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Abstract 

In perceptual decision making, it is often found that human observers combine sensory information 

and prior knowledge suboptimally. Typically, in detection tasks, when an alternative is a priori more 

likely to occur, observers choose it more frequently to account for the unequal base rate but not to 

the extent they should, a phenomenon referred to as “conservative decision bias” (i.e., observers do 

not shift their decision criterion enough). One theoretical explanation of this phenomenon is that 

observers are overconfident in their ability to interpret sensory information, resulting in 

overweighting the sensory information relative to the prior knowledge. Here, we derived formally 

this candidate model and we tested it in a visual discrimination task in which we manipulated the 

prior probabilities of occurrence of the stimuli. We measured confidence in decisions and decision 

criterion placement in two separate experimental sessions for the same participants (N=69). Both 

overconfidence bias and conservative decision bias were found in our data, but critically the link that 

was predicted between these two quantities was absent. Our data suggested instead that when 

informed about the a priori probability, overconfident participants put less effort into processing 

sensory information. These findings offer new perspectives on the role of overconfidence bias to 

explain suboptimal decisions.  

 Keywords: Overconfidence bias, Perceptual decision making, Suboptimality, Signal 

Detection Theory, Conservative decision bias, Sensitivity.  

 

Public significance statement: In detection tasks, humans are presented with evidence and must 

decide whether a target is present or not, for example, whether there are dangerous items on x-ray 

images of luggage. When their prior knowledge indicates that the target is likely to be present, they 

should adjust their decision criterion such that they would require less evidence to detect the target. 

This study highlights that how well people adjust their decision criterion does not depend on their 

confidence in their ability to interpret the evidence. The results suggest that people who are 

overconfident in their ability invest less effort in the task when prior knowledge is available.  
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1. Introduction 

Whether human observers can combine optimally multiple pieces of information has been studied 

across modalities (e.g., Ernst & Banks, 2002), over time (e.g., Yang & Shadlen, 2007), and between 

individuals (e.g., Bahrami et al., 2010). In perceptual decision-making, it is often found that observers 

combine sensory information and prior knowledge suboptimally (Rahnev & Denison, 2018). 

Typically, in detection tasks, when an alternative is a priori more likely to occur, observers choose it 

more frequently to account for the unequal base rate but not to the extent they should. This 

phenomenon referred to as “conservative decision bias” (i.e., observers do not shift their decision 

criterion enough) has been observed with laboratory tasks using basic visual decisions (Ackermann & 

Landy, 2015; Green & Swets, 1966; Murrell, 1977; Ulehla, 1966) but also in experiments emulating 

real-world decisions such as the detection of faulty products (Botzer et al.,2010; Botzer et al., 2013; 

Chi & Drury, 1998), or enemy targets (Wang et al., 2009).  

To achieve Bayes- optimal combination, observers must combine the sensory information 

and the prior knowledge according to its weight of evidence. For instance, when a medical doctor 

inspecting a chest CT scan must decide whether a lung nodule is cancerous or not, her decision 

should weigh this piece of sensory information and her prior knowledge of the risk factors for lung 

cancer accordingly. However, observers often behave as if they under-weigh prior knowledge such 

that, for example, the doctor would be less reluctant to decide that a lung nodule is cancerous 

among smokers but not to the extent she should. Critically, in our example, there is a fundamental 

difference between the risk factors for which the weight of evidence is quantified objectively by 

epidemiologists and the chest CT scan whose weight of evidence depends on the doctor. If the 

doctor overestimates her ability to distinguish between cancerous and benign lung nodules (e.g., “I 

am sure that this nodule has a small size.”), she may rely less on the information provided by the risk 

factor (e.g., “10 % of smokers develop a lung cancer”) than what is optimal. 

In this paper, we ask whether conservative decision bias is caused by overestimation of one’s 

own ability to process sensory information. Several studies have found that observers overestimate 
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the accuracy of their decisions (i.e., they are overconfident) in signal detection tasks including in the 

perceptual domain (Baranski & Petrusic, 1994; Kvidera & Koutstaal, 2008; Massoni et al., 2014). 

Here, we consider that overconfidence bias captures observers’ misestimation of their ability to 

process sensory information. Such a link between conservative decision bias and misestimation of 

the sensory information has already been proposed (Kubovy, 1977; Ackermann & Landy, 2015) but it 

has not been supported by direct empirical evidence. We test this prediction experimentally in a 

perceptual task. 

The hypothesized link between overconfidence bias and conservative decision bias can be 

formally described within Signal Detection Theory (SDT, Green and Swets, 1966), which provides a 

framework for analyzing decisions between two options, and for distinguishing between the 

sensitivity of the observer to the sensory information (𝑑′), and the decision criterion of the observer 

(𝑐) measuring the amount of sensory evidence for which she is indifferent between the two choice 

options. Theoretically, this criterion should be affected by information about the a priori probability 

of occurrence of the choice options. Under this model, we can predict that if an observer is 

overconfident (i.e., overestimates her own sensitivity), she would also not adjust her response 

criterion optimally. Formally, as detailed in the Methods, we should have: 

𝑐𝑠𝑢𝑏𝑗 = 𝑐𝑖𝑑𝑒𝑎𝑙

𝑑′

𝑑′𝑠𝑢𝑏𝑗
, 

where 𝑑′ and 𝑑′𝑠𝑢𝑏𝑗 denote the observer’s actual and perceived sensitivity, while 𝑐𝑖𝑑𝑒𝑎𝑙 denotes the 

ideal decision criterion set by an observer perfectly aware of her own sensitivity 𝑑′, and 𝑐𝑠𝑢𝑏𝑗 

denotes the criterion that would be used by an observer relying on 𝑑′𝑠𝑢𝑏𝑗 instead. Intuitively, the 

equation means that the criterion set by the observer should deviate from the ideal criterion by a 

factor that is the inverse of her overconfidence bias, leading to a conservative decision bias if she is 

overconfident (i.e.,  
𝑐𝑠𝑢𝑏𝑗

𝑐𝑖𝑑𝑒𝑎𝑙
< 1 𝑖𝑓 𝑑′𝑠𝑢𝑏𝑗 > 𝑑′).  

We test this prediction experimentally in a visual discrimination task by measuring in the 

same participants, but in distinct sessions, both 1) confidence about decisions when the base rate is 
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equal and 2) criterion adjustments in response to unequal base rates. Briefly, our participants (N=69) 

had to identify which of two sets presented on the computer screen contained more dots (see Fig 1) 

in two experimental sessions conducted four days apart. Here, the dots are visible enough but it is 

hard to identify which set has more dots given the small difference in number of dots between the 

two sets, and the short presentation time. In the confidence session, after each decision participants 

indicated their confidence on a quantitative scale. In the cueing session, prior probability about the 

forthcoming stimulus was given in the form of a symbolic cue. On each trial, the stimulus was 

preceded by a symbolic cue indicating the correct side with 75% validity or by a neutral cue 

indicating that both sides were equally likely. Before the task, the meaning and validity of these 

symbolic cues were fully explained to participants, who were instructed to optimally use both the 

cue and the stimulus information to maximize their payoff. We then tested whether overconfidence 

bias measured in the confidence session would relate to conservative decision bias measured in the 

cueing session, as predicted by our model.  

 

Figure 1. Experimental paradigm 

 

Note. Participants had to indicate which circle (left or right) contained more dots. (A) In the cueing 

session, stimuli were presented after a neutral or 75% valid cue that participants had to optimally 

use to make their decisions. (B) In the confidence session, decisions were followed by confidence 

judgments on an incentivized probability rating scale.  
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2. Methods 

2.1. Transparency and openness 

We report how we determined our sample size, all data exclusions (if any), all manipulations, and all 

measures in the study, and we follow JARS (Kazak, 2018). All data, analysis codes, and research 

materials are available on the Open Science Framework repository 

(https://osf.io/4qw9e/?view_only=48bae1de632c4ff895cfa49743b41dfa). The experiment was 

programmed using Psychotoolbox (Brainard, 1997) and MATLAB 8.3 (The Math Works, Inc., 2014). 

Data were analyzed using MATLAB 8.3 (The Math Works, Inc., 2014), R package lme4 (Bates et al., 

2015, R Core Team, 2018), and JASP (JASP Team, 2022). This study’s design and its analysis were not 

pre-registered. 

 
2.2. Experiment 

2.2.1. A priori power analysis and participants  

To test the hypothesized link between overconfidence bias and conservative decision bias, our 

empirical strategy relied on evaluating the correlation between predicted and actual criteria across 

participants (for more details about our strategy, see section 2.3.2). Theoretically, if the 

hypothesized link holds true, the predicted and actual criteria should perfectly positively correlate. 

However, empirically, we aimed to detect an observable correlation of 0.3. A priori power analysis 

performed with the GPower software (Faul et al., 2007) indicated that the total sample size required 

to detect a one-tailed correlation of Cohen’s medium effect size 𝑟=0.3 between two normally 

distributed variables, given a significance level 𝛼 =0.05, and a statistical power level 1 − 𝛽 =0,80 is 

N=67. 

 In total, 69 individuals (39 females; mean age = 23 years, SD = 2.5 years) were recruited 

through the Laboratory of Experimental Economics of Paris. Participants received 13 Euros for 

participating plus an incentivized bonus described below. The data was collected in 2014. 
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 2.2.2. Ethic statement  

The study was conducted in line with the principles of the Declaration of Helsinki. Written informed 

consent was obtained from all participants before the experiment. No nominative/identifying 

information was collected. No health information was collected from participants other than gender 

and age. The research involved negligible risks. In this situation, as per current French regulations, 

ethics approval was not required, therefore no IRB was consulted before conducting the study.  

 

 2.2.3. Stimuli and Task  

Rather than collecting confidence judgments following each decision made in the presence of cues, 

we decided to collect independent measures to avoid two potential issues: i) that asking explicitly 

participants to evaluate and verbalize their confidence in their decision might change how they 

would take into account the cues in their decision process; and, ii) that the manipulation of prior 

probabilities of occurrence of the stimuli (given in the form of a symbolic cue) might alter how 

participants would evaluate their confidence in their decision. This would also allow us to compare 

more directly our data with previous literature studying confidence or cueing. The confidence and 

cueing sessions took place 4 days apart and their order of presentation was counterbalanced across 

participants. The experiment was run on screens (resolution 1024 x 768) viewed at normal distance 

(about 60 cm).  

 Importantly, in both sessions, participants were asked to perform the same perceptual 

task with the same type of stimuli. On each trial, after a 250ms fixation cross, two sets of about 100 

dots were simultaneously presented for 700ms, one on the left side and one on the right side of the 

computer screen. Participants had to indicate which set contained more dots, by pressing the 

corresponding arrow (left or right arrow keys) on the keyboard. After the response, the inter-trial 

interval was jittered between 0.5s and 1.5s. Participants received no feedback about the accuracy of 

their decision. Response times shorter than 200ms or longer than 2200ms (from stimulus onset) 

were discouraged by presenting a "too fast" or "too slow" message on the screen. 
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 2.2.4. Calibration  

At the beginning of each session, and for each participant, stimulus difficulty 𝑥 (i.e., the difference in 

number of dots between the two circles) was calibrated using a 2-down-1 up rule (Levitt, 1971) to 

obtain 71% of ‘left’ or ‘right’ responses. Specifically, one circle contained 100 dots while the other 

circle (the stimulus) contained 100 + 𝑥 dots, and 𝑥 decreased by one step size after two consecutive 

correct responses and increased by one step size after one failure. In order to obtain more precise 

estimates more rapidly, the step size was reduced from 20 (an easy initial value) to 16, 8, 4 and 2 

dots on trials 12, 24, 60 and 80 respectively. In addition, to account for the possibility that 

participants may be biased towards responding more ‘left’ or ‘right’, we used two independent and 

interleaved staircases of 150 trials each, one adjusting the value for the left stimulus (𝑥𝑙) and one for 

the right stimulus (𝑥𝑟). With these data, we estimated, for each participant, a psychometric curve 

representing the proportion of ‘left’ responses as a function of the difference in number of dots 

between the left and right circles, fitted with a cumulative normal distribution. To obtain 𝑥𝑙 and 𝑥𝑟, 

we took the difference in number of dots for which the psychometric curve predicted a 70% and 

30% of ‘left’ responses, rounded to its nearest integer and converted to its absolute value. We then 

kept these values constant across the session.  

 

 2.2.5. Symbolic cueing session 

In this session, each trial started with a central cue presented for 250ms, before the fixation cross. 

The cue was either a triangle pointing to the left or the right side of the screen, indicating the correct 

response with 75% validity (cue condition), or a diamond providing no information (neutral 

condition). In the cue-condition, 192 trials (96 left cue, 96 right cue) indicated the correct response 

(75% valid) and 64 trials (32 left cue, 32 right cue) indicated the wrong response (25% invalid). In the 

neutral condition, the diamond cue was followed by right and left correct responses equally often 

(128 left, 128 right). Similarly to Rahnev et al. (2011), the trials in the cue and neutral conditions 
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were administered in 64 randomly interleaved mini-blocks of 8 trials, with each mini-block including 

either predictive cues only (left and right, randomly interleaved across trials), or only neutral cues. 

Each mini-block began with a 1 second presentation of the cue(s) used in the forthcoming eight trials 

to remind participants. At the beginning of the session, participants were fully informed of the 

meaning of these cues and of the structure of the blocks. They were instructed to use both the 

stimulus and the cue to make the best possible decisions. Response accuracy was incentivized: 

participants won 1 point if correct and lost 1 point if incorrect, and points were converted to a bonus 

payment at the end of the experiment, with 1 point= 0.02 Euros. A training phase with feedback (96 

trials) was included. 

 

 2.2.6. Confidence session  

In the confidence session, both sides were a priori equally likely to occur and no cue was presented. 

Each response was followed by a confidence rating, in which participants indicated their subjective 

belief that their response just given was correct, on a 6 steps scale ranging from 50% confident (i.e., 

guess) to 100% confident, in steps of 10%. Participants responded using the numerical keys on the 

top-left of the keyboard. This confidence rating was incentivized using a probability matching rule 

(Massoni et al., 2014), which is a variant of the Becker-DeGroot-Marschak rule (Becker et al., 1964) 

classically used in experimental economics. The participant is offered an exchange between his 

response and a lottery ticket with a probability P of success. The number P is randomly determined 

on each trial (with a uniform distribution between 0 and 1) and compared to the confidence 

response. If P is greater than the confidence, then the participant’s reward is determined by the 

lottery. If not, it is determined by the accuracy of the response. The mechanism was presented to 

participants as a way to maximize their earnings by providing accurate confidence ratings. 

Instructions, examples, and a training phase with feedback (40 trials) were included to make sure 

that participants understood the mechanism. Participants then completed 512 trials in the session. 
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 2.2.7. Running memory span task  

Both the cueing and confidence sessions started with a standard running memory span task (Pollack 

et al., 1959; Conway et al., 2005; Broadway & Engle, 2010). Details for this task (which will only be 

used as a control measure in our final analyses) are presented in the Supplementary Materials 

(Methods S1). 

 

2.3. Computational approach 

 

2.3.1. The SDT model linking overconfidence bias and conservative decision bias 

We shall now describe the relation between overconfidence bias and conservative decision bias that 

we should expect under Signal Detection Theory (SDT), illustrated in Fig 2. Following SDT, let’s 

assume that a given state of nature (i.e., 𝐴 = the right circle has more dots vs. 𝐵 = the left circle has 

more dots) generates an internal sensory signal (denoted 𝑥) that the observer compares with a 

decision criterion (denoted 𝑐). The observer responds that the state of nature is “A” when the 

internal sensory signal is above 𝑐. Furthermore, across trials, both states generate normally 

distributed values of 𝑥, with equal variance 𝜎2 and with means 𝜇𝐴 and 𝜇𝐵. Without loss of generality 

and for simplicity, we assume that 𝜇𝐴 and 𝜇𝐵  are symmetric around 0, and that 𝜎 = 1. Defining the 

observer’s sensitivity 𝑑′ =  |𝜇𝐴 − 𝜇𝐵|, the probability distribution of 𝑥, given the true state of the 

nature (either A or B) is thus given by:  

𝑃(𝑥|𝐴) = 𝑁(𝑥, +𝑑′/2) =
1

√2𝜋
𝑒−

1
2(𝑥−𝑑′/2)

2

 
(eq. 1a) 

𝑃(𝑥|𝐵) = 𝑁(𝑥, −𝑑′/2) =
1

√2𝜋
𝑒−

1

2
(𝑥+𝑑′/2)

2

. 
(eq. 1b) 

The logarithm of the likelihood ratio of the sensory signal is then: 

𝐿𝑆(𝑥) = log (
𝑃(𝑥|𝐴)

𝑃(𝑥|𝐵)
) = −

1

2
(𝑥 −

𝑑′

2
)

2

+
1

2
(𝑥 +

𝑑′

2
)

2

= 𝑑′𝑥 (eq. 2) 

Assume also that the observer has access to some information about the a priori probability of 

occurrence of A and B. To maximize expected accuracy, the observer should set the criterion such 
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that she responds “A” when the posterior probability that A is present is greater than the posterior 

probability that B is present. By Bayes’ s rule, this decision rule can be written as a function of the 

log-odds prior (𝐿𝑃) and the log likelihood ratio of the sensory signal (𝐿𝑆(𝑥)). The ideal observer who 

perfectly estimates her own sensitivity responds according to the sign of the decision variable 

𝐷𝑉 (𝑥) defined as follows: 

𝑆𝑎𝑦 "A" 𝑤ℎ𝑒𝑛: 

𝐷𝑉(𝑥) = log (
𝑃(𝐴|𝑥)

𝑃(𝐵|𝑥)
) = log (

𝑃(𝐴)

𝑃(𝐵)
) + log (

𝑃(𝑥|𝐴)

𝑃(𝑥|𝐵)
) = 𝐿𝑃 + 𝐿𝑆(𝑥) = 𝐿𝑃 +  𝑑′𝑥 > 0 

 

(eq. 3a) 

On the other hand, the non-ideal observer who misestimates her own abilities use a subjective value 

𝑑′𝑠𝑢𝑏𝑗 instead of 𝑑′ to evaluate the sensory signal, leading to the likelihood ratio 𝐿𝑆𝑠𝑢𝑏𝑗(𝑥) =

log (
𝑃𝑠𝑢𝑏𝑗(𝑥|𝐴)

𝑃𝑠𝑢𝑏𝑗(𝑥|𝐵)
), where 𝑃𝑠𝑢𝑏𝑗 denotes the observer’s subjective probability of observing an internal 

signal 𝑥. In such a case, the non-ideal observer responds according to the sign of the following 

decision variable: 

𝑆𝑎𝑦 "A" 𝑤ℎ𝑒𝑛: 

𝐷𝑉𝑠𝑢𝑏𝑗(𝑥) = log (
𝑃𝑠𝑢𝑏𝑗(𝐴|𝑥)

𝑃𝑠𝑢𝑏𝑗(𝐵|𝑥)
) = 𝐿𝑃 + 𝐿𝑆𝑠𝑢𝑏𝑗(𝑥) = 𝐿𝑃 +

𝑑′
𝑠𝑢𝑏𝑗

𝑑′
(𝑑′𝑥) > 0 

 

(eq. 3b) 

It follows from equation 3b that if the observer is overconfident ( 
𝑑′

𝑠𝑢𝑏𝑗

𝑑′ > 1) she overweighs the 

sensory information, whereas if she is underconfident ( 
𝑑′

𝑠𝑢𝑏𝑗

𝑑′ < 1) she underweights it.  

Using equations 3a and 3b, the optimal decision criterion set by the ideal observer and the non-ideal 

observer are defined respectively as:  

𝐷𝑉(𝑐𝑖𝑑𝑒𝑎𝑙) = 0 ⇔ 𝐿𝑃 +  𝑑′𝑐𝑖𝑑𝑒𝑎𝑙 = 0 ⇔ 𝑐𝑖𝑑𝑒𝑎𝑙 = −
1

𝑑′
𝐿𝑃 

𝐷𝑉𝑠𝑢𝑏𝑗(𝑐𝑠𝑢𝑏𝑗) = 0 ⇔ 𝐿𝑃 + 𝑑𝑠𝑢𝑏𝑗
′ 𝑐𝑠𝑢𝑏𝑗 = 0 ⇔ 𝑐𝑠𝑢𝑏𝑗 = −

1

𝑑𝑠𝑢𝑏𝑗
′ 𝐿𝑃 

(eq.4a) 

 

(eq. 4b) 

Rearranging equations 4a and 4b, we obtain the fundamental prediction of our theoretical model 

defined as: 
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𝑐𝑠𝑢𝑏𝑗 = 𝑐𝑖𝑑𝑒𝑎𝑙

𝑑′

𝑑𝑠𝑢𝑏𝑗
′  

(eq. 5) 

Equation 5 states that the criterion set by the non- ideal observer should deviate from the ideal 

criterion by a factor that is the inverse of her overconfidence bias, leading to a conservative decision 

bias if she is overconfident (i.e., 
𝑐𝑠𝑢𝑏𝑗

𝑐𝑖𝑑𝑒𝑎𝑙
< 1 𝑖𝑓 𝑑′𝑠𝑢𝑏𝑗 > 𝑑′) and a liberal decision bias if she is 

underconfident (i.e., 
𝑐𝑠𝑢𝑏𝑗

𝑐𝑖𝑑𝑒𝑎𝑙
> 1 𝑖𝑓 𝑑′𝑠𝑢𝑏𝑗 < 𝑑′). 

 

Figure 2. Signal Detection Theory model 

 

Note. (A) Probability distributions of internal signal 𝑥 for the ideal observer and the non-ideal 

observer. The ideal observer (blue curves) perfectly estimates her internal signal, whereas the non-

ideal observer (blue dotted curves) overestimates the quality of her internal signal resulting in 

overconfidence bias (i.e., 𝑑′𝑠𝑢𝑏𝑗 > 𝑑′). (B) Log Likelihood Ratio for a given internal signal 𝑥 for the 

ideal observer (full orange line) and the non-ideal observer (dotted orange line). The ideal observer 

sets her decision criterion when 𝐿𝑆(𝑥) = −𝐿𝑃, whereas the non-ideal observer sets her decision 

criterion when 𝐿𝑆𝑠𝑢𝑏𝑗(𝑥) = −𝐿𝑃 resulting in conservative decision bias (i.e., 
𝑐𝑠𝑢𝑏𝑗

𝑐𝑖𝑑𝑒𝑎𝑙
< 1) in the case of 

overconfidence. 
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 2.3.2. Empirical strategy 

To test this model empirically, we first estimate the right-hand side of equation 5. As detailed below, 

𝑐𝑖𝑑𝑒𝑎𝑙 is estimated during the cueing session, and the ratio 
𝑑′

𝑑𝑠𝑢𝑏𝑗
′  is estimated from the confidence 

session thus the right-hand side of this equation can be fully determined. Then, we compare the 

predicted criterion (𝑐𝑠𝑢𝑏𝑗) to the actual criterion used by participants in the cueing session (𝑐𝑜𝑏𝑠).  

 

  2.3.2.1. Estimating overconfidence bias from the confidence session 

In the confidence session, the prior probabilities of the two states were equal therefore 𝐿𝑃 = 0. The 

link between subjective and objective probabilities follows from equations 3a and 3b:  

log (
𝑃(𝐴|𝑥)

𝑃(𝐵|𝑥)
) =

𝑑′

𝑑𝑠𝑢𝑏𝑗
′  log (

𝑃𝑠𝑢𝑏𝑗(𝐴|𝑥)

𝑃𝑠𝑢𝑏𝑗(𝐵|𝑥)
) (eq. 6) 

We grouped the trials into subsets according to the confidence reported (i.e., 50, 60, 70, 80, 90, or 

100%) and response (i.e., left, or right), and, for each subset, we evaluated the subjective probability 

𝑃𝑠𝑢𝑏𝑗 (i.e., the average confidence) and the objective probability 𝑃 (i.e., the actual frequency) of a 

given state. Converted in log-odds, these quantities provide an estimation of log (
𝑃𝑠𝑢𝑏𝑗(𝐴|𝑥)

𝑃𝑠𝑢𝑏𝑗(𝐵|𝑥)
) and 

log (
𝑃(𝐴|𝑥)

𝑃(𝐵|𝑥)
), respectively. According to equation 6, overconfidence bias (as defined in the model) can 

thus be estimated by the inverse of the coefficient of the linear regression of subjective probabilities 

over objective probabilities (both expressed in log-odds) (see Fig S1 in the Supplementary Materials).  

 

  2.3.2.2. Predicting the decision criterion in the cueing session 

In the cueing session, the prior probabilities of the two states varied on a trial-by-trial basis. For each 

participant, we computed the observed (𝑐𝑜𝑏𝑠), ideal (𝑐𝑖𝑑𝑒𝑎𝑙) and predicted (𝑐𝑠𝑢𝑏𝑗) criterion 

adjustment in response to unequal base rates. To evaluate the observed criterion adjustment, we 

fitted with maximum likelihood a SDT model to the data from the cueing session, separately for each 

participant. This fitted model had 4 parameters: a constant sensitivity d’ and a decision criterion for 
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each of the 3 types of cues (left, right, neutral). To estimate the SDT parameters, we chose arbitrarily 

to define the state of nature A (i.e., right circle has more dots) as the Signal and the state of nature B 

(i.e., left circle has more dots) as the Noise. We expected the criterion for the left cue trials to be 

positive (i.e., corresponding to answering “right” less often than “left”) and the criterion for the right 

cue trials to be negative (i.e., corresponding to answering “right” more often than “left”). We used 

the semi-distance between the estimated criteria for the left cue and right cue trials as a measure of 

the actual criterion adjustment (𝑐𝑜𝑏𝑠 = (𝑐𝑜𝑏𝑠,𝑙𝑒𝑓𝑡 − 𝑐𝑜𝑏𝑠,𝑟𝑖𝑔ℎ𝑡) 2⁄ ) for each participant. The ideal 

criterion adjustment (for the left cue trials) is given by the relation 𝐿𝑃 + 𝑑′𝑐𝑖𝑑𝑒𝑎𝑙 = 0 , with 𝐿𝑃 =

log (.25/.75) in the case of a 75% valid cue. The predicted criterion adjustment (for the left cue 

trials) was derived using equation 5. Note that we assumed here that overconfidence bias (i.e., the 

ratio 𝑑𝑠𝑢𝑏𝑗
′ /𝑑′ estimated in the confidence session) was identical between the confidence session 

and the cueing session. Finally, we also computed the value of the ideal and observed decision 

criterion in log odds with 𝑐𝑖𝑑𝑒𝑎𝑙,𝐿𝑂 = 𝑐𝑖𝑑𝑒𝑎𝑙  𝑑′ = −𝐿𝑃 and 𝑐𝑜𝑏𝑠,𝐿𝑂 = 𝑐𝑜𝑏𝑠 𝑑′ 

 

  2.3.2.3 Reliability 

We evaluated the reliability of all the measures that we correlated at the individual level (see Table 

S1 in the Supplementary Materials), in terms of internal consistency for measures administered in 

one session and test-retest reliability for measures repeated in the two sessions. We used 

permutation-based split-half Spearman-Brown coefficients and intraclass correlation coefficients to 

estimate internal consistency and test-retest reliability respectively, as recommended by Parsons et 

al. (2019). Internal consistency of the two measures that we compared to test our model (i.e., the 

actual criterion and the predicted criterion) was quite good (median = 0.9305, 95%HDI= [0.8066, 

0.9524] and median=0.8910; 95% HDI= [0.8186,0.9361], respectively).  
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3. Results 

To anticipate our results, we first established both overconfidence bias and conservative decision 

bias in our participants. Then, we evaluated the hypothesized link between these two measures, but 

critically found no evidence for this link. We thus explored whether overconfidence bias would affect 

perceptual performance in the cueing session in other ways and found that overconfident 

participants exhibited a lower sensitivity following a 75% valid cue. Model comparison then clearly 

confirmed that this model was much more probable given our data. An intuition for the mechanism 

underlying this result is provided in the discussion.  

 

3.1. Model-based measure of overconfidence bias  

We first evaluated participants’ confidence in their perceptual decisions. Raw overconfidence bias, 

computed from the confidence session as the average confidence minus accuracy (Fig 3A) was 

largely heterogeneous across participants (M=0.08, SD=0.11), but highly significant at the group level 

(T-test vs. 0: t(68)=6.42, p<0.001). We also calculated overconfidence bias with our model-based 

measure (see Methods and Fig S1 in the Supplementary Materials), in which we used confidence 

ratings to quantify participants’ subjective estimate of their own sensitivity (𝑑′𝑠𝑢𝑏𝑗), which can be 

compared to the actual sensitivity (𝑑′). We found that subjective estimations of sensitivity (Fig 3B) 

were twice as large as actual sensitivities (ratio 𝑑′𝑠𝑢𝑏𝑗 𝑑′⁄ : M=2.18, SD=1.31). This model-based 

measure of overconfidence bias was significant at the group level (T-test vs. 1: t(68)= 7.53, p<0.001), 

and highly correlated with the initial raw overconfidence bias across participants (r=0.85, p<0.001) 

(Fig 3C).  
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Figure 3. Overconfidence bias in the confidence session 

 

Note. (A) Average confidence and average accuracy for each participant. (B) Subjective and objective 

sensitivity for each participant. (C) The relation between our model-based measure of 

overconfidence bias (i.e., ratio subjective sensitivity over objective sensitivity) and raw 

overconfidence bias (i.e., average confidence minus average accuracy). Each dot is a participant 

(N=69). In panels A and B, the black dotted line corresponds to the 45-degree line. 

 

3.2. Model-based measure of conservative decision bias  

We then turned to the cueing session to quantify conservative decision bias by assessing how 

observers combined the symbolic cue information with their sensory information. Descriptive 

statistics are reported in Table 1.  

 

 

 

 

 

 

 

 

 



 17 

 

Table 1. Descriptive statistics in the cueing session 

Note. Shown are, per cue (neutral, left and right): Response rate right, Average accuracy rate, 

Average accuracy rate conditional on valid and invalid cues, Equal variance SDT parameters fitted 

with Maximum Likelihood (the fitted model had 4 parameters: a constant sensitivity, and a decision 

criterion that was free to vary between the 3 conditions (neutral cue, left predictive cue, and right 

predictive cue), Equal variance SDT parameters estimated for each cue condition and averaged 

across participants’ point estimates, with decision criterion c=-0.5*[Z(H)+Z(F)] and sensitivity 

d’=Z(H)-Z(F) where Z(H) and Z(F) are the inverse of the cumulative Gaussian distribution function for 

the Hit (H) and False-alarm (F) rates. Standard deviations are reported between parentheses. 

 

Overall, participants benefited from the cue information: their performance was higher after a 

predictive cue compared to a neutral cue (predictive: M=0.77, SD=0.05; neutral: M=0.73, SD=0.06; 

accuracy gain: M=0.04, SD=0.04, t(68)=7.12, p<0.001; Fig 4A). Nonetheless, when compared to an 

ideal observer optimally integrating the cue while maintaining sensitivity constant (for which 

accuracy would be given by: 𝑃(𝐵)Φ(𝑐𝑖𝑑𝑒𝑎𝑙 + 𝑑′ 2⁄ ) + 𝑃(𝐴)(1 − Φ(𝑐𝑖𝑑𝑒𝑎𝑙 − 𝑑′ 2⁄ )) where Φ is 

the cumulative of the standard normal distribution), participants were not fully benefitting from the 

cue, as revealed by a significant accuracy gap (ideal accuracy: M=0.80, SD=0.03, accuracy gap: 

M=0.04; SD=0.03, t(68)=9.07, p<0.001; Fig 4A). To evaluate how participants used the cue to adjust 

their responses, we also compared how participants placed their decision criterion, relative to the 

ideal placement (Fig 4B). Ideally, participants should have adjusted their decision criteria to 

incorporate the information provided by the cue (in log-odds: 𝑐𝑖𝑑𝑒𝑎𝑙,𝐿𝑂= log(0.75/0.25)≈1.1). 

However, they only adjusted their criteria half-way through this ideal value (𝑐𝑜𝑏𝑠,𝐿𝑂: M=0.58, 

 
 
   

Response 
rate right 

Accuracy 
All trials  

Accuracy 
valid cue 

trials 

Accuracy 
invalid 

cue trials 

SDT parameters 
with MLE 

SDT parameters 
 

c d’ c d’ 

Neutral 
cue 
 

0.508 
(0.066) 

0.729 
(0.058) 

- - -0.029 
(0.203) 

1.242 
(0.344) 

-0.029 
(0.204) 

1.264 
(0.364) 

Left 
predictive 
cue 
 

0.253 
(0.118) 

0.764 
(0.057) 

0.840 
(0.103) 

0.535 
(0.207) 

0.494 
(0.481) 

0.497 
(0.496) 

1.213 
(0.460) 

Right 
predictive 
cue 
 

0.743 
(0.108) 

0.768 
(0.060) 

0.841 
(0.098) 

0.549 
(0.190) 

-0.477 
(0.427) 

-0.479 
(0.440) 

1.213 
(0.426) 
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SD=0.48), resulting in a significant under-adjustment (i.e., conservative decision bias) (ratio observed 

criteria over ideal criteria: M=0.53, SD=0.44, T-test vs. 1: t(68)=-8.99, p<0.001).   

 

Figure 4. Performance in the cueing session 

 

Note. (A) Average performance across participants, in the presence of a neutral cue (no-cue 

condition), a 75% valid cue (cue condition), and for ideal observers perfectly integrating the 75% 

valid cue (ideal condition). Error bars represent SEM. (B) Observed criterion (cobs) and ideal 

criterion (cideal) for each participant (N=69). The black dotted line corresponds to the 45-degree 

line. 

 

3.3. Discarding the conservative decision bias mechanism 

We then examined whether overconfidence bias and conservative decision bias would relate, as 

expected under the SDT model (see Methods). At the group level, the overall amount of 

conservative decision bias appeared in line with the overall amount of overconfidence bias in our 

data: the criterion adjustment observed (𝑐𝑜𝑏𝑠) (M= 0.49, SD= 0.39) largely overlapped with the 

criterion adjustment (𝑐𝑠𝑢𝑏𝑗) (M= 0.58, SD= 0.34) that was predicted from participants’ 

overconfidence bias (Fig 5A), and we could not reject at the 5% significance level the hypotheses 

that 𝑐𝑠𝑢𝑏𝑗 and 𝑐𝑜𝑏𝑠 have the same median (Wilcoxon rank sum test: p=0.106) or the same dispersion 

(Ansary- Bradley test: p=0.07). 

 To our surprise, however, the prediction of the SDT model did not hold when examining 

the covariations of predicted and actual criteria across participants. Using a one-sided Pearson 
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correlation analysis based on the alternative hypothesis that the predicted criterion 𝑐𝑠𝑢𝑏𝑗 has a 

positive correlation with the observed criterion 𝑐𝑜𝑏𝑠, we could not reject the null hypothesis at a 5% 

significance level (r=0.16, p=0.094; and r= 0.0705, p-value=0.272 after we removed one outlier 

identified when plotting the data, see Fig 5B). With Bayesian testing, using the statistical software 

JASP (JASP Team, 2022), this was accompanied by a Bayes factor BF0+ suggesting that there is 

moderate evidence supporting the lack of a relationship between these two quantities. Specifically, 

assuming that any positive Pearson correlation coefficient 𝜌 was equally likely a priori (i.e., using a 

Stretched beta prior width 𝜅=1, truncated to allow only values between 0 and 1), BF0+ indicated that 

the data were 3.807 more likely under the null H0 (i.e., 𝜌 = 0) than the alternative directional 

hypothesis H+ (i.e., 𝜌 ~ 𝑈[0,1]) (see Fig S2A in the Supplementary Materials). Furthermore, we 

performed a robustness check to assess the sensitivity of our findings to a wide range of priors (see 

Fig S2B in the Supplementary Materials). We found that, the Bayes factors BF0+ consistently 

indicated moderate evidence for H0 over H+ for prior widths 𝜅 greater than or equal to 0.66, and 

indicated only anecdotal evidence for H0 for lower prior widths (i.e., corresponding to assigning 

more mass to small correlation coefficients). This analysis suggests that we can discard at least a 

medium-to-large correlation, and that a larger sample might be needed to evaluate the possible 

presence or absence of a small correlation. 
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Figure 5. Overconfidence bias and conservative decision bias 

 

Note. (A) Distribution of the adjustment of decision criteria in the presence of a symbolic cue, as 

observed empirically (cobs, black line), predicted theoretically for ideal observer (cideal, blue line) 

and for overconfident participants (csubj, blue dotted line). (B) The relation between the criteria 

observed empirically (cobs) and the criteria predicted for overconfident participants (csubj). Each dot 

is a participant (N=69). The red line represents the best-fitting regression when all observations are 

included. The red dotted line represents the best fitting regression after removing one outlying data 

point (located at x=1.9). The black dotted diagonal line corresponds to the predicted relation 

between the two variables. 

 

3.4. Exploratory analysis of the sensitivity loss mechanism  

Since overconfidence bias did not lead to conservative decision bias, we conducted an exploratory 

analysis to evaluate whether overconfidence bias might affect performance in the cueing session via 

sensitivity instead. We asked whether overconfidence bias could induce a reduction in perceptual 

sensitivity in the 75% valid cue condition relative to the neutral condition, referred to as “sensitivity 

loss”. This would be consistent with the idea that overconfident participants invested less effort into 

processing the stimuli when offered a predictive cue, perhaps because they would believe that they 

were already doing well enough.  

 To evaluate this possibility, we estimated separate values of sensitivity (𝑑′) and decision 

criterion (𝑐) for each cue condition (right, left, and neutral) (see Table 1). Although there was no 

systematic change in sensitivity in the 75% valid cue condition relative to the neutral cue (average of 

𝑑𝑟𝑖𝑔ℎ𝑡
′  and 𝑑𝑙𝑒𝑓𝑡

′ : M=1.21, SD=0.39; neutral: M=1.26, SD=0.36; difference: M=-0.05, SD=0.28, t(68)=-
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1.51, p=0.13, Fig 6A), we observed a large heterogeneity across participants, which was a potential 

leverage to understand the relation between overconfidence bias and performance. We thus 

evaluated how this sensitivity change was correlated with raw overconfidence bias and found a 

significant negative correlation between the two measures (r=-0.265, p=0.028). In other words, 

more overconfident participants tended to exhibit lower sensitivity when given a predictive cue than 

in the no-cue condition (Fig 6B), although we should point out that overconfidence bias only 

explained about 7% of the variance in sensitivity change. We note that if overconfident participants 

have a lower sensitivity in the 75% valid cue condition, the acceleration of responses (measured as 

the difference in median response times between neutral and predictive cues) was not correlated 

with overconfidence bias (r=-0.07, p=.57). Therefore, sensitivity loss in overconfident participants 

was not the result of a speed-accuracy trade-off.  

 

Figure 6. Overconfidence bias and sensitivity loss 

 

Note. (A) Sensitivity in the presence of a 75% valid cue and in the no-cue (i.e., neutral cue) 

conditions. (B) The relation between sensitivity change (sensitivity 75% valid cue minus sensitivity 

neutral cue) and raw overconfidence bias. The red line represents the best-fitting regression. In both 

panels, each dot is a participant (N=69). The black dotted line corresponds to the 45-degree line. 

 

 To ensure that this result was not due to individual differences in global motivation to 

engage in the experiment, we evaluated the relation between overconfidence bias and sensitivity 
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change in a regression with control variables. To control for motivation to do well in the perceptual 

task, we used the calibrated difference in the number of dots (i.e., the difference in the number of 

dots between the left and right circles to calibrate stimulus difficulty per participant) averaged 

across both sessions, which we believe would be greater for less motivated participants. To control 

for motivation to do well in the confidence task, we included the resolution of confidence as well as 

the median of response times of confidence ratings, which we believe would be lower for less 

motivated participants. In addition, we controlled for cognitive abilities by taking the average value 

of the two working memory scores measured at the beginning of each session (see Methods S1 in 

the Supplementary Materials). Adding such control variables did not change our results (see Table S2 

in the Supplementary Materials), suggesting that global motivation is not a confounding factor. 

However, we noted that the internal consistency of sensitivity change was poor (median= 0.0612, 

95% HDI= [-0.3036, 0.3478]), due to the low reliability of 𝑑𝑟𝑖𝑔ℎ𝑡
′  and 𝑑𝑙𝑒𝑓𝑡

′  (median= 0.5188, 95% 

HDI= [0.3285, 0.6622] and median=0.5627, 95%HDI= [0.3973, 0.6940], respectively) whereas the 

reliability of 𝑑𝑛𝑒𝑢𝑡𝑟𝑎𝑙
′  was acceptable (median =0.7771, 95% HDI= [0.6924, 0.8449]). Such low values 

might be attributed to the low number of trials used with the split-half method to compute the 

sensitivity measures 𝑑𝑟𝑖𝑔ℎ𝑡
′  and 𝑑𝑙𝑒𝑓𝑡

′ .  

Given that the change in sensitivity across conditions appears to be related with 

overconfidence, we checked whether relaxing the assumption of constant sensitivity across 

conditions would affect our empirical test of the relationship between overconfidence bias and 

conservative decision bias. More specifically, we used the values of sensitivity and criterion 

estimated separately for each cue condition to compute again the observed criterion (M= 0.49, SD= 

0.40) and the predicted criterion (M= 0.65, SD= 0.49). Still, we found no evidence in support of a 

positive correlation between these two measures at a 5% significance level (r= 0.17, p-value=0.085 

after we removed two outliers identified when plotting the data) and found that the plots of the 

data look very similar (for comparison see Fig S3 in the Supplementary Materials), suggesting that 

the variation in sensitivity observed in our data did not affect our findings. 
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3.5. Model comparison: conservative decision bias vs. sensitivity loss mechanisms 

We used a model comparison approach to evaluate which mechanism better describes participants’ 

behavior: conservative decision bias as hypothesized initially or sensitivity loss as suggested by our 

exploratory analysis (see Table 2). In a series of probit mixed-effects models (DeCarlo, 1998; 

Knoblauch & Maloney, 2012), we estimated how participants’ responses (in the cueing session) were 

predicted on a trial-by-trial basis by the stimulus and the cue presented in each trial, and their 

interaction with participants’ raw overconfidence bias (calculated in the confidence session). Our 

simplest model (Model 0) included no effect of overconfidence bias but only effects of stimulus and 

predictive cue. Note that, in Table 2, the coefficients we obtain for Model 0 correspond to the SDT 

estimates. In particular, the Intercept is an estimate of the SDT-criterion in the presence of a neutral 

cue, the coefficient of CuePred is an estimate of the shift in criterion in presence of a predictive cue 

(as opposed to a neutral cue), and the coefficient of Stimulus is an estimate of the sensitivity. In 

addition, Model 1 included a two-way interaction CuePred x Overconf to allow overconfidence bias 

to affect the criterion placement in presence of a predictive cue, thereby implementing the 

conservative decision bias mechanism predicted initially, while Model 2 included a three-way 

interaction CuePred x Stimulus x Overconf to allow overconfidence bias to affect the sensitivity in 

presence of a predictive cue, thereby implementing the sensitivity loss mechanism identified in our 

explanatory analysis.  

 In Model 1, the two-way interaction term CuePred x Overconf is not significantly different 

from 0 thus overconfidence bias does not produce a significant difference in criterion placement in 

presence of a predictive cue. On the other hand, in model 2, the three-way interaction term is 

significantly different from 0 at a 5% significance level and the sign is negative, bringing support to 

the novel hypothesis that overconfidence bias reduces sensitivity in presence of a predictive cue.  

 Comparing nested models using likelihood ratio tests, we found that including the 

modulation of sensitivity by overconfidence better described the data (model 2 vs. model 0: χ2(5) = 
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16.886, p<0.01; and model 2 vs. model 1: χ2(3) = 12.551, p<0.01). However, including the modulation 

of the criterion by overconfidence did not (model 1 vs. model 0: χ2(2) = 4.335, p = 0.115). Comparing 

the Akaike Information Criteria (AIC), provides evidence, as well, in favor of model 2 (i.e., the 

“sensitivity loss” mechanism). According to the raw AIC values, model 2 is the preferred model since 

it has the lowest AIC value (Model 0: AIC= 37166.9, Model 1: AIC= 37166.57, Model 2: 

AIC=37160.02). In addition, comparing the Akaike weights, we found that model 2 is 
𝑤2(𝐴𝐼𝐶)

𝑤1(𝐴𝐼𝐶)
=26.7 

times more likely to be the best model in a Kulback-Leibler sense than is the next best fitting model 

(model 1). 

 

Table 2. Model comparison 

 DV: Response 

 Model 0 Model 1 Model 2 

Intercept 0.029 
(0.024) 

-0.009 
(0.030) 

-0.007 
(0.030) 

CuePred 0.498*** 
(0.046) 

0.464*** 
(0.058) 

0.465*** 
(0.058) 

Stimulus 1.221*** 
(0.041) 

1.221*** 
(0.041) 

1.259*** 
(0.054) 

Overconf  -0.456* 
(0.217) 

-0.434* 
(0.220) 

CuePred x Overconf  0.399 
(0.426) 

0.493 
(0.424 

CuePred x Stimulus   -0.027 
(0.040) 

Stimulus x Overconf   -0.038 
(0.390) 

CuePred x Stimulus x Overconf   -0.671* 
(0.294) 

Random effects YES YES YES 

Dfi 9 11 14 

LLi -18574.5 -18572.3 -18566 

AICi 37166.9 37166.57 37160.02 

wi(AIC) 0.030 0.035 0.935 

Nb observations 35328 35328 35328 

Nb participants 69 69 69 

Note. Each model is a probit regression in which participants’ responses were predicted on a trial-by-

trial basis. To account for random variations across participants, all models included random 

criterion effects and random sensitivity effects at the participant’s level. Response is coded as 1 if the 

participant responds “left” and 0 if he/she responds “right”. Intercept is coded as -1. Stimulus is 
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coded as -0.5 if the stimulus category is right and +0.5 if the stimulus category is left. CuePred is 

coded as 1 for predictive cues and 0 for neutral cues. Note that to study the effect of CuePred on 

participants’ responses, we grouped the trials in which a right or left cue was presented and 

reversed the coding of the variables Response and Stimulus when a right cue was presented. 

Overconf is the participant’s raw overconfidence bias measured in the confidence session (i.e., 

average confidence minus average accuracy). Dfi is the degree of freedom for model i. LLi is the 

logarithm of the maximum likelihood for model i. AICi is the Akaike information criterion for model i. 

wi(AIC) is the rounded Akaike weight for model i. Estimations are performed with the glmer function 

of the R package lme4 (Bates et al., 2015). Standard errors are reported in parentheses. pvalues: 

*p<0.05; **p<0.01; ***p<0.001. 

 

4. Discussion 

We described a theoretical model according to which overconfidence bias would induce 

conservative decision bias in response to unequal base rates. Within the SDT framework, we 

provided a quantitative measure of overconfidence bias (i.e., the overestimation of one’s own 

sensitivity to the sensory signal) and derived a predicted criterion adjustment from this value. We 

then tested the proposed model using a psychophysical task. Contrary to what was prescribed by the 

model, overconfidence bias and conservative decision bias appeared uncorrelated across 

participants. Our data prompted us to consider that overconfidence bias may affect performance via 

a different mechanism. And, our final analysis suggested that overconfidence bias may induce a 

reduction in sensitivity in response to unequal base rates. Specifically, we found that overconfidence 

bias was positively correlated with this sensitivity loss. Model comparison confirmed this novel 

finding, that participants’ decisions are better explained by an effect of overconfidence bias on 

sensitivity rather than on criterion adjustment.  

That overconfidence bias and conservative decision bias were uncorrelated is consistent 

with a recent study (Ackermann & Landy, 2015) that found that misestimating internal response 

variability (formally equivalent to our 𝑑′𝑠𝑢𝑏𝑗) in a visual detection task is not the cause of 

conservative decision bias. Our findings are similar but by collecting confidence data we provide a 

more direct test of the hypothesized link. It should be emphasized that this absence of correlation is 

not likely to be due to poor experimental measures of the two quantities, as both have good internal 



 26 

 

consistency and were clearly manifest in our data, in line with previous studies using perceptual 

tasks reporting overconfidence bias (Baranski & Petrusic, 1994; Kubovy, 1977; Kvidera & Koutstaal, 

2008; Mamassian, 2008; Massoni et al., 2014) and conservative decision bias (Ackermann & Landy, 

2015; Gorea & Sagi, 2000; Green & Swets, 1966; Kubovy 1977; Morales et al., 2015). Furthermore, 

although we cannot verify in our data that overconfidence bias remained stable across the two 

experimental sessions spaced four days apart, as we hypothesized in our empirical strategy, recent 

studies (Ais et al., 2016; Navajas et al., 2017) have found evidence to support this assumption. 

However, we should also note that the present study relied on several assumptions that have been 

questioned in the literature. In particular, our estimation of conservative decision bias was based on 

Signal Detection Theory with the assumption of Gaussian noise (see Fig 2), and conservative decision 

bias observed in our data could be the result of this assumption if it were incorrect (Maloney & 

Thomas, 1991). In addition, we assumed that participants reported their true confidence level but, 

even though their confidence report was incentivized, this might not have been the case as some 

authors have pointed out that the mapping of internal evidence into stated probabilities can suffer 

from biases (e.g., Fox and Clemen, 2005; Higham et al., 2015). Similarly, even though participants 

were instructed to use the probabilistic information provided by the cues to maximize their earnings, 

we cannot discard the possibility that the mapping of the 75% probability into internal evidence 

might have been distorted (e.g., Zhang & Maloney, 2012).  

 We will now offer some tentative explanation for this correlation between overconfidence 

bias and sensitivity loss in response to unequal base rates. We acknowledge that this explanation is 

offered a posteriori and needs to be evaluated against new data in future work. Our explanation 

relies on two assumptions. Our first assumption states that participants face a tradeoff between the 

effort they deploy when they perform the task, which allows them to maintain their sensitivity, and 

the satisfaction they obtain by producing correct answers. When considering this tradeoff, they 

might evaluate that there is a level of effort that maximizes the difference between expected 

benefits and costs, and aim for this level. This idea is similar to ideas of rational inattention in 
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behavioral economics (Sims, 2003) and expected value of control in cognitive neuroscience (Shenhav 

et al., 2013). More generally, this idea of self-regulation is also put forward in the domain of 

education, to understand how students allocate their resources when preparing for an exam (Son & 

Metcalfe, 2000). In this scheme, participants may see the information provided about the a priori 

probability of occurrence of the stimuli as an opportunity to maintain performance while deploying 

less effort during the task, such that they would target a lower effort (resulting in lower sensitivity). 

Indeed, an experiment showed that participants’ subjective evaluations of effort decreases when 

diagnostic cues are available to help them (Botzer et al., 2013). Our second assumption simply states 

that overconfidence bias corresponds to participants overestimating their probability of being 

correct when performing the task. Although this assumption is uncontroversial, it has some non-

trivial effects when combined with the first assumption. Specifically, since overconfident and well-

calibrated participants would not evaluate their accuracy at the same level, they will face different 

trade-offs, with distinct optimal solutions in terms of effort allocation. Again, we insist that, since 

this explanation is offered after the fact, other mechanisms could be formulated to explain the loss 

of sensitivity observed in our data. More theoretical work and new empirical data would be needed 

to uncover the mechanism by which overconfidence bias and sensitivity loss are related. Our 

findings thus bring new perspectives on the role of overconfidence bias on the strategic allocation of 

resources in such situation.  

 In sum, the Signal Detection Theory approach allowed us to break down participants’ 

suboptimal decisions in response to unequal base rate into two components, namely a sensitivity 

loss and an under-adjustment of criterion (i.e., conservative decision bias). And, our data suggest 

that overconfidence bias leads to suboptimal decisions via a sensitivity loss mechanism, 

independently of the under- adjustment of criterion, which is also present but unrelated to 

overconfidence in our data. Given that overconfidence bias and conservative decision bias have 

been observed, although separately, for a diverse range of participants with laboratory tasks using 

basic visual decisions but also in experiments emulating real-world decisions, we expect our finding 
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(i.e., the absence of a positive link between these two biases) to generalize to visual stimuli in which 

participants make similar discrimination tasks. A direct replication would need to calibrate the 

difficulty of the task, measure confidence in decision when stimuli are a priori equally likely to occur, 

fully inform participants about the manipulation of the base rate and incentivize them to be 

accurate. We have no reason to believe that the results depend on other characteristics of the 

participants, materials, or context. On the other hand, and to the best of our knowledge, we lack 

prior direct evidence supporting our finding regarding the link between overconfidence bias and 

change in sensitivity and given the poor internal consistency of the measure of sensitivity change the 

correlation that we found might differ in future replications. Finally, it must be noted that our 

sample size was calculated to detect a correlation between overconfidence and conservative 

decision bias with at least a medium effect size. If instead one assumes that this correlation exists 

but might be very small, then a larger sample size would be needed to demonstrate it. In addition, 

such a small correlation (if it existed) would diminish the practical and theoretical importance of the 

mechanism linking overconfidence to conservative decision bias. Thus, in any case, further 

investigations are needed to examine other possible sources of conservative decision bias.  
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