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Introduction 1.Context

New challenges in the preliminary design process of products or systems are to be able to deal with their increasing complexity as well as considering their whole life cycle [START_REF] Tchertchian | Benefits and Limits of a Constraint Satisfaction Problem/Life Cycle Assessment Approach for the Ecodesign of Complex Systems: A Case Applied to a Hybrid Passenger Ferry[END_REF]. In this context, defining the best system regarding design requirements is a hard task where multiple criteria can be used to analyze possible design candidates. Design space exploration [START_REF] Kang | An Approach for Effective Design Space Exploration[END_REF] addresses this problem by automating the selection of design alternatives prior to any detailed design phases. At this stage of the design process, a system can be represented by a coarse-grained model assuming a minimum number of degrees of freedom and strong physical hypotheses (isotherm, steady state, etc.) while focusing on main peculiarities of the system. The unknowns can be defined by variables lying in domains and the design requirements can be expressed as constraints on these variables, i.e. we have a constraint satisfaction problem (CSP) [START_REF] Gelle | Constraint Satisfaction Methods for Applications in Engineering[END_REF][START_REF] Yvars | Using Constraint Satisfaction for Designing Mechanical Systems[END_REF][START_REF] Larroude | Global Optimization of Environmental Impact by a Constraint Satisfaction Approach -Application to Ship-Ecodesign[END_REF][START_REF] Cicconi | A Constraint-Based Approach for Optimizing the Design of Overhead Lines[END_REF] that must be small-scale with at most a few dozens of variables. Moreover, the functional, physical, or topological specifications of a system often lead to several design criteria to optimize, e.g. maximize power and minimize cost or impact. Hence, designers seek to compute the best trade-off solutions while satisfying all constraints.

Optimization methods are widely used in this context to compute the set of best trade-off solutions in the objective space called Pareto Front (PF) [START_REF] Messine | Optimal Design of Electromechanical Actuators: A New Method Based on Global Optimization[END_REF][START_REF] Yvars | Optimization of Mechanical System: Contribution of Constraint Satisfaction Method[END_REF][START_REF] Brownlee | Constrained, Mixed-Integer and Multi-Objective Optimisation of Building Designs by NSGA-II with Fitness Approximation[END_REF][START_REF] Demarco | The Development and Application of an Optimization Tool in Industrial Design[END_REF][START_REF] Fortunet | Multicriteria Decision Optimization for the Design and Manufacture of Structural Aircraft Parts[END_REF][START_REF] Stewart | A Survey of Multi-Objective Optimization Methods and Their Applications for Nuclear Scientists and Engineers[END_REF]. On the one hand, the different criteria to optimize in a design problem can be transformed into a single objective function using different techniques, such as the weighted sum technique where all criteria are weighted and aggregated or the ε-constraint method where all criteria but one are relaxed as inequality constraints. It comes in general a mixed-integer nonlinear optimization problem (MINLP) that can be handled by global optimization solvers in order to compute a guaranteed optimum located on the PF. This approach is particularly effective for evaluating extreme points of the PF that can be useful to get a first understanding of the solution set. Unfortunately, multiple runs are needed to approximate the PF, which quickly becomes laborious, especially in high dimensional objective spaces. On the other hand, it is possible to directly solve a mixed-integer multi-objective optimization problem (MOP) using meta-heuristics like evolutionary algorithms, simulated annealing, or particle swarm optimization. These techniques rely on non-deterministic algorithms to compute optimal or quasi-optimal solutions in a reasonable time [START_REF] Stewart | A Survey of Multi-Objective Optimization Methods and Their Applications for Nuclear Scientists and Engineers[END_REF][START_REF] Zavala | A Survey of Multi-Objective Metaheuristics Applied to Structural Optimization[END_REF].

Motivating example and limits

To illustrate our context, we consider the design of an internal combustion engine (ice) described in [START_REF] Papalambros | Principles of Optimal Design: Modeling and Computation[END_REF]. This problem is modeled as a simple flat head combustion chamber (Fig. 1). It is based on thermodynamic principles with the hypothesis of an ideal thermal efficiency. The corresponding problem has five continuous design variables and nine inequality constraints (Annex A.1). The initial design objective is to maximize the obtained power per unit displacement volume BKW/V (kW/l). We consider here a second criterion in order to minimize the fuel consumption ISF C (g/kWh).

The ice model is a bi-objective non-linear continuous optimization problem which can be solved by the genetic algorithm NSGA-II [START_REF] Deb | A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimization: NSGA-II[END_REF] using the Revolutions per minute at peak power Design ISFC Fuel consumption (g/kW-h) Objective BKW/V Brake power per volume unit (kW/1) Objective pymoo library 1 . The solving parameters used are a population size of 200, a tolerance on the objectives of 10 -5 , and at most 1500 generations. A good convergence is obtained after 250000 function evaluations. The approximated Pareto front Θ ice composed of 190 solutions is presented in the objective space (Fig. 2a). The corresponding solutions are also represented in the design space (Fig. 2b). Those designs reflect the best alternatives of our problems in a mathematical sense. However, knowing the limits of this model, the designer may want to consider the full picture of the feasible space and seek different alternatives in the design space.

In general, some limits can be observed in the use of optimization during the preliminary design phase. Many hypotheses still last : steady state, approximate data and uncertain values at the frontier of the system [START_REF] Mandal | A Two-Bar Truss Structural Model under Uncertainty: A Uncertain Chance Constrained Geometric Programming (UCCGP) Approach[END_REF]. As a result, the computed solutions may not accurately reflect the expected performances while they are often Fig. 2: Results from the optimization of the ice problem with NSGA-II located at the frontier of the feasible space with multiple active constraints. Secondly, objectives may be difficult to express regarding all aspects (functional, usage, manufacturing, and environmental) of complex system design. In particular, environmental specifications often imply several additional criteria [START_REF]Life Cycle Indicators Framework: Development of Life Cycle Based Macro Level Monitoring Indicators for Resources, Products and Waste for the EU 27[END_REF]. Thirdly, optimal or nearoptimal solutions may not reflect the shape of the design solution space and interesting sub-optimal candidate designs may be out of reach. Even if MOP solvers are able to compute many diverse solutions, their distribution is often sought only in the objective space [START_REF] Deb | Running Performance Metrics for Evolutionary Multi-Objective Optimizations[END_REF][START_REF] Schwind | Representative Solutions for Multi-Objective Constraint Optimization Problems[END_REF][START_REF] Ingmar | Modelling Diversity of Solutions[END_REF]. Furthermore, the performances of those solvers are degraded in the presence of several objectives (3 or more) [START_REF] Vassilvitskii | Efficiently Computing Succinct Trade-off Curves[END_REF][START_REF] Yuan | Objective Reduction in Many-Objective Optimization: Evolutionary Multiobjective Approaches and Comprehensive Analysis[END_REF].

Propositions

Considering those observations, this paper proposes a new methodology based on a partial exploration of the design space modeled as a CSP such that each design criterion is handled as an ε-constraint. The goal is to compute a reasonably sized subset of solutions that are diverse enough to cover the solution space in both the design space and the objective space. From a decisionmaking perspective, this approach enables to get a clear vision of the feasible space, to position the final design relatively to other alternatives and to favor an interactive method with the user. To this end, we propose to implement a deterministic branch-and-prune (B&P) algorithm based on interval methods [START_REF] Van Hentenryck | Solving Polynomial Systems Using a Branch and Prune Approach[END_REF] with an anytime behavior as done in [START_REF] Chenouard | Search Strategies for an Anytime Usage of the Branch and Prune Algorithm[END_REF]. Our contribution is threefold:

• We introduce a new search strategy for anytime B&P algorithms with good scalable properties to tackle design CSP. • We define new quality indicators to evaluate the convergence towards a set of diverse solutions in both the design space and the objective space. • We evaluate our partial exploration paradigm by comparing it with well-known evolutionary optimization methods on three case studies.

The rest of this paper is structured as follows. Section 2 introduces preliminary notions essential for the understanding of the mechanisms behind B&P algorithms and optimization solvers. Section 3 details previous works related to anytime B&P algorithms, as well as the related contributions. Experiments are conducted in Section 4. The experimental protocol is detailed in the first part of this section, then each case is treated separately. The results are discussed in section 4.5 followed by a conclusion in Section 5.

Preliminaries

In this paper, engineering design problems are modeled as numerical constraint satisfaction or optimization problems involving continuous variables, discrete variables, and various kinds of constraints like nonlinear equations, inequality constraints, and global constraints. We will introduce these problems and associated solving methods thereafter.

Intervals

Let [x] = [x, x] denote a closed interval of real numbers and let I be the set of intervals. The

width of [x] is defined by w([x]) = x -x. The hull of a set S ⊆ R is defined by the interval □S = [inf S, sup S]. A box [x] of dimension n is a Cartesian product of intervals [x] 1 • • •×[x] n . The hull of a set S ⊆ R n is defined by the box □S = □S 1 ו • •×□S n
where each S i is the i-th projection of S. The hull of a set of boxes corresponds to the hull of their union.

Constraint satisfaction problems

Definition 1 (CSP) A (numerical) constraint satisfaction problem is a triple P = (x, [x] 0 , C) where Numerical CSPs can be solved in a complete way by spatial branch-and-prune algorithms that calculate a set of boxes enclosing S at a given precision [START_REF] Van Hentenryck | Solving Polynomial Systems Using a Branch and Prune Approach[END_REF]. To this end, a relative precision is introduced for each variable, which may reflects e.g. physical requirements in an engineering design context. Given ϵ = (ϵ 1 , . . . , ϵ n ) ∈ R n + , we say that

• x = (x 1 , . . . , x n ) ∈ R n is
a box [x] ∈ I n is an ϵ-box if we have w([x] i ) ≤ ϵ i (|x i |+|x i |)
for each i ∈ {1, . . . , n}, i.e. the box is precise enough with respect to the requirements. An ϵ-paving is a set of ϵ-boxes enclosing S.

A branch-and-prune algorithm generates a search tree from the initial box [x] 0 until reaching an ϵ-paving. 

Optimization problems

Optimization problems are basically CSPs with one or several objective functions. In the following, let S be the solution set of a CSP as previously introduced, also called feasible set in an optimization context.

Definition 2 (MINLP) Given an objective function f : R n → R, a mixed-integer nonlinear program can be defined as min

x∈S f (x).
A solution x * ∈ S is optimal if for all x ∈ S we have f (x * ) ≤ f (x). The value f (x * ) at any optimal solution x * is the global optimum.

Spatial branch-and-bound algorithms are able to globally solve MINLPs in a deterministic way. They are basically designed as branch-and-prune algorithms with bounding components. Lower bounds of global optima can be obtained through the solving of linear relaxations. Feasible points and upper bounds of global optima are derived in general by local solvers implementing e.g. classical mathematical methods. Once again, this algorithm runs in an exponential time worst case and it may fail to solve large-scale problems. BARON [START_REF] Ryoo | A Branch-and-Reduce Approach to Global Optimization[END_REF] and ANTIGONE [START_REF] Misener | ANTIGONE: Algorithms for coNTinuous / Integer Global Optimization of Nonlinear Equations[END_REF] are powerful solvers in this domain. Given two solutions x, y ∈ S, we say that x dominates y if we have f k (x) ≤ f k (y) for each k ∈ {1, . . . , p} and f k (x) < f k (y) for some k ∈ {1, . . . , p}. Any solution x * ∈ S is Pareto optimal if no other solution dominates it. The Pareto set is the set of all Pareto optimal solutions. The Pareto front is the set of all vectors of the form (f 1 (x * ), . . . , fp(x * )) such that x * is Pareto optimal.

A MOP maps the decision space of dimension n to the objective space of dimension p. Solving MOPs is hard when the number of objectives p is increased and they are usually handled by metaheuristics. These methods aim at finding a good approximation of the Pareto set that is distributed as well as possible in the Pareto front. For example, population-based methods like antcolony optimization and evolutionary algorithms maintain a set of candidates in the decision space. A new generation of candidates results from crossover and mutation, and the challenge is to ensure convergence towards good (and even Pareto optimal) solutions and to maintain diversity of the solutions. In other words, one wants the candidates to move closer to the Pareto front and to be located in different areas of the Pareto set and the Pareto front.

Scalarization techniques reformulate MOPs as MINLPs. For example, the weighted-sum technique assigns weights to the objective functions and aggregates them into one single function, and the ε-constraint method transforms all objectives but one into inequality constraints [START_REF] Ehrgott | Improved ϵ-Constraint Method for Multiobjective Programming[END_REF]. Solving those MINLPs globally aims at finding non dominated solutions.

Many performance indicators have been introduced over the years to evaluate the quality of Pareto set approximations. [START_REF] Audet | Performance Indicators in Multiobjective Optimization[END_REF] classifies them in categories and motivates their use to compare different algorithms and to define stopping criteria. For example, the hypervolume, related to convergence and distribution properties, is the volume of the dominated space between the approximated Pareto front and a reference point [START_REF] Zitzler | Performance Assessment of Multiobjective Optimizers: An Analysis and Review[END_REF]. The higher the hypervolume is, the better the approximation.

Problems in engineering design

In this paper, we consider the design process based on three main steps as depicted in Fig. 3. First, the needs and requirements analysis aims at identifying the decision criteria to consider, as well as the design variables and performance or operational constraints to satisfy. Secondly, the design problem is formulated as a mathematical decision problem used to explore the design space to support designers in the selection of the best promising principles of design solutions. Finally, the selected principles of solutions are developed for a detailed analysis.

Needs and requirements Analysis

Detailed design

Design space exploration

Problem Formulation Problem solving Solution space analysis Fig. 3: Simplified design process.

We focus on the design space exploration process, also called design synthesis process. This step is often adapted to use a specific optimization solving technique [START_REF] Palesi | Multi-Objective Design Space Exploration Using Genetic Algorithms[END_REF][START_REF] Cagan | A Framework for Computational Design Synthesis: Model and Applications[END_REF]. In this case, the design decision problem is reformulated into a design optimization problem. As previously introduced, the criteria of the decision problem may be transformed into ε-constraints, or aggregated into one or several objective functions, depending on the used solving technique. In this case, the major reason guiding the reformulation is to fit with the solving technique requirements, like efficiently handling constraints (equations, inequalities, table constraints, etc.) and supporting a single or several objective functions. Fig. 4 shows the two main possible paths followed by designers to explore the design space. In the first one, the result is a partial solution space that can be limited to a single solution for a single optimization problem. Then, several reformulations can be applied to get more diverse solutions. The optimization problem can be modified to aggregate the criteria differently or to adapt the ε-constraints until the computed solution fits the expectations. In the second path, designers directly use a solving technique able to explore the design decision problem, as for instance a CSP solver [START_REF] Chenouard | Search Heuristics for Constraint-Aided Embodiment Design[END_REF]. The main issue, in this case, is that the solution space is often huge and not reasonable to fully explore. Most exploration strategies do not consider any diversity indicator to guide the exploration. Then, a partial solution set generated by a default strategy may correspond to similar principles of design solutions. A few exploration strategies were introduced to compute partial solutions based on an anytime branch-and-prune algorithm and a distance indicator [START_REF] Chenouard | Search Strategies for an Anytime Usage of the Branch and Prune Algorithm[END_REF], but the computational complexity does not allow scaling to the design of complex systems.

Design decision problem

Anytime deterministic search 3.1 Quality of approximation

The solution set S of a (numerical) CSP is in general a union of disconnected regions in R n and calculating an ϵ-paving of S is not practicable in general. From an application perspective, it could be desirable to sample those regions, hence providing solutions with different characteristics and revealing the shape of S. We propose to handle this problem using a partial deterministic search algorithm, more precisely a branch-andprune algorithm with limited resources like a time limit or a limit on the number of solutions. In this algorithm, the selection component of the next node of the search tree to be processed controls the exploration strategy. Let us examine the following academic example.

Example 2 Let P = (x, [-5, 5] 2 , {2 ≤ x 2 1 + x 2 2 , x 2 1 + x 2
2 ≤ 4}) be a CSP. Its solution set S corresponds to the space between two concentric circles, as depicted in Fig. 5. A depth-first search strategy goes down each branch of the search tree as deep as possible before it backtracks to the closest unexplored node. As a consequence, the computed ϵ-boxes are accumulated in the same sub-region of S. A second strategy is able to generate a more diverse set of solutions at any time of the computation.

As illustrated above, our goal is to design an anytime algorithm that is able to return a good approximation of S when the allocated resources are exceeded. The quality of such an approximation can be observed according to the following criteria inspired from the performance indicators used in the multi-objective optimization field.

• Spread Q H . The computed approximation intersects the different regions of the solution set and some ϵ-boxes are close to their boundaries. • Distribution Q A . The ϵ-boxes are well distributed in the solution set. 

2 , {2 ≤ x 2 1 + x 2 2 , x 2 1 + x 2 2 ≤ 4}).
Q H = v(□Σ) v([x] 0 ) (1)
where the volume of a box [x] is defined by

v([x]) = j,w([x] j )>0 w([x] j ) ϵ j .
The above definition considers only the intervals that are not reduced to one point. That eliminates each variable having the same value in all the ϵboxes. This notion is illustrated by Fig. 6.

The distribution indicator is a mean minimal distance between the ϵ-boxes and we expect that they are not too close to each other. This indicator Fig. 6: Σ 1 and Σ 2 are two approximations of the solution space

P = (x, [-5, 5] 2 , {2 ≤ x 2 1 + x 2 2 , x 2 1 + x 2 2 ≤ 4}) and we have Q H (Σ 1 ) < Q H (Σ 2 ).
is defined by

Q A = 1 m • m i=1 min{d([s] i , [s] j ) : 1 ≤ j ≤ m, j ̸ = i}
where d is a distance function. The Hausdorff distance between two intervals is defined by

d h ([x] , [y]) = max(|x -y|, |x -y|)
and it is extended to boxes by taking the maximum distance componentwise. When used in Q A it tends to favor diversity along the largest domains. To counteract this effect, we define the normalized Hausdorff distance between boxes 

d h ([x] , [y]) = max d h ([x] i , [y] i ) w([x] 1 i ) : 1 ≤ i ≤ n where [x]

Algorithm

Best-first search (BestFS) is a search strategy on graphs [START_REF] Dechter | Generalized Best-First Search Strategies and the Optimality of A*[END_REF]. During the search, the next candidate nodes are evaluated using a merit or measure-of-best function ρ and the best one is selected to continue the exploration. For example, this strategy is classically implemented in branch-and-bound algorithms for globally solving optimization problems such that next node gives the smallest (or greatest depending on the optimization direction) lower bound of the objective function. Anytime branch-and-prune strategies can be built on this paradigm with merit functions designed to maximize the quality of the resulting set of ϵ-boxes. The difficulty is here to address both convergence and diversity properties.

As observed in [START_REF] Chenouard | Search Strategies for an Anytime Usage of the Branch and Prune Algorithm[END_REF][START_REF] Morrison | Branch-and-Bound Algorithms: A Survey of Recent Advances in Searching, Branching, and Pruning[END_REF], BestFS strategies lack efficiency to converge quickly towards the solutions since they tend to mimic breadth-first exploration.

To overcome this problem, it is interesting to hybridize best-first and depth-first stages, BestFS favouring the diversity and DFS ensuring the convergence. Distant-most and depth-first-search (DMDFS) [START_REF] Chenouard | Search Strategies for an Anytime Usage of the Branch and Prune Algorithm[END_REF] is such an hybrid strategy such that the merit function ρ leads to maximize the distance between the ϵ-boxes already computed and the unexplored part of the search space. While resulting in good approximations, the evaluation of ρ is very expensive and grows with the number of ϵ-boxes.

Alg. 1 is an anytime branch-and-prune algorithm designed as an hybrid BestFS-DFS strategy.

The next selected box (line 4) is the front element of the list of unexplored boxes L. The DFS behavior follows from the management of L as a stack such that the sub-boxes generated by the splitting step are inserted in the front of L (lines 13 and 14). The BestFS behavior consists in sorting L based on ρ each time a solution is found (line 10). We propose to use a cheap and efficient merit function such that L is sorted in descending ordering of the depth of nodes in the search tree. By this way, the node selected at the next iteration of the loop is the highest in the search tree, which is expected to be the biggest and least explored region of the search space. It follows a hybrid path between DFS and bread-first exploration, as inspired from [START_REF] Meseguer | Interleaved Depth-First Search[END_REF]. The acronym used in [START_REF] Meseguer | Interleaved Depth-First Search[END_REF] to designate this strategy is kept here, namely interleaved depth-first search (IDFS). remove

[x] k from L 6: [x] k+1 ← contract [x] k using C 7: if [x] k+1 is not empty then 8: if [x]
k+1 is an ϵ-box then ( end if 17: end while

[x] k+2 , [x] k+3 ) ← split [x]

Case Studies

The partial design space exploration approach is applied to three real-world case studies, an internal combustion engine (ice) [START_REF] Papalambros | Principles of Optimal Design: Modeling and Computation[END_REF], an electromechanical actuator (act) [START_REF] Messine | Optimal Design of Electromechanical Actuators: A New Method Based on Global Optimization[END_REF], and the water problem (wat) from [START_REF] Jain | An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point Based Nondominated Sorting Approach, Part II: Handling Constraints and Extending to an Adaptive Approach[END_REF], and it is compared with optimization solvers. Their CSP and MOP models are given in the appendices.

Protocol

The design space exploration is done using an anytime B&P algorithm implemented in C++ with the IBEX 2 library. Our IDFS strategy considers a largest-first branching operator that always selects the largest component of a box and a propagation algorithm based on HC4 as reduction technique. The relative precision is assigned to ϵ i = 10 -3 for each variable x i . The stopping criterion of the partial exploration is defined as the number of ϵ-boxes solutions Q C , which is sized to find a good compromise between diversity in the solution space and a reasonable number of designs to consider. To estimate Q C , a first exploration is done with an oversized stopping criterion Q 0 C ≥ 1000 to analyze the evolution of Q H and Q A . Then Q C is built using the formulas

Q H (m) Q max H ≥ 80%, (2) 
Q A (m + ∆m) -Q A (m) Q A (m) -Q A (Q 0 C ) ≤ 1%, (3) 
with 1 ≤ m ≤ Q 0 C , ∆m a variation of the number of solutions and Q max H the volume of the hull containing the feasible space. The first formula states that the subset of ϵ-boxes has to cover at least 80% of the complete feasible space area. The second one estimates when a variation of ∆m solutions does not decrease Q A by more than 1%. This second step can be seen as the point where IDFS starts to increase the density of solutions in areas already explored enough. Eventually, we analyse the global evolution of Q H and Q A to conclude. The final subset of Q C ϵ-boxes distributed in the feasible space is denoted by Σ.

The multi-objective optimization solvers used are the evolutionary algorithms NSGA-II and NSGA-III through the python library pymoo 3 .

2 http://www.ibex-lib.org/ 3 https://pymoo.org/ NSGA-II is preferred for the bi-objective problem, and NSGA-III for MOPs with 3 or more objectives. All the three case studies are underconstrained problems and feasible solutions are obtained early in the solving process. The challenge is to converge as close as possible to the Pareto front. To ensure a good convergence, the resolution is evaluated through the hypervolume H V [START_REF] Zitzler | Performance Assessment of Multiobjective Optimizers: An Analysis and Review[END_REF] with the Nadir point as reference point. Both algorithms lead to a subset of solutions approximating the Pareto front denoted by Θ. Table 2 presents the resolution parameters for NSGA-II and NSGA-III. Once a problem is solved with both exploration and optimization approaches, the results are compared according to Q H , Q A and H V . Each step of the experiment is detailed for the first problem ice. All the experiments have been done with a Linux Core i7-9850H 2.6 GHz (16 GB).

Internal combustion engine

Experiments

The ice problem described in the introduction is first solved through an optimization method using NSGA-II. The normalized hypervolume is given in Fig. 7. The solving process takes 25 seconds in average on 20 different runs with random seeds.

This problem is simple enough in order to clearly illustrate the partial exploration paradigm, as follows. The design criteria are relaxed as follows:

BW K ≥ 13400, ISF C ≤ 223.2.
A first exploration using IDFS with Q 0 C = 2000 is done to study the evolution of the quality of the approximation and to estimate the right stopping criterion. Fig. 8a and Fig. 8b respectively present the overall spread Q H and the mean minimal Hausdorff distance Q A . The evolution of Q H shows that after 207 computed solutions, at least 80% of the hull of the solution space is covered. Q H can be improved to 85% by slightly increasing the size of the subset to 290 solutions. Concerning Q A , it is quickly decreased before the first 200 solutions, then it progresses slowly towards a constant value. It comes Q C = 303 from Eq. 3 with ∆m = 20. From here, increasing Q C does not benefit diversity in the solution space. Hence, the stopping criterion for the exploration is fixed and represented in the objective space in Fig. 9a. Fig. 9b illustrates that increasing the number of solutions to improve the quality of the result may not benefit its analysis. It takes 3.02 seconds to compute those 303 solutions. The result of the exploration is noted Σ ice thereafter.

Results

Fig. 10 presents the objective space of the ice problem. The approximated Pareto front Θ ice obtained with NSGA-II is composed of 190 design solutions (green triangles). The partial exploration is prematurely stopped after 303 solutions computed (blue crosses). The red dots give the extreme values of the Pareto front obtained from the single-objective optimization of each criterion with BARON.

The sole Pareto front presented in the introduction (Fig. 2a) is not sufficient to picture the full solution space and many quasi-optimal solutions are missed. The subset obtained with IDFS Σ ice permits this analysis. The solutions from the partial exploration are represented in the design space in Fig. 11 using parallel coordinate plots. The two best designs regarding each objective are represented with dashed bold lines, their design variables also form the hull of the feasible space in Fig. 2a. Partial exploration reveals new feasible value combinations among the design variables. In particular, the available range value of c r , d E and w, respectively [9.45, 9.74], [28.61, 30.99] and [5.61, 6.5], are widened to [9.3, 9.74], [28.61, 32.15] and [5.25, 6.5]. The exploration enabled to increase the volume of the design space by 320%. Indeed, NSGA-II guarantees diversity in the objective space but not in the design space when an anytime B&P algorithm is able to diversify in both the design space and the objective space. The evaluation of the overall spread Q H in the design space and the hypervolume H V in the objective space highlights this point. Fig. 12a represents the evolution of Q H during the exploration computed on the design variables only. IDFS is able to quickly diversify the design parameter values, especially at the frontier of the search space. The evaluation of the hypervolume of Σ ice is given in Fig. 12b. For this convex bi-objective problem, the capacity of computing the frontier enables to cover the Pareto front. It is possible to go further in the experiment by tightening the search space closer to the Pareto front with the right ε-constraint. For this particular problem, the Pareto front can be approximated as a smooth curve using a log-linear regression of the second order. In a second phase, this relation is converted into a constraint c 10 which represents a tolerance of 0.5% on the fuel consumption objective (see Eq. 5). This example illustrates the interaction between the user and an anytime B&P algorithm solver to focus the exploration on a particular part of the search space. The results of this second exploration Σ 2 ice in both the objective and design spaces are given in Figures 13a and13b. New designs are identified, i.e. their design variable values are out of the region Θ ice . This second exploration obtained a design space 148% wider than the one obtained with a metaheuristic.

c 10 : ISF C ≤ f (BKW/V ) (4) 
f (x) = 125.7ln(x) 2 -2372.24ln(x) + 11412 (5)

Actuator problem

Model

The analytical model of the electromechanical actuator problem [START_REF] Messine | Optimal Design of Electromechanical Actuators: A New Method Based on Global Optimization[END_REF] is built from simplified electromagnetic relations, following the conservation of the magnetic and thermodynamic flux. Table 3 presents the design variables and design criteria, including P the number of pole pairs as a discrete variable. The resulting MOP is a mixed-integer one with 9 inequality constraints (see Annex A.2). The evolutionary algorithm NSGA-III is used for the optimization approach due to its effectiveness in solving MOPs with 3 or more objectives [START_REF] Jain | An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point Based Nondominated Sorting Approach, Part II: Handling Constraints and Extending to an Adaptive Approach[END_REF]. The resolution is done with a population size of 156, 153 reference directions, and 1000 The corresponding CSP to explore is built adding three inequality constraints on the objective variables [START_REF] Cicconi | A Constraint-Based Approach for Optimizing the Design of Overhead Lines[END_REF]. Those thresholds are given arbitrary, based on the data from the original paper. The same protocol as the one used for the ice problem is applied to size the result of the exploration with IDFS. A preliminary exploration stops after 2000 computed solutions, which enables to evaluate the evolution of the quality of the result with Q H and Q A . A compromise between diversity in the solution space and the size of the subset is established at 412 solutions (Σ act computed after 90 seconds).

V u ≤ 6.5e -4 ; V a ≤ 1.5e -4 ; P j ≤ 45 (6) 

Results

Fig. 14 shows the parallel plot coordinates of the designs from Σ act . The values are normalized using Eq. 7 and the extreme values of Θ act obtained with NSGA-III (Table 4). The variable P is not represented because the feasible space presents the unique value P = 4. In the design space (ẽ, J cu , la, β) the solutions are well distributed and IDFS is able to find many solutions out of the space covered by the result of NSGA-III (values greater than 1 or smaller than 0). Precisely, among the 412 solutions, 16 are in the PF design scope. This result is also visible in the evaluation of Q H on the design space (Table 5) since we have Q H (Σ act ) ≫ Q H (Θ act ). The partial exploration of the act problem search space gives a wide representative sample of the feasible designs. The corresponding objective values are represented on the same graph ( Ṽu , Ṽa , Pj ).

X =

X -X min P F

X max P F -X min P F [START_REF] Messine | Optimal Design of Electromechanical Actuators: A New Method Based on Global Optimization[END_REF] IDFS is not able to completely cover the range of the approximated Pareto front on V u and P j . Indeed, the minimum value previously obtained with NSGA-III for those two objectives are not reached by IDFS (corresponding to Ṽu = 0 and Pj = 0). It comes from the difficulty of the contracting operator to deal with the nonlinearity of the active constraints in this area of the search space. The capacity of an anytime B& P algorithm to reach the Pareto front during the exploration can be evaluated through the hypervolume indicator H V . Fig. 15 illustrates this result comparing H V during the exploration with the reference value H V (NSGA-III). The partial exploration slightly improves the minimum ideal value of the objective V a ( Ṽa = -0.0018 in Fig. 14).

Eventually, IDFS finds feasible designs close to the optimum that are not identified by NSGA-III. The decision maker may consider those solutions for further investigation using additional criteria that are not implemented in the CSP model. Fig. 16 represents 48 of the close-to-optimum designs that are out of the scope of NSGA-III. Considering the hull of those 48 solutions, the feasible domain of the allowed mechanical air gap e is raised by more than 550% and the feasible domain of the current areal density J cu is augmented by 80%. 

Model

The water problem is a five-objective optimization problem solved in [START_REF] Jain | An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point Based Nondominated Sorting Approach, Part II: Handling Constraints and Extending to an Adaptive Approach[END_REF]. This problem is composed of three continuous variables (x 1 , x 2 , x 3 ) and seven inequality constraints (aside variable domains restrictions). It permits to scale up our exploration approach. The resolution conditions used in [START_REF] Jain | An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point Based Nondominated Sorting Approach, Part II: Handling Constraints and Extending to an Adaptive Approach[END_REF] are reproduced for the optimization part of the experiments. NSGA-III is used with 212 individuals in the genetic population The 423 feasible designs are represented in both the design space (x 1 , x 2 , x 3 ) and the objective space (f 1 , f 2 , f 3 , f 4 , f 5 ) in Fig. 17. The values are normalized using the extreme values of the approximated Pareto front (Eq. 7). Table 6 compares Q H between the subsets Σ wat and Θ wat . IDFS conducts to a more diverse set. It covers a wider part of the design space, in particular on the variable x 3 (corresponding to values greater than 1). IDFS have difficulties to converge close to the expected minima on the objectives f 1 , f 2 and f 5 , hence, the partial exploration does not completely cover the Pareto front. This point is clearly illustrated in Fig. 18, and we see that IDFS does not reach the H V value of the Pareto front. Among those 423 solutions, some are new designs close to the optimum, which may be interesting to consider. In Fig. 19, filters are applied to represent those solutions with x3 ≥ 1 and fi ≤ 0.8. 

Summary of results and discussion

The first part of the experiments compares the anytime exploration method with the multiobjective optimization approach on a simple internal combustion engine problem with two design criteria. While NSGA-II computes a clear biobjective Pareto front, our anytime B&P algorithm returns a good representation of the full solution space. The designs composing the subset are diversified on both the objective space and the design space, which permits to identify new near-optimal designs. In a second phase, an interactive process using a partial exploration solver allows to identify new close-to-optimal designs. Indeed, once a first representative set of solutions is computed, it is possible to focus the search on a particular part of the feasible space, adding specific constraints. Our algorithm is also applied on more complex problems, act and wat, with respectively three and five design criteria. IDFS is here compared with NSGA-III. In both case studies, NSGA-III computes at most a hundred solutions well distributed in the objective space. With IDFS, we are able to compute representative sets of solutions composed of a few hundred solutions with a high diversity in both the design space and the objective space. It shows that partial exploration is able to both reach the objective space close to the Pareto Front and widen the feasible domains in the design space. Partial design space exploration, as proposed in this paper, presents the benefit to get a better understanding of the whole feasible space, prior to any optimization consideration. So-called design objectives are easily considered through ε-constraints. The complexity of a partial exploration with an anytime B&P solver also independent on the number of objectives considered. On the contrary, optimization gets harder with the growing number of objectives [START_REF] Vassilvitskii | Efficiently Computing Succinct Trade-off Curves[END_REF][START_REF] Yuan | Objective Reduction in Many-Objective Optimization: Evolutionary Multiobjective Approaches and Comprehensive Analysis[END_REF]. This advantage may particularly be interesting in eco-design where several environmental impacts can be considered as distinct design criteria.

Furthermore, the models studied here are coarse-grained models, built for preliminary design to reduce quickly the feasible space before more in depth process. Those models are simplifications of reality based on important hypotheses. Hence, optima obtained from MOP solvers may not be the best designs to consider in reality. For example, the internal combustion engine model uses an ideal thermal efficiency air-cycle [START_REF] Papalambros | Principles of Optimal Design: Modeling and Computation[END_REF] and the electromechanical actuator considers simplified modeling such as the conservation of the flux in the magnetic circuit [START_REF] Messine | Optimal Design of Electromechanical Actuators: A New Method Based on Global Optimization[END_REF]. Partial exploration permits to loosen the rigor coming with optimization methods on imperfect models.

Eventually, the interactive process presented on the ice problem illustrates the potential of this framework to integrate interactivity in the design process. Indeed, the process based on anytime B&P algorithm supports stop and start mechanisms such that the resolution can be resumed from any point of the exploration.

Conclusion

CSP modeling represents an important tool for design in preliminary phases to explore feasible solutions. This work proposes to face preliminary design problems using partial design space exploration and to compare it with classical optimization methods. For this purpose an anytime B&P algorithm (IDFS) is implemented with a specific search strategy. The algorithm is able to tackle CSP with mixed integer variables and non-linear constraints. It seeks to return a subset of solutions diverse enough to give a good representation of the whole feasible space.

Our algorithm is evaluated on three different design model. Their design criteria are converted into thresholds for the exploration with IDFS. Two quality indicators Q A and Q H are introduced to evaluate its capacity to return wide and uniform subsets of solutions. The hypervolume H V is also used for the analysis and the comparison with more classical optimization approaches based on metaheuristics. It appears that IDFS is able to return representative subsets composed of a few hundreds of solutions in a reasonable time. Those designs are diversified in the objective space, but also in the design space. Finally, it permits to identify interesting close-to-optimal designs which were not generated by the metaheuristics.

The discussion brings out the interest of the partial exploration framework according to our experiments. This anytime exploration paradigm enables to diminish the black-box aspect of a decision-making program, giving users the opportunity to easily iterate between a model and its solution space. A representative partial set of solutions permits to picture the feasible space and considers well diversified designs. The next 
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 1 Fig.1: Internal combustion engine design problem from[START_REF] Papalambros | Principles of Optimal Design: Modeling and Computation[END_REF] 
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  https://pymoo.org/ (a) Approximated Pareto front of the ice problem obtained with NSGA-II. (b) Solutions from NSGA-II presented in the design variable space.

Definition 3 (

 3 MOMINLP or simply MOP) Given an integer p ≥ 2 and p functions f 1 , . . . , fp : R n → R, a multi-objective mixed-integer nonlinear program can be formulated as min x∈S (f 1 (x), . . . , fp(x)).
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 4 Fig. 4: Design exploration steps.
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 205 Fig. 5: Partial covering of the solution set of P = (x, [-5, 5]2 , {2 ≤ x 2 1 + x 2 2 , x 2 1 + x 2 2 ≤ 4}).Figures from a) to c) are obtained with an anytime search strategy and, from d) to f) with a depth-first search strategy.

  Fig. 5: Partial covering of the solution set of P = (x, [-5, 5]2 , {2 ≤ x 2 1 + x 2 2 , x 2 1 + x 2 2 ≤ 4}).Figures from a) to c) are obtained with an anytime search strategy and, from d) to f) with a depth-first search strategy.

Algorithm 1

 1 Anytime B&P Input: CSP P = (x, [x] 0 , C), precision vector ϵ, measure-of-best function ρ, stopping criterion ϕ Output: set of ϵ-boxes Σ approximating the solution set of P 1: let L ← ([x] 0 ) be a list of boxes 2: let Σ ← ∅ be a set of boxes 3: while L is not empty and ϕ is false do 4: let [x] k be the front element of L 5:
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 7 Fig. 7: Hypervolume indicator for the optimization of ice with NSGA-II.

  (a) QH quality indicator computed with IDFS strategy (b) QA quality indicator computed with IDFS strategy
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 8 Fig. 8: Quality indicators evolution when solving ice with IDFS strategy.
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 9 Fig. 9: Representation of the objective space exploration at 2 different steps with IDFS
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 1011 Fig. 10: Solutions space of the bi-objective ice problem (303 solutions with IDFS (blue crosses), 190 with NSGA-II (green triangles)
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 12 Fig. 12: Evolution of Q H and H V for both strategies.

  (a) Parallel plot coordinate of the second partial exploration Σ 2 ice in the design space (ice problem + c 11 constraint). (b) Objective space of the ice problem. The exploration with IDFS is restricted with the added constraint c 11 .
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 13 Fig. 13: Representation of solutions after adding a new ε-constraint to enclose the PF
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 14 Fig. 14: Solutions obtained with IDFS, normalized with NSGA-III results (act problem).
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 1516 Fig. 15: Hypervolume evolution during the exploration of the search space of the act problem with IDFS algorithm

Fig. 17 :

 17 Fig. 17: Normalized solutions obtained with IDFS (wat problem).
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 18 Fig. 18: Hypervolume evolution during the exploration of the search space of the wat problem with IDFS algorithm
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 19 Fig. 19: New designs obtained with IDFS in Σ wat (wat problem).
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Table 1 :

 1 ice model main parameters

	Name	Description	Variable type
	b	Cylinder bore, (mm)	Design
	Cr	Compression ratio	Design
	d		

E Exhaust valve diameter (mm) Design d I Intake valve diameter (mm) Design w

  solution of P is a tuple s = (s 1 , . . . , sn) ∈ [x] 0 such that we have s i ∈ Z for each i ∈ I and each constraint c ∈ C is satisfied by s, i.e. c is true when each x i is assigned to s i . The set of all the solutions of P is denoted by S.

			a vector of variables
	such that we have x i ∈ Z for each i in a given a
	set of indices I ⊆ {1, . . . , n},
	• [x]	0 is a box of dimension n such that [x]	0 i is the
	domain of x i for each i ∈ {1, . . . , n}, and
	• C is a set of constraints over x such that each
	constraint restricts the acceptable values of the
	variables taken in [x]	0 .

A

  1 is the box obtained by contraction of the initial box [x] 0 . By this way, the variables with the largest domains after the first contraction are penalized. Compared to other metrics, the Hausdorff distance does not add different quantities (like power and emissions), this is the interval equivalent of the Tchebytcheff norm used in[START_REF] Sayın | Measuring the Quality of Discrete Representations of Efficient Sets in Multiple Objective Mathematical Programming[END_REF].

Table 2 :

 2 NSGA-II and NSGA-III shared resolution parameters, with n the number of variables of the problem

	Parameter	Value
	Mutation rate	1/n
	Mutation distribution	30
	Crossover probability	0.95
	Crossover distribution 20

Table 3 :

 3 Actuator main model parameters

	Name Description	Variable type
	e	Mechanical air gap (m)	Design
	Jcu	Current areal density (A/m2)	Design
	la	Thickness of the magnet (m)	Design
	β	Polar arc coefficient	Design
	P	Number of pole pairs	Design
	V u	volume of the active part (m3) Objective
	V a	volume of the magnet (m3)	Objective
	P j	Losses by joule effect (Watt)	Objective
	generations. Other computation parameters are
	presented in Table 2. The resulting approxima-
	tion Θ act obtained after 60 seconds contains 59
	well-distributed solutions.	

Table 4 :

 4 Bounds of the Pareto front computed with NSGA-III for the act problem.

	Variable min	max
	e	1.00e-05	1.613e-05
	Jcu	5.814e+06 7.208e+06
	la	4.570-03	8.952e-03
	beta	0.8	0.9967
	p	4	4
	Vu	5.337e-04	6.046e-04
	Va	9.148e-05	1.377e-04
	Pj	37.47	45

Table 5 :

 5 Comparison of the overall spread Q H for the act problem.

		IDFS	NSGA-II
	Q H design	0.2917	0.0007
	Q H objective 0.0568	0.0358
	4.4 Water problem	

Table 6 :

 6 wat problem. Comparison of the overall spread Q H .

		IDFS NSGA-II
	QH design	0.99	0.337
	QH objective 0.78	0.62

step of this framework is to built an incremental and interactive methodology to both generate and analyse feasible architectures in a preliminary design process.
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Appendix A Models

A.1 Engine V a ≤1.5e -4 P j ≤45

A.3 Water 

Highlights and graphical abstract

• Partial exploration aims to compute a diversified subset of feasible solutions; • We built an anytime branch and prune algorithm for partial design space exploration • We built a protocol to analyze diversity in both the design and the objective space • We compare partial exploration and optimization approaches on three design problems • Partial Exploration is a tool for decision makers to identify quasi-optimal designs