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Thomas Richard de Latour1, Raphaël Chenouard1 and Laurent Granvilliers1
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Abstract

During preliminary phases in product design, on the basis of strong physical hypotheses (e.g. isotherm,
steady state), physical and functional requirements can be expressed as coarse-grained constraint-
based models on a few degrees of freedom, possibly including several design criteria to optimize.
Such models are usually handled by multi-objective optimization solvers in order to find design solu-
tions giving the best trade-offs between design criteria. Another approach developed in this paper
is to partially explore all the areas of the design space using an anytime interval branch-and-prune
algorithm called IDFS such that the design criteria are converted into so-called ε-constraints. The
expected result is a sample of solutions diversified in both the objective space and the design space.
Several quality indicators are introduced in order to measure this diversity and compare IDFS with
two state-of-the-art multi-objective optimization solvers NSGA-II and NSGA-III on three real-world
case studies. The results show that IDFS is able to identify new close-to-optimal designs and per-
mits a better understanding of the design space. This framework provides a promising alternative
tool for decision making, in particular for integrating interaction in the preliminary design process.

Keywords: Design space exploration, numerical constraint satisfaction problem, anytime branch-and-prune
algorithm, multi-objective optimization, preliminary design

1 Introduction

1.1 Context

New challenges in the preliminary design pro-
cess of products or systems are to be able to
deal with their increasing complexity as well as
considering their whole life cycle [1]. In this con-
text, defining the best system regarding design
requirements is a hard task where multiple criteria
can be used to analyze possible design candi-
dates. Design space exploration [2] addresses this
problem by automating the selection of design
alternatives prior to any detailed design phases. At

this stage of the design process, a system can be
represented by a coarse-grained model assuming a
minimum number of degrees of freedom and strong
physical hypotheses (isotherm, steady state, etc.)
while focusing on main peculiarities of the system.
The unknowns can be defined by variables lying
in domains and the design requirements can be
expressed as constraints on these variables, i.e. we
have a constraint satisfaction problem (CSP) [3–6]
that must be small-scale with at most a few dozens
of variables. Moreover, the functional, physical, or
topological specifications of a system often lead to
several design criteria to optimize, e.g. maximize
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power and minimize cost or impact. Hence, design-
ers seek to compute the best trade-off solutions
while satisfying all constraints.

Optimization methods are widely used in this
context to compute the set of best trade-off solu-
tions in the objective space called Pareto Front
(PF) [7–12]. On the one hand, the different cri-
teria to optimize in a design problem can be
transformed into a single objective function using
different techniques, such as the weighted sum
technique where all criteria are weighted and
aggregated or the ε-constraint method where all
criteria but one are relaxed as inequality con-
straints. It comes in general a mixed-integer non-
linear optimization problem (MINLP) that can be
handled by global optimization solvers in order
to compute a guaranteed optimum located on
the PF. This approach is particularly effective for
evaluating extreme points of the PF that can be
useful to get a first understanding of the solu-
tion set. Unfortunately, multiple runs are needed
to approximate the PF, which quickly becomes
laborious, especially in high dimensional objec-
tive spaces. On the other hand, it is possible to
directly solve a mixed-integer multi-objective opti-
mization problem (MOP) using meta-heuristics
like evolutionary algorithms, simulated annealing,
or particle swarm optimization. These techniques
rely on non-deterministic algorithms to compute
optimal or quasi-optimal solutions in a reasonable
time [12, 13].

1.2 Motivating example and limits

To illustrate our context, we consider the design
of an internal combustion engine (ice) described
in [14]. This problem is modeled as a simple flat
head combustion chamber (Fig. 1). It is based
on thermodynamic principles with the hypothesis
of an ideal thermal efficiency. The corresponding
problem has five continuous design variables and
nine inequality constraints (Annex A.1). The ini-
tial design objective is to maximize the obtained
power per unit displacement volume BKW/V
(kW/l). We consider here a second criterion in
order to minimize the fuel consumption ISFC
(g/kWh).

The ice model is a bi-objective non-linear con-
tinuous optimization problem which can be solved
by the genetic algorithm NSGA-II [15] using the

Fig. 1: Internal combustion engine design prob-
lem from [14]

Table 1: ice model main parameters
Name Description Variable type
b Cylinder bore, (mm) Design
Cr Compression ratio Design
dE Exhaust valve diameter (mm) Design
dI Intake valve diameter (mm) Design
w Revolutions per minute at peak power Design
ISFC Fuel consumption (g/kW-h) Objective
BKW/V Brake power per volume unit (kW/1) Objective

pymoo library 1. The solving parameters used are
a population size of 200, a tolerance on the objec-
tives of 10−5, and at most 1500 generations. A
good convergence is obtained after 250000 func-
tion evaluations. The approximated Pareto front
Θice composed of 190 solutions is presented in
the objective space (Fig. 2a). The corresponding
solutions are also represented in the design space
(Fig. 2b). Those designs reflect the best alterna-
tives of our problems in a mathematical sense.
However, knowing the limits of this model, the
designer may want to consider the full picture of
the feasible space and seek different alternatives
in the design space.

In general, some limits can be observed in
the use of optimization during the preliminary
design phase. Many hypotheses still last : steady
state, approximate data and uncertain values at
the frontier of the system [16]. As a result, the
computed solutions may not accurately reflect
the expected performances while they are often

1https://pymoo.org/

https://pymoo.org/
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(a) Approximated Pareto front of the ice problem
obtained with NSGA-II.

(b) Solutions from NSGA-II presented in the design vari-
able space.

Fig. 2: Results from the optimization of the ice problem with NSGA-II

located at the frontier of the feasible space with
multiple active constraints. Secondly, objectives
may be difficult to express regarding all aspects
(functional, usage, manufacturing, and environ-
mental) of complex system design. In particular,
environmental specifications often imply several
additional criteria [17]. Thirdly, optimal or near-
optimal solutions may not reflect the shape of the
design solution space and interesting sub-optimal
candidate designs may be out of reach. Even if
MOP solvers are able to compute many diverse
solutions, their distribution is often sought only
in the objective space [18–20]. Furthermore, the
performances of those solvers are degraded in the
presence of several objectives (3 or more) [21, 22].

1.3 Propositions

Considering those observations, this paper pro-
poses a new methodology based on a partial
exploration of the design space modeled as a CSP
such that each design criterion is handled as an
ε-constraint. The goal is to compute a reasonably
sized subset of solutions that are diverse enough
to cover the solution space in both the design
space and the objective space. From a decision-
making perspective, this approach enables to get
a clear vision of the feasible space, to position the
final design relatively to other alternatives and

to favor an interactive method with the user. To
this end, we propose to implement a determinis-
tic branch-and-prune (B&P) algorithm based on
interval methods [23] with an anytime behavior as
done in [24]. Our contribution is threefold:

• We introduce a new search strategy for anytime
B&P algorithms with good scalable properties
to tackle design CSP.

• We define new quality indicators to evaluate the
convergence towards a set of diverse solutions in
both the design space and the objective space.

• We evaluate our partial exploration paradigm
by comparing it with well-known evolutionary
optimization methods on three case studies.

The rest of this paper is structured as fol-
lows. Section 2 introduces preliminary notions
essential for the understanding of the mechanisms
behind B&P algorithms and optimization solvers.
Section 3 details previous works related to anytime
B&P algorithms, as well as the related contribu-
tions. Experiments are conducted in Section 4.
The experimental protocol is detailed in the first
part of this section, then each case is treated sep-
arately. The results are discussed in section 4.5
followed by a conclusion in Section 5.
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2 Preliminaries

In this paper, engineering design problems are
modeled as numerical constraint satisfaction or
optimization problems involving continuous vari-
ables, discrete variables, and various kinds of con-
straints like nonlinear equations, inequality con-
straints, and global constraints. We will introduce
these problems and associated solving methods
thereafter.

2.1 Intervals

Let [x] = [x, x] denote a closed interval of real
numbers and let I be the set of intervals. The
width of [x] is defined by w([x]) = x − x. The
hull of a set S ⊆ R is defined by the interval
□S = [inf S, supS].

A box [x] of dimension n is a Cartesian product
of intervals [x]1 · · ·×[x]n. The hull of a set S ⊆ Rn

is defined by the box □S = □S1×· · ·×□Sn where
each Si is the i-th projection of S. The hull of a
set of boxes corresponds to the hull of their union.

2.2 Constraint satisfaction problems

Definition 1 (CSP) A (numerical) constraint satis-

faction problem is a triple P = (x, [x]0 , C) where

• x = (x1, . . . , xn) ∈ Rn is a vector of variables
such that we have xi ∈ Z for each i in a given a
set of indices I ⊆ {1, . . . , n},

• [x]
0
is a box of dimension n such that [x]

0
i is the

domain of xi for each i ∈ {1, . . . , n}, and
• C is a set of constraints over x such that each
constraint restricts the acceptable values of the
variables taken in [x]

0
.

A solution of P is a tuple s = (s1, . . . , sn) ∈ [x]0 such
that we have si ∈ Z for each i ∈ I and each constraint
c ∈ C is satisfied by s, i.e. c is true when each xi
is assigned to si. The set of all the solutions of P is
denoted by S.

Numerical CSPs can be solved in a complete
way by spatial branch-and-prune algorithms that
calculate a set of boxes enclosing S at a given
precision [23]. To this end, a relative precision is
introduced for each variable, which may reflects
e.g. physical requirements in an engineering design
context. Given ϵ = (ϵ1, . . . , ϵn) ∈ Rn

+, we say that

a box [x] ∈ In is an ϵ-box if we have

w([x]i) ≤ ϵi(|xi|+|xi|)

for each i ∈ {1, . . . , n}, i.e. the box is pre-
cise enough with respect to the requirements. An
ϵ-paving is a set of ϵ-boxes enclosing S.

A branch-and-prune algorithm generates a
search tree from the initial box [x]

0
until reaching

an ϵ-paving. Every box [x]
k
of the tree is con-

tracted (or pruned, or reduced) such that the new

box [x]
k+1

verifies

[x]
k ∩ S ⊆ [x]

k+1 ⊆ [x]
k
,

i.e. no solution in [x]
k
is lost. After this step, an

empty box is fathomed, an ϵ-box is labelled as a
solution box, and any other box is split into a set
of sub-boxes. In order to ensure the convergence
of the algorithm, it suffices to regularly split the
largest component of every box.

This algorithm requires an exponential time
cost in the worst case. So, its application must
be restricted to small-scale problems or medium-
scale problems with specific structures. Moreover,
the use of powerful contraction methods is of
particular importance in order to accelerate the
convergence. Given a box [x]

k
, constraint propa-

gation is a fixed-point algorithm that reduces [x]
k

by considering the constraints one by one. Each
constraint is processed by a reduction technique
like HC4 [25] and the modifications of domains are
propagated to the other constraints, and so on. It
is expected to converge towards the hull of the set
[x]

k ∩ S with reductions that are local in essence,
which may be optimistic in many situations due to
the form of nonlinear constraints. A complemen-
tary approach is to generate a linear relaxation of
the constraints using e.g. Taylor forms [26]. Then

each of the 2n facets of [x]
k
can be reduced by

solving a linear program. The quality of reduc-
tions strongly depends on the tightness of relax-
ations. Such techniques are implemented in the
IBEX solver [27] that is also our experimentation
platform.

Example 1 Let x21 + x22 ≤ 2 be a constraint and
let [x] = [−5, 5] × [−5, 5] be a box. Using interval
arithmetic, we deduce that x22 ∈ [0, 25] and it fol-
lows that x21 ≤ 2. The domain of x1 is then reduced
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to
[
−
√
2,
√
2
]
. The HC4 technique automatizes such

interval reasoning and the reduced box here is the hull
of the circle of radius

√
2 centered at (0, 0).

2.3 Optimization problems

Optimization problems are basically CSPs with
one or several objective functions. In the following,
let S be the solution set of a CSP as previ-
ously introduced, also called feasible set in an
optimization context.

Definition 2 (MINLP) Given an objective function
f : Rn → R, a mixed-integer nonlinear program can
be defined as

min
x∈S

f(x).

A solution x∗ ∈ S is optimal if for all x ∈ S we have
f(x∗) ≤ f(x). The value f(x∗) at any optimal solution
x∗ is the global optimum.

Spatial branch-and-bound algorithms are able
to globally solve MINLPs in a deterministic way.
They are basically designed as branch-and-prune
algorithms with bounding components. Lower
bounds of global optima can be obtained through
the solving of linear relaxations. Feasible points
and upper bounds of global optima are derived in
general by local solvers implementing e.g. classical
mathematical methods. Once again, this algo-
rithm runs in an exponential time worst case
and it may fail to solve large-scale problems.
BARON [28] and ANTIGONE [29] are powerful
solvers in this domain.

Definition 3 (MOMINLP or simply MOP) Given an
integer p ≥ 2 and p functions f1, . . . , fp : Rn → R,
a multi-objective mixed-integer nonlinear program can
be formulated as

min
x∈S

(f1(x), . . . , fp(x)).

Given two solutions x,y ∈ S, we say that x dominates
y if we have fk(x) ≤ fk(y) for each k ∈ {1, . . . , p} and
fk(x) < fk(y) for some k ∈ {1, . . . , p}. Any solution
x∗ ∈ S is Pareto optimal if no other solution domi-
nates it. The Pareto set is the set of all Pareto optimal
solutions. The Pareto front is the set of all vectors of
the form (f1(x

∗), . . . , fp(x
∗)) such that x∗ is Pareto

optimal.

A MOP maps the decision space of dimension
n to the objective space of dimension p. Solv-
ing MOPs is hard when the number of objectives
p is increased and they are usually handled by
metaheuristics. These methods aim at finding a
good approximation of the Pareto set that is dis-
tributed as well as possible in the Pareto front.
For example, population-based methods like ant-
colony optimization and evolutionary algorithms
maintain a set of candidates in the decision
space. A new generation of candidates results
from crossover and mutation, and the challenge
is to ensure convergence towards good (and even
Pareto optimal) solutions and to maintain diver-
sity of the solutions. In other words, one wants the
candidates to move closer to the Pareto front and
to be located in different areas of the Pareto set
and the Pareto front.

Scalarization techniques reformulate MOPs as
MINLPs. For example, the weighted-sum tech-
nique assigns weights to the objective functions
and aggregates them into one single function, and
the ε-constraint method transforms all objectives
but one into inequality constraints [30]. Solv-
ing those MINLPs globally aims at finding non
dominated solutions.

Many performance indicators have been intro-
duced over the years to evaluate the quality of
Pareto set approximations. [31] classifies them in
categories and motivates their use to compare dif-
ferent algorithms and to define stopping criteria.
For example, the hypervolume, related to conver-
gence and distribution properties, is the volume
of the dominated space between the approximated
Pareto front and a reference point [32]. The higher
the hypervolume is, the better the approximation.

2.4 Problems in engineering design

In this paper, we consider the design process based
on three main steps as depicted in Fig. 3. First,
the needs and requirements analysis aims at iden-
tifying the decision criteria to consider, as well
as the design variables and performance or oper-
ational constraints to satisfy. Secondly, the design
problem is formulated as a mathematical deci-
sion problem used to explore the design space
to support designers in the selection of the best
promising principles of design solutions. Finally,
the selected principles of solutions are developed
for a detailed analysis.
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Needs and 
requirements

Analysis
Detailed design

Design space exploration

 Problem 
Formulation

Problem 
solving

Solution 
space analysis

Fig. 3: Simplified design process.

We focus on the design space exploration pro-
cess, also called design synthesis process. This step
is often adapted to use a specific optimization
solving technique [33, 34]. In this case, the design
decision problem is reformulated into a design
optimization problem. As previously introduced,
the criteria of the decision problem may be trans-
formed into ε-constraints, or aggregated into one
or several objective functions, depending on the
used solving technique. In this case, the major
reason guiding the reformulation is to fit with
the solving technique requirements, like efficiently
handling constraints (equations, inequalities, table
constraints, etc.) and supporting a single or sev-
eral objective functions.

Design decision 
problem

(CSP)

Design 
MOP/MINLP 

Partial solution 
space

Reformulation Optimization

Partial/Complete 
solution space

  Partial/Full 
     exploration

Retry/reformulation

Selected 
solution(s) for 
detailed phase

Selection

Fig. 4: Design exploration steps.

Fig. 4 shows the two main possible paths fol-
lowed by designers to explore the design space.
In the first one, the result is a partial solution
space that can be limited to a single solution
for a single optimization problem. Then, several
reformulations can be applied to get more diverse
solutions. The optimization problem can be mod-
ified to aggregate the criteria differently or to
adapt the ε-constraints until the computed solu-
tion fits the expectations. In the second path,
designers directly use a solving technique able
to explore the design decision problem, as for
instance a CSP solver [35]. The main issue, in this
case, is that the solution space is often huge and
not reasonable to fully explore. Most exploration
strategies do not consider any diversity indicator
to guide the exploration. Then, a partial solution
set generated by a default strategy may corre-
spond to similar principles of design solutions.
A few exploration strategies were introduced to

compute partial solutions based on an anytime
branch-and-prune algorithm and a distance indi-
cator [24], but the computational complexity does
not allow scaling to the design of complex systems.

3 Anytime deterministic
search

3.1 Quality of approximation

The solution set S of a (numerical) CSP is in gen-
eral a union of disconnected regions in Rn and
calculating an ϵ-paving of S is not practicable
in general. From an application perspective, it
could be desirable to sample those regions, hence
providing solutions with different characteristics
and revealing the shape of S. We propose to
handle this problem using a partial deterministic
search algorithm, more precisely a branch-and-
prune algorithm with limited resources like a time
limit or a limit on the number of solutions. In this
algorithm, the selection component of the next
node of the search tree to be processed controls the
exploration strategy. Let us examine the following
academic example.

Example 2 Let P = (x, [−5, 5]2 , {2 ≤ x21 + x22, x
2
1 +

x22 ≤ 4}) be a CSP. Its solution set S corresponds to
the space between two concentric circles, as depicted
in Fig. 5. A depth-first search strategy goes down each
branch of the search tree as deep as possible before it
backtracks to the closest unexplored node. As a con-
sequence, the computed ϵ-boxes are accumulated in
the same sub-region of S. A second strategy is able to
generate a more diverse set of solutions at any time of
the computation.

As illustrated above, our goal is to design an
anytime algorithm that is able to return a good
approximation of S when the allocated resources
are exceeded. The quality of such an approxima-
tion can be observed according to the following
criteria inspired from the performance indicators
used in the multi-objective optimization field.

• Spread QH . The computed approximation inter-
sects the different regions of the solution set and
some ϵ-boxes are close to their boundaries.

• Distribution QA. The ϵ-boxes are well dis-
tributed in the solution set.
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(a) 20 ϵ-boxes (b) 100 ϵ-boxes (c) 500 ϵ-boxes

(d) 20 ϵ-boxes (e) 100 ϵ-boxes (f) 500 ϵ-boxes

Fig. 5: Partial covering of the solution set of P = (x, [−5, 5]2 , {2 ≤ x2
1 + x2

2, x
2
1 + x2

2 ≤ 4}). Figures from
a) to c) are obtained with an anytime search strategy and, from d) to f) with a depth-first search strategy.

• Cardinality QC . The number of ϵ-boxes shows
the capacity of the algorithm to find solutions.

The first two criteria are defined below. Let
Σ = {[s]1 , . . . , [s]m} be a set of ϵ-boxes approx-
imating S and let □Σ be the hull of Σ. Given
the initial box [x]

0
, the spread indicator is a ratio

between the volume of the approximation and the
volume of the initial box, defined by

QH =
v(□Σ)

v([x]
0
)

(1)

where the volume of a box [x] is defined by

v([x]) =
∏

j,w([x]j)>0

w([x]j)

ϵj
.

The above definition considers only the intervals
that are not reduced to one point. That eliminates
each variable having the same value in all the ϵ-
boxes. This notion is illustrated by Fig. 6.

The distribution indicator is a mean minimal
distance between the ϵ-boxes and we expect that
they are not too close to each other. This indicator

Fig. 6: Σ1 and Σ2 are two approximations of the
solution space P = (x, [−5, 5]2 , {2 ≤ x2

1+x2
2, x

2
1+

x2
2 ≤ 4}) and we have QH (Σ1) < QH (Σ2).

is defined by

QA =
1

m
·

m∑
i=1

min{d([s]i , [s]j) : 1 ≤ j ≤ m, j ̸= i}

where d is a distance function. The Hausdorff
distance between two intervals is defined by

dh([x] , [y]) = max(|x− y|, |x− y|)
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and it is extended to boxes by taking the max-
imum distance componentwise. When used in
QA it tends to favor diversity along the largest
domains. To counteract this effect, we define the
normalized Hausdorff distance between boxes

dh([x] , [y]) = max

{
dh([x]i , [y]i)

w([x]
1
i )

: 1 ≤ i ≤ n

}

where [x]
1
is the box obtained by contraction of

the initial box [x]
0
. By this way, the variables

with the largest domains after the first contrac-
tion are penalized. Compared to other metrics, the
Hausdorff distance does not add different quanti-
ties (like power and emissions), this is the interval
equivalent of the Tchebytcheff norm used in [36].

3.2 Algorithm

Best-first search (BestFS) is a search strategy
on graphs [37]. During the search, the next can-
didate nodes are evaluated using a merit or
measure-of-best function ρ and the best one is
selected to continue the exploration. For exam-
ple, this strategy is classically implemented in
branch-and-bound algorithms for globally solv-
ing optimization problems such that next node
gives the smallest (or greatest depending on the
optimization direction) lower bound of the objec-
tive function. Anytime branch-and-prune strate-
gies can be built on this paradigm with merit
functions designed to maximize the quality of the
resulting set of ϵ-boxes. The difficulty is here to
address both convergence and diversity properties.
As observed in [24, 38], BestFS strategies lack effi-
ciency to converge quickly towards the solutions
since they tend to mimic breadth-first exploration.
To overcome this problem, it is interesting to
hybridize best-first and depth-first stages, BestFS
favouring the diversity and DFS ensuring the
convergence. Distant-most and depth-first-search
(DMDFS) [24] is such an hybrid strategy such that
the merit function ρ leads to maximize the dis-
tance between the ϵ-boxes already computed and
the unexplored part of the search space. While
resulting in good approximations, the evaluation
of ρ is very expensive and grows with the number
of ϵ-boxes.

Alg. 1 is an anytime branch-and-prune algo-
rithm designed as an hybrid BestFS-DFS strategy.

The next selected box (line 4) is the front ele-
ment of the list of unexplored boxes L. The DFS
behavior follows from the management of L as a
stack such that the sub-boxes generated by the
splitting step are inserted in the front of L (lines
13 and 14). The BestFS behavior consists in sort-
ing L based on ρ each time a solution is found
(line 10). We propose to use a cheap and efficient
merit function such that L is sorted in descend-
ing ordering of the depth of nodes in the search
tree. By this way, the node selected at the next
iteration of the loop is the highest in the search
tree, which is expected to be the biggest and least
explored region of the search space. It follows a
hybrid path between DFS and bread-first explo-
ration, as inspired from [39]. The acronym used in
[39] to designate this strategy is kept here, namely
interleaved depth-first search (IDFS).

Algorithm 1 Anytime B&P

Input: CSP P = (x, [x]
0
, C), precision vector ϵ,

measure-of-best function ρ, stopping criterion ϕ
Output: set of ϵ-boxes Σ approximating the
solution set of P
1: let L← ([x]

0
) be a list of boxes

2: let Σ← ∅ be a set of boxes
3: while L is not empty and ϕ is false do
4: let [x]

k
be the front element of L

5: remove [x]
k
from L

6: [x]
k+1 ← contract [x]

k
using C

7: if [x]
k+1

is not empty then

8: if [x]
k+1

is an ϵ-box then

9: insert [x]
k+1

in Σ
10: sort L based on ρ
11: else
12: ([x]

k+2
, [x]

k+3
) ← split [x]

k+1

13: push [x]
k+2

in the front of L

14: push [x]
k+3

in the front of L
15: end if
16: end if
17: end while

4 Case Studies

The partial design space exploration approach
is applied to three real-world case studies, an
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internal combustion engine (ice) [14], an elec-
tromechanical actuator (act) [7], and the water
problem (wat) from [40], and it is compared with
optimization solvers. Their CSP and MOP models
are given in the appendices.

4.1 Protocol

The design space exploration is done using an any-
time B&P algorithm implemented in C++ with
the IBEX2 library. Our IDFS strategy considers a
largest-first branching operator that always selects
the largest component of a box and a propagation
algorithm based on HC4 as reduction technique.
The relative precision is assigned to ϵi = 10−3 for
each variable xi. The stopping criterion of the par-
tial exploration is defined as the number of ϵ-boxes
solutions QC , which is sized to find a good com-
promise between diversity in the solution space
and a reasonable number of designs to consider.
To estimate QC , a first exploration is done with
an oversized stopping criterion Q0

C ≥ 1000 to ana-
lyze the evolution of QH and QA. Then QC is built
using the formulas

QH(m)

Qmax
H

≥ 80%, (2)

QA(m+∆m)−QA(m)

QA(m)−QA(Q0
C)

≤ 1%, (3)

with 1 ≤ m ≤ Q0
C , ∆m a variation of the number

of solutions and Qmax
H the volume of the hull con-

taining the feasible space. The first formula states
that the subset of ϵ-boxes has to cover at least 80%
of the complete feasible space area. The second
one estimates when a variation of ∆m solutions
does not decrease QA by more than 1%. This sec-
ond step can be seen as the point where IDFS
starts to increase the density of solutions in areas
already explored enough. Eventually, we analyse
the global evolution of QH and QA to conclude.
The final subset of QC ϵ-boxes distributed in the
feasible space is denoted by Σ.

The multi-objective optimization solvers used
are the evolutionary algorithms NSGA-II and
NSGA-III through the python library pymoo3.

2http://www.ibex-lib.org/
3https://pymoo.org/

NSGA-II is preferred for the bi-objective prob-
lem, and NSGA-III for MOPs with 3 or more
objectives. All the three case studies are under-
constrained problems and feasible solutions are
obtained early in the solving process. The chal-
lenge is to converge as close as possible to the
Pareto front. To ensure a good convergence, the
resolution is evaluated through the hypervolume
HV [32] with the Nadir point as reference point.
Both algorithms lead to a subset of solutions
approximating the Pareto front denoted by Θ.
Table 2 presents the resolution parameters for
NSGA-II and NSGA-III.

Table 2: NSGA-II and NSGA-III shared resolu-
tion parameters, with n the number of variables
of the problem

Parameter Value
Mutation rate 1/n
Mutation distribution 30
Crossover probability 0.95
Crossover distribution 20

Once a problem is solved with both exploration
and optimization approaches, the results are com-
pared according to QH , QA and HV . Each step of
the experiment is detailed for the first problem ice.
All the experiments have been done with a Linux
Core i7-9850H 2.6 GHz (16 GB).

4.2 Internal combustion engine

4.2.1 Experiments

The ice problem described in the introduction is
first solved through an optimization method using
NSGA-II. The normalized hypervolume is given
in Fig. 7. The solving process takes 25 seconds in
average on 20 different runs with random seeds.

This problem is simple enough in order to
clearly illustrate the partial exploration paradigm,
as follows. The design criteria are relaxed as
follows:

BWK ≥ 13400,

ISFC ≤ 223.2.

A first exploration using IDFS with Q0
C = 2000

is done to study the evolution of the quality of

http://www.ibex-lib.org/
https://pymoo.org/
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Fig. 7: Hypervolume indicator for the optimiza-
tion of ice with NSGA-II.

the approximation and to estimate the right stop-
ping criterion. Fig. 8a and Fig. 8b respectively
present the overall spread QH and the mean min-
imal Hausdorff distance QA. The evolution of QH

shows that after 207 computed solutions, at least
80% of the hull of the solution space is covered.
QH can be improved to 85% by slightly increasing
the size of the subset to 290 solutions. Concern-
ing QA, it is quickly decreased before the first
200 solutions, then it progresses slowly towards a
constant value. It comes QC = 303 from Eq. 3
with ∆m = 20. From here, increasing QC does
not benefit diversity in the solution space. Hence,
the stopping criterion for the exploration is fixed
and represented in the objective space in Fig. 9a.
Fig. 9b illustrates that increasing the number of
solutions to improve the quality of the result may
not benefit its analysis. It takes 3.02 seconds to
compute those 303 solutions. The result of the
exploration is noted Σice thereafter.

4.2.2 Results

Fig. 10 presents the objective space of the ice
problem. The approximated Pareto front Θice

obtained with NSGA-II is composed of 190 design
solutions (green triangles). The partial explo-
ration is prematurely stopped after 303 solutions
computed (blue crosses). The red dots give the
extreme values of the Pareto front obtained from
the single-objective optimization of each criterion
with BARON.

The sole Pareto front presented in the intro-
duction (Fig. 2a) is not sufficient to picture the

(a) QH quality indicator computed with IDFS strategy

(b) QA quality indicator computed with IDFS strategy

Fig. 8: Quality indicators evolution when solving
ice with IDFS strategy.

full solution space and many quasi-optimal solu-
tions are missed. The subset obtained with IDFS
Σice permits this analysis. The solutions from the
partial exploration are represented in the design
space in Fig. 11 using parallel coordinate plots.
The two best designs regarding each objective are
represented with dashed bold lines, their design
variables also form the hull of the feasible space
in Fig. 2a. Partial exploration reveals new feasible
value combinations among the design variables.
In particular, the available range value of cr, dE
and w, respectively [9.45, 9.74], [28.61, 30.99] and
[5.61, 6.5], are widened to [9.3, 9.74], [28.61, 32.15]
and [5.25, 6.5]. The exploration enabled to increase
the volume of the design space by 320%. Indeed,
NSGA-II guarantees diversity in the objective
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(a) Partial exploration subset obtained with 303 solutions
using the anytime BP algorithm IDFS

(b) Partial exploration subset obtained with 620 solu-
tions (QH ≥ 90%) using the anytime B&P algorithm
IDFS

Fig. 9: Representation of the objective space
exploration at 2 different steps with IDFS

space but not in the design space when an any-
time B&P algorithm is able to diversify in both the
design space and the objective space. The evalua-
tion of the overall spread QH in the design space
and the hypervolume HV in the objective space
highlights this point. Fig. 12a represents the evo-
lution of QH during the exploration computed on
the design variables only. IDFS is able to quickly
diversify the design parameter values, especially
at the frontier of the search space. The evaluation
of the hypervolume of Σice is given in Fig. 12b.
For this convex bi-objective problem, the capac-
ity of computing the frontier enables to cover the
Pareto front.

Fig. 10: Solutions space of the bi-objective ice
problem (303 solutions with IDFS (blue crosses),
190 with NSGA-II (green triangles)

Fig. 11: Representation of 303 solutions from
IDFS in the design variable space of the ice prob-
lem.

It is possible to go further in the experiment
by tightening the search space closer to the Pareto
front with the right ε-constraint. For this particu-
lar problem, the Pareto front can be approximated
as a smooth curve using a log-linear regression of
the second order. In a second phase, this relation
is converted into a constraint c10 which repre-
sents a tolerance of 0.5% on the fuel consumption
objective (see Eq. 5). This example illustrates the
interaction between the user and an anytime B&P
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(a) Evolution of QH evaluated on the design variables
for IDFS (ice problem). The red dashed line gives the
value of QH design for Θice.

(b) Evolution of HV with IDFS (ice problem). HV is
normalized with the HV value of Θice (reference point:
(13410, 223.2))

Fig. 12: Evolution of QH and HV for both strategies.

algorithm solver to focus the exploration on a par-
ticular part of the search space. The results of this
second exploration Σ2

ice in both the objective and
design spaces are given in Figures 13a and 13b.
New designs are identified, i.e. their design vari-
able values are out of the region Θice. This second
exploration obtained a design space 148% wider
than the one obtained with a metaheuristic.

c10 : ISFC ≤ f(BKW/V ) (4)

f(x) = 125.7ln(x)2 − 2372.24ln(x) + 11412 (5)

4.3 Actuator problem

4.3.1 Model

The analytical model of the electromechanical
actuator problem [7] is built from simplified elec-
tromagnetic relations, following the conservation
of the magnetic and thermodynamic flux. Table 3
presents the design variables and design criteria,
including P the number of pole pairs as a discrete
variable. The resulting MOP is a mixed-integer
one with 9 inequality constraints (see Annex A.2).

The evolutionary algorithm NSGA-III is used
for the optimization approach due to its effec-
tiveness in solving MOPs with 3 or more objec-
tives [40]. The resolution is done with a population
size of 156, 153 reference directions, and 1000

Table 3: Actuator main model parameters
Name Description Variable type
e Mechanical air gap (m) Design
Jcu Current areal density (A/m2) Design
la Thickness of the magnet (m) Design
β Polar arc coefficient Design
P Number of pole pairs Design
V u volume of the active part (m3) Objective
V a volume of the magnet (m3) Objective
Pj Losses by joule effect (Watt) Objective

generations. Other computation parameters are
presented in Table 2. The resulting approxima-
tion Θact obtained after 60 seconds contains 59
well-distributed solutions.

The corresponding CSP to explore is built
adding three inequality constraints on the objec-
tive variables (6). Those thresholds are given arbi-
trary, based on the data from the original paper.
The same protocol as the one used for the ice prob-
lem is applied to size the result of the exploration
with IDFS. A preliminary exploration stops after
2000 computed solutions, which enables to evalu-
ate the evolution of the quality of the result with
QH and QA. A compromise between diversity in
the solution space and the size of the subset is
established at 412 solutions (Σact computed after
90 seconds).

V u ≤ 6.5e− 4 ; V a ≤ 1.5e− 4 ; Pj ≤ 45 (6)
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(a) Parallel plot coordinate of the second partial explo-
ration Σ2

ice in the design space (ice problem + c11
constraint).

(b) Objective space of the ice problem. The exploration
with IDFS is restricted with the added constraint c11.

Fig. 13: Representation of solutions after adding a new ε-constraint to enclose the PF

4.3.2 Results

Fig. 14 shows the parallel plot coordinates of the
designs from Σact. The values are normalized using
Eq. 7 and the extreme values of Θact obtained
with NSGA-III (Table 4). The variable P is not
represented because the feasible space presents
the unique value P = 4. In the design space
(ẽ, J̃cu, l̃a, β̃) the solutions are well distributed and
IDFS is able to find many solutions out of the
space covered by the result of NSGA-III (val-
ues greater than 1 or smaller than 0). Precisely,
among the 412 solutions, 16 are in the PF design
scope. This result is also visible in the evalua-
tion of QH on the design space (Table 5) since we
have QH(Σact) ≫ QH(Θact). The partial explo-
ration of the act problem search space gives a wide
representative sample of the feasible designs. The
corresponding objective values are represented on
the same graph (Ṽu, Ṽa, P̃j).

X̃ =
X −Xmin

PF

Xmax
PF −Xmin

PF

(7)

IDFS is not able to completely cover the
range of the approximated Pareto front on Vu

and Pj . Indeed, the minimum value previously
obtained with NSGA-III for those two objectives
are not reached by IDFS (corresponding to Ṽu = 0

and P̃j = 0). It comes from the difficulty of
the contracting operator to deal with the non-
linearity of the active constraints in this area of
the search space. The capacity of an anytime B&
P algorithm to reach the Pareto front during the
exploration can be evaluated through the hyper-
volume indicator HV . Fig. 15 illustrates this result
comparing HV during the exploration with the
reference value HV (NSGA-III). The partial explo-
ration slightly improves the minimum ideal value
of the objective Va (Ṽa = −0.0018 in Fig. 14).

Eventually, IDFS finds feasible designs close to
the optimum that are not identified by NSGA-III.
The decision maker may consider those solutions
for further investigation using additional crite-
ria that are not implemented in the CSP model.
Fig. 16 represents 48 of the close-to-optimum
designs that are out of the scope of NSGA-III.
Considering the hull of those 48 solutions, the fea-
sible domain of the allowed mechanical air gap e is
raised by more than 550% and the feasible domain
of the current areal density Jcu is augmented by
80%.
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Table 4: Bounds of the Pareto front computed
with NSGA-III for the act problem.

Variable min max
e 1.00e-05 1.613e-05
Jcu 5.814e+06 7.208e+06
la 4.570-03 8.952e-03
beta 0.8 0.9967
p 4 4
Vu 5.337e-04 6.046e-04
Va 9.148e-05 1.377e-04
Pj 37.47 45

Fig. 14: Solutions obtained with IDFS, normal-
ized with NSGA-III results (act problem).

Table 5: Comparison of the overall spread QH for
the act problem.

IDFS NSGA-II
QH design 0.2917 0.0007
QH objective 0.0568 0.0358

4.4 Water problem

4.4.1 Model

The water problem is a five-objective optimization
problem solved in [40]. This problem is com-
posed of three continuous variables (x1, x2, x3)
and seven inequality constraints (aside variable
domains restrictions). It permits to scale up our
exploration approach. The resolution conditions
used in [40] are reproduced for the optimiza-
tion part of the experiments. NSGA-III is used
with 212 individuals in the genetic population

Fig. 15: Hypervolume evolution during the explo-
ration of the search space of the act problem with
IDFS algorithm

Fig. 16: New close-to-optimal designs obtained
with IDFS (act problem).

and 210 reference points. After 1000 generations,
this solver returns a hundred distributed solutions
(Θwat) to approximate the Pareto front.

The equivalent CSP for the partial explo-
ration is built with added inequality constraints
on the objective parameters (Equation 8). Maxi-
mum thresholds are given arbitrary, without prior
knowledge of the Pareto front. Using the IDFS
strategy, 2000 solutions are first generated to
study the quality of the partial exploration. A
good compromise between the number of solu-
tions and their distribution in the solution space
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is established to 423 solutions based on the com-
putation of QH and QA. Those 423 solutions are
considered representative of the feasible space and
noted Σwat. They are computed in 0.076 seconds.

f1 ≤ 8e4 ; f2 ≤ 1.35e3 ; f3 ≤ 1 ; (8)

f4 ≤ 8.1e6 ; f5 ≤ 3e4

4.4.2 Results

The 423 feasible designs are represented in both
the design space (x1, x2, x3) and the objective
space (f1, f2, f3, f4, f5) in Fig. 17. The values
are normalized using the extreme values of the
approximated Pareto front (Eq. 7). Table 6 com-
pares QH between the subsets Σwat and Θwat.
IDFS conducts to a more diverse set. It covers a
wider part of the design space, in particular on the
variable x3 (corresponding to values greater than
1). IDFS have difficulties to converge close to the
expected minima on the objectives f1, f2 and f5,
hence, the partial exploration does not completely
cover the Pareto front. This point is clearly illus-
trated in Fig. 18, and we see that IDFS does not
reach the HV value of the Pareto front. Among
those 423 solutions, some are new designs close
to the optimum, which may be interesting to con-
sider. In Fig. 19, filters are applied to represent
those solutions with x̃3 ≥ 1 and f̃i ≤ 0.8.

Fig. 17: Normalized solutions obtained with IDFS
(wat problem).

Table 6: wat problem. Comparison of the overall
spread QH .

IDFS NSGA-II
QH design 0.99 0.337
QH objective 0.78 0.62

Fig. 18: Hypervolume evolution during the explo-
ration of the search space of the wat problem with
IDFS algorithm

4.5 Summary of results and
discussion

The first part of the experiments compares the
anytime exploration method with the multi-
objective optimization approach on a simple inter-
nal combustion engine problem with two design
criteria. While NSGA-II computes a clear bi-
objective Pareto front, our anytime B&P algo-
rithm returns a good representation of the full
solution space. The designs composing the sub-
set are diversified on both the objective space and
the design space, which permits to identify new
near-optimal designs. In a second phase, an inter-
active process using a partial exploration solver
allows to identify new close-to-optimal designs.
Indeed, once a first representative set of solutions
is computed, it is possible to focus the search
on a particular part of the feasible space, adding
specific constraints. Our algorithm is also applied
on more complex problems, act and wat, with
respectively three and five design criteria. IDFS
is here compared with NSGA-III. In both case
studies, NSGA-III computes at most a hundred
solutions well distributed in the objective space.
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Fig. 19: New designs obtained with IDFS in Σwat

(wat problem).

With IDFS, we are able to compute representa-
tive sets of solutions composed of a few hundred
solutions with a high diversity in both the design
space and the objective space. It shows that par-
tial exploration is able to both reach the objective
space close to the Pareto Front and widen the
feasible domains in the design space.
Partial design space exploration, as proposed
in this paper, presents the benefit to get a bet-
ter understanding of the whole feasible space,
prior to any optimization consideration. So-called
design objectives are easily considered through
ε-constraints. The complexity of a partial explo-
ration with an anytime B&P solver is also
independent on the number of objectives consid-
ered. On the contrary, optimization gets harder
with the growing number of objectives [21, 22].
This advantage may particularly be interesting in
eco-design where several environmental impacts
can be considered as distinct design criteria.

Furthermore, the models studied here are
coarse-grained models, built for preliminary
design to reduce quickly the feasible space before
more in depth process. Those models are simplifi-
cations of reality based on important hypotheses.
Hence, optima obtained from MOP solvers may
not be the best designs to consider in reality. For
example, the internal combustion engine model
uses an ideal thermal efficiency air-cycle [14] and

the electromechanical actuator considers simpli-
fied modeling such as the conservation of the flux
in the magnetic circuit [7]. Partial exploration per-
mits to loosen the rigor coming with optimization
methods on imperfect models.

Eventually, the interactive process presented
on the ice problem illustrates the potential of this
framework to integrate interactivity in the design
process. Indeed, the process based on anytime
B&P algorithm supports stop and start mecha-
nisms such that the resolution can be resumed
from any point of the exploration.

5 Conclusion

CSP modeling represents an important tool for
design in preliminary phases to explore feasible
solutions. This work proposes to face prelimi-
nary design problems using partial design space
exploration and to compare it with classical opti-
mization methods. For this purpose an anytime
B&P algorithm (IDFS) is implemented with a
specific search strategy. The algorithm is able
to tackle CSP with mixed integer variables and
non-linear constraints. It seeks to return a sub-
set of solutions diverse enough to give a good
representation of the whole feasible space.

Our algorithm is evaluated on three different
design model. Their design criteria are converted
into thresholds for the exploration with IDFS.
Two quality indicators QA and QH are introduced
to evaluate its capacity to return wide and uni-
form subsets of solutions. The hypervolume HV

is also used for the analysis and the comparison
with more classical optimization approaches based
on metaheuristics. It appears that IDFS is able to
return representative subsets composed of a few
hundreds of solutions in a reasonable time. Those
designs are diversified in the objective space, but
also in the design space. Finally, it permits to
identify interesting close-to-optimal designs which
were not generated by the metaheuristics.

The discussion brings out the interest of the
partial exploration framework according to our
experiments. This anytime exploration paradigm
enables to diminish the black-box aspect of a
decision-making program, giving users the oppor-
tunity to easily iterate between a model and its
solution space. A representative partial set of
solutions permits to picture the feasible space
and considers well diversified designs. The next
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step of this framework is to built an incremen-
tal and interactive methodology to both generate
and analyse feasible architectures in a preliminary
design process.
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Appendix A Models

A.1 Engine

CSP : x =(b, cr, dI , dE , w)

[b] =[0, 100]

[cr] =[0, 100]

[dI ] =[0, 0.05]

[dE ] =[0, 1]

[w] =[0, 6.5]

subject to

c1 : b− 83.33 ≤ 0

c2 : 76.9− b ≤ 0

c3 : dI + dE − 0.82b ≤ 0

c4 : 0.83dI − dE ≤ 0

c5 : dE − 0.89dI ≤ 0

c6 : 215.46− d2I ≤ 0

c7 : cr − 13.2 + 0.0045b ≤ 0

c8 : 2b3/1.18348e6 − 1.3 < 0

c9 : 2b3/1.18348e6 − 0.7 > 0

MOP :

min(ISFC,−BKW/V )

ISFC =81.8964/(0.8595(1− c−0.33
r )

+ (0.83((8 + 4cr) + 1.5(cr

− 1)(4π/1.859e6)b3)/(2 + cr)b))

BKW/V =w[FMEP − 3688ηtηv]/120

where

FMEP =4.826(cr − 9.2) + (7.97 + 2.99e5wb−2

+ 1.36e7bw2)

ηt =0.8595(1− c−0.33
r )− Sv

√
1.5/w

ηv =ηvb(1 + 5.96e−3w2)/((1 + 55.789/0.44)

× (w/(dI)
2))2

ηvb =


0.067− 0.038ew−5.25, w ≥ 5.25,

0.637 + 0.13w − 0.014w2

+0.00066w3, w < 5.25

Sv =0.83(8 + 4cr + 1.0134e−5(cr − 1)b3)/((2 + cr)b)

Exploration :

BWK ≥ 13400

ISFC ≤ 223.2
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A.2 Actuator

CSP :

x =(e, Jcu, la, β, P )

[e] =[0.00001, 0.005]

[Jcu] =[1e5, 1e7]

[la] =[0.001, 0.05]

[β] =[0.8, 1]

[P ] =[1, 10]

subject to.

c1 : D − 2 ∗ (la+ e) ≥ 0

c2 : 0.001 ≤ E ≤ 0.05

c3 : 0.001 ≤ D ≤ 0.05

c4 : 0.001 ≤ λ ≤ 0.05

c5 : 0.001 ≤ Kf ≤ 0.05

where

E =1011/(0.7 ∗ (J2
cu))

D =0.1P/π

λ =0.015πD2(D + E)Be

√
711βE

Kf =1.5Pβ(e+ E)/D

Be =(1.8la/(D log (D + 2E)/(D − 2(la+ e)))

C =DπβBe/(6P )

MOP :

min(V u, V a, P j)

V u =π(D/λ)(D + E − e− la)(2C + E + e+ la)

V a =πβla(D/λ)(D − 2e− la)

Pj =0.018e−6π(D/λ)(D + E)1011

Exploration

V u ≤6.5e−4

V a ≤1.5e−4

Pj ≤45

A.3 Water

CSP :

x = (x1, x2, x3)

[x1] =[0.01, 0.45]

[x2] =[0.01, 0.10]

[x3] =[0.01, 0.10]

subject to.

c1 : 0.00139/(x1x2) + 4.94x3 − 0.08 ≤ 1

c2 : 0.000306/(x1x2) + 1.082x3 − 0.0986 ≤ 1

c3 : 12.307/(x1x2) + 49408.24x3
+ 4051.02 ≤ 50000

c4 : 2.098/(x1x2) + 8046.33x3 − 696.71 ≤ 16000

c5 : 2.138/(x1x2) + 7883.39x3 − 705.04 ≤ 10000

c6 : 0.417/(x1x2) + 1721.26x3 − 136.54 ≤ 2000

c7 : 0.164/(x1x2) + 631.13x3 − 54.48 ≤ 550

MOP :

min(f1, f2, f3, f4, f5)

f1 =106780.37(x2 + x3) + 61704.67

f2 =3000x1

f3 =305700.02289x2/(0.062289.0)0.65

f4 =250.02289.0exp(−39.75x2 + 9.9x3 + 2.74)

f5 =25.0((1.39/(x1x2)) + 4940.0x3 − 80.0)

Exploration

f1 ≤ 8e4

f2 ≤ 1.35e3

f3 ≤ 1

f4 ≤ 8.1e6

f5 ≤ 3e4
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Highlights and graphical
abstract

• Partial exploration aims to compute a diversi-
fied subset of feasible solutions;

• We built an anytime branch and prune algo-
rithm for partial design space exploration

• We built a protocol to analyze diversity in both
the design and the objective space

• We compare partial exploration and optimiza-
tion approaches on three design problems

• Partial Exploration is a tool for decision makers
to identify quasi-optimal designs
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Fig. A1: Graphical Abstract


	Introduction
	Context
	Motivating example and limits
	Propositions

	Preliminaries
	Intervals
	Constraint satisfaction problems
	Optimization problems
	Problems in engineering design

	Anytime deterministic search
	Quality of approximation
	Algorithm

	Case Studies
	Protocol
	Internal combustion engine
	Experiments
	Results

	Actuator problem
	Model
	Results

	Water problem
	Model
	Results

	Summary of results and discussion

	Conclusion
	Statements and Declarations

	Models
	Engine
	Actuator
	Water


