

ZN,fR =
1

N !2

∫
dXL,R e− trVL(XL)∆N (XL) det

1≤i,j≤N
ω(xL,i, xR,j) det

1≤i,j≤N
fR,N−i(xR,j) . (2.38b)

Remark 2.15. Specializing each function (fk,i)k=L,R,i=0,...,N−1 to be a monic polynomial, these
partition functions (2.38) are reduced to the original one (2.1).

These partition functions show the determinantal structure as discussed before. In order to
discuss their properties, we introduce the notation.

Definition 2.16 (Mixed braket notation). We define the following inner product symbol,

( f | g 〉 =

∫
dxL,R e−VL(xL)f(xL)g(xR) , (2.39a)

〈 f | g ) =

∫
dxL,R e−VR(xR)f(xL)g(xR) . (2.39b)

We obtain the following result.
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Proposition 2.17. The partition function of the polynomial ensemble is written as a rank N
determinant with a set of arbitrary monic polynomials (pi, qi)i=0,...,N−1,

ZN,fL = det
1≤i,j≤N

〈 fL,N−i | ω | qN−j ) , (2.40)

ZN,fR = det
1≤i,j≤N

( pN−i | ω | fR,N−j 〉 . (2.41)

Proof. We obtain this formula by direct calculation. Recalling the Vandermonde determinant
is given as (2.18) with a set of arbitrary monic polynomials, we have

ZN,fL =
1

N !2

∫
dXL,R e− trVR(XR) det

1≤i,j≤N
fL,N−i(xL,j) det

1≤i,j≤N
ω(xL,i, xR,j) det

1≤i,j≤N
qN−j(xR,i)

= det
1≤i,j≤N

(∫
dxL,R e−VR(xR)fL,N−i(xL)ω(xL, xR)qN−j(xR)

)
= det

1≤i,j≤N
〈 fL,N−i | ω | qN−j ) . (2.42)

We can obtain the other formula in the same way.

Definition 2.18 (Biorthogonal functions). We can then define two pairs of biorthogonal families
(FL,i, Qj)i,j=0,...,N−1 and (Pi, FR,j)i,j=0,...,N−1 such that:

• The functions Pi and Qj are monic polynomials.

• The functions FL,i (resp. FR,i) are linearly spanned by the functions (fL,k)k=0,··· ,i (resp.
(fR,k)k=0,··· ,i).

• They satisfy the following scalar product properties:

〈FL,i | ω | Qj ) = hL,iδi,j (i, j = 0, . . . , N − 1), (2.43a)

(Pi | ω | FR,j 〉 = hR,iδi,j (i, j = 0, . . . , N − 1). (2.43b)

Corollary 2.19. The partition functions of the coupled polynomial ensemble (2.38) take the
following form in terms of the normalization constants (hk,i)k=L,R,i=0,...,N−1,

ZN,fk =

N−1∏
i=0

hk,i (k = L,R) . (2.44)

Proof. Once recalling that the determinant is invariant under linear operations on rows and
columns, one can express it in terms of the biorthogonal functions defined before,

ZN,fL = det
1≤i,j≤N

〈FL,i−1 | ω | Qj−1 ) , (2.45a)

ZN,fR = det
1≤i,j≤N

(Pi−1 | ω | FR,j−1 〉 . (2.45b)

which is exactly the desired expression.

Definition 2.20 (Christoffel–Darboux kernel). We define the CD kernels for the coupled poly-
nomial ensemble as follows,

KN,fL(x, y) = e−VR(x)
N−1∑
i=0

Qi(x)FL,i(y)

hL,i
, (2.46a)

KN,fR(x, y) = e−VL(y)
N−1∑
i=0

FR,i(x)Pi(y)

hR,i
. (2.46b)
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Remark 2.21. As for the ordinary coupled matrix model (2.1), one can define the following
biorthonormal wave functions

ψL,i(x) =
1√
hL,i

e−VR(x)Qi(x) , φL,i(x) =
1√
hL,i

FL,i(x) , (2.47)

ψR,i(x) =
1√
hR,i

e−VL(x)Pi(x) , φR,i(x) =
1√
hR,i

FR,i(x) , (2.48)

and the CD kernels take then a very compact form.

Proposition 2.22. The probability distributions for the coupled polynomial ensemble can be
expressed as

PN,fL(XL,R) =
1

N !2
det

1≤i,j≤N
ω(xL,i, xR,j) det

1≤i,j≤N
KN,fL(xR,i, xL,j) , (2.49)

PN,fR(XL,R) =
1

N !2
det

1≤i,j≤N
ω(xL,i, xR,j) det

1≤i,j≤N
KN,fR(xR,i, xL,j) . (2.50)

Remark 2.23. All the previous formulas lead to the familiar matrix model formalism. Therefore
the correlation functions of the Schur polynomial and the characteristic polynomials shown in the
following sections are straightforwardly generalized to the coupled polynomial ensemble (except
for the pair correlation functions discussed in Section 4). We obtain a natural generalization
of the results for the characteristic polynomial average with the source term [Kim14b, Kim14a,
KM21] and also the one-matrix polynomial ensemble [ASW20].

3 Characteristic polynomial averages

3.1 Schur polynomial average

We first compute the Schur polynomial average for the coupled matrix model, which will be
a building block of the correlation functions of the characteristic polynomials [KM21]. See
also [ST21] for a related work.

Definition 3.1 (Schur polynomial). Let λ be a partition, a non-increasing sequence of non-
negative integers,

λ = (λ1 ≥ λ2 ≥ · · · ≥ λ` > λ`+1 = · · · = 0) , (3.1)

where ` = `(λ) is called the length of the partition. Denoting the transposed partition by λT,
we have `(λ) = λT1 . Then, the Schur polynomial of N variables, X = (xi)i=1,...,N , is defined as
follows,

sλ(X) =
1

∆N (X)
det

1≤i,j≤N
x
λj+N−i
i . (3.2)

If `(λ) > N , we have sλ(X) = 0. We also remark s∅(X) = 1.

Lemma 3.2. The Schur polynomial average with respect to the probability distribution function
PN (XL,R) (2.24) is given as a rank N determinant,

〈 sλ(XL)sµ(XR) 〉 =
1

ZN
det

1≤i,j≤N
(xλi+N−iL | ω | xµj+N−jR ) . (3.3)
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Proof. This can be shown by direct calculation,

〈 sλ(XL)sµ(XR) 〉

=

∫ ∏
k=L,R

dXk PN (XL,R)sλ(XL)sµ(XR)

=
Z−1N
N !2

∫ ∏
k=L,R

e− trVk(Xk) det
1≤i,j≤N

x
λj+N−j
L,i det

1≤i,j≤N
ω(xL,i, xR,j) det

1≤i,j≤N
x
µj+N−j
R,i

=
1

ZN
det

1≤i,j≤N

∫ ∏
k=L,R

dxk e−Vk(xk)xλi+N−iL ω(xL, xR)x
µj+N−j
R


=

1

ZN
det

1≤i,j≤N
(xλi+N−iL | ω | xµj+N−jR ) . (3.4)

This completes the proof.

Lemma 3.3 (Schur polynomial expansion). Let Z = diag(z1, . . . , zM ). The characteristic poly-
nomial is expanded with the Schur polynomial as follows,

M∏
α=1

det(zα −X) =
∑

λ⊆(MN )

(−1)|λ|sλ∨(Z)sλ(X) , (3.5a)

M∏
α=1

det(zα −X)−1 = det
M
Z−N

∑
λ|`(λ)≤min(M,N)

sλ(Z−1)sλ(X) , (3.5b)

where we define the dual partition

λ∨ = (λ∨1 , . . . , λ
∨
M ) = (N − λTM , . . . , N − λT1 ) , (3.6)

and the length of the partition denoted by `(λ) = λ1.

Proof. This follows from the Cauchy sum formula. See, e.g., [Mac15].

3.2 Characteristic polynomial

Based on the Schur polynomial expansion, we obtain the determinantal formula for the charac-
teristic polynomial average as follows.

Proposition 3.4 (Characteristic polynomial average). The M -point correlation function of
the characteristic polynomial is given by a rank M determinant of the associated biorthogonal
polynomials, 〈

M∏
α=1

det(zα −XL)

〉
=

1

∆M (Z)
det

1≤α,β≤M
PN+M−β(zα) , (3.7a)〈

M∏
α=1

det(zα −XR)

〉
=

1

∆M (Z)
det

1≤α,β≤M
QN+M−β(zα) . (3.7b)

Proof. We may use Lemma 3.2 and Lemma 3.3 to show this formula. Considering the charac-
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teristic polynomial coupled with the matrix XL, we obtain〈
M∏
α=1

det(zα −XL)

〉
=

∑
λ⊆(MN )

(−1)|λ|sλ∨(Z) 〈sλ(XL)〉

=
Z−1N

∆M (Z)

∑
λ⊆(MN )

(−1)|λ| det
1≤α,β≤M

z
λ∨β+M−β
α det

1≤i,j≤N
(xλi+N−iL | ω | qN−j)

=
Z−1N

∆M (Z)
det

1≤α,β≤M
1≤i,j≤N

(
zN+M−β
α zN−jα

(xN+M−β
L | ω | qN−j) (xN−jL | ω | qN−j)

)

=
Z−1N

∆M (Z)
det

1≤α,β≤M
1≤i,j≤N

(
pN+M−β(zα) pN−j(zα)

(pN+M−β | ω | qN−i) (pN−j | ω | qN−i)

)

=
Z−1N

∆M (Z)
det

1≤α,β≤M
1≤i,j≤N

(
PN+M−β(zα) PN−j(zα)

(PN+M−β | ω | QN−i) (PN−j | ω | QN−i)

)

=
Z−1N

∆M (Z)
det

1≤α,β≤M
1≤i,j≤N

(
PN+M−β(zα) PN−j(zα)

0 hN−i δN−i,N−j

)

=
1

∆M (Z)
det

1≤α,β≤M
PN+M−β(zα) , (3.8)

where we apply the rank M co-factor expansion of the rank N + M determinant. The other
formula (3.7b) is similarly obtained.

3.3 Characteristic polynomial inverse

In order to write down the characteristic polynomial inverse average, we define the Hilbert
transform.

Definition 3.5 (Hilbert transform). We define the Hilbert transform of the polynomial functions
as follows,

p̃j(z) =

∫ ∏
k=L,R

dxk e−Vk(xk)
ω(xL, xR)qj(xR)

z − xL
, (3.9a)

q̃j(z) =

∫ ∏
k=L,R

dxk e−Vk(xk)
pj(xL)ω(xL, xR)

z − xR
. (3.9b)

We obtain the following formula.

Proposition 3.6 (Characteristic polynomial inverse average). Let Z = diag(z1, . . . , zM ). The
M -point correlation function of the characteristic polynomial inverse is given by a rank M
determinant of the dual biorthogonal polynomials. Depending on the relation between N and
M , we have the following formulas.

1. M ≤ N 〈
M∏
α=1

det(zα −XL)−1
〉

=
ZN−M/ZN

∆M (Z)
det

1≤α,β≤M
P̃N−β(zα) , (3.10a)

〈
M∏
α=1

det(zα −XR)−1
〉

=
ZN−M/ZN

∆M (Z)
det

1≤α,β≤M
Q̃N−β(zα) . (3.10b)
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2. M ≥ N 〈
M∏
α=1

det(zα −XL)−1
〉

=
Z−1N

∆N (Z)
det

i=1,...,N
α=1,...,M

a=1,...,M−N

(
p̃N−i(zα)
pa−1(zα)

)
, (3.10c)

〈
M∏
α=1

det(zα −XR)−1
〉

=
Z−1N

∆N (Z)
det

i=1,...,N
α=1,...,M

a=1,...,M−N

(
q̃N−i(zα)
qa−1(zα)

)
. (3.10d)

Proof. We first consider the case M ≤ N . In this case, the Schur polynomial average for
`(λ) ≤M is obtained from Lemma 3.2 as

〈sλ(XL)〉 =
1

ZN
det

1≤α,β≤M
M+1≤a,b≤N

(
(xλα+N−αL | ω | qN−β) (xN−aL | ω | qN−β)

(xλα+N−αL | ω | qN−b) (xN−aL | ω | qN−b)

)

=
1

ZN
det

1≤α,β≤M
M+1≤a,b≤N

(
(xλα+N−αL | ω | QN−β) 0

(xλα+N−αL | ω | QN−b) hN−a δN−a,N−b

)

=
ZN−M
ZN

det
1≤α,β≤M

(xλα+N−αL | ω | QN−β) . (3.11)

Then, applying the Schur polynomial expansion as given in Lemma 3.3, the characteristic poly-
nomial inverse average is given as follows,〈

M∏
α=1

det(zα −XL)−1
〉

= det
M
Z−N

∑
`(λ)≤M

sλ(Z−1) 〈sλ(XL)〉

=
ZN−M
ZN

1

∆M (Z)

∑
0≤λM≤···≤λ1≤∞

det
1≤α,β≤M

(
z
−λβ+β−(N+1)
α

)
det

1≤α,β≤M
(xλα+N−αL | ω | QN−β)

=
ZN−M
ZN

1

∆M (Z)

1

M !

∑
0≤r1,··· ,rM≤∞

rα 6=rβ

det
1≤α,β≤M

(
z
M−N−rβ−1
α

)
det

1≤α,β≤M
(xN−M+rα
L | ω | QN−β)

=
ZN−M
ZN

1

∆M (Z)
det

1≤α,β≤M

( ∞∑
r=0

zM−N−r−1α (xN−M+r
L | ω | QN−β)

)
, (3.12)

where we have applied an analog of the AH identity for non-colliding discrete variables, (rα)α=1,...,M

(rα 6= rβ). Noticing

∞∑
r=0

z−r−1xr =
1

z − x
, (3.13)

and

xN−M

z − x
=
zN−M

z − x
− zN−M − xN−M

z − x
=
zN−M

z − x
−O(xN−M−1) , (3.14)
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we obtain

∞∑
r=0

zM−N−r−1α (xN−M+r
L | ω | QN−β)

= zM−Nα

∫ ∏
k=L,R

dxk e−Vk(xk)
xN−ML

zα − xL
ω(xL, xR)QN−β(xR)

=

∫ ∏
k=L,R

dxk e−Vk(xk)
ω(xL, xR)QN−β(xR)

zα − xL

= P̃N−β(zα) . (3.15)

We have used the biorthogonality (xaL | ω | QN−β ) = 0 for β = 1, . . . ,M and a = 0, . . . , N −
M − 1 to obtain the last expression. This completes the derivation of the formula (3.10a). We
can similarly obtain the formula (3.10b).

We then consider the case M ≥ N . In this case, the M -variable Schur polynomial with the
condition `(λ) ≤ N for Z = diag(z1, . . . , zM ) is given by

sλ(Z−1)

detZN
= det

i=1,...,N
α=1,...,M

a=1,...,M−N

(
z
−λi+i−(N+1)
α

za−1α

)
= det

i=1,...,N
α=1,...,M

a=1,...,M−N

(
z
−λi+i−(N+1)
α

pa−1(zα)

)
. (3.16)

Hence, applying the Schur polynomial expansion, we obtain〈
M∏
α=1

det(zα −XL)−1
〉

=
Z−1N

∆N (Z)

∑
0≤λN≤···≤λ1≤∞

det
i=1,...,N
α=1,...,M

a=1,...,M−N

(
z
−λi+i−(N+1)
α

pa−1(zα)

)
det

1≤i,j≤N
(xµi+N−iL | ω | qN−j)

=
Z−1N

∆N (Z)
det

i=1,...,N
α=1,...,M

a=1,...,M−N


∞∑
r=0

z−r−1α (xrL | ω | qN−i)

pa−1(zα)



=
Z−1N

∆N (Z)
det

i=1,...,N
α=1,...,M

a=1,...,M−N


∞∑
r=0

z−r−1α (xrL | ω | qN−i)

pa−1(zα)


=

Z−1N
∆N (Z)

det
i=1,...,N
α=1,...,M

a=1,...,M−N

(
p̃N−i(zα)
pa−1(zα)

)
. (3.17)

This is the determinantal formula shown in (3.10c). We can similarly obtain the other formula
(3.10d). This completes the proof.
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4 Pair correlation functions

In this Section, we consider the correlation function of both of the characteristic polynomials
coupled to the matrices XL,R, that we call the pair correlation function.

4.1 Characteristic polynomial

We have the following result regarding the pair correlation of the characteristic polynomials.

Proposition 4.1 (Pair correlation of characteristic polynomials). Let Z = diag(z1, . . . , zM ) and
W = diag(w1, . . . , wM ). The correlation function of M pairs of the characteristic polynomials
is given by a rank M determinant of the CD kernel,〈

M∏
α=1

det(zα −XL) det(wα −XR)

〉
=

etrVL(Z)+trVR(W )

∆M (Z)∆M (W )

ZN+M

ZN
det

1≤α,β≤M
KN+M (wα, zβ) . (4.1)

Proof. We use Lemma 3.2 and Lemma 3.3 as before. In addition, we apply the co-factor expan-
sion twice to obtain the following,〈

M∏
α=1

det(zα −XL) det(wα −XR)

〉

=
Z−1N

∆M (Z)∆M (W )
det

1≤α,β≤M
1≤i,j≤N+M

(
0 wN+M−j

α

zN+M−i
β (xN+M−i

L | ω | xN+M−j
R )

)

=
Z−1N

∆M (Z)∆M (W )
det

1≤α,β≤M
1≤i,j≤N+M

(
0 qN+M−j(wα)

pN+M−i(zβ) NN+M−i,N+M−j

)

=
ZN+M/ZN

∆M (Z)∆M (W )
det

1≤α,β≤M

N+M−1∑
k,k′=0

qk(wα)(N−1)k,k′pk′(zβ)


=

etrVL(Z)+trVR(W )

∆M (Z)∆M (W )

ZN+M

ZN
det

1≤α,β≤M
KN+M (wα, zβ) , (4.2)

We have applied the definition of the CD kernel of degree N + M (2.22) to obtain the last
expression.

Remark 4.2. This result can be also obtained using the self-reproducing property of the CD
kernel as follows. Noticing

∆N (X)

M∏
α=1

det(zα −X) =
∆N+M (X;Z)

∆M (Z)
, (4.3)
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the pair correlation is given by〈
M∏
α=1

det(zα −XL) det(wα −XR)

〉

=
Z−1N

∆M (Z)∆M (W )

1

N !2

∫ ∏
k=L,R

dXk e− trVk(Xk)∆N+M (XL;Z) det
1≤i,j≤N

ω(xL,i, xR,j)∆N+M (XR;W )

=
etrVL(Z)+trVR(W )

∆M (Z)∆M (W )

ZN+M/ZN
N !2

×
∫ ∏

k=L,R

dXk e− trVk(Xk) det
1≤i,j≤N

ω(xL,i, xR,j) det
1≤i,j≤N
1≤α,β≤M

(
KN+M (xR,i, xL,j) KN+M (xR,i, zβ)
KN+M (wα, xL,j) KN+M (wα, zβ)

)

=
etrVL(Z)+trVR(W )

∆M (Z)∆M (W )

ZN+M

ZN
det

1≤α,β≤M
KN+M (wα, zβ) . (4.4)

4.2 Characteristic polynomial inverse

We then consider the pair correlation of the characteristic polynomial inverses. In order to write
down the formula in this case, we define the dual CD kernel as follows.

Definition 4.3 (Dual Christoffel–Darboux kernel). For the dual wave functions defined through
the Hilbert transform,

φ̃i(z) = eVL(z)
∫

dxL,R e−VL(xL)
ω(xL, xR)ψi(xR)

z − xL
, (4.5a)

ψ̃i(z) = eVR(z)
∫

dxL,R e−VR(xR)
φi(xL)ω(xL, xR)

z − xR
, (4.5b)

we define the dual Christoffel–Darboux kernel of degree N as follows,

K̃N (w, z) =

∞∑
i=N

ψ̃i(w)φ̃i(z) . (4.6)

Proposition 4.4 (Pair correlation of characteristic polynomial inverses). Let Z = diag(z1, . . . , zM )
and W = diag(w1, . . . , wM ). The correlation function of M pairs of the characteristic polyno-
mial inverses is given by a rank M determinant of the dual CD kernel depending on the relation
between N and M as follows.

1. M ≤ N〈
M∏
α=1

det(zα −XL)−1 det(wα −XR)−1
〉

=
e− trVL(Z)e− trVR(W )

∆M (Z)∆M (W )

ZN−M
ZN

det
1≤α,β≤M

K̃N−M (wβ, zα)

(4.7a)

2. M ≥ N〈
M∏
α=1

det(zα −XL)−1 det(wα −XR)−1
〉

=
(−1)M−NZ−1N

∆M (Z)∆M (W )
det

1≤α,β≤M

(
1

zα − xL
| ω | 1

wβ − xR

)
det

1≤a,b≤M−N

 M∑
α,β=1

pa−1(zα)ω̃α,βqb−1(wβ)


(4.7b)

where ω̃α,β is the inverse of
(

1
zα−xL | ω |

1
wβ−xR

)
.
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Proof. We first consider the case M ≤ N . In this case, applying the Schur polynomial expansion
as before, we obtain〈

M∏
α=1

det(zα −XL)−1 det(wα −XR)−1
〉

=
Z−1N

∆M (Z)∆M (W )

∑
`(λ),`(µ)≤M

det
1≤α,β≤M

z
−N−λβ+β−1
α det

1≤α,β≤M
w
−N−µβ+β−1
α

× det
1≤α,β≤M

1≤i,j≤N−M

(
(xλα+N−αL | ω | xµβ+N−βR ) (xλα+N−αL | ω | xN−M−jR )

(xN−M−iL | ω | xµβ+N−βR ) (xN−M−iL | ω | xN−M−jR )

)

=
Z−1N

∆M (Z)∆M (W )

∑
`(λ),`(µ)≤M

det
1≤α,β≤M

z
−N−λβ+β−1
α det

1≤α,β≤M
w
−N−µβ+β−1
α

× det
1≤α,β≤M

1≤i,j≤N−M

(
(xλα+N−αL | ω | xµβ+N−βR ) (xλα+N−αL | ω | qN−M−j)
(pN−M−i | ω | x

µβ+N−β
R ) (pN−M−i | ω | qN−M−j)

)

=
ZN−M/ZN

∆M (Z)∆M (W )

∑
`(λ),`(µ)≤M

det
1≤α,β≤M

z
−N−λβ+β−1
α det

1≤α,β≤M
w
−N−µβ+β−1
α

× det
1≤α,β≤M

(xλα+N−αL | ω | xµβ+N−βR )−
N−M−1∑
i,j=0

(xλα+N−αL | ω | qi)(N−1)i,j(pj | ω | x
µβ+N−β
R )

 .

(4.8)

We remark that each element in the determinant is given by

(xλα+N−αL | ω | xµβ+N−βR )−
N−M−1∑
i,j=0

(xλα+N−αL | ω | qi)(N−1)i,j(pj | ω | x
µβ+N−β
R )

= (xλα+N−αL | ω | xµβ+N−βR )

−
∫ ∏

k=L,R,L′,R′

dxk e−Vk(xk)xλα+N−αL ω(xL, xR′)
N−M−1∑
i,j=0

qi(xR′)(N
−1)i,jpj(xL′)ω(xL′ , xR)x

µβ+N−β
L

= (xλα+N−αL | ω | xµβ+N−βR )

−
∫ ∏

k=L,R

dxk dxk′ e
−Vk(xk)xλα+N−αL ω(xL, xR′)KN−M (xR′ , xL′)ω(xL′ , xR)x

µβ+N−β
R

=

∫ ∏
k=L,R

dxk dxk′ e
−Vk(xk)xλα+N−αL ω(xL, xR′)(ω̃(xR′ , xL′)−KN−M (xR′ , xL′))ω(xL′ , xR)x

µβ+N−β
R

=

∫ ∏
k=L,R

dxk dxk′ e
−Vk(xk)xλα+N−αL ω(xL, xR′)

( ∞∑
k=N−M

ψk(xR′)φk(xL′)

)
ω(xL′ , xR)x

µβ+N−β
R .

(4.9)
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Therefore, we obtain〈
M∏
α=1

det(zα −XL)−1 det(wα −XR)−1
〉

=
ZN−M/ZN

∆M (Z)∆M (W )
det

1≤α,β≤M

 ∞∑
i=N−M

∫ ∏
k=L,R

dxk dxk′ e
−Vk(xk)ω(xL, xR′)ψi(xR′)φi(xL′)ω(xL′ , xR)

(zα − xL)(wβ − xR)


=

ZN−M/ZN
∆M (Z)∆M (W )

det
1≤α,β≤M

(
e−VL(zα)e−VR(wβ)

∞∑
i=N−M

φ̃i(zα)ψ̃i(wβ)

)

=
ZN−M/ZN

∆M (Z)∆M (W )
e− trVL(Z)e− trVR(W ) det

1≤α,β≤M

(
K̃N−M (wβ, zα)

)
. (4.10)

This completes the derivation of the formula (4.7a).
We then consider the case M ≥ N . In this case, we similarly obtain the formula (4.7b) as
follows,〈

M∏
α=1

det(zα −XL)−1 det(wα −XR)−1
〉

=
Z−1N

∆M (Z)∆M (W )

×
∑

0≤λN≤···≤λ1≤∞
0≤µN≤···≤µ1≤∞

det
i=1,...,N
α=1,...,M

a=1,...,M−N

(
z
−λi+i−(N+1)
α

pa−1(zα)

)
det

1≤i,j≤N
(xλi+N−iL | ω | xµj+N−jR ) det

j=1,...,N
β=1,...,M

b=1,...,M−N

(
w
−µj+j−(N+1)
β

qb−1(wβ)

)

=
Z−1N

∆M (Z)∆M (W )

1

N !2

∑
0≤r1,··· ,rN≤∞
0≤s1,··· ,sN≤∞
ri 6=rj ,si 6=sj

det
i=1,...,N
α=1,...,M

a=1,...,M−N

(
z−ri−1α

pa−1(zα)

)
det

1≤i,j≤N
(xriL | ω | x

sj
R ) det

j=1,...,N
β=1,...,M

b=1,...,M−N

(
w
−sj−1
β

qb−1(wβ)

)

=
Z−1N

∆M (Z)∆M (W )
det

1≤α,β≤M
1≤a,b≤M−N


∞∑

r,s=0

z−r−1α w−s−1β (xrL | ω | xsR) qb−1(wβ)

pa−1(zα) 0


=

Z−1N
∆M (Z)∆M (W )

det
1≤α,β≤M

1≤a,b≤M−N

((
1

zα−xL | ω |
1

wβ−xR

)
qb−1(wβ)

pa−1(zα) 0

)

=
(−1)M−NZ−1N

∆M (Z)∆M (W )
det

1≤α,β≤M

(
1

zα − xL
| ω | 1

wβ − xR

)
det

1≤a,b≤M−N

 M∑
α,β=1

pa−1(zα)ω̃α,βqb−1(wβ)


(4.11)

This completes the proof.

4.3 Mixed pair correlation

We consider the mixed-type pair correlation function of the characteristic polynomials.

Proposition 4.5. Let Z = diag(z1, . . . , zM ) and W = diag(w1, . . . , wM ). The following deter-
minantal formulas hold for the mixed-pair correlation for M ≤ N .〈

M∏
α=1

det(zα −XL) det(wα −XR)−1
〉

=
ZN−M/ZN

∆M (Z)∆M (W )
det

α=1,...,M
β=1,...,2M

(
PN+M−β(zα)

Q̃N+M−β(wα)

)
, (4.12a)

〈
M∏
α=1

det(zα −XL)−1 det(wα −XR)

〉
=

ZN−M/ZN
∆M (Z)∆M (W )

det
α=1,...,M
β=1,...,2M

(
P̃N+M−β(zα)
QN+M−β(wα)

)
. (4.12b)
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Proof. Applying the Schur polynomial expansion and the co-factor expansion as before, we
obtain the following,〈

M∏
α=1

det(zα −XL) det(wα −XR)−1
〉

=
Z−1N

∆M (Z)∆M (W )

∑
`(λ)≤M

det
1≤α,β≤M

(
w
−λβ+β−N−1
α

)
det

i=1,...,N+M
α,β=1,...,M
k=M+1,...,N

 zN+M−i
α

(xN+M−i
L | ω | xλβ+N−βR )

(xN+M−i
L | ω | xN−kR )



=
Z−1N

∆M (Z)∆M (W )

∑
`(λ)≤M

det
1≤α,β≤M

(
w
−λβ+β−N−1
α

)
det

i=1,...,N+M
α,β=1,...,M
k=M+1,...,N

 pN+M−i(zα)

(pN+M−i | ω | x
λβ+N−β
R )

(pN+M−i | ω | xN−kR )



=
Z−1N

∆M (Z)∆M (W )
det

i=1,...,N+M
α,β=1,...,M
k=M+1,...,N

 pN+M−i(zα)
q̃N+M−i(wβ)

(pN+M−i | ω | xN−kR )

 . (4.13)

Then, the determinant part is given by

det
i=1,...,N+M
α,β=1,...,M
k=M+1,...,N

 pN+M−i(zα)
q̃N+M−i(wβ)

(pN+M−i | ω | xN−kR )



= det
α,β,γ,δ=1,...,M
k,l=1,...,N−M

 pN+M−γ(zα) pN−δ(zα) pN−M−l(zα)
q̃N+M−γ(wβ) q̃N−δ(wβ) q̃N−M−l(wβ)

(pN+M−γ | ω | qN−M−k) (pN−δ | ω | qN−M−k) (pN−M−l | ω | qN−M−k)


= det

α,β,γ,δ=1,...,M
k,l=1,...,N−M

PN+M−γ(zα) PN−δ(zα) PN−M−l(zα)

Q̃N+M−γ(wβ) Q̃N−δ(wβ) Q̃N−M−l(wβ)
0 0 hN−M−l δN−M−l,N−M−k


= ZN−M det

α,β,γ,δ=1,...,M

(
PN+M−γ(zα) PN−δ(zα)

Q̃N+M−γ(wβ) Q̃N−δ(wβ)

)
. (4.14)

This completes the derivation of (4.12a). The other formula (4.12b) can be also derived in the
same way.

Remark 4.6. For M = 1, the mixed-pair correlation functions are given by〈
det(z −XL)

det(w −XR)

〉
=
ZN−1
ZN

det

(
PN (z) PN−1(z)

Q̃N (w) Q̃N−1(w)

)
=

1

hN−1

(
PN (z)Q̃N−1(w)− PN−1(z)Q̃N (w)

)
, (4.15a)〈

det(w −XR)

det(z −XL)

〉
=
ZN−1
ZN

det

(
P̃N (z) P̃N−1(z)
QN (w) QN−1(w)

)
=

1

hN−1

(
P̃N (z)QN−1(w)− P̃N−1(z)Q̃N (w)

)
. (4.15b)

These expressions suggest that the mixed-pair correlation could be also written in terms of the
associated CD kernel. See [SF03, BDS03, BS06, EKR15] for details. We leave this issue for the
future study.
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