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ON STRAIGHTENING FOR SEGAL SPACES

The straightening-unstraightening correspondence of Grothendieck and Lurie provides an equivalence between cocartesian fibrations between (∞, 1)-categories and diagrams of (∞, 1)-categories. We provide an alternative proof of this correspondence, as well as an extension of straightening-unstraightening to all higher categorical dimensions. This is based on an explicit combinatorial result relating two types of fibrations between double categories, which can be applied inductively to construct the straightening of a cocartesian fibration between higher categories.

Introduction

The Grothendieck construction, or unstraightening, is a standard procedure in category theory that associates to a diagram of categories F : C -→ Cat a map of categories π : Un(F ) -→ C whose fibers are precisely the values of the diagram F . This maneuver does not result in a loss of information: the unstraightening functor Un : Fun(C, Cat) Cat/C is an embedding, whose image is the subcategory of cocartesian fibrations over C and maps between them that preserve cocartesian arrows [START_REF] Grothendieck | Revêtements étales et groupe fondamental[END_REF]. The practical consequences of this result are twofold. On the one hand, the Grothendieck construction also provides an equivalence between cocartesian fibrations over C and pseudofunctors F : C -→ Cat. From this point of view, cocartesian fibrations provide a convenient way to encode coherent diagrams of categories, which can be rectified to strict diagrams via the inverse of unstraightening, aptly called straightening. Consequently, the language of fibrations starts to play an essential role in the homotopy coherent setting of (∞, 1)-categories, where a version of straightening and unstraightening is available as well [START_REF] Lurie | Higher topos theory[END_REF] (see also [START_REF] Riehl | The comprehension construction[END_REF]). Indeed, many homotopy coherent diagrams of (∞, 1)-categories are most naturally described in terms of cocartesian fibrations.

On the other hand, the unstraightening of a diagram F : C -→ Cat is convenient to describe "lax constructions" with categories, stemming from the fact that Un(F ) is the oplax colimit of F [START_REF] Gepner | Lax colimits and free fibrations in ∞-categories[END_REF]. For example, a lax natural transformation between two diagrams F and G can be described by a map Un(F ) -→ Un(G) over C that need not preserve cocartesian arrows (see e.g. [START_REF] Gagna | Fibrations and lax limits of (∞, 2)-categories[END_REF][START_REF] Haugseng | Lax monoidal adjunctions, two-variable fibrations and the calculus of mates[END_REF] for a discussion in the ∞-categorical setting).

The purpose of this text is to establish a version of straightening and unstraightening for (∞, d)-categories. Recall that at the moment, the theory of (∞, d)-categories is only in the first stages of its development, in particular when compared to (∞, 1)-category theory; it is already not straightforward to compare the various different homotopy-theoretic models for (∞, d)-categories (see e.g. [START_REF] Simpson | Homotopy theory of higher categories[END_REF] for a textbook account and [START_REF] Barwick | On the unicity of the theory of higher categories[END_REF] for a more recent state of affairs). Nonetheless, (∞, d)-categories have been of interest in various areas of mathematics, also outside of the realm of category theory itself. For example, higher categories play a role in (derived) algebraic geometry via the six functor formalism (d = 2) [START_REF] Gaitsgory | A study in derived algebraic geometry[END_REF][START_REF] Macpherson | A bivariant Yoneda lemma and (∞, 2)-categories of correspondences[END_REF] and other constructions involving correspondences [START_REF] Calaque | The AKSZ construction in derived algebraic geometry as an extended topological field theory[END_REF], while in topology they arise in factorization homology [START_REF] Ayala | Factorization homology I: Higher categories[END_REF][START_REF] Scheimbauer | Factorization homology as a fully extended topological field theory[END_REF] and notably in topological field theories [START_REF] Calaque | A note on the (∞, n)-category of cobordisms[END_REF][START_REF] Lurie | On the Classification of Topological Field Theories[END_REF].

Given the central place of the (un)straightening correspondence in (∞, 1)-category theory, it seems fair to say that the lack of a higher-categorical version of this correspondence has been one of the main problems in the theory of (∞, d)-categories (henceforth simply referred to as d-categories). For instance, the unstraightening procedure could be useful in the study of lax natural transformations between diagrams of d-categories and in the study of (lax) limits and colimits. Our main results establish such a procedure and show that it is essentially unique.

To this end, we define for each (d + 1)-category C two certain (non-full) subcategories

Cocart d (C) ⊆ Cat d+1 /C Cart d (C) ⊆ Cat d+1 /C
whose objects we refer to as d-cocartesian fibrations and d-cartesian fibrations; the two notions are equivalent under reversing the directions of morphisms in every categorical dimension. The fibers of a d-cocartesian fibration are d-categories; in particular, a 0-cocartesian fibration between 1-categories is simply a left fibration between 1-categories [START_REF] Lurie | Higher topos theory[END_REF]. Furthermore, a 1-cocartesian fibration between 1-categories, viewed as 2-categories with only invertible 2-morphisms, is simply a cocartesian fibration in the usual sense. More generally, a map of (d+1)-categories π : D -→ C is roughly said to be a d-cocartesian fibration if it induces (d -1)-cartesian fibrations on mapping d-categories and if every 1morphism in C admits enough cocartesian lifts (in an enriched sense, see Section 5 for more details). For d = 2, the notion of a 2-cocartesian fibration between (2, 2)-categories has also been considered (in a different variance) by Hermida [START_REF] Hermida | Some properties of Fib as a fibred 2-category[END_REF] (see also [START_REF] Baković | Fibrations of bicategories[END_REF][START_REF] Buckley | Fibred 2-categories and bicategories[END_REF]). More recently, 2-cocartesian fibrations between (∞, 2)-categories have been described in terms of inner cocartesian 2-fibrations between scaled simplicial sets [START_REF] Gagna | Cartesian Fibrations of (∞, 2)-categories[END_REF].

Our main result is then the following:

Theorem A (Theorem 6.1). For each (d + 1)-category C, there exist equivalences of 1categories (here c 1 takes the 1-category underlying a (d + 1)-category)

Un : Our proof of Theorem A only relies on the straightening equivalence for left (i.e. 0cocartesian) fibrations, which we recall in Section 4. [START_REF] Ayala | Stratified noncommutative geometry[END_REF]. In particular, it provides an independent proof of the straightening-unstraightening equivalence for cocartesian fibrations of Lurie [START_REF] Lurie | Higher topos theory[END_REF]. In fact, we will use an inductive argument to deduce Theorem A from a slight generalization of the 1-categorical straightening equivalence, Theorem B below.

To facilitate this inductive argument, we make use of the model for (d + 1)-categories given by iterated complete Segal spaces [START_REF] Barwick | On the unicity of the theory of higher categories[END_REF]. Recall that these are certain types of (d + 1)fold simplicial spaces C : ∆ ×d+1,op -→ S. Here the d-fold simplicial space C(0) = C(0, -) is constant and corresponds to the space of objects of C, while C(1) is itself an iterated complete Segal space, modeling the d-category of arrows in C.

This Segal space model has the benefit that a diagram of d-categories indexed by a (d+1)category C can be encoded explicitly by a map of (d + 1)-fold simplicial spaces X -→ C satisfying the following two conditions [START_REF] Boavida De Brito | Segal objects and the Grothendieck construction[END_REF][START_REF] Rasekh | Yoneda lemma for D-simplicial spaces[END_REF]:

(1) X(0) is a d-category.

(2) The Segal maps X(n) -→ C(n) × C({0}) X({0}) are equivalences of d-categories.

We will refer to such maps as Segal copresheaves, because they should be viewed as encoding a homotopy coherent action of the (d + 1)-category C on the d-category X(0). In particular, fixing the last d simplicial coordinates yields a left fibration between 1-categories. Work of Boavida [START_REF] Boavida De Brito | Segal objects and the Grothendieck construction[END_REF] gives a way to straighten each of these left fibrations, resulting in an equivalence between the 1-category of Segal copresheaves over C and the 1-category of (d + 1)-functors C -→ Cat d (see also [START_REF] Rasekh | Yoneda lemma for D-simplicial spaces[END_REF] and Section 4.3). This equivalence can be thought of as a rectification procedure relating an external (Segal-style) definition of copresheaves to their internal definition as functors C -→ Cat d (cf. in particular Theorem 4.32).

Warning. Let us emphasize that one should not think of a Segal copresheaf X -→ C as some sort of cocartesian fibration: its domain is typically not a (d+1)-category (unless d = 0) and the notion of a Segal copresheaf is therefore not defined internal to the theory of (d + 1)categories. In particular, note that the fibers of a Segal copresheaf are constant in the first simplicial direction, while the fibers of a d-cocartesian fibration between (d + 1)-categories are constant in the last simplicial direction. Unfortunately, the terminology employed in [START_REF] Boavida De Brito | Segal objects and the Grothendieck construction[END_REF][START_REF] Rasekh | Yoneda lemma for D-simplicial spaces[END_REF] seems to suggest otherwise.

The straightening-unstraightening equivalence from Theorem A is then given by a d-step combinatorial procedure that passes from Segal copresheaves to d-cocartesian fibrations. In each step, we modify the behaviour of the map of (d + 1)-simplicial spaces X -→ C only in two consecutive simplicial directions, using the following result: Theorem B (Theorem 3.1). Let C be a double category, i.e. a bisimplicial space satisfying the complete Segal conditions in the two simplicial directions (referred to as horizontal and vertical). Then there is an equivalence of categories

Ψ ⊥ : Fib left,cart (C)
Fib cocart,right (C) : Ψ ⊤ ∼ between maps of double categories p : D -→ C of the following two types:

(1) p is a left fibration in the horizontal and a cartesian fibration in the vertical direction.

(2) p is a cocartesian fibration in the horizontal and a right fibration in the vertical direction. Furthermore, the fibers of D -→ C and Ψ ⊥ (D) -→ C differ simply by exchanging the horizontal and vertical directions.

The definition of the equivalence Ψ ⊥ uses rather simple combinatorics, inspired by the classical Grothendieck construction. Indeed, recall that for F : C -→ Cat, an object in the Grothendieck construction is a tuple (c, x) with c ∈ C and x ∈ F (c), and a morphism is given by the composite of a cocartesian ("horizontal") arrow f : (c, x) -→ (c ′ , f ! x), followed by a "vertical" arrow in the fiber F (c ′ ). Likewise, Ψ ⊥ (D) is a double category with the same objects as D, but with a horizontal arrow consisting of a horizontal arrow in D followed by a fiberwise vertical arrow in D.

Theorem A now follows from an inductive application of Theorem B. The lowest dimensional case, the straightening-unstraightening correspondence between 2-functors C -→ Cat 1 and 1-cocartesian fibrations over a 2-category C, is simply a special case of Theorem B: when the double category C is a 2-category, the domain and codomain of Ψ ⊥ consist precisely of Segal copresheaves and 1-cocartesian fibrations, respectively. In particular, when applied to a diagram of (1, 1)-categories F : C -→ Cat [START_REF] Ayala | Fibrations of ∞-categories[END_REF][START_REF] Ayala | Fibrations of ∞-categories[END_REF] indexed by a (1, 1)-category C, one obtains the following two-step process. We first associate to F a Segal copresheaf over C, which corresponds informally to passing from strict to pseudo-functors, after which the functor Ψ ⊥ produces the classical Grothendieck construction.

Note that Theorem A is not complete: both (d+1)-functors C -→ Cat d and d-cocartesian fibrations over C can naturally be organized into (d + 1)-categories, rather than 1-categories. In the latter case, the (d+1)-category Cocart d (C) of d-cocartesian fibrations can be realized as a subcategory of the (d + 2)-category Cat d+1 /C. Both of these (large) (d + 1)-categories furthermore depend functorially on C by restriction and base change respectively; more precisely, they can each be organized into functors of (d+2)-categories Cat op d+1 -→ CAT d+1 . We then prove the following refinement of Theorem A:

Theorem C (Theorem 6.20). There is a unique natural equivalence of (d + 2)-functors Cat For example, notice that the slice (d + 2)-categories Cat d+1 /C do not depend on C in a 2-functorial way in general. As one may expect, it will instead be more convenient to organize all (d + 1)-categories of d-cocartesian fibrations into a (d + 1)-cartesian fibration π : Cocart d -→ Cat d+1 . The above functor then arises as its straightening, using Theorem A (one categorical dimension higher).

Variants of Theorem A and Theorem C have appeared in the literature before. The straightening of 0-cocartesian fibrations nowadays has various proofs [START_REF] Boavida De Brito | Segal objects and the Grothendieck construction[END_REF][START_REF] Heuts | Left fibrations and homotopy colimits[END_REF][START_REF] Lurie | Higher topos theory[END_REF]. Theorem A for 1-cocartesian fibrations over 2-categories is the content of Lurie's scaled straightening and unstraightening theorem [START_REF] Gagna | Fibrations and lax limits of (∞, 2)-categories[END_REF][START_REF] Lurie | ∞, 2)-categories and the Goodwillie calculus[END_REF]. Work of Buckley [START_REF] Buckley | Fibred 2-categories and bicategories[END_REF] describes the Grothendieck construction for 2-cocartesian fibrations between (2, 2)-categories as an equivalence of 3categories. Gaitsgory and Rozenblyum prove a strengthening of Theorem C for 2-cocartesian fibrations between (∞, 2)-categories, which also allows for lax natural transformations [START_REF] Gaitsgory | A study in derived algebraic geometry[END_REF]Chapter 11,Theorem 1.1.8]; this seems to rely on some unproven statements about (∞, 2)categories appearing in Chapter 10 of loc. cit., notably about the (conjectured) model for (∞, 2)-categories in terms of lax squares. Ayala, Mazel-Gee and Rozenblyum have recently deduced this lax refinement of straightening for (∞, 2)-categories from our results and have also established a version for locally 2-cocartesian fibrations [START_REF] Ayala | Stratified noncommutative geometry[END_REF]. Finally, let us mention that a version of Theorem C has been hypothesized in [START_REF] Macpherson | A bivariant Yoneda lemma and (∞, 2)-categories of correspondences[END_REF], where it is used to prove a universal property for the (∞, 2)-category of correspondences in an (∞, 1)-category with fiber products.

Outline. Let us give a brief overview of the contents of this paper. Sections 2 and 3 treat Theorem B and contain our main combinatorial results: Section 2 discusses the fibrations of double categories appearing in Theorem B, and defines the functor Ψ ⊥ on objects (Section 2.3). In Section 3, we then show that Ψ ⊥ extends to an equivalence of categories (Theorem 3.1). This essentially already gives a proof of straightening and unstraightening for cocartesian fibrations of 1-categories (see Corollary 4.35).

Section 4 gives some background material on higher categories, mainly using the model of iterated complete Segal spaces. To produce examples of higher categories (e.g. of the (d + 1)-category Cat d of d-categories), we also recall the comparison to the point-set model of (strict) enriched categories (Section 4.2). Section 4.3 reviews the results of Boavida [START_REF] Boavida De Brito | Segal objects and the Grothendieck construction[END_REF], relating Segal copresheaves over C to functors C -→ Cat d . For our purposes, we will need to slightly rephrase the results from loc. cit. to make them ((∞, 1)-)functorial in the base C; this requires some technical results about cartesian fibrations in the setting of categories of fibrant objects, discussed in Appendix A.

In Section 5, we give the definitions of d-cocartesian fibrations and d-cartesian fibrations. The main result here (Proposition 5.25) asserts that d-cocartesian fibrations can themselves be organized into a (d + 1)-cartesian fibration π : Cocart d -→ Cat d+1 .

Finally, Section 6 contains the proofs of our main results, Theorems A and C. We first prove a version of straightening-unstraightening at the level of 1-categories (Theorem 6.1). Using this, it follows that there is a (d + 2)-functor Cocart d : Cat op d+1 -→ CAT d+1 sending each (d + 1)-category C to the large (d + 1)-category of d-cocartesian fibrations over C. We then show that this functor is representable by Cat d (Theorem 6.20), providing the existence of the natural equivalence of Theorem C. The uniqueness of this natural equivalence follows from the results in Section 6.2.

Conventions and notation. We phrase our results as much as possible in the language of (∞, 1)-categories (with the notable exception of Sections 4.2 and 4.3, where we need to recourse to point-set models). This is mostly a matter of terminology: effectively, we only start from the (∞, 1)-category S of spaces instead of the Kan-Quillen model structure on simplicial sets to avoid having to impose fibrancy conditions at every step. In particular, we avoid any ∞-categorical machinery that (tacitly) relies on the straightening results of Lurie.

Throughout the text, we will omit all prefixes "∞-". For instance, we abbreviate (∞, 1)categories simply to categories and (∞, d)-categories to d-categories, referring to ordinary categories instead as (1, 1)-categories. We write c k C for the k-core of a higher category, i.e. the k-category obtained by removing non-invertible morphisms in dimensions > k.

A subspace of a space is a (-1)-truncated map S ֒-→ T , i.e. an inclusion of path components. Likewise, by a subcategory of a d-category we will mean a (-1)-truncated map i : C ֒-→ D; inductively, this means that i induces a subspace inclusion on spaces of objects and a subcategory inclusion on mapping (d -1)-categories. (This is in fact closer to the classical notion of a replete subcategory.) In particular, this means that specifying a subcategory of a d-category comes down to specifying a subcategory of its homotopy (d, d)-category.

Categories and d-categories will typically be denoted by C, while d-fold categories (see Section 2) will be denoted C. We have furthermore tried to differentiate these notationally from specific point-set models by enriched categories or relative categories: for example, a (d + 1)-category C can be presented by an ordinary category C strictly enriched in the (1, 1)category Cat d of fibrant objects in the d-categorical model structure (cf. Section 4.2). In particular, the (d + 1)-category Cat d of d-categories is modeled by Cat d with its canonical self-enrichment (Definition 4.22); we write Cat d = c 1 Cat d for its 1-core. Likewise, we will denote by CAT d and CAT d the (higher) categories of large d-categories.
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Fibrations of double categories

In this section, we will introduce a certain type of fibration between double categories, behaving like a left fibration in one direction and like a cartesian fibration in the other. We will show that such a fibration has a 'reflection', which is a cocartesian fibration in one direction and a right fibration in the other.

2.1. Recollections on double categories. Recall that a simplicial space X : ∆ op -→ S is said to be a complete Segal space if it satisfies the following two conditions [START_REF] Rezk | A model for the homotopy theory of homotopy theory[END_REF]:

(1) Segal condition: for every n ≥ 2, the natural map

X n X {0 ≤ 1} × X({1}) X {1 ≤ • • • ≤ n} is an equivalence. Equivalently, X(n) ≃ X(1) × X(0) • • • × X(0) X(1) via the inclusions of the intervals {i ≤ i + 1} into [n].
(2) completeness: consider the simplicial set H = ∆ [START_REF] Ayala | Stratified noncommutative geometry[END_REF] ∼ obtained by collapsing the 1simplex {0 ≤ 2} to a point and collapsing the 1-simplex {1 ≤ 3} to a (different) point.

Then the map X(0) -→ Map sS (H, X) is an equivalence.

Recall that complete Segal spaces are a model for the homotopy theory of ((∞, 1)-)categories; we will therefore also refer to complete Segal spaces simply as (1-)categories. We will be interested in analogues of complete Segal spaces for diagrams of spaces indexed by multiple copies of the simplex category.

Notation 2.1. For any k ≥ 0, we will write n k = ([n 1 ], . . . , [n k ]) ∈ ∆ ×k for a generic (but fixed) k-tuple of objects in ∆. Furthermore, we will abbreviate 0 k = ([0], . . . , [0]). For example, if X : ∆ ×d -→ S is a d-fold simplicial space, then

X( n k , -, 0 d-k-1 ) : ∆ op S
denotes the simplicial space obtained by fixing the first k inputs to be n k and the last d-k-1 inputs to be 0, varying only the (k + 1)-st input. Finally, we will write X(n) : ∆ ×d-1 -→ S for the (d -1)-fold simplicial space given by X(n, -, . . . , -).

Definition 2.2. A d-fold category C is a diagram C : (∆ op ) ×d -→ S such that for each 1 ≤ k ≤ d, all the simplicial spaces C n k-1 , -, n d-k : ∆ op S
are complete Segal spaces. When d = 2, we will refer to C as a double category. We will denote by Cat ⊗d ⊆ Fun (∆ op ) ×d , S the full subcategory spanned by the d-fold categories.

Warning 2.3. Because we impose completeness conditions in all directions, this notion of a d-fold category is not quite the ∞-categorical analogue of that of a d-uple category in the sense of Ehresmann [START_REF] Ehresmann | Catégories structurées[END_REF], i.e. a (strict) category object in (d -1)-uple categories. The latter type of objects (which are sometimes also called d-fold categories) corresponds instead to the more general notion of a d-uple Segal space [START_REF] Haugseng | The higher Morita category of En-algebras[END_REF].

For instance, for a double category in the sense of Definition 2.2, the completeness conditions in the horizontal and vertical direction imply that the horizontal equivalences and vertical equivalences coincide. Many examples of double (and more generally, d-uple) Segal spaces do not satisfy this condition: as an example, one can take the double Segal space of associative algebras, with horizontal morphisms given by bimodules and vertical morphisms given by algebra homomorphisms [START_REF] Haugseng | The higher Morita category of En-algebras[END_REF]. Notation 2.4 (Opposites). Let C be a d-fold category and 1 ≤ k ≤ d. We will write C k-op for the d-fold category given by taking opposites in the k-th variable:

C k-op : ∆ ×d ∆ ×d S.
id ×k-1 ×op×id ×d-k C

When k = 1, we will simply write C op . If C is a double category, we will furthermore write C rev for the double category with its coordinates reflected, i.e. C rev (m, n) = C(n, m).

In the case of double categories, we will employ the following conventions: we will refer to the direction of the first copy of ∆ op as the horizontal direction and to the second copy of ∆ op as the vertical direction. Furthermore, we will use the notation -→ for horizontal arrows and and for vertical arrows.

Example 2.5. Let C and D be categories. We denote by C ⊠ D the double category given by

C ⊠ D [p], [q] = Map Cat [p], C × Map Cat [q], D .
In The squares in this picture should not be viewed as commuting squares, but rather as being filled with some type of non-invertible 2-arrow; no confusion should arise since one cannot compose -→ and .

Example 2.6. Let n ≥ 0 and consider the arrow double category Ar[n] defined by

Map Cat ⊗2 [p, q], Ar[n] ≃ Map Cat [q] ⋆ [p], [n] .
where ⋆ denotes the join. 

Map Cat ⊗2 [p, q], Tw[n] ≃ Map Cat [q] op ⋆ [p], [n] .
In other words, We will write Y X for the internal mapping object in d-fold simplicial spaces; the proposition implies that this is also the internal mapping object for d-fold categories.

Tw[n] ≃ Ar[n]
Proof. It suffices to verify that for each d-fold category C and m 1 , . . . , m d ≥ 0, the d-fold simplicial space given by

C [m1,...,m d ] (n 1 , . . . , n d ) = Map [m 1 , . . . , m d ] × [n 1 , . . . , n d ], C remains a d-fold category. Using that [m 1 , . . . , m d ] = [m 1 , 0, . . . , 0] × • • • × [0, . . . , 0, m d ]
together with symmetry, it suffices to verify that C [m,0,...,0] is a d-fold category, i.e. satisfies the complete Segal conditions in all simplicial directions.

For the first direction, note that each C [m,0,...,0] (-, n d-1 ) agrees with C(-, n d-1 ) [m] , which is a 1-category by [START_REF] Rezk | A model for the homotopy theory of homotopy theory[END_REF]Theorem 7.2]. For the remaining simplicial directions, note that the (d -1)-fold simplicial space C [m,0,...,0] (n, -) : (∆ op ) ×d-1 S sends each (n 2 , . . . , n d ) to space of maps between simplicial spaces

Map sS [m] × [n], C(-, n 2 , . . . , n d ) ≃ Map sS colim [k]∈∆/[m]×[n] [k], C(-, n 2 , . . . , n d ) ≃ lim [k]∈(∆/[m]×[n]) op C(k, n 2 , . . . , n d ).
In other words, C [m,0,...,0] (n, -) is naturally equivalent to the limit of a certain diagram consisting of the (d -1)-fold categories C(k, -). Since Cat ⊗d-1 ⊆ Fun (∆ op ) ×d-1 , S is closed under limits, each C [m,0,...,0] (n, -) is a (d -1)-fold category, as desired.

2.2.

Fibrations of double categories. Let p : D -→ C be a map of 1-categories. Recall that an arrow α :

d 1 -→ d 2 in D is called p-cartesian (or simply cartesian, if p is understood) if for any diagram Λ 2 [2] D [2] C σ
where the restriction of σ to [1 < 2] is given by α, there is a contractible space of lifts, as indicated. Let D(1) cart ⊆ D(1) denote the subspace consisting of cartesian arrows. Then p is said to be a cartesian fibration if the map D(1) cart -→ D({1}) × C({1}) C(1) induces a surjection on path components [START_REF] Ayala | Fibrations of ∞-categories[END_REF][START_REF] Lurie | Higher topos theory[END_REF]. It is called a right fibration if furthermore every arrow in D is cartesian. Equivalently, it is a right fibration if the map D(1) -→ D({1})× C({1}) C( 1) is an equivalence, see e.g. [START_REF] Boavida De Brito | Segal objects and the Grothendieck construction[END_REF]Proposition 1.7]. Taking opposite categories, one obtains the notion of a cocartesian arrow and a cocartesian (resp. left ) fibration (some alternative characterizations also appear in Section 5.1).

We will be interested in the following variant of this notion for double categories:

Definition 2.9. A map D -→ C of double categories is called a (left, cart)-fibration if the following conditions hold:

(1) The square of categories

D([1], -) D({0}, -) C([1], -) C({0}, -) is cartesian. Equivalently, each D(-, n) -→ C(-, n) is a left fibration of categories.
(2) D(0, -) -→ C(0, -) is a cartesian fibration of categories.

A strong map between (left, cart)-fibrations is a commuting square

D D ′ C C ′ f p p ′
where f preserves cartesian vertical arrows. We will write Fib left,cart ⊆ Fun( [START_REF] Ayala | Fibrations of ∞-categories[END_REF], Cat ⊗2 ) for the subcategory of (left, cart)-fibrations and strong maps between them. 

β * (d 01 ) α ! β * (d 01 ) d 01 α ′ ! (d 01 ) σ -→ c 00 c 10 c 01 c 11 α β σ β ′ α ′
which is vertically p-cartesian, in the sense that any other square factors uniquely over σ in the vertical direction (Remark 2.10). The resulting vertical arrow

α ! β * (d 01 ) -→ α ′ ! (d 01
) is not necessarily p-cartesian and decomposes as

α ! β * (d 01 ) β ′ * α ′ ! (d 01 ) α ′ ! (d 01 ).
hσ

The first map h σ is contained in the fiber p -1 (c 10 ) and provides a natural comparison between the two ways to change fibers over the square σ, from "horizontally after vertically" to "vertically after horizontally".

To illustrate Definition 2.9, let us consider the following example:

Proposition 2.12. Let C and D be categories and let p = (p 1 , p 2 ) : X -→ C× D be a functor such that:

(i) p 1 is a cocartesian fibration and all p 1 -cocartesian arrows in X map to equivalences in D.

(ii) p 2 is a cartesian fibration and all p 2 -cartesian arrows in X map to equivalences in C. Associated to p is a map of double categories p ′ : X -→ C ⊠ D, where X(m, n) is the space of diagrams

(2.13) [m] × [n] X C × D σ α×β p where α : [m] -→ C, β : [n] -→ D and σ sends each [m] × {j} to p 1 -cocartesian arrows in X.
Then p ′ is a (left, cart)-fibration of double categories.

Functors p : X -→ C × D satisfying conditions (i) and (ii) have been studied in detail in [START_REF] Haugseng | Two-variable fibrations, factorisation systems and ∞-categories of spans[END_REF][START_REF] Haugseng | Lax monoidal adjunctions, two-variable fibrations and the calculus of mates[END_REF], where they are called local orthofibrations. Let us point out the close analogy between the discussion preceding Proposition 2.12 and the discussion in [START_REF] Haugseng | Lax monoidal adjunctions, two-variable fibrations and the calculus of mates[END_REF]Construction 2.3.5].

Proof. To see condition [START_REF] Ayala | Fibrations of ∞-categories[END_REF], consider the pullback square of categories

Fun ′ ([n], X) C × Map Cat ([n], D) Fun([n], X) Fun([n], C) × Fun([n], D) q ∆×ι
where ∆ takes the constant diagram and ι is the inclusion of the space of objects. Since (p 1 , p 2 ) is a local orthofibration, the induced map D) is a local orthofibration as well: a natural transformation in Fun([n], X) is p ′ 1 -cocartesian if and only if it is given pointwise by p 1 -cocartesian maps in X, and similarly for p ′ 2 -cartesian natural transformations (this follows e.g. from Lemma 5.4(3)). In particular, the base change

(p ′ 1 , p ′ 2 ) : Fun([n], X) -→ Fun([n], C) × Fun([n],
q : Fun ′ ([n], X) -→ C × Map Cat ([n], D) is a cocartesian fibration.
Unraveling the definitions, one sees that the space of maps [m] -→ Fun ′ ([n], X) is equivalent to the space of diagrams σ : [m] × [n] -→ X of the form (2.13). Furthermore, [m] -→ Fun ′ ([n], X) sends each arrow to a q-cocartesian arrow if and only if σ sends each [m] × {i} to p 1 -cocartesian arrows in X. It follows that there is a factorization

X(-, n) Fun ′ ([n], X) C × Map([n], D) = C ⊠ D (-, n) q
where the first map is the inclusion of the wide subcategory spanned by the q-cocartesian arrows. In particular, this shows that each X(-, n) -→ C ⊠ D (-, n) is a left fibration, as desired.

For condition [START_REF] Ayala | Factorization homology I: Higher categories[END_REF], it suffices to observe that the map X(0, -) -→ C ⊠ D (0, -) coincides with top horizontal map in the pullback diagram

X(0, -) c 0 (C) × D X C × D.
This map is a cartesian fibration by condition (ii) (cf. [24, Observation 2.3.2]).

Remark 2.14. This remark only serves to motivate Definition 2.9, and will not be used in the rest of the text (making it more precise would require a form of straightening).

Elaborating on the discussion following Definition 2.9, one can informally think of a (left, cart)-fibration p : D -→ C as a certain type of diagram of categories indexed by C. Indeed, by Remark 2.11, the fibers of p are all categories (in the vertical direction). Furthermore, each horizontal arrow α : c 0 -→ c 1 induces a map of categories α ! : D c0 -→ D c1 and each vertical arrow β : c 0 c 1 induces a map of categories β * : D c1 -→ D c0 . Finally, each diagram σ : [1, 1] -→ C gives rise to a square of categories and functors commuting up to a natural transformation

D c00 D c10 D c01 D c11 . α ! hσ α ′ ! β * β ′ *
In other words, a (left, cart)-fibration p : D -→ C should arise as the unstraightening of a diagram of double categories C Then f is an equivalence if and only if for any object c ∈ C, the induced map between the fibers D c -→ E c is an equivalence of (vertical) categories.

Proof. Since p and q are left fibrations in the horizontal direction, the map f is an equivalence if and only if the map f 0 : D(0, -) -→ E(0, -) is an equivalence of cartesian fibrations over C(0, -); in turn, the map of cartesian fibrations f 0 is an equivalence if and only if it induces an equivalence on fibers [START_REF] Lurie | Higher topos theory[END_REF]Corollary 2.4.4.4].

Variant 2.16. Taking opposites in the horizontal or vertical direction, and exchanging the vertical and horizontal direction, one obtains seven more types of fibrations. For example, a map D -→ C is a (cocart, right)-fibration if D(-, 0) -→ C(-, 0) is a cocartesian fibration and each D(m, -) -→ C(m, -) is a right fibration. Strong maps between such fibrations are always required to preserve (co)cartesian arrows, either in the horizontal or vertical direction.

For example, one can also associate a (cocart, right)-fibration to a two-variable fibration (p 1 , p 2 ) : X -→ C × D as in Proposition 2.12, by considering maps σ as in (2.13) that send each {i} × [n] to p 2 -cartesian arrows in X.

Remark 2.17. Similarly to Remark 2.14, one can informally think of a (cocart, right)fibration p : D -→ C as a certain diagram of categories indexed by C. Indeed, in this case all fibers of p are categories in the horizontal direction (and constant in the vertical direction) and again each horizontal arrow α : c 0 -→ c 1 induces a map of categories α ! : D c0 -→ D c1 and each vertical arrow β : c 0 c 1 induces a functor β * : D c1 -→ D c0 . For the behaviour on a square σ : [1, 1] -→ C, we can repeat the analysis following Definition 2.9: for each such square and a lift d 10 ∈ p -1 (c 10 ), there exists a lift to a square

β * (d 01 ) α ! β * (d 01 ) d 10 α ! (d 10 )
in D which is p-cocartesian in the horizontal direction. The left vertical arrow is p-cartesian but the right vertical arrow is not in general, so that one again obtains a natural map

h σ : α ! β * (d 01 ) -→ β ′ * α ! (d 01 ).
In other words, one can think of a (cocart, right)-fibration p : D -→ C as the unstraightening of a map of double categories C 2-op -→ Cat oplax , where Cat oplax is the double category described informally in Remark 2.14.

2.3.

The reflection of a (left, cart)-fibration. We will now turn to the main combinatorial construction of this text: we will associate to each (left, cart)-fibration p : D -→ C a (cocart, right)-fibration Ψ ⊥ (D) -→ C, which we will refer to as the reflection of p. In Section 3, we will study the functoriality of this construction in more detail.

Before we begin, note that at a heuristic level, Remark 2.14 and Remark 2.17 show that (left, cart)-fibrations and (cocart, right)-fibrations over a double category C encode the same kind of data: both should be considered as unstraightened versions of the datum of a map of double categories

C 2-op
Cat oplax . One should therefore be able to straighten a (left, cart)-fibration to such a map of double categories and then unstraighten it to obtain a (cocart, right)-fibration. Instead of making this more precise, we will give a purely combinatorial description of (what should be) the composite functor Ψ ⊥ , inspired by the explicit formula for the Grothendieck construction and the combinatorics appearing in [START_REF] Haugseng | Two-variable fibrations, factorisation systems and ∞-categories of spans[END_REF]. Informally, the functor Ψ ⊥ will first remove the vertical arrows in each fiber of p : D -→ C, so that only the cartesian vertical arrows remain, and then replaces them by fiberwise horizontal arrows instead (which can be composed with the cocartesian horizontal arrows already present in D).

Let us start by considering the following construction of a double category out of a (left, cart)-fibration, which will appear repeatedly in the text: Lemma 2.18. Let p : D -→ C be a map of double categories such that each D(-, n) -→ C(-, n) is a left fibration. Consider the bisimplicial space X whose space of (m, n)-simplices is given by the space of commuting squares

(2.19) Ar[m] × [0, n] D [m, n] C. π hor ×id p
Then X is a double category.

Remark 2.20. Informally, X is a double category with the same objects as D, whose squares are given by diagrams in D of the form where the right square is a commuting square of vertical arrows in which the top and bottom arrow are sent to degenerate arrows in C. In other words, we keep the same vertical arrows but replace the horizontal arrows by formal composites β • α : • -→ • • of a horizontal and a fiberwise vertical arrow. Diagrams of the above form have an evident vertical composition. For the composition of horizontal arrows, consider the concatenation of two formal composites

• • • • • α1 β1 α2 β2
Then β 1 and α 2 fit into an essentially unique (1, 1)-cell of D that covers the vertically degenerate (1, 1)-cell p(α 2 ) in C. The other two sides of this square give a formal composite

β ′ 1 • α ′ 2 : • -→ • •.
The composed horizontal arrow in X is then given by the formal composite (

β 2 β ′ 1 ) • (α ′ 2 α 1 ).
Proof. To see that X is a category in the vertical direction, we use that Cat ⊗2 is cartesian closed (Proposition 2.8): the simplicial space X(m, -) can then be identified with the category

D Ar[m] × C Ar[m] C [m,0] (0, -).
To see that each X(-, n) is a category, it suffices to treat the case n = 0: indeed, the general case then follows by considering the functor D [0,n] -→ C [0,n] , which is still a left fibration in the horizontal direction. Unraveling the definitions shows that the Segal condition for X(-, 0) translates into the unique lifting problem We need to show that the above diagram is degenerate both in the horizontal and the vertical direction. Using that each D(-, n) -→ C(-, n) is a left fibration, one sees that the above diagram is degenerate in the horizontal direction. Furthermore, the rightmost column is degenerate in the vertical direction, since both x 03

Ar[0 ≤ 1] ∐ {11} Ar[1 ≤ • • • ≤ m] D Ar[0 ≤ • • • ≤ m] [m,
x 23 and x 13 x 33 are degenerate and D(0, -) is a category. Definition 2.21. Let p : D -→ C be a (left, cart)-fibration and let X be the double category from Lemma 2.18. We will denote by Ψ ⊥ (D) ⊆ X the bisimplicial subspace whose (m, n)-simplices correspond to diagrams (2.19) with the following property: the top map Ar[m] × [0, n] -→ D sends each {ii} × [0, n] into the subspace of cartesian vertical arrows of D. We will refer to the evident projection Ψ ⊥ (p) : Ψ ⊥ (D) -→ C as the reflection of p.

In terms of the heuristic description of X from Remark 2.20, one can identify Ψ ⊥ (D) ⊆ X with the largest double subcategory of X with the property that any vertical morphism [0, 1] → Ψ ⊥ (D) corresponds to a p-cartesian vertical arrow of D. For the reason behind the terminology, see Proposition 3.15. Proof. We verify each of the conditions, starting with the fact that Ψ ⊥ (D) is a double category.

Segal conditions. Recall the double category X from Lemma 2.18. Since each Ψ ⊥ (D)(-, n) ⊆ X(-, n) is a full subcategory of the category X(-, n), it follows that Ψ ⊥ (D)(-, n) is a category (i.e. complete Segal space) itself. In the other direction, note that there is a pullback square of simplicial spaces

Ψ ⊥ (D)([m], -) X([m], -) m i=0 Ψ ⊥ (D)({i}, -) m i=0 X({i}, -).
Since X([m], -) is a category by Lemma 2.18, it suffices to verify that Ψ ⊥ (D)(0, -) ֒-→ X(0, -) is a subcategory. But this can simply be identified with the inclusion of the wide subcategory of D(0, -) whose morphisms are cartesian morphisms.

Vertical right fibration. Next, let us verify that each Ψ ⊥ (D)(m, -) -→ C(m, -) is a right fibration. By the horizontal Segal condition, it suffices to treat the case m = 0 and m = 1.

Unraveling the definitions, we have to verify that there are contractible spaces of diagonal lifts

{1} D Ar[1] × {1} D [0, 1] C Ar[1] × [0, 1] [1, 1] C π π
with the following property: the vertical arrow in [0, 1], respectively the vertical arrows in {00, 11} × [0, 1], are sent to cartesian vertical arrows in D. For the left square, there is a unique such lift since D(0, -) -→ C(0, -) is a cartesian fibration. For the right square, we have to verify that for any solid diagram

x 00,0 x 01,0

x 00,1

x 01,1 D

x 11,0

x 11,1 c 0,0 c 1,0 C c 0,1 c 1,1 • •
there exist unique objects x 00,0 , x 01,0 , x 11,0 together with a dashed extension as indicated, such that the two arrows x 00,0 x 00,1 and x 11,0 x 11,1 are cartesian. To see this, first take these two arrows to be the (unique) cartesian lifts of their image in C. Then the top square can be filled uniquely using that D -→ C is a left fibration in the horizontal direction. The right square (living entirely in the vertical direction) can then be filled uniquely since x 11,0

x 11,1 was cartesian.

Horizontal cocartesian fibration. Note that the space Ψ ⊥ (D)(1, 0) of horizontal arrows in Ψ ⊥ (D) is the space of diagrams in D of the form

x y z covering a horizontal arrow in C. Let us say that a horizontal arrow in Ψ ⊥ (D) is marked if the corresponding vertical map y z is an equivalence in D. We claim that all marked horizontal arrows in Ψ ⊥ (D) are Ψ ⊥ (p)-cocartesian. In other words, we have to find a unique diagonal lift for every diagram of categories

Λ 0 [2] Ψ ⊥ (D)(-, 0) [2] C(-, 0) Ψ ⊥ (p)
where the top map sends 0 -→ 1 to a marked arrow. Unraveling the definitions, this corresponds to a solid diagram in D covering a horizontal 2-simplex in C

x 00 x 01 x 02

x 11 x 12

x 22

∼

where the map x 01 x 11 is an equivalence, of which one has to find a unique dashed extension as indicated. To find the desired unique extension, using that D -→ C is a left fibration in the horizontal direction, it follows that there is a unique way to extend the square making the top triangle (living purely in the horizontal direction) commute. Since x 01

x 11 was an equivalence, the resulting vertical arrow x 02 x 12 is an equivalence as well. It then follows that there is a unique vertical map x 12

x 22 with a filling of the right triangle (purely in the vertical direction). We conclude that all marked arrows in Ψ ⊥ (D) are cocartesian. Finally, for every horizontal arrow f : c -→ c ′ in C and a lift x ∈ Ψ ⊥ (D) c , there exist a marked lift f : x -→ x ′ , using that D(-, 0) -→ C(-, 0) was a left fibration: indeed, one can take f to correspond to the diagram x -→ f ! x = f ! x in D.

Reflecting fibrations of double categories

This section provides a more detailed analysis of the reflection of (left, cart)-fibrations between double categories (Definition 2.21). More precisely, our goal will be to prove our main technical result: Theorem 3.1. There is an equivalence of cartesian fibrations

Ψ ⊥ : Fib left,cart Fib cocart,right : Ψ ⊤ Cat ⊗2 ∼ codom codom
between the categories of (left, cart)-fibrations and (cocart, right)-fibrations. In particular, for any double category C this restricts to an equivalence Fib left,cart (C) ≃ Fib cocart,right (C).

This should not be unexpected: in light of Remark 2.14 and Remark 2.17, both (left, cart)fibrations and (cocart, right)-fibrations should be equivalent to functors of double categories C 2-op -→ Cat oplax under some form of straightening.

At the level of objects, the functor Ψ ⊥ is given by Definition 2.21. The functor Ψ ⊤ is defined analogously, taking opposites and reversing the roles of the horizontal and vertical directions. To extend Ψ ⊥ and Ψ ⊤ to functors, it will be convenient to describe the ∞-categories of (left, cart)-fibrations and (cocart, right)-fibrations in terms of marked bisimplicial spaces (Section 3.1). This allows one to describe the functor Ψ ⊥ very explicitly in terms of combinatorial data (Section 3.2). Finally, we will provide explicit natural equivalences exhibiting Ψ ⊥ and Ψ ⊤ as mutual inverses (Section 3.3). We will do this by explicitly writing down a zigzag of equivalences connecting their composition to the identity. Remark 3.2. In model categorical terms, both functors Ψ ⊥ and Ψ ⊤ arise as right Quillen functors between the arrow categories of marked bisimplicial spaces. In particular, all of our arguments can be reformulated without difficulties into such model-categorical terms.

3.1. Marked bisimplicial spaces. For technical reasons, it will be convenient to give a description of the category Fib left,cart using markings, analogous to the model for cartesian fibrations using marked simplicial sets in [START_REF] Lurie | Higher topos theory[END_REF].

Notation 3.3. Let ∆ ×2
↓ denote the category obtained from ∆ ×2 by freely adding a factorization of the vertical degeneracy map [0, 1] -→ [0, 0] as follows:

[0, 1] [0, 0] [0, 1] ♯ .
A presheaf X : (∆ ×2 ↓ ) op -→ S is said to be a vertically marked bisimplicial space if the map X([0, 1] ♯ ) -→ X(0, 1) is a subspace inclusion. We will write bisS ↓ ⊆ Fun(∆ ×2,op ↓ , S) for the full subcategory spanned by the vertically marked bisimplicial spaces, and typically use the same symbol for a vertically marked bisimplicial space and its underlying bisimplicial space.

Remark 3.4. The forgetful functor bisS ↓ -→ bisS induces a subspace inclusion

Map bisS ↓ (X, Y ) Map bisS (X, Y )
whose image consists of the path components of maps of bisimplicial spaces f : X -→ Y with the property that X(0, 1) -→ Y (0, 1) preserves the subspace of marked vertical arrows.

Definition 3.5. A vertically marked double category is a vertically marked bisimplicial space whose underlying bisimplicial space is a double category. We will write Cat ⊗2 ↓ ⊆ bisS ↓ for the full subcategory of vertically marked double categories.

Likewise, we write Cat ⊗2 → ⊆ bisS → for the full subcategory of horizontally marked bisimplicial spaces spanned by the horizontally marked double categories. Notation 3.6. As usual, the forgetful functor Cat ⊗2 ↓ -→ Cat ⊗2 admits a fully faithful right adjoint, sending a double category C to the vertically marked double category C ♯ where all vertical arrows are marked. We will write also write C ♯ for C with all horizontal arrows marked; it will always be clear from the context whether we mark horizontal or vertical arrows.

Definition 3.7. Consider the following full subcategories of Fun [START_REF] Ayala | Fibrations of ∞-categories[END_REF], bisS ↓ :

(1) Let Fun ♯ [START_REF] Ayala | Fibrations of ∞-categories[END_REF], bisS ↓ be spanned by the maps Y -→ X where X is maximally marked, i.e. every [0, 1]-simplex of X is marked.

(2) Let Fun ♯ [1], Cat ⊗2 ↓ be spanned by the maps D -→ C ♯ between marked double categories, with C ♯ maximally marked.

(3) Let Fib left,cart be spanned by the maps p : D ♮ -→ C ♯ between marked double categories, whose underlying map of double categories is a (left, cart)-fibration and where a vertical arrow in D ♮ is marked if and only if it is p-cartesian. The codomain projections (forgetting the maximal marking) then define a diagram of cartesian fibrations and maps preserving cartesian arrows

Fib left,cart Fun ♯ [1], Cat ⊗2 ↓ Fun ♯ [1], bisS ↓ Cat ⊗2 Cat ⊗2 bisS. codom codom codom =
In a similar way, one can define fully faithful inclusions

Fib cocart,right Fun ♯ [1], Cat ⊗2 → Fun ♯ [1], bisS → Cat ⊗2 Cat ⊗2 bisS. codom codom codom = Lemma 3.8.
Forgetting the marking defines a functor Fib left,cart -→ Fun [START_REF] Ayala | Fibrations of ∞-categories[END_REF], Cat ⊗2 ) which is an equivalence onto the subcategory whose objects are (left, cart)-fibrations and whose morphisms are strong morphisms (Definition 2.9).

Proof. By Remark 3.4, the forgetful functor Fun [START_REF] Ayala | Fibrations of ∞-categories[END_REF], Cat ⊗2 ↓ ) -→ Fun [START_REF] Ayala | Fibrations of ∞-categories[END_REF], Cat ⊗2 ) induces inclusions of path components on mapping spaces, whose images consist of those commuting squares of double categories such that all maps preserve marked arrows. The result follows immediately from this.

Remark 3.9. The full subcategory Fib left,cart ֒-→ Fun [START_REF] Ayala | Fibrations of ∞-categories[END_REF], bisS ↓ can be obtained as a left Bousfield localization (and in particular is a presentable category). One can also present Fib left,cart in terms of model (1, 1)-categories, as a left Bousfield localization of the injective model structure on functors ∆ ×2,op ↓ -→ sSet (where sSet carries the Kan-Quillen model structure). All arguments appearing below can be carried out in this setting as well.

Construction 3.10. Let us fix the following data:

(a) for each m, n ≥ 0, a map of vertically marked double categories S[m, n] -→ [m, n] ♯ , natural in the sense that it defines a functor fitting into a commuting triangle

Fun ♯ [1], bisS ↓ ∆ ×2 bisS.
codom S (b) in the vertically marked double category S[1, 0], an additional set of path components of marked vertical edges. We will write S[1, 0] + for the resulting vertically marked double category. Associated to this data is a natural map of cartesian fibrations

(3.11) Fun ♯ [1], bisS ↓ Fun ♯ [1], bisS → bisS.

ΨS codom codom

To construct this diagram, observe that the codomain projection admits a left adjoint L : bisS -→ Fun ♯ ([1], bisS ↓ ), sending C to ∅ -→ C ♯ ; the same holds in the horizontally marked case. Now consider the commuting squares

[1] op × ∆ ×2 → Fun ♯ [1], bisS ↓ Fun [1], PSh(∆ ×2 → ) Fun ♯ [1], bisS ↓ {1} × ∆ ×2 bisS bisS bisS. σ ΦS h L = L L
In the left square, h is the Yoneda embedding and σ is the functor sending

1, [m, n] → ∅ -→ [m, n] ♯ 0, [m, n] → S[m, n] -→ [m, n] ♯ . Furthermore, σ sends (0, [1, 0] ♯ ) to S[1, 0] + -→ [1, 0] ♯ and (1, [1, 0] ♯ ) to ∅ -→ [1, 0] ♯ .
This induces the commuting square of left adjoint functors on the right, using that h and σ induce unique colimit-preserving functors out of the corresponding presheaf categories [START_REF] Dugger | Universal homotopy theories[END_REF], [START_REF] Lurie | Higher topos theory[END_REF]Theorem 5.1.5.6].

Let us write Ψ S for the right adjoint to Φ S . Explicitly, let p : Y -→ X ♯ be a map of vertically marked bisimplicial spaces whose target is maximally marked. Then Ψ S (p) : Ψ S (Y ) -→ X ♯ can be described as follows: the underlying bisimplicial space of Ψ S (Y ) has (m, n)simplices determined by

(3.12) Ψ S (Y ) [m, n] X ΨS (p) α ⇐⇒ S[m, n] Y [m, n] ♯ X ♯ p α
Furthermore the space of marked [1, 0]-simplices in Ψ S (Y ) is the subspace consisting of those maps S[1, 0] -→ Y that also preserve the additional marked arrows from (b). In particular, this implies that Ψ S sends vertically marked bisimplicial spaces into horizontally marked bisimplicial spaces (i.e. marked edges form a subspace). We therefore obtain the desired commuting diagram (3.11). Furthermore, it follows immediately from Equation (3.12) that Ψ K preserves cartesian morphisms: for every Y -→ X ♯ and X ′ -→ X, we have an equivalence

Ψ S (Y × X ♯ X ′♯ ) Ψ S (Y ) × X ♯ X ′♯ . ∼ 3.2.
Construction of the functors. We will use Construction 3.10 to define the functor Ψ ⊥ , as follows:

Construction 3.13. For any [m, n] ∈ ∆ ×2 , consider the natural map of vertically marked double categories

K[m, n] = Ar[m] × [0, n] [m, 0] × [0, n] ♯ = [m, n] ♯ . π hor ×id
Here K[m, n] comes equipped with the marking where for each ii ∈ Ar[m] (cf. Example 2.6), all vertical arrows in {ii} × [0, n] are marked. Furthermore, K[1, 0] + is the double category Ar [START_REF] Ayala | Fibrations of ∞-categories[END_REF], where in addition the vertical arrow 01 11 is marked.

Using this, Construction 3.10 produces a functor over bisS

Ψ K : Fun ♯ [1], bisS ↓ Fun ♯ [1], bisS → .
Proposition 3.14. Let p : D ♮ -→ C ♯ be a (left, cart)-fibration with its natural marking by the p-cartesian vertical arrows. Then Ψ K (p) : Ψ K (D) -→ C ♯ coincides with the (cocart, right)-fibration Ψ ⊥ (p) from Definition 2.21, with its natural horizontal marking. Consequently, Ψ K restricts to a map of cartesian fibrations that we will denote by

Fib left,cart Fib cocart,right Cat ⊗2 . Ψ ⊥ codom codom
Proof. Unraveling the definition, one sees that the map of bisimplicial spaces Ψ K (D) -→ C is precisely given by the reflection Ψ ⊥ (p) : Ψ ⊥ (D) -→ C from Definition 2.21; in particular, it is a (cocart, right)-fibration by Proposition 2.22.

It remains to identify the marked horizontal arrows in Ψ K (D ♮ ); these correspond to diagrams x -→ y z in D with the property that y z is a marked arrow covering an equivalence in C. This just means that y z is an equivalence, so that the marked horizontal arrows coincide with the marked horizontal arrows introduced in the proof of Proposition 2.22. We have already seen there that these marked arrows are precisely the cocartesian horizontal arrows.

In particular, restricting to the fibers over a double category C, we obtain a functor Ψ ⊥ : Fib left,cart (C) -→ Fib cocart,right (C) that we will refer to as the reflection functor. To motivate the terminology, let us investigate more precisely the behaviour of Ψ ⊥ when C is a space: Proposition 3.15. Let S be a space and let Cat/S be the category of categories over S. Consider the endofunctor of Cat/S given by the composite

Cat/S Fib left,cart (S) Fib right,cocart (S) Cat/S ∼ [0]⊠(-) Ψ ⊥ ∼ (-)⊠[0]
where In particular, at the level of fibers the reflection functor Ψ ⊥ simply exchanges the horizontal and vertical direction.

Proof. Consider the natural map K[m, n] = Ar[m] × [0, n] -→ Ar[m] πver -→ [0, m],
where the second map is the vertical projection (see Example 2.6). This map sends the marked vertical arrows in K[m, n] from Construction 3.13 to degenerate edges. For each D ∈ Fib left,cart , we therefore obtain a natural transformation of double categories, given in degree (m, n) by

Map Cat ⊗2 ([0, m], D) Map Cat ⊗2 ↓ (K[m, n], D) = Ψ K (D)(m, n). Taking D = [0] ⊠ C, this produces the desired map C ⊠ [0] -→ Ψ ⊥ ([0] ⊠ C).
To see that this is an equivalence, note that the domain and codomain are both constant in the vertical direction and complete Segal spaces in the horizontal direction. In degree (0, 0), the above is an equivalence since K[0, 0] -→ [0, 0] is an isomorphism. In degree (1, 0), it suffices to note that the map π ver : Ar[1] -→ [0, 1] induces an equivalence on mapping spaces into a double category of the form [0] ⊠ C.

One can obtain variants of the functor Ψ ⊥ for different kinds of fibrations, by taking opposites in the horizontal or vertical direction and exchanging horizontal and vertical directions.

Variant 3.16. Let us introduce the following two variants of the functor Ψ ⊥ .

(1) There is a functor Ψ ⊤ : Fib cocart,right -→ Fib left,cart , obtained by conjugating Ψ ⊥ with the functor sending C → (C rev ) (1,2)-op . Unraveling the definitions, one sees that Ψ ⊤ = Ψ K ′ is defined as in Construction 3.10 (with the roles of horizontal and vertical reversed), but this time using the maps

K ′ [m, n] = [m, 0] × Ar[n] [m, 0] × [0, n] = [m, n].
id×πver

Here we mark the horizontal arrows in

K ′ [m, n] contained in [m, 0] × {ii} for each i ∈ [n]. Furthermore, K ′ ([0, 1] ♯
) is given by Ar [START_REF] Ayala | Fibrations of ∞-categories[END_REF] where we mark all horizontal arrows.

(2) There is another functor Ψ † : Fib cocart,left -→ Fib left,cocart , obtained by conjugating Ψ ⊥ with the functor sending C → (C rev ) 1-op . Unraveling the definitions, one sees that Ψ † = Ψ L is defined as in Construction 3.13, but the role of the vertically marked double category K[m, n] is now played by

L[m, n] = [m, 0] × Tw [n] op [m, 0] × [0, n] = [m, n]. id×πver In L[m, n], we mark the horizontal arrows in each [m, 0] × {ii}. Furthermore, L([1, 0] ♯ )
is given by Tw([1] op ) with all horizontal arrows marked.

Remark 3.17. Proposition 3.15 holds for the functor Ψ ⊤ as well: indeed, the functor (-) rev commutes with the functor C → (C rev ) (1,2)-op . In contrast, it does not apply to the functor Ψ † : instead, the resulting endofunctor of Cat takes opposite categories.

3.3.

Proof of Theorem 3.1. Consider the functors from Proposition 3.14 and Variant 3.16

Ψ ⊥ : Fib left,cart Fib cocart,right , Ψ ⊤ : Fib cocart,right Fib left,cart .
We will show that these are mutually inverse, up to homotopy. More precisely, we will prove that for every (left, cart)-fibration D -→ C, there is a natural zig-zag of equivalences between (left, cart)-fibrations over

C D Ψ A (D) Ψ B (D) Ψ ⊤ (Ψ ⊥ (D)) C. ζ * η * θ *
To motivate the precise combinatorial constructions that will follow, let us already disclose that a typical (1, 1)-cell in each of these four double categories will correspond to a diagram in D of the following form:

∼ ∼ ∼ ∼ ∼ ∼ ζ * ∼ η * • f • θ * • • ∼ ∼ ∼
Here • denotes a p-cartesian vertical arrow in D and denotes a map that is sent to a degenerate arrow in C. The rightmost diagram can be obtained by explicitly unraveling the definition of the composite functor Ψ ⊤ • Ψ ⊥ . The maps ζ * and θ * will then be the evident equivalences which simply add degenerate squares on the right, resp. on the top.

The map η * takes vertical compositions and has an inverse given informally as follows (cf. the proof of Proposition 2.22). First, one decomposes the left and right vertical maps into fiberwise maps followed by p-cartesian maps. The middle column is then uniquely determined by the left column and the right half of the diagram is determined uniquely because the right vertical map was p-cartesian. Notice that the map f need not be pcartesian; this is why we need to add a degenerate square using ζ * before we can decompose the left and right vertical arrow.

Let us now start by defining the endofunctors Ψ A , Ψ B : Fib left,cart -→ Fib left,cart more precisely, using (the vertically marked version of) Construction 3.10.

Construction 3.18. For each [m, n] ∈ ∆ ×2 , let A[m, n] = Ar[m] × [0, n] [m, n] π hor ×id
In A[m, n], we mark all vertical arrows contained in Ar[m] × {i}, for all i ∈ [n]. Note that this marking is different from Construction 3.13. In addition, we define In addition, define B([0, 1]) + to be [0] ⊠ Fun( [START_REF] Ayala | Fibrations of ∞-categories[END_REF], [START_REF] Ayala | Fibrations of ∞-categories[END_REF]), where all vertical arrows are marked.

A([0, 1]) + = [0, 1] ♯ . Likewise, for each [m, n] ∈ ∆ ×2 , let us denote B[m, n] = Ar[m] × [0] ⊠ Fun([1], [n]) [m, 0] × [0, n] = [m, n] π hor ×dom In B[m, n] = Ar[m] × [0] ⊠ Fun([1], [n]) ,
Note that these vertically marked double categories are related by natural transformations 

[m, n] A[m, n] B[m, n]
[m] × [0, n] -→ Ar[m] × [0] ⊠ Fun([1], [n]) arises from the map cst : [n] -→ Fun([1], [n]) sending each i ∈ [n] to the constant arrow i ≤ i.
Furthermore, the maps ζ and η induce natural maps [0, 1] ♯ ←-A[0, 1] + -→ B[0, 1] + preserving the additional marked vertical arrows. Using the naturality of Construction 3.10, we obtain a zig-zag of natural transformations between functors Fun Proof. Recall from the general description (3.12) that the space of (m, n)-simplices in Ψ A (D ♮ ) is given by the space of diagrams of vertically marked double categories ζ * is an equivalence. Note that Ψ A (D ♮ ) ֒-→ X is a bisimplicial subspace of the bisimplicial space X from Lemma 2.18. Indeed, the space of maps 

♯ ([1], bisS ↓ ) -→ Fun ♯ ([1], bisS ↓ ) of the form id Ψ A Ψ B .
A[m, n] D ♮ [m, n] ♯ C ♯
[m, n] -→ Ψ A (D ♮ )
A (D ♮ )(m, -) ֒-→ X(m, -)
is the inclusion of a full subcategory. In the horizontal direction, the proof of Lemma 2.18 shows that the simplicial subspace Ψ A (D ♮ )(-, n) ֒-→ X(-, n) satisfies the Segal conditions and is an equivalence on spaces of objects. This implies that

Ψ A (D ♮ )(-, n) is a category, so that Ψ A (D ♮ ) is a double category.
Let us now show that the map of marked double categories η * is an equivalence. Let us again consider the double category X from Lemma 2.18. For each fixed n, consider the mapping double category X [0]⊠Fun([1],[n]) and note that there is a diagram of simplicial spaces

ζ * : D -→ Ψ A (D ♯ ) is an equivalence. Since ζ induces an isomorphism A[0, 1] + ∼ -→ [0, 1] ♯ , ζ * is
Ψ B (D ♮ )(-, n) P X [0]⊠Fun([1],[n]) -, 0 n i=0 Ψ A (D ♮ )(-, 0) n i=0 X {ii} -, 0
where P denotes the pullback. Since the bottom map is the inclusion of a wide subcategory (as we have seen above), P is a wide subcategory of X [0]⊠Fun([1],[n]) -, 0 . Unraveling the definitions, we then see that the inclusion Ψ B (D ♮ )(-, n) ֒-→ P is the inclusion of a full subcategory: it is the inclusion of the full subcategory on those diagrams

[0]⊠Fun([1], [n]) -→ X such that each vertical arrow ik -→ jk in Fun([1], [n]) is sent to a cartesian arrow in X(0, -) ≃ D(0, -).
It follows that Ψ B (D ♮ ) satisfies the (complete) Segal conditions in the horizontal direction. It therefore suffices to verify that η 

* : Ψ B (D ♮ )(1, -) -→ Ψ A (D)(1, -) is an equivalence of simplicial spaces. Unraveling the definitions, a (1, n)-simplex in Ψ B (D ♮ ) is
z nn • • • ∼ • • • • • ∼ • • • ∼ • ∼
Here each of the slices labeled by x, y and z is a diagram in D(0, -) parametrized by Fun([1], [n]), while the maps [n] C(0, -).

x ij -→ y ij z ij define a map Ar[1] -→ D. Furthermore, the condition that B[1, n] = Ar[1] × [0] ⊠ Fun([1], [n]) -→ D preserves
x,z

dom p Let cst : [n] ֒-→ Fun([1], [n]
) be the inclusion of the diagonal. For every ij ∈ Fun([1], [n]), the comma category ij/cst admits an initial object, corresponding to the map ij -→ jj.

Using this, one sees that condition (b) is equivalent to assertion that the two diagrams x, z : Fun([1], [n]) -→ D are relative right Kan extensions of their restriction to the diagonal. Consequently, starting from the diagonal face there is a unique way to fill the x-and z-slices in (3.20) so that condition (b) holds [33, Proposition 4.3.2.1]. Using that D -→ C is a left fibration in the horizontal direction, there is then a unique extension to a horizontal transformation between the x and y-slices

(x ⇒ y) : [1] ⊠ Fun([1], [n]) -→ D.
Finally, the natural transformation y ii z ii on the diagonal then extends uniquely to a natural transformation y ij z ij , since the target is the relative right Kan extension of its restriction to the diagonal. We conclude that η * : Ψ B (D ♯ ) -→ Ψ A (D ♯ ) is an equivalence on the underlying bisimplicial spaces. Finally, it identifies the marking since

A[0, 1] + ≃ B[0, 1] + ≃ [0, 1] ♯ .
Our next goal is to describe the composite functor Ψ ⊤ • Ψ ⊥ in terms of Construction 3.10. Construction 3.21. For each m, n ≥ 0, let I[m, n] denote the (1, 1)-category whose objects are quadruples of maps of linear orders (3.22) [a]

α -→ [m] [b] ⋆ [a] β -→ [n] [t] ⋆ [s] γ -→ [a] [t] δ -→ [b].
Given two such quadruples, a map between them is given by a quadruple of maps

[a] -→ [a ′ ], [b] -→ [b ′ ], [s] -→ [s ′ ], [t] -→ [t ′ ] that intertwines (α, β, γ, δ) and (α ′ , β ′ , γ ′ , δ ′ ). Note that I[m, n] depends functorially on [m, n] ∈ ∆ ×2
, by postcomposing α and β. Now consider the natural map of bisimplicial spaces (in fact, sets)

π : T [m, n] = colim I[m,n] [s, t] [m, n] defined as follows: to each [s, t] -→ T [m, n] determined by a tuple (α, β, γ, δ), we associate the map σ ⊠ τ 0 : [s, t] -→ [m, n] determined by σ : [s] -→ [t] ⋆ [s] γ -→ [a] α -→ [m] τ 0 : [t] δ -→ [b] -→ [b] ⋆ [a] β -→ [n].
We view T [m, n] as a marked bisimplicial space by marking those (0, 1)-simplices corresponding to a quadruple (α, β, γ, δ) (with s = 0, t = 1) such that either: (a) the map γ :

[1] ⋆ [0] -→ [a] factors over a 0-simplex of [a]. (b) the map β : [b] ⋆ [a] -→ [n] factors over a 0-simplex of [n]. For every map [m, n] -→ [m ′ , n ′ ], the induced map T [m, n] -→ T [m ′ , n ′ ] preserves such marked arrows. Finally, let T [0, 1] + denote T [0, 1]
, where all vertical arrows are marked.

Lemma 3.23.

There is a natural equivalence

Ψ T ≃ Ψ K ′ • Ψ K .
Proof. Recall from Construction 3.10 that Ψ K ′ arises as the right adjoint to a functor

Φ K ′ : Fun ♯ [1], bisS ↓ -→ Fun ♯ [1]
, bisS → . The functor Φ K ′ is uniquely determined by the fact that it preserves colimits and sends

∅ -→ [m, n] ♯ to ∅ -→ [m, n] ♯ and [m, n] [m, n] ♯ -→ K ′ [m, n] [m, n] ♯ [0, 1] ♯ [0, 1] ♯ -→ K ′ [1, 0] + [0, 1] ♯
Here K ′ [m, n] was described in Variant 3.16. Using Example 2.6, we can write K ′ [m, n] as a (canonical) colimit of bisimplices

K ′ [m, n] = colim α : [a]→[m] β : [b]⋆[a]→[n] [a, b]. Unraveling the definitions, the marked (1, 0)-simplices of K ′ [m, n] correspond precisely to tuples of α : [1] -→ [m] and β : [0] ⋆ [1] -→ [n] where β is degenerate. Furthermore, all (1, 0)-simplices in K ′ [0, 1] are marked.
We can apply the same reasoning to the left adjoint Φ K • Φ K ′ : this functor preserves colimits and sends

∅ -→ [m, n] ♯ to ∅ -→ [m, n] ♯ . It is therefore uniquely determined by its values on [m, n] -→ [m, n] ♯ and [0, 1] ♯ -→ [0, 1] ♯ . The value on [m, n] is given by Φ K K ′ [m, n] = colim α : [a]→[m] β : [b]⋆[a]→[n] K[a, b] ≃ colim α : [a]→[m] β : [b]⋆[a]→[n] colim γ : [t]⋆[s]→[a] δ : [t]→[b] [s, t] .
In other words, it is precisely given by T [m, n]; unraveling the definitions shows that the marking coincides with that of Construction 3.21. Likewise, Φ K K ′ [0, 1] + can be identified with T [0, 1] where all vertical arrows are marked. It follows that Φ

K • Φ K ′ ≃ Φ T , so that by adjunction Ψ T ≃ Ψ K ′ • Ψ K .
Proof (of Theorem 3.1). By Proposition 3.14 (and Variant 3.16), we have functors

Ψ ⊥ : Fib left,cart -→ Fib cocart,right and Ψ ⊤ : Fib cocart,right -→ Fib left,cart .
To see that they are mutually inverse, it suffices to prove that Ψ ⊤ • Ψ ⊥ ≃ id. Indeed, in this case, conjugating by the functor C → (C rev ) (1,2)-op provides the desired equivalence Ψ ⊥ • Ψ ⊤ ≃ id. We construct the desired natural equivalence as a zig-zag

id Ψ A Ψ B Ψ T ≃ Ψ ⊤ • Ψ ⊥ . ∼ ζ * ∼ η * θ *
Here the first two equivalences follow from Proposition 3. [START_REF] Harpaz | On k-invariants for (∞, n)-categories[END_REF] 

τ 1 : [t] [t] ⋆ [s] [a] [b] ⋆ [a] [n]. γ β
Clearly τ 0 (i) ≤ τ 1 (i) for all i, where τ 0 is defined in Construction 3.21. We therefore obtain a map (τ

0 ≤ τ 1 ) : [s, t] -→ [0] ⊠ Fun([1], [n]). Likewise, note that α • γ defines a map α • γ : [s, t] -→ Ar[m] (cf. Example 2.6).
Combining these two, we obtain a natural map 

α • γ, τ 0 ≤ τ 1 : [s, t] Ar[m] × [0] ⊠ Fun([1], [n]) = B[m, n]

Recollections on higher categories

In the remainder of the text, we will use Theorem 3.1 to establish a version of straightening and unstraightening for cocartesian fibrations of d-categories. To facilitate this, we will start in this section by recalling some preliminary results on d-categories; our default model for d-categories will be in terms of iterated Segal spaces [START_REF] Barwick | On the unicity of the theory of higher categories[END_REF]. Section 4.2 provides a reminder on point-set models for d-categories; its main purpose is to allow us to construct explicit examples of higher categories (such as the (d + 1)-category of d-categories) from enriched categories.

Sections 4.3 and 4.4 describe the theory of copresheaves (of d-categories) on (d + 1)categories; this is mostly a recollection of the work of Boavida [START_REF] Boavida De Brito | Segal objects and the Grothendieck construction[END_REF]. For our purposes, it will be convenient to reformulate the results of loc. cit. as Proposition 4.40: this provides a natural equivalence between the external definition of copresheaves over a (d + 1)-category C, in terms of certain fibrations of (d + 1)-fold simplicial spaces X -→ C, and the internal definition of copresheaves, as maps of (d + 1)-categories C -→ Cat d . Remark 4.2. The above definition of a d-category is a priori more restrictive than the usual one from [START_REF] Barwick | On the unicity of the theory of higher categories[END_REF]: we ask all C( n k-1 , -, n d-k ) to be complete, while this is usually only required if n d-k = 0 d-k . It follows from [START_REF] Johnson-Freyd | Op)lax natural transformations, twisted quantum field theories, and "even higher" Morita categories[END_REF]Lemma 2.8] that the two definitions coincide, essentially by an Eckmann-Hilton type argument.

If C is a d-category, recall that the (constant (d -1)-fold simplicial) space C(0) describes the space of objects of C. Given two objects x 0 , x 1 ∈ C, we will write

Map C (x 0 , x 1 ) = C(1) × C({0})×C({1}) {(x 0 , x 1 )}
for the mapping (d -1)-category between them. For any triple of objects x 0 , x 1 , x 2 , there is a composition map, determined by the commuting square

Map C (x 1 , x 2 ) × Map C (x 0 , x 1 ) Map C (x 0 , x 2 ) C(2) × C({0})×C({1})×C({2}) {(x 0 , x 1 , x 2 )} C(1) × C({0})×C({1}) {(x 0 , x 2 )} • ∼ d1 =
Here the left vertical map is an equivalence by the Segal conditions.

To efficiently deal with the additional constancy conditions appearing in Definition 4.1, let us introduce the following notation: (2) For any X : ∆ × I op -→ S, consider the natural map of presheaves on ∆ × I

X × i * i * X i * X(0, t) X
where i * denote the right Kan extension along i : {0} × I ֒→ ∆ × I and i * X -→ X(0, t) denotes the natural map from the presheaf X(0, -) on I to the constant presheaf with value X(0, t). This map exhibits the counit of the adjoint pair (λ * , λ * ).

In fact, in this case ∆ I can be identified with a (non-full) subcategory of ∆ ≀ I, given by the image of the functor δ : ∆ × I -→ ∆ ≀ I from [START_REF] Berger | Iterated wreath product of the simplex category and iterated loop spaces[END_REF].

Proof. For each ([m], i) ∈ ∆ × I, let h [m],i = Map -, ([m
], i) be the representable presheaf. For assertion [START_REF] Ayala | Fibrations of ∞-categories[END_REF], consider the following (homotopy) pushout of (space-valued) presheaves

[0]→[m] h [0],i h [m],i [0]→[m] h [0],t F.
Here the top map is given pointwise by the inclusion of the subset of maps (

[n], j) -→ ([m], i) such that the map [n] -→ [m] factors over [0]
. Using this, it follows immediately that the presheaf F takes values in sets and sends maps in {0} × I to isomorphisms. Consequently, F ≃ λ * G for some set-valued presheaf G on ∆ I . On the other hand, the left Kan extension functor λ ! sends the left vertical map to an equivalence, so that we find h

λ([m],i) ≃ λ ! h [m],i ≃ λ ! F . We therefore find that the representable presheaf h λ([m],i) is equivalent to the set-valued presheaf λ ! λ * G ≃ G, so that ∆ I is a (1, 1)-category.
In the special case where [m] = 0, we see that F is the terminal presheaf, so that the image of ([0], i) defines a terminal object in ∆ I .

For [START_REF] Ayala | Factorization homology I: Higher categories[END_REF], let us abbreviate Y = X × i * i * X i * X(0, t) . Since i is fully faithful, i * i * ≃ id and the restriction of Y along i : {0} × I -→ ∆ × I coincides with the constant presheaf with value X(0, t). This means that Y is contained in the essential image of λ * , or equivalently, that Y is a λ * λ * -colocal object.

It therefore remains to verify that the projection Y -→ X is a colocal equivalence, i.e. that it is sent to an equivalence by λ * . Since Y -→ X is the base change of the map i * (X(0, t)) -→ i * i * X, it suffices to to verify that λ * i * (X(0, t)) -→ λ * i * i * X is an equivalence. By part (1), the functor λi decomposes as I -→ * -→ ∆ I , where the second functor is the inclusion of the terminal object. The result then follows from the fact that the natural map

X(0, t) ≃ lim I op X(0, t) lim I op i * X
is an equivalence since t was the terminal object of I.

Notation 4.5. We inductively define ∆ d by ∆ 0 = * and ∆ d = ∆ ∆ d-1 , so that there is composition of localization functors of (1, 1)-categories (4.6)

δ d : ∆ ×d ∆ ×d-2 × ∆ 2 . . . ∆ × ∆ d-1 ∆ d .
By construction, restriction along δ d determines a fully faithful inclusion

δ * d : Fun(∆ op d , S) Fun(∆ ×d,op , S)
whose essential image consists of d-fold simplicial spaces X such that each (dk)-fold simplicial space X( n k-1 , 0, -, . . . , -) is constant. We will systematically omit δ * d and simply identify presheaves on ∆ d with d-fold simplicial spaces using this inclusion. Likewise, we can identify presheaves on ∆ d with simplicial object in presheaves on ∆ d-1 which are constant in simplicial degree 0, etcetera.

In these terms, we have a pullback square of fully faithful functors

Cat d

Cat ⊗d

Fun(∆ op d , S) Fun(∆ ×d,op , S). 

∆ ×d ∆ × ∆ d-1 ∆ ∆ d-1 = ∆ d . id×δ d-1 λ
The right Kan extension along the functor id × δ d-1 sends X to the simplicial object

X ′ : ∆ op -→ Fun(∆ op d-1 , S) given by X ′ (n) = r d-1 (X(n)). Each X ′ (n) is then a (d -1
)category by inductive hypothesis and the simplicial object X ′ satisfies the complete Segal conditions since r d-1 is a right adjoint.

Next, we compute r d (X) = λ * (X ′ ) using Lemma 4.4 [START_REF] Ayala | Factorization homology I: Higher categories[END_REF]. Denoting by i :

{0} × ∆ d-1 ֒→ ∆ × ∆ d-1 the inclusion, we have that r d (X) = X ′ × i * i * X ′ i * (X ′ ( 0 d )),
at least after precomposing with the localization λ : ∆ × ∆ d-1 -→ ∆ d . The value of this fiber product at [m] ∈ ∆ is given by the presheaf on ∆ d-1 of the form

r d (X)(m, -) = X ′ (m, -) × X ′ (0,-) ×m+1 X ′ 0, 0 d-1 ×m+1 .
Here the map X ′ (m, -) -→ X ′ (0, -) ×m+1 arises from the vertex inclusions {k} ֒→ [m] for all k ∈ [m]. This implies that r d (X) satisfies the Segal condition in the first simplicial direction (as the spine inclusions induce bijections on objects). Furthermore, each r d (X)(m) is a (d -1)-category, since all terms in the above pullback diagram are (d -1)-categories. It remains to verify the completeness condition. By Remark 4.2, it suffices to verify the completeness condition after setting the last variables equal to 0 d-1 . But in that case the above formula shows that r d (X)(-, 0 d-1 ) ≃ X ′ (-, 0 d-1 ), for which we already verified that it was a complete Segal space. Example 4.10. Let A be a (d -1)-category. We define [START_REF] Ayala | Fibrations of ∞-categories[END_REF] A to be the d-category associated to the d-fold category [START_REF] Ayala | Fibrations of ∞-categories[END_REF] ⊠ A by the left adjoint of Lemma 4.7. In other words, maps of

d-categories [1] A -→ C are equivalent to maps of (d -1)-categories A -→ C(1). Explicitly, [1] A is the d-fold simplicial space [1] ⊠ A ∐ {0,1}⊠A {0, 1}, i.e.
it is a d-category with two objects 0, 1 with trivial endomorphisms and Map

[1] A (0, 1) = A. If C is a d-category, then the d-category Fun d [1] A , C ≃ r d C [1]⊠A
can be described as follows. Its space of objects is given by the space of maps α : [START_REF] Ayala | Fibrations of ∞-categories[END_REF] A -→ C, i.e. of tuples α 0 , α 1 ∈ C and α : A -→ Map C (α 0 , α 1 ). Unraveling the definitions, one sees that the (d -1)-category of maps between two such α, β : [START_REF] Ayala | Fibrations of ∞-categories[END_REF] A -→ C is given by the pullback 

Map Fund([1] A ,C) (α, β) Map C (α 0 , β 0 ) Map C (α 1 , β 1 ) Fun d-1 A, Map C (α 0 , β 1 ) .

Point-set models.

To produce examples of d-categories, it will be more useful to think of d-categories as categories enriched in (d -1)-categories. This is probably best done using the theory of enriched ∞-categories [START_REF] Gepner | Enriched ∞-categories via non-symmetric ∞-operads[END_REF][START_REF] Hinich | Yoneda lemma for enriched ∞-categories[END_REF]. We will take a more rigid, model-categorical approach instead (which has the advantage of not relying on Lurie's (un)straightening equivalence). Recall from Notation 4.5 how we view presheaves on ∆ d as d-fold simplicial spaces using the localizations

∆ ×d -→ ∆ × ∆ d-1 -→ ∆ d .
Definition 4.12. A functor X : ∆ d -→ S is said to be a d-categorical algebra if it satisfies the following conditions:

(1) Each X(n) : ∆ d-1 -→ S is a (d -1)-category (and X(0) is a space).

(2) X satisfies the Segal condition, i.e. 1) is an equivalence.

X(n) -→ X(1) × X(0) • • • × X(0) X(
Remark 4.13. The category of d-categories can be identified with the full subcategory of the category of d-categorical algebras, on those d-categorical algebras that are furthermore complete [START_REF] Gepner | Enriched ∞-categories via non-symmetric ∞-operads[END_REF][START_REF] Lurie | ∞, 2)-categories and the Goodwillie calculus[END_REF]. The inclusion of d-categories into d-categorical algebras admits a left adjoint L DK , which localizes at the class of Dwyer-Kan equivalences, i.e. maps Y -→ X with the following two properties (see loc. cit.):

(1) fully faithfulness:

Y (1) -→ X(1) × X(0) ×2 Y (0)
×2 is an equivalence of (d -1)-categories.

(2) essential surjectivity: the induced functor on homotopy categories ho(Y ) -→ ho(X) is essentially surjective.

In particular, for each d-categorical algebra X, the map X -→ L DK (X) is a Dwyer-Kan equivalence. In fact, the explicit construction shows that X -→ L DK (X) is not just essentially surjective, but that X(0) -→ L DK (X)(0) is already surjective on π 0 [34, Proposition 1.2.27].

Definition 4.14. Recall that there is a localization functor sSet -→ S inverting the weak equivalences for the Kan-Quillen model structure. We will say that a functor X : (1) The cofibrations are the monomorphisms, and in particular every object is cofibrant.

∆ op d -→ sSet is a d-category model (resp. d-categorical algebra model) if the composed functor ∆ op d -→ sSet -→ S is a d-category (resp. d-categorical algebra).
( • X satisfies the Segal conditions in the first simplicial variable.

) 2 
We will say that a map Y -→ X is a Dwyer-Kan equivalence if the corresponding map of categorical algebras is a Dwyer-Kan equivalence as in Remark 4.13. Furthermore, we will say that a map Y -→ X is an isofibration if:

(1) Each Y (n) -→ X(n) is a fibration in Cat d-1 , i.e. an injective fibration of simplicial presheaves on ∆ d-1 .

(2) The induced map on homotopy categories ho(Y ) -→ ho(X) is an isofibration. With these classes of maps, CatAlg d becomes a category of fibrant objects as in Appendix A. A map Y -→ X is an acyclic fibration if and only if each 

Y (n) -→ X(n) is an injective fibration, Y (0) -→ X(0) is surjective on π 0 and Y (1) -→ X(1) × X(0) × 2 Y (0) ×2 is
N(C)(n) = c0,...,cn Map C (c n-1 , c n ) × • • • × Map C (c 0 , c 1 ).
In particular, N(C)(0) is simply the set of objects of C. We will say that a map of enriched categories is a Dwyer-Kan equivalence, resp. an isofibration, if its image under the nerve functor is such. This makes Cat(Cat d-1 ) a category of fibrant objects. More precisely, the category of categories enriched in sPSh(∆ d-1 ) carries a model structure [33, In particular, using the point-set model of Cat d -enriched categories, a copresheaf C -→ Cat d can be modeled by an enriched functor C -→ Cat d . In addition to this 'internal' definition of copresheaves, one can also describe copresheaves externally in terms of Segal objects, following [START_REF] Boavida De Brito | Segal objects and the Grothendieck construction[END_REF] (see also [START_REF] Rasekh | Yoneda lemma for D-simplicial spaces[END_REF] for an in-depth discussion): Definition 4.25. Let C be a (d + 1)-categorical algebra. A map of (d + 1)-fold simplicial spaces X -→ C is said to be a Segal copresheaf if the following two conditions hold:

(1) The d-fold simplicial space X(0) is a d-category.

(2) For each [n] ∈ ∆, there is a pullback square of d-categories

X(n) X({0}) C(n) C({0}).
Let us write coPSh Seg d ⊆ Fun [START_REF] Ayala | Fibrations of ∞-categories[END_REF] × ∆ ×d+1,op , S for the full subcategory spanned by the Segal copresheaves X -→ C where C is a (d + 1)-category. The codomain projection π : coPSh Seg d -→ Cat d+1 is a cartesian fibration, since the pullback of a Segal copresheaf X -→ C along a map of (d + 1)-categories C ′ -→ C is again a Segal copresheaf. We will write coPSh Seg d (C) for the fiber over C. Warning 4.26. When d = 0, the domain of a Segal copresheaf over a 1-category is itself a 1-category [START_REF] Boavida De Brito | Segal objects and the Grothendieck construction[END_REF]Corollary 1.19]; in this case, Segal copresheaves can be identified with left fibrations (or, in the terminology of Section 5, 0-cocartesian fibrations). Note that for d ≥ 1, the domain of a Segal copresheaf X -→ C over a (d + 1)-category is typically not itself a (d + 1)-category: if the domain were a (d + 1)-category, then all the fibers of the fibration would be spaces.

In the remainder of this section, we will recall the work of Boavida [START_REF] Boavida De Brito | Segal objects and the Grothendieck construction[END_REF], which shows that the category of Segal copresheaves coPSh Seg d (C) coincides with the 1-category underlying Fun d+1 (C, Cat d ). We will make use of point-set models to compare to Proposition 4.24: Quillen equivalence where i ! preserves all weak equivalences. Indeed, this follows from the fact that i ! is left Quillen for the injective model structure as well, as a consequence of [33, Remark A.2.9.27, Proposition A.3.3.9].

Construction 4.29. Let X : ∆ op -→ Cat d be an object of CatAlg d+1 , i.e. X satisfies the Segal conditions and X(0) ∈ sPSh(∆ d ) is constant on a simplicial set. The category sPSh(∆ × ∆ d ) /X can be endowed with the projective covariant model structure, in which:

• trivial fibrations are maps Y -→ Y ′ (over X) such that each Y (n) -→ Y ′ (n) is an injective trivial fibration in sPSh(∆ d ). • fibrant objects are Y -→ X such that each Y (n) -→ X(n) is an injective fibration be- tween injectively fibrant (d-1)-category models, such that Y (n) -→ X(n) × h X({0}) Y ({0}) is a weak equivalence.
The identity functor determines a Quillen equivalence to the injective covariant model structure, defined similarly but as a left Bousfield localization of the injective model structure on sPSh(∆ × ∆ d ) /X .

We will write coPSh Seg,proj d (X) for the category of fibrant objects in the projective covariant model structure. This determines a (pseudo-)functor CatAlg op d+1 -→ FibCat sending X → coPSh Seg,proj Proof. We verify conditions (a) and (b) of Lemma A.2: for each Dwyer-Kan equivalence f : X -→ X ′ , there is an adjoint pair f ! : sPSh(∆ × ∆ d ) /X ⇆ sPSh(∆ × ∆ d ) /X ′ : f * . This is both a Quillen pair for the projective covariant and injective covariant model structure; in particular f ! preserves all weak equivalences. It now follows from [7, Proposition 5.5] that (f ! , f * ) is a Quillen equivalence: indeed, the result from loc. cit. shows that the derived unit and counit are already equivalences pointwise in ∆ d . This immediately gives condition (a), while (b) follows from Remark A.3. 

N(F )(n) = c0,...,cn Map C (c n-1 , c n ) × • • • × Map C (c 0 , c 1 ) × F (c 0 ) N(C)(n).
Fun(C, Cat 1 ) coPSh Seg 1 (C) Cocart 1 (C) ∼ Ψ ⊥ ∼
to the category of cocartesian fibrations over C and maps preserving cocartesian morphisms.

Proof. We can combine Corollary 4.33 and Theorem 3.1, using that there are obvious equiv- Remark 4.41. For later purposes, we will mostly be interested in this result in the large setting, with κ being the supremum of all small cardinals: in that case it provides a 1-functorial equivalence between the spaces of (d + 1)-functors C -→ Cat d and Segal copresheaves X -→ C with small fibers over a large (d + 1)-category C.

alences coPSh Seg 1 (C) ≃ Fib left,cart (C ⊠ [0]) and Cocart 1 (C) ≃ Fib cocart,right (C ⊠ [0]).
The proof uses the following well-known criterion for being a representation (cf. Here ψ * is fully faithful with essential image consisting of presheaves sending W to equivalences. We have to show that ψ ! (u) ≃ * (where we omit the Yoneda embedding from the notation).

To see this, consider for each small cardinal λ ≥ κ the full Cat d -enriched subcategory U λ,n ⊆ Fun([n], Cat d ) spanned by sequences of trivial fibrations A 0 ։ • • • ։ A n where each A i is λ-small and homotopy equivalent to a κ-small object. Each U λ,n comes with a canonical enriched functor p 0 : U λ,n -→ Cat d sending (A 0 -→ . . . -→ A n ) to A 0 . Let us write u λ,n = (U λ,n , p 0 ) for the corresponding object in EnrFun d (κ) and note that u κ,0 coincides with (Cat d (κ), id). For each λ ≤ λ ′ , the evident map u λ,n -→ u λ ′ ,n is a weak equivalence and each u λ,• : ∆ op -→ EnrFun d (κ) is a simplicial object where each structure map is a weak equivalence; in particular, this defines a simplicial diagram in H. Taking the (large) filtered colimit over all small cardinals λ, we then obtain a map of presheaves (4.43) Map H (-, u)

colim λ colim ∆ op Map H (-, u λ,• )
which induces an equivalence upon applying ψ ! . It therefore remains to verify that the target is the terminal presheaf (so that its image under ψ ! is terminal as well). Now fix an object (C, F ) ∈ H and for each λ consider the space

X λ = colim ∆ op Map H (C, F ), u λ,• .
It suffices to verify that this space is contractible for large λ; taking the (filtered) colimit over λ then shows that the target of (4.43) is terminal.

Unraveling the definitions, X λ is the classifying space of the (1, 1)-category whose objects are weak equivalences F -→ F ′ of functors C -→ Cat d , where F ′ takes λ-small values, and where a morphism is a (pointwise) trivial fibration F ′ ։ F ′′ of functors under F . For large enough λ (in particular, so that F takes λ-small values), the under-category M λ = F/Fun enr C, Cat d (λ) has the structure of a category of fibrant objects in the sense of Brown. The space X λ is then a path component in the classifying space of the wide subcategory wfM λ ⊆ M λ spanned by the trivial fibrations. By [START_REF] Land | Localization of cofibration categories and groupoid C * -algebras[END_REF]Lemma 14 and 15], the classifying space of wfM λ is equivalent to that of the wide subcategory wM λ ⊆ M λ spanned by the weak equivalences. Restricting to the correct path component, this implies that for large λ, X λ is equivalent to the classifying space of the (1, 1)-category whose objects are weak equivalences F -→ F ′ of enriched functors with λ-small values, with weak equivalences F ′ -→ F ′′ as morphisms. This latter category has an initial object (F itself) and is hence contractible. 

h : C op Fun C, Cat d • ; c Map C (c, -).
Since this is (strictly) fully faithful, the functor (4.45) is fully faithful as well. An ∞categorical proof of this can also be found in [START_REF] Hinich | Yoneda lemma for enriched ∞-categories[END_REF]. Recall that Cat d+1 has a homotopy (2, 2)-category, obtained by taking the homotopy (1, 1)-categories of all mapping (d + 1)-categories Fun d+1 (C,D). An adjunction between two (d + 1)-categories is simply an adjunction in this homotopy (2, 2)-category [START_REF] Riehl | Homotopy coherent adjunctions and the formal theory of monads[END_REF]. We then have the usual criterion for a (d + 1)-functor g : C -→ D admitting a left adjoint: For example, the map C -→ * admits a left adjoint if and only if C admits an initial object, i.e. an object ∅ such that Map C (∅, c) ≃ * for all c ∈ C.

Proof. As a preliminary observation, let us recall that any 2-functor preserves adjunctions. We are going to apply this in two situations: Let us now start by assuming that g admits a left adjoint f . Applying the 2-functor (a) to this adjoint pair, we obtain an adjoint pair

g * : ho (1,1) Fun d D, Cat d-1 ho (1,1) Fun d C, Cat d-1 : f * .
We can model f : D -→ C by a functor of Cat d-1 -enriched categories f : D -→ C. The functor f * then arises from the right Quillen functor

f * : Fun enr C, sPSh(∆ d ) -→ Fun enr D, sPSh(∆ d ) .
In particular, the left adjoint g * (on homotopy (1, 1)-categories) is naturally isomorphic to the left derived functor of f ! : Fun enr D, sPSh(∆ d ) -→ Fun enr C, sPSh(∆ d ) . Since the left derived functor of f ! preserves representable copresheaves, it follows that g * preserves representable copresheaves as well; this is precisely the assertion that Map D (d, g(-)) is representable for all d ∈ D.

For the converse, suppose that each Map D (d, g(-)) : C -→ Cat d-1 is representable. To prove that g admits a left adjoint in ho (2,2) (Cat d ), it will suffice to find a map C op -→ D op in Cat sPSh(∆ d-1 ) which admits a (strict) right adjoint and whose image under the functor (b) is equivalent to the opposite of g : C -→ D.

To provide the desired model for g, let us choose any cofibration γ : C 0 -→ D 0 between Cat d-1 -enriched categories that models g : C -→ D. This induces a Quillen pair of (in particular) simplicial model categories

γ ! : Fun enr C 0 , sPSh(∆ d-1 )
Fun enr D 0 , sPSh(∆ d-1 ) : γ *

given by restriction and left Kan extension. Let us now define

C op ⊆ Fun enr C 0 , sPSh(∆ d-1 ) and D op ⊆ Fun enr D 0 , sPSh(∆ d-1 )
to be the full (enriched) subcategories of all enriched functors that admit a simplicial homotopy equivalence to a corepresentable functor. Since γ ! preserves simplicial homotopy equivalences and corepresentable functors, we obtain a commuting square of categories enriched over sPSh(∆ d-1 )

C op 0 D op 0 C op D op γ op h h γ !
where the vertical functors h are the Yoneda embeddings. By construction, both of these vertical functors are Dwyer-Kan equivalences of enriched categories, so that γ ! : C op -→ D op also maps to g op under the localization functor (b). Let us point that this would not necessarily be the case if one replaced "simplicial homotopy equivalence" by "weak equivalence" in the definition of C op (unless one imposes further fibrancy and cofibrancy conditions, which need not be preserved by both γ ! and γ * ). We claim that the restriction functor γ * also restricts to a functor γ * : D op -→ C op . Indeed, since γ * preserves simplicial homotopy equivalences, it suffices to verify that γ * sends each corepresentable functor to an object in C op . In other words, we have to show that for each d ∈ D 0 , the enriched functor Map D0 (d, γ(-)) admits a simplicial homotopy equivalence to a corepresentable object. This enriched functor is a model for Map D (d, g(-)) and is hence weakly equivalent to a corepresentable object. Since Map D0 (d, γ(-)) is projectively fibrant-cofibrant [START_REF] Lurie | Higher topos theory[END_REF]Proposition A.3.3.9], it then admits a simplicial homotopy equivalence to a corepresentable as well. We conclude that γ ! : C op -→ D op admits a strict right adjoint γ * , so that its image g op in ho (2,2) (Cat d ) admits a right adjoint as well, as desired. Indeed, in each of these cases consider an object (d i ) ∈ lim D i in the limit. For each i, there exists an inverse image

c i ∈ g -1 i (d i ) such that Map Ci (c i , -) -→ Map Di (d i , g i (-)
) is an equivalence. The fact that the functors C i -→ C j preserve the essential images of the fully faithful left adjoints implies that we can (inductively) lift this tuple of objects c i to an object (c i ) ∈ lim C i in the limit. This object maps to (d i ) ∈ lim D i and has the desired universal property. 4.5. Tensoring. Let us conclude by recalling that questions about higher categories can often be reduced to questions about their underlying 1-categories when their enriched structure arises from a (co)tensoring: Definition 4.52. Let C be a (d + 1)-category and consider the (d + 1)-functor

Cat op d × C op Fun d+1 (C, Cat d ); (K, c) Fun d K, Map C (c, -) .
Then C is said to be tensored over Cat d if this takes values in representable functors. In this case, we will write ⊗ : Cat d × C -→ C for the induced functor.

Remark 4.53. In other words, K ⊗ c is the unique object of C with a natural equivalence

Map C (K ⊗ c, -) ≃ Fun d (K, Map C (c, -)).
This universal property implies that there are equivalences 

K ⊗ (L ⊗ c) ≃ (K × L) ⊗ c. Furthermore, note that the identity on K ⊗ c induces a natural map of d-categories K -→ Map C (c, K ⊗ c).
K -→ Map C (c, K ⊗ c) -→ Map D (f (c), f (K ⊗ c))
determines a natural map µ : K ⊗ f (c) -→ f (K ⊗ c). We will say that f is tensored over Cat d if all of these maps µ are equivalences. For instance, being (co)tensored over any full subcategory containing Θ d (and closed under cartesian products) suffices as well.

Cocartesian fibrations of higher categories

In this section we discuss the higher categorical analogues of cocartesian fibrations whose fibers are given by d-categories. We will refer to such fibrations as d-cocartesian fibrations. Most importantly, we show (Section 5.3) that d-cocartesian fibrations between (d + 1)categories form themselves the domain of a (d + 1)-cartesian fibration between (d + 2)categories Cocart d -→ Cat d+1 .

5.1. Pre-cocartesian fibrations. Let us start with the following preliminary definition, which reduces to that of a cocartesian fibration when d = 0 [START_REF] Ayala | Fibrations of ∞-categories[END_REF][START_REF] Riehl | Elements of ∞-category theory[END_REF]: Definition 5.1. Let p : D -→ C be a map of (d + 1)-categories. Then p is said to be a pre-cocartesian fibration if the map of (d + 1)-categories

(5.2) Fun d+1 ([1], D) Fun d+1 ({0}, D) × Fun d+1 ({0},C) Fun d+1 ([1], C).
is a right adjoint and the unit of the adjunction is an equivalence. A 1-morphism in D is called (p-)cocartesian if it is contained in the essential image of the left adjoint.

Remark 5.3. Dually, p is said to be a pre-cartesian fibration if the map

Fun d+1 ([1], D) Fun d+1 ({1}, D) × Fun d+1 ({1},C) Fun d+1 ([1], C)
is a left adjoint and the counit of the adjunction is an equivalence. A 1-morphism in D is called (p-)cartesian if it is contained in the essential image of the right adjoint.

This notion of pre-cocartesian fibration coincides with the 2-categorical notion of an abstract cocartesian fibration from Street [START_REF] Street | Fibrations in bicategories[END_REF] and Riehl-Verity [START_REF] Riehl | Elements of ∞-category theory[END_REF] (interpreted in the 2category of (d + 1)-categories). In particular, we have the following properties: Lemma 5.4. The class of pre-cocartesian fibrations has the following stability properties:

(1) If q : E -→ D and p : D -→ C are pre-cocartesian fibrations, then pq : E -→ C is a pre-cocartesian fibration as well.

(2) If p : D -→ C is a pre-cocartesian fibration and C ′ -→ C is any map, then the base change where T and S are spaces. Then p is a pre-cocartesian fibration if and only if for any t ∈ T , the map on fibers p t : D t -→ C q(t) is a pre-cocartesian fibration. Furthermore, a morphism in D is p-cocartesian if and only if it defines a p t -cocartesian morphism in some fiber D t .

D ′ = D × C C ′ -→ C ′ is a pre-cocartesian fibration. ( 3 
Proof. Suppose that α : d 0 -→ d 1 is an arrow in D and let τ : t 0 -→ t 1 be its image in T (which is an equivalence). For any object d 2 ∈ D, the square of (d + 1)-categories (5.6) then comes with a natural transformation to the square of spaces

Map T (t 1 , t 2 ) Map T (t 0 , t 2 )
Map S (qt 1 , qt 2 ) Map S (qt 0 , qt 1 ).

τ * q(τ ) *
The horizontal maps in this square are equivalences. The square (5.6) of (d + 1)-categories (i.e. specific kinds of (d+1)-fold simplicial spaces) is then cartesian if and only if for for every τ ′ : t 1 -→ t 2 in T , the square of fibers over τ ′ is a cartesian diagram of (d + 1)-categories. This means precisely that α defines a cocartesian arrow for p t : D t -→ C q(t) , where D t is the fiber of D over the diagram in T of the form

t 0 τ -→ t 1 τ ′ -→ t 2 .
Note that such a diagram in T is contractible, i.e. it is equivalent to a choice of basepoint t ∈ T . In other words, an arrow in D is p-cocartesian if and only if it defines a p t -cocartesian arrow where p t : D t -→ C q(t) is the map between fibers over t ∈ T . Using this and Corollary 5.7, one readily deduces that p is a pre-cocartesian fibration if and only if each p t is a pre-cocartesian fibration.

d-cocartesian fibrations.

We now turn to the definition of d-cocartesian fibrations, which proceeds by induction on d:

Definition 5.10. Let p : D -→ C be a map of n-categories. We then have the following definitions, by induction on d:

(a) p is said to be a 0-cocartesian fibration if D(1) -→ C(1)× C({0}) D({0}) is an equivalence.
A strong morphism between two 0-cocartesian fibrations p and p ′ is a commuting square (5.11)

D D ′ C C ′ p f p ′
Dually, p is said to be a 0-cartesian fibration if p op : D op -→ C op is a 0-cocartesian fibration; strong morphisms between those are commuting squares (5.11). (b) p is said to be a d-cocartesian fibration if it satisfies the following two conditions:

(1) It is a homwise (d -1)-cartesian fibration: for every x 0 , x 1 ∈ D, the induced map between mapping objects Map D (x 0 , x 1 ) -→ Map C (p(x 0 ), p(x 1 )) is a (d -1)cartesian fibration and the composition map determines a strong map of (d -1)cartesian fibrations

(5.12)

Map D (x 1 , x 2 ) × Map D (x 0 , x 1 ) Map D (x 0 , x 2 ) Map C (p(x 1 ), p(x 2 )) × Map C (p(x 0 ), p(x 1 )) Map C (p(x 0 ), p(x 2 )). p p
(2) It is a pre-cocartesian fibration (Definition 5.1). (c) p is said to be a d-cartesian fibration if it satisfies the following two conditions:

(1') It is a homwise (d -1)-cocartesian fibration: it induces (d -1)-cocartesian fibration on mapping objects and the composition determines a strong map of (d -1)-cocartesian fibrations (5.12). (2') It is a pre-cartesian fibration (Remark 5.3).

(d) A strong morphism between d-(co)cartesian fibrations is a commuting square (5.11) such that f preserves (co)cartesian 1-morphisms and for any x 0 , x 1 ∈ D, the induced square

Map D (x 0 , x 1 ) Map D ′ (f x 0 , f x 1 ) Map C (px 0 , px 1 ) Map C ′ (p ′ (f x 0 ), p ′ (f x 1 )) f p p ′
is a strong morphism of (d -1)-(co)cartesian fibrations.

Warning 5.13. A 0-cocartesian fibration can equivalently be viewed as a Segal copresheaf (as in Definition 4.25) whose domain is an n-category. Note that the Segal copresheaves that arise in this way form a very restrictive class, since their fibers are spaces (cf. Warning 4.26).

Remark 5.14. As usual, there are 2 d+1 variants of the notion of a d-cocartesian fibration between (d + 1)-categories, by taking opposites in the various dimensions. We will only make use of the two notions considered above, which are related by taking opposites in every dimension. First, to make sure that the fiber p -1 (c 0 ) over an object c 0 ∈ C depends covariantly on c 0 , we need to be able to associate to each 1-morphism α : c 0 -→ c 1 in C and each d 0 ∈ p -1 (c 0 ) an object α ! d 0 ∈ p -1 (c 1 ). Of course, this is done using the (essentially unique) p-cocartesian arrow α :

d 0 -→ α ! d 0 covering α.
Next, given two objects d 0 , d 1 ∈ D with images c 0 , c 1 ∈ C, consider the induced map p : Map D (d 0 , d 1 ) -→ Map C (c 0 , c 1 ). For each α : c 0 -→ c 1 in C, its fiber is given by

p -1 (α) ≃ Map p -1 (c1) (α ! d 0 , d 1 ).
Consequently, if α ! d 0 depends covariantly on the 1-morphism α, then the fiber p -1 (α) will depend contravariantly on α. Indeed, each 2-morphism h : α -→ β in C should give rise to a functor (5.16)

h * : p -1 (β) p -1 (α); β ! d 0 g -→ d 1 α ! d 0 h(d0) ---→ β ! d 0 g -→ d 1
that precomposes with the natural transformation induced by h. In terms of the fibration p, this means that each 2-morphism h : α -→ β in C and g ∈ p -1 (β) should admit a p-cartesian lift h : h * (g) -→ g. At the level of 2-morphisms, we then obtain a functor of the form

p : Map Map D (d0,d1) (f, g) Map Map C (c0,c1) (α, β)
for each f ∈ p -1 (α) and g ∈ p -1 (β). For a given 2-cell h : α → β in C, postcomposition with the p-cartesian lift h induces an equivalence

p -1 (h) ≃ Map p -1 (α) (f, h * g).
If the natural transformation h(d 0 ) : α ! d 0 -→ β ! d 0 depends covariantly on the 2-morphism h, then (5.16) shows that h * depends covariantly on h as well. Consequently, the fiber p -1 (h) depends covariantly on h, so that 3-morphisms should have p-cocartesian lifts. In higher dimensions, one can repeat the discussion from the last two paragraphs to arrive at the alternating list of cocartesian and cartesian conditions from Definition 5.10.

Note that for any map of n-categories p : D -→ C, the property of being a d-cocartesian fibration does not depend on whether we consider p as a map of n-categories or (n + 1)categories. Similarly, the difference between d-cocartesian and (d + 1)-cocartesian fibrations is only fiberwise: Lemma 5.17. A map p : D -→ C between n-categories is a d-cocartesian fibration if and only if it is a (d + 1)-cocartesian fibration and its fibers are d-categories.

In particular, a functor between n-categories is a d-cocartesian fibration for some d > n if and only if is an n-cocartesian fibration.

Proof. An inductive argument reduces this to the case d = 0: if p is a 0-cocartesian fibration, then certainly its fibers are spaces and it is a homwise 0-cartesian fibration (since each D(p) -→ C(p) is the base change of a map between spaces). It is a 1-cocartesian fibration since every arrow in D is p-cocartesian and every morphism in C can be lifted to an arrow in D (since p is a 0-cocartesian fibration).

Conversely, suppose that p : D -→ C is a 1-cocartesian fibration whose fibers are spaces. We have to verify that the map D(1) -→ C(1) × C({0}) D({0}) is an equivalence of (n -1)categories. Note that this map is obtained from the map of n-categories (5.2) by taking (n-1)-cores. It particular, it admits a fully faithful left adjoint whose essential image consists of the p-cocartesian morphisms. It therefore suffices to verify that every 1-morphism in D is p-cocartesian: this follows immediately from the fact that every 1-morphism α factors as α = α ′′ • α ′ , where α ′ is cocartesian and α ′′ is a fiberwise morphism (and hence an equivalence). To see that g preserves lateral k-morphisms for k > 1, note that for each a 0 , a 1 ∈ A there is a commuting square of mapping d-categories

Map A (a 0 , a 1 ) Map D (f a 0 , f a 1 )
Map D (ga 0 , ga 1 ) Map D (f a 0 , ga 1 ). Next, given another d-cocartesian fibration p 2 : D 2 -→ C 2 , we have to verify that the square induced by composition

Map Cocart d (p 1 , p 2 ) × Map Cocart d (p 0 , p 1 ) Map Cocart d (p 0 , p 2 ) Fun d+1 (C 1 , C 2 ) × Fun d+1 (C 0 , C 1 ) Fun d+1 (C 0 , C 2 ) • •
gives a strong morphism of d-cocartesian fibrations. To see this, let f, g ∈ Map(p 0 , p 1 ) and f ′ , g ′ ∈ Map(p 1 , p 2 ). We will abuse notation and write f, g : D 0 -→ D 1 and f ′ , g ′ : D 1 -→ D 2 for the underlying functors, which all preserve lateral k-morphisms. Let α : f -→ g and β : f ′ -→ g ′ be lateral k-morphisms (which we depict as 1-morphisms instead of higher cells, for simplicity). Then the image of (α, β) under • is given by the horizontal composition is cartesian. Using (5.27), one sees that this comes down to verifying that

f ′ f f ′ g g ′ g.
Fun ♮ d+1 D 0 , D 2 × C2 C 1 Fun ♮ d+1 D 0 , D 2 Fun ♮ d+1 D 0 , C 1 Fun d+1 D 0 , C 2
is cartesian. This follows immediately from the fact that a functor D 0 -→ D 2 × C2 C 1 preserves lateral k-morphisms if and only if the corresponding map D 0 -→ D 2 does.

Straightening and unstraightening

Finally, we turn to straightening and unstraightening: for a small (d + 1)-category C, we will establish an equivalence between d-cocartesian fibrations over C and copresheaves C -→ Cat d . We will start by describing this as an equivalence of 1-categories (Theorem 6.1). We then use this to establish a more structured version of straightening-unstraightening that provides an equivalence of (d + 1)-categories and is furthermore (d + 2)-functorial in C (Theorem 6.20). Remark 6.2. Similarly, for every (d + 1)-category C, there is an equivalence of 1-categories between cartesian fibrations and presheaves:

c 1 Fun d+1 C op , Cat d ≃ c 1 Fun d+1 C (1,...,d+1)-op , Cat d ≃ Cocart d C (1,...,d+1)-op ≃ Cart d (C).
Here the first equivalence sends a functor F : C op -→ Cat d to the functor c → F (c) (1,...,d)-op (which changes the variance with respect to higher morphisms). The second equivalence is Theorem 6.1 and the last equivalence takes (1, . . . , d + 1)-opposites to obtain a cartesian fibration (Remark 5.14), whose fibers are equivalent to the values of F .

We will prove this theorem by a repeated application of Theorem 3.1 in different simplicial directions. Concretely, the above equivalence will arise as a composition of d equivalences, whose intermediate categories consist of certain fibrations of (d + 1)-fold categories: Definition 6.3. Let C be a (d + 1)-category and let p : D -→ C be a map of (d + 1)-fold categories. By induction, we will say that p is:

• a 0-th stage fibration if D(1) -→ C(1)× C({0}) D({0}) is an equivalence of d-fold categories.
A strong map of 0-th stage fibrations is simply a commuting square. • a k-th stage fibration, for 1 ≤ k ≤ d, if it satisfies the following two conditions. We will write Fib (k) d ⊆ Fun [START_REF] Ayala | Fibrations of ∞-categories[END_REF], Cat ⊗d+1 for the subcategory whose objects are k-th stage fibrations (in particular, the codomain is a (d+ 1)-category) and whose maps are commuting squares satisfying conditions (b1) and (b2). The codomain projection defines a cartesian fibration codom : Fib 

D( n k-1 , -, -, n d-k ) C( n k-1 , -, -, n d-k ) is a (cart, left)-fibration if k is even, and a (cocart, right)-fibration if k is odd. Furthermore, each n k-1 -→ n ′ k-1 and n d-k -→ n ′ d-k
induces a map preserving (co)cartesian morphisms. When k = 1 this follows from condition (a2) and the fact that C(-, 0 d ) ≃ C(-, 0, n d-1 ); for higher k it follows inductively, by repeatedly applying condition (a1).

From this point on, let us assume that k is odd; when k is even, the same argument applies up to taking opposites (in all dimensions). Note that for a (k -1)-st stage fibration p : D -→ C, the map (6.5) is a (left, cart)-fibration and each n k-1 -→ n ′ k-1 and n d-k -→ n ′ d-k induces a strong map of (left, cart)-fibrations. Indeed, the previous paragraph shows that p is a left fibration in the k-th variable. Furthermore, setting the k-th entry equal to 0 yields a map D( n k-1 , 0, -, n d-k ) -→ C( n k-1 , 0, -, n d-k ) from a 1-category to a space. In particular, each such map is a cartesian fibration and since its cartesian arrows are the equivalences, each n k-1 -→ n Here the functors from left to right are subcategory inclusions and the top right equivalence is the reflection functor from Theorem 3.1, applied to the k-th and (k + 1)-st variable. We will prove by induction on k that the equivalence Ψ ⊥ (k,k+1) identifies the subcategories of (k -1)-st stage fibrations and k-th stage fibrations.

When k = 1, note that the bottom and front square are pullbacks: a map D -→ C is a 0-th stage fibration if and only if it is a natural (left, cart)-fibration in the first two variables, and a 1-st stage fibration if and only if it is a natural (cocart, right)-fibration in the first two variables. In particular, Ψ ⊥

(1,2) identifies 0-th stage fibrations and 1-st stage fibrations. For k > 1, the inductive hypothesis implies that p : D -→ C satisfies condition (a1) for (k -1)-st stage fibrations if and only if Ψ ⊥ (k,k+1) (p) : Ψ ⊥ (D) -→ C satisfies condition (a1) for k-th stage fibrations. For condition (a2), note that D × C c 1 (C) -→ c 1 (C) is given in the k-th and (k + 1)-st variables by a (left, cart)-fibration over a space. For such (left, cart)fibrations over spaces, the functor Ψ ⊥ is equivalent to the functor that exchanges the k-th and (k + 1)-st variable (Proposition 3.15). Using that Ψ ⊥ is compatible with base change, we therefore find

Ψ ⊥ (k,k+1) (D) -, n k-2 , m, n, n d-k × C(-, n k-2 ,m,n, n d-k ) C(-, 0 d ) ≃ D -, n k-2 , n, m, n d-k × C(-, n k-2 ,n,m, n d-k ) C(-, 0 d ).
It follows that p satisfies condition (a2) if and only if Ψ ⊥ (k,k+1) (p) does. A similar argument shows that Ψ ⊥ (k,k+1) identifies strong morphisms between (k -1)-st stage fibrations and k-th stage fibrations, so that Ψ ⊥ (k,k+1) indeed restricts to an equivalence Fib Proof. This is evident for k = 0. For higher k, it follows from Proposition 6.4. Proof (of Theorem 6.1). Composing the equivalences from Proposition 6.4 yields (6.9)

Fib (0) Fib (d)
∼ that commutes with the codomain projection. Note that on both sides, the fiber over * ∈ Cat d+1 can be identified with the category Cat ⊗d of d-fold categories: in Fib (0) , a d-fold category is viewed as a (d + 1)-fold category which is constant in the first variable, and in Fib (d) it is constant in the last variable. Since the above equivalence is given by repeatedly applying the functor Ψ ⊥ , Proposition 3.15 shows that the induced equivalence on fibers over * ∈ Cat d+1 simply sends a d-fold category to itself. Now observe that there is a fully faithful inclusion coPSh Seg d ֒-→ Fib (0) , whose essential image consists of all those 0-th stage fibrations p : D -→ C with the property that for any object c ∈ C, the fiber D c is a d-category (rather than a d-fold category). The essential image of coPSh Seg d under (6.9) then consists of d-th stage fibrations whose fibers are d-categories. By Proposition 6.8, this means that (6.9) restricts to an equivalence coPSh Seg Remark 6.12. In particular, the straightening of a d-cocartesian fibration p : D -→ C between (d + 1)-categories is naturally equivalent to the straightening of p, viewed as a special kind of (d + 1)-cocartesian fibration between (d + 2)-categories.

We will deduce Proposition 6.10 from the following (simpler) version of a result of Barwick and Schommer-Pries 

∼ ∼

Here the first equivalence is the Yoneda embedding (4.45) and the last equivalence is unstraightening. The middle equivalence uses that CAT d+1 is a (large) ind-completion of Cat d+1 ; in particular, restriction along Cat d+1 -→ CAT d+1 is fully faithful on presheaves sending large κ sm -filtered colimits in CAT d+1 to large limits in S big (e.g. on representable presheaves). Finally, Proposition 6.13 implies that the left space is contractible. Theorem 4.32 and Theorem 6.1 imply that the (un)straightening equivalence of Corollary 6.11 admits some extension to an equivalence of 1-categories, rather than spaces. Using this, let us record some properties of the (un)straightening at the level of objects. To see this, it suffices to treat the case where C = [START_REF] Ayala | Fibrations of ∞-categories[END_REF]. By naturality with respect to the projection [START_REF] Ayala | Fibrations of ∞-categories[END_REF] -→ * , the unstraightening of a constant copresheaf ∆ K : [START_REF] Ayala | Fibrations of ∞-categories[END_REF] -→ Cat d with value K is given by the projection π 1 : [1] × K -→ [START_REF] Ayala | Fibrations of ∞-categories[END_REF]. Theorem 6.1 then shows that we have a commuting diagram of mapping spaces

Map Fun([1],Cat d ) (∆ K , St(p)) Map Cat d (K, D 0 ) Map Cat d (K, D 1 ) Map Cocart d ([1]) (π 1 , p). ∼ ev1 ev0 ∼ 0 * ∼ 1 *
Now note that the top zigzag is homotopic to postcomposition with γ * , while the bottom zigzag corresponds precisely to the procedure described above. 

J[m, n] = colim α⋆β : [q]⋆[p]→[m] α ′ : [q]→[n] [p] op ⋆ [p] ⊠ [q].
This comes with natural inclusions

[m] op ⊠ [n] -→ J[m, n] ←-[m] ⊠ [n], arising as parts of the bisimplex associated to (α, α ′ , β) = (cst(0), id [m] , id [n] ). One then has that Tw lax (C)(m, n) ⊆ Map Fun(∆ ×2,op ,S) J[m, n], C
is the subspace of maps J[m, n] -→ C whose restriction to any bisimplex of the form [0] op ⋆ [0] ⊠ [q] -→ J[m, n] (i.e. a summand for which p = 0) is degenerate in the qdirection.

Note that in the definition of J[m, n], it suffices to take the colimit over the cofinal subcategory of (α, α ′ , β) such that (α, α ′ ) : 

[q] -→ [m] × [n] is injective and β : [p] -→ {α(q) ≤ • • • ≤ m is
f * = Cocart κ d (f ) : Cocart κ d (C ′ ) Cocart κ d (C) is tensored over Cat d (κ) (in
particular, so are its domain and codomain).

Heuristically, this simply comes down to the fact that the tensoring of Cocart κ d (C) is given by K ⊗ (D → C) = (K × D -→ C) and that such products are stable under base change. However, since we defined the (d + 1)-functor f * somewhat abstractly, in terms the straightening from Corollary 6.11, we will provide a more detailed argument using point-set models. 

κ d (C ′ ) × [1] Cocart d (κ) [1] Cat d+1 . φ f
To see this, one can either use the formalism from [START_REF] Hinich | Yoneda lemma for enriched ∞-categories[END_REF] or use the following trick. We will first prove assertion (b) in the case where C = * , so that the target of µ reduces to Fun d+1 (K, Cat d (κ)). By Example 4.56, this is indeed tensored over Cat d (κ) and restriction along {k} -→ K preserves the tensoring. Combined with (a), it follows that µ yields an equivalence Cocart κ d (K) ≃ Fun d+1 (K, Cat κ d ). Using this equivalence (with K replaced by C), the target of the map µ is then equivalent to

Fun d+1 K, Cocart κ d (C) ≃ Fun d+1 K, Fun d+1 (C, Cat d (κ)) ≃ Fun d+1 K × C, Cat d (κ)
. Applying Example 4.56 once more then shows that this (d + 1)-category is indeed tensored over Cat d (κ) and that evaluation at k ∈ K preserves the tensoring. We conclude that the natural transformation µ satisfies both (a) and (b), so that it is a natural equivalence as desired.

Proof of Theorem 6.20. Let us apply Theorem 6.25 in the large setting, with κ = κ sm the supremum of all small cardinals. It follows that the (d+2)-functor on large (d+1)-categories 

⊆ Map Fund+2(Cat op d+1 ,CAT d+1 ) Cocart d , F Cat d+1 , Aut(F Cat d+1 ) ⊆ Map Fund+2(Cat op
d+1 ,CAT d+1 ) F Cat d+1 , F Cat d+1 for the full sub-(d + 1)-categories spanned by the natural equivalences between (d + 2)functors. We have to show that Iso ≃ * . We have just verified that Iso is nonempty, and precomposing with any element φ Iso determines an equivalence Iso ≃ Aut(F Cat d+1 ). It therefore remains to verify that the (d + 1)-category of automorphisms of F Cat d+1 is equivalent to a point. As in Proposition 6.10, there are natural maps of (d + 1)-categories Aut CAT d+1 (Cat d ) Aut(F ) Aut(F Cat d+1 ).

The first map is an equivalence by the enriched Yoneda lemma (Section 4.4). The second map arises by restricting the natural automorphisms of F along i : Cat op d+1 ֒-→ CAT op d+1 . To see that this is an equivalence, note that together with right Kan extension, restriction along i defines a coreflective localization of (very large) (d + 2)-categories i * : Fun d+2 CAT op d+1 , CAT d+1 Fun d+2 Cat op d+1 , CAT d+1 : i * .

The essential image of i * consists of enriched functors CAT op d+1 -→ CAT d+1 whose underlying 1-functor preserves large, κ sm -cofiltered limits; this can be verified by presenting everything by enriched (model) categories of strictly enriched functors. In particular, the representable functor F is contained in the essential image of i * , so that restriction along i induces an equivalence on its automorphism (d + 1)-categories. The result now follows since Aut CAT d+1 (Cat d ) ≃ * by Proposition 6.13. Definition A.1. By a category of fibrant objects M we will mean a (1, 1)-category with two classes of maps, called weak equivalences and fibrations, both containing the isomorphisms and closed under composition, such that the following conditions hold:

(1) The weak equivalences have the 2-out-of-6 property.

(2) M admits pullbacks along fibrations and the base change of an (acyclic) fibration is again an (acyclic) fibration.

(3) M admits a terminal object and each x -→ * is a fibration. (4) Each map in M admits a factorization into a weak equivalence, followed by a fibration.

A map between categories of fibrant objects f : M -→ N is a functor preserving fibrations, weak equivalences, the terminal object and pullbacks along fibrations. Let us write FibCat for the (2, 1)-category of categories of fibrant objects.

Our condition that weak equivalences have the 2-out-of-6 property is slightly nonstandard; it is equivalent to the assertion that a morphism in M is a weak equivalence if and only if its image in the localization M[W -1 ] is an equivalence (see [START_REF] Radulescu-Banu | Cofibrations in homotopy theory[END_REF]Theorem 7.2.7] or use the description of M[W -1 ] from Remark A.8). 0 a weak equivalence, together with a factorization g = i * (q)j with q : z ։ p * y a fibration in E(b ′ 0 ) and j : x -→ i * z a weak equivalence in E(b 0 ). Define a map x 0 -→ x 1 in E to be a weak equivalence (fibration) if it factors (uniquely) as x 0 -→ x -→ x 1 where the second map is a p-cartesian lift of a weak equivalence (fibration) and the first map is a weak equivalence (fibration) in E(px 0 ). This makes p : E -→ B a map between categories of fibrant objects. Indeed, for a map g : x -→ f * y in E(b 0 ), we can consider the adjoint map i ! x -→ p * y and factor it into i ! x ∼ -→ z followed by a fibration q : z ։ p * y. One then obtains the desired factorization g = i * (q)j, where j : x -→ i * i ! x -→ i * z is a model for the derived unit map and hence an equivalence by condition (a). Definition A.5. A map p : E -→ B of categories of fibrant objects is said to be a homotopy cartesian fibration if it arises as in Lemma A.2. In this situation, we will say that α : x 0 -→ x 1 in E is homotopy p-cartesian if x 0 -→ p(α) * x 1 is a weak equivalence in the fiber, and we will write E hocart ⊆ E for the wide subcategory of homotopy cartesian arrows.

Remark A.6. If w is a weak equivalence in E, then a composition wf is homotopy cartesian if and only if f is homotopy cartesian, and likewise for a composition f w. In particular, E hocart is a relative category (with the same weak equivalences as in E) whose weak equivalences are generated under the 2-out-of-3 property by the acyclic fibrations in E.

Proposition A.7. Let p : E -→ B be a homotopy cartesian fibration between categories of fibrant objects. Then the following assertions hold. This proposition is essentially a special case of a result of Hinich [START_REF] Hinich | Dwyer-Kan localization revisited[END_REF]. We have included a proof that does not rely on Lurie's (un)straightening machinery (in contrast to loc. cit.).

Remark A.8. For M ∈ FibCat, its (∞-categorical) localization can be modeled as follows [START_REF] Horel | Brown categories and bicategories[END_REF][START_REF] Nuiten | Localizing ∞-categories with hypercovers[END_REF]. Let us write Span M for the (2, 2)-category whose:

(0) objects are the objects of M.

(1) mapping categories Span M (x 0 , x 1 ) are the full subcategories of spans x 0 ←x 01 -→ x 1

where the left morphism α : x 01 -→ x 0 is an acyclic fibration and β : x 01 -→ x 1 is any morphism (and composition by composition of spans). We will abbreviate such a span by (α, x 01 , β) : x 0 x 1 . Taking classifying spaces then determines a 1-categorical algebra (i.e. a Segal space) whose completion models the localization [START_REF] Horel | Brown categories and bicategories[END_REF]. In fact, this description works for any relative category (C, W ) where W is generated under the 2-out-of-3 property by a class of 'acyclic fibrations' which is stable under base change.

Proof. Let us start by considering the map of (2, 2)-categories p : Span E -→ Span B . For each x 0 , x 1 ∈ E, the induced functor on mapping (1, 1)-categories (A.9) Span E (x 0 , x 1 ) Span B (px 0 , px 1 ) is a cartesian fibration, whose fiber over a span (α, b, β) : px 0 px 1 can be identified with Span E(b) (α * x 0 , β * x 0 ). Using condition (a) and Remark A. induces a (homotopy) pullback square of Segal spaces upon taking classifying spaces of all mapping categories. To prove assertion (1), we have to show that this also induces a homotopy pullback square on completions. This follows as soon as Span E -→ Span B induces an isofibration on homotopy (1, 1)-categories (cf. [START_REF] Harpaz | On k-invariants for (∞, n)-categories[END_REF]Corollary 4.4]).

To see this, note that by the 2-out-of-6 property, any isomorphism in ho(Span B ) arises from a span (α, b, β) : b 0 b 1 in B with α a trivial fibration and β a weak equivalence. It therefore suffices to prove the following stronger assertion:

( * ) For any span (α, b, β) : b 0 b 1 in B with α a trivial fibration and any x 1 ∈ E b1 , there exists a lift to a span (α, x 12 , β) : x 0

x 1 with α a trivial fibration and β homotopy cartesian.

To see this, first take β * x 1 ∈ E b and recall that α * : E b0 -→ E b induces an equivalence on localizations. This implies that there exists some x 0 ∈ E b0 together with a zig-zag α * (x 0 ) This proves [START_REF] Ayala | Fibrations of ∞-categories[END_REF]. For (2) and (3), note that by Remark A.6 and Remark A.8, the localization of E hocart arises from the (2, 2)-category Span E hocart . Since being a homotopy p-cartesian morphism is invariant under weak equivalences, Span E hocart (x 0 , x 1 ) -→ Span E (x 0 , x 1 ) is an inclusion of connected components, so that E hocart [W -1 ] -→ E[W -1 ] is indeed the inclusion of a wide subcategory. Assertions (2) and (3) then follow from ( * ) as soon as every arrow in E hocart [W -1 ] is a cartesian arrow. Let (α, x 12 , β) : x 1

x 2 be a morphism in Span E hocart , so that β is homotopy p-cartesian, and let (α, b 12 , β) : b 1 b 2 denote its image in B. To see that this map is an equivalence, we have to show that for any x 0 ∈ E with image b 0 = px 0 in B, the square of categories The first map is an equivalence since (α ′ ) * induces an equivalence on localizations. The second map takes the postcomposition with the span (δ ′ ) * α * x 1 ←-(δ ′ ) * x 12 -→ (δ ′ ) * β * x 2 , where both maps are weak equivalences since α and β homotopy cartesian. This map induces an equivalence on classifying spaces as well. Finally, for (4), let us start by recalling that for any cartesian fibration p : D -→ C of 1-categories, an arrow in D is p-cocartesian if and only if it is locally p-cocartesian, i.e. cocartesian in the base change of p to a 1-simplex [START_REF] Lurie | Higher topos theory[END_REF]Corollary 5.2.2.4]. In the present situation, the observations at the beginning of the proof imply that the base change of E[W -1 ] -→ B[W -1 ] to the 1-simplex f : b 0 -→ b 1 can be computed at the level of (2, 2)categories. Unraveling the definitions as in the proofs of parts ( 2) and (3), we reduce to showing that for any x 2 ∈ E(b 1 ),

(A.11) Span E(b1) (f ! x 0 , x 2 ) Span E(b1) (f * f ! x 0 , f * x 2 ) Span E(b1) (x 0 , f * x 2 ) f * (-)•η
induces an equivalence on classifying spaces. Here the second map precomposes spans with the unit η : x 0 -→ f * f ! x 0 . Explicitly, (A.11) sends f ! x 0 ←x 12 -→ x 2 to the span

x 0 ←-x 0 × f * f ! x0 f * x 12 -→ f * x 2 .
This induces an equivalence on classifying spaces since it admits a left adjoint, sending x 0 ←-

x 02 -→ f * x 2 to f ! x 0 ←-f ! x 02 -→ f ! f * x 2 -→ x 2 .

c 1

 1 Fun d+1 (C, Cat d ) Cocart d (C) : St Un : c 1 Fun d+1 (C op , Cat d ) Cart d (C) : St ∼ ∼ between d-cocartesian fibrations over C and (d+1)-functors C -→ Cat d to the (d+1)-category of d-categories, resp. between d-cartesian fibrations and (d + 1)-functors C op -→ Cat d .

  op d+1 -→ CAT d+1 given at a (d + 1)-category C by an equivalence of (d + 1)-categories Un : Fun d+1 (C, Cat d ) Cocart d (C) : St. ∼ The statement of Theorem C hides the following subtlety: it is in fact not so obvious how to write down the (d + 2)-functor Cocart d (-) : Cat op d+1 CAT d+1 ; C Cocart d (C).

Remark 2 . 10 .

 210 By condition[START_REF] Ayala | Fibrations of ∞-categories[END_REF], the map D([START_REF] Ayala | Fibrations of ∞-categories[END_REF], -) -→ C([START_REF] Ayala | Fibrations of ∞-categories[END_REF], -) is a cartesian fibration as well and D([START_REF] Ayala | Fibrations of ∞-categories[END_REF], -) -→ D({0}, -) preserves cartesian arrows. The other face map D([START_REF] Ayala | Fibrations of ∞-categories[END_REF], -) -→ D({1}, -) is not required to preserve cartesian arrows.Remark 2.11. The class of (left, cart)-fibrations is stable under composition and base change. Furthermore, a map D -→ * is a (left, cart)-fibration if and only if D is constant in the horizontal direction. In particular, the fibers of a (left, cart)-fibration are categories concentrated in the vertical direction (and constant in the horizontal direction).Informally, a map of double categories p : D -→ C is a (left, cart)-fibration if the following conditions hold: (a) For every horizontal arrow α : c 0 → c 1 in C and d 0 ∈ p -1 (c 0 ), there exists a unique horizontal arrow d 0 -→ α ! (d 0 ) lifting α. Furthermore, given any square σ in C together with a lift of its left vertical arrow d 00 α ! (d 00 ) exists a unique dotted lift σ as indicated (this lift includes the objects α ! (d 00 ) and α ′ ! (d 01 )). (b) For every vertical arrow β : c 0 c 1 in D and d 1 ∈ p -1 (c 1 ), there exists a vertically p-cartesian arrow β * (d 1 ) d 1 covering α. Let us now fix a square σ in C together with an object d 01 ∈ p -1 (c 01 ). A combination of (a) and (b) then implies that σ admits a unique lift σ of the form

Proposition 2 . 22 .

 222 Let p : D -→ C be a (left, cart)-fibration. Then the reflection Ψ ⊥ (D) -→ C is a (cocart, right)-fibration between double categories.

  the left equivalence sends a category C to the (left, cart)-fibration [0]⊠C -→ [0]⊠S = S and the right equivalence to the (cocart, right)-fibration C ⊠ [0] -→ S ⊠ [0] = S (see Example 2.5 and Remark 2.11). Then the above endofunctor of Cat/S is homotopic to the identity.

  we mark the following vertical arrows: (a) for each object aa ∈ Ar[m] with 0 ≤ a ≤ m, we mark all edges in {aa} ⊠ Fun([1], [n]) of the form ik -→ jk. (b) for each ii ∈ Fun([1], [n]) with 0 ≤ i ≤ n, we mark all vertical arrows in Ar[m] × {ii}.

  Here ζ : Ar[m] × [0, n] -→ [m, n] just arises from the horizontal projection Ar[m] -→ [m, 0]. This sends the vertical arrows within each Ar[m] × {i} to degenerate arrows and hence preserves markings. The map η : Ar

Proposition 3 . 19 .

 319 Let p : D ♮ -→ C ♯ be a (left, cart)-fibration. Then the natural transformations ζ * and η * above are equivalences of marked bisimplicial spaces. In particular, Ψ A (D ♮ ) -→ C ♯ and Ψ B (D ♮ ) -→ C ♯ are (left, cart)-fibrations of double categories.

p

  and likewise for Ψ B (D ♮ ). The maps ζ * and η * simply arise by restriction along the natural maps ζ : A[m, n] -→ [m, n] and η : A[m, n] -→ B[m, n].

  an equivalence on marked vertical arrows. It then remains to verify that the map on (1, 1)-simplices is an equivalence. Unraveling the definitions, a (1, 1)-simplex in Ψ A (D ♮ ) is a diagram in D square covers a vertical arrow in C. The map ζ * : D(1, 1) -→ Ψ A (D)(1, 1) is simply the inclusion of the diagrams of the above form where the right square is degenerate; this is an equivalence by completeness of D.

  marked arrows translates into the following conditions: (a) The maps y ii z ii are equivalences for all 0 ≤ i ≤ n, as indicated. (b) All downward maps in the x-slice and the z-slice are p-cartesian, indicated by • . The map η * : Ψ B (D ♮ )(1, n) -→ Ψ A (D ♮ )(1, n) restricts the above diagram to the diagonal face, spanned by all x ii , y ii and z ii . We have to prove that there is a unique way to extend the above diagram (with properties (a) and (b)) from this diagonal face (covering the map [m, n] -→ C). Let us first look at the x-and z-slices, both of which correspond to diagrams Fun([1], [n]) D(0, -)

1 .d 1 ′′ 0 d 1 d 1 ′′ 0 d 1 ;

 1101101 for every (s, t)-simplex in T [m, n]. This defines the desired natural map of bisimplicial spaces θ : T [m, n] -→ B[m, n], compatible with the projections onto [m, n]. Notice that θ sends a marked (0, 1)-simplex in T [m, n] (Construction 3.21) to a marked (0, 1)-simplex in B[m, n] (Construction 3.18): (a) Given a marked (0, 1)-simplex corresponding to (α, β, γ, δ) with γ : [1] ⋆ [0] -→ [a] constant, both α • γ and τ 1 are constant. Consequently, its image in B[m, n] is a marked (0, 1)-simplex as in part (a) of Construction 3.18. (b) Given a marked (0, 1)-simplex corresponding to (α, β, γ, δ) with β : [b] ⋆ [a] -→ [n] constant, both τ 0 and τ 1 are constant with the same value. Consequently, the image in B[m, n] is a marked (0, 1)-simplex as in part (b) of Construction 3.18. Finally, note that in both T [0, 1] ♯ and B[0, 1] ♯ , all vertical arrows are marked, so θ induces a natural map T [0, 1] ♯ -→ B[0, 1] ♯ as well. For any (left, cart)-fibration p : D ♮ -→ C ♯ , restriction along θ therefore defines a natural map of marked bisimplicial spaces Ψ B (D ♮ ) Ψ T (D ♮ ) C ♯ . θ * Since both downwards pointing maps are (left, cart)-fibrations (with marked arrows being the cartesian arrows), it suffices to verify that θ * induces equivalences between spaces of vertices and vertical arrows. On vertices, note that T [0, 0] ≃ B[0, 0] ≃ [0, 0], so that the spaces of objects of Ψ B (D ♮ ) and Ψ T (D ♮ ) are both equivalent to the space of objects of D. Unraveling the definitions, a vertical arrow in Ψ T (D ♮ ) ≃ Ψ ⊤ Ψ ⊥ (D ♮ ) covering a vertical arrow c 0 c 1 in C ♯ is given by a diagram in D of the form Here first two maps live in the fiber over c and the vertical arrow d ′′ 0 is a cartesian lift of c 0 c 1 . Since D -→ C was a horizontal left fibration, this means that the arrow d 0 -→ d ′ 0 is an equivalence. On the other hand, a vertical arrow in Ψ B (D ♮ ) is a sequence d ′ 0 d of vertical maps where the first map lives in the fiber over c and d ′′ 0 is cartesian. The map θ * can be identified with the map sending this sequence to d 0 = d ′ 0 d it is then an equivalence by completeness of D.

4. 1 .

 1 Higher categories via Segal spaces. Recall the iterated Segal space model for dcategories[START_REF] Barwick | On the unicity of the theory of higher categories[END_REF]: Definition 4.1. A d-category C is a d-fold category with the property that for each n k-1 in ∆ ×k-1 , the (dk)-fold category C( n k-1 , 0, -, . . . , -) is a space, i.e. constant. We will write Cat d ֒-→ Cat ⊗d for the full subcategory spanned by the d-categories.

Notation 4 . 3 .Lemma 4 . 4 .

 4344 For a category I, let us denote by λ : ∆ × I -→ ∆ I the ((∞, 1)-categorical) localization of ∆ × I at the morphisms in {0} × I. Recall that restriction and Kan extension determine adjoint pairs Fun (∆ × I) op , S Fun(∆ op I , S) Fun (∆ × I) op , S category of presheaves on ∆ I both as a localization and a colocalization of the category of presheaves on ∆ × I. Let I be a (1, 1)-category with a terminal object t and let λ : ∆ × I -→ ∆ I denote the localization at the morphisms in {0} × I. Then the following assertions hold:(1) ∆ I is a (1, 1)-category with a terminal object.

dLemma 4 . 7 .

 47 Since the bottom and the right functors are right adjoint functors between presentable categories, the inclusion Cat d -→ Cat ⊗d admits a left adjoint. It also admits a right adjoint, by the following observation: Let r d : Fun(∆ ×d,op , S) -→ Fun(∆ d , S) be the right adjoint to δ * d , taking right Kan extension along δ d : ∆ ×d,op -→ ∆ op d . Then r d maps the full subcategory Cat ⊗d to Cat d . Proof. We proceed by induction, the case d = 1 being clear. Let us now take d > 1 and assume that r d-1 sends (d-1)-fold categories to d-categories. Suppose that X : ∆ ×d,op -→ S is a d-fold category and factor the map δ d as

Remark 4 . 8 .( 2 )

 482 In fact, one sees that for any d-fold category C, the counit map r d (C) ֒-→ C is a d-fold simplicial subspace, given in degree (m 1 , . . . , m d ) by the path components x satisfying (inductively) the following two conditions: (1) x is contained in r d-1 (C(m 1 )) ֒-→ C(m 1 ). For each i = 0, . . . , m 1 , the image of x in C({i}, m 2 , . . . , m d ) is contained in the path components C({i}, 0, . . . , 0) ⊆ C({i}, m 2 , . . . , m d ). Corollary 4.9. The category Cat d is cartesian closed. For any two d-categories C and D, the internal mapping object Fun d (C, D) in Cat d is the simplicial subspace of the internal mapping object D C in d-fold simplicial spaces given by Fun d (C, D) = r d D C ⊆ D C .

Remark 4 . 11 .

 411 There is a fully faithful functor ι : Cat d-1 ֒-→ Cat d , sending a (d -1)category C to the d-fold simplicial space ι(C)(m 1 , . . . , m d ) = C(m 1 , . . . , m d-1 ) which is constant in the last variable. This functor has a left adjoint | -| sending a d-fold category C to the (d -1)-fold category |C|(m 1 , . . . , m d-1 ) = colim m d ∈∆ op C(m 1 , . . . , m d ) and a right adjoint c d-1 given by c d-1 (C)(m 1 , . . . , m d-1 ) = C(m 1 , . . . , m d-1 , 0), which we will refer to as the (d -1)-core.

Construction 4 . 15 .

 415 The d-categorical model structure on sPSh(∆ d ) = Fun(∆ op d , sSet) is the left proper, combinatorial model structure characterized uniquely by the following properties [34, Proposition 1.5.4]:

Construction 4 . 18 .

 418 Let CatAlg d ⊆ sPSh(∆ d ) ⊆ Fun ∆ op , sPSh(∆ d-1) denote the full subcategory spanned by the functors X : ∆ op -→ Cat d-1 that are d-categorical algebra models, i.e. explicitly:• Each X(n) : ∆ op d-1-→ sSet is an injectively fibrant (d -1)-category model and X(0) is constant on a Kan complex.

4. 3 .

 3 Copresheaves. If C is a (d+1)-category, we define the (d+1)-category of copresheaves (of d-categories) of C to be the functor (d + 1)-category Fun d+1 (C, Cat d ), i.e. as the internal mapping object in the category of (large) (d + 1)-categories. This (d + 1)-category can be presented explicitly in terms of the enriched categories model for (d + 1)-categories: Proposition 4.24 ([33, Proposition A.3.4.13]). Let C be a small Cat d -enriched category and denote by Fun enr C, Cat d • the Cat d -enriched category of enriched functors C -→ sPSh(∆ d ) that are fibrant-cofibrant in the projective model structure (for the d-categorical model structure on simplicial presheaves). Then the map ev : N Fun enr C, Cat d • × N C N(Cat d ) exhibits N(Fun enr C, Cat d • ) as the internal mapping object in the category of (large) (d + 1)categories.

Construction 4 . 27 .Lemma 4 . 28 .

 427428 Consider the functor Cat(Cat d ) op -→ FibCat sending each Cat denriched category C to the category Fun enr (C, Cat d ) of enriched functors. Note that this is the full subcategory of fibrant objects in the projective model structure on Fun C, sPSh(∆ d ) . We will write EnrFun d Cat(Cat d ) for its Grothendieck construction. Explicitly, an object (C, F ) ∈ EnrFun d is a Cat d -enriched category C together with an enriched functor F : C -→ Cat d . The map EnrFun d -→ Cat(Cat d ) is a homotopy cartesian fibration between categories of fibrant objects, in the sense of Definition A.5. Proof. We verify conditions (a) and (b) of Lemma A.2. For (a), note that for each weak equivalence f : C -→ D, f * : Fun enr (D, Cat d ) -→ Fun enr (C, Cat d ) is induced by a Quillen equivalence [33, Proposition A.3.3.8]. For (b), we use Remark A.3: we can factor any f : C -→ D into a trivial cofibration i : C -→ C ′ (in the model structure on enriched categories) followed by a fibration p : C ′ ։ D. Then i ! : Fun enr (C, sPSh(∆ d )) ⇆ Fun enr (C ′ , sPSh(∆ d )) : i * is a

  d (X), where CatAlg d+1 is a category of fibrant objects as in Construction 4.18. Let us write coPSh Seg,proj d -→ CatAlg d+1 for its Grothendieck construction.

Lemma 4 . 30 .

 430 The map coPSh Seg,proj d -→ CatAlg d+1 is a homotopy cartesian fibration between categories of fibrant objects, in the sense of Definition A.5.

Construction 4 . 31 .

 431 Finally, for each injectively fibrant (d + 1)-category model X, let coPSh Seg,inj d (X) ⊆ sPSh(∆ × ∆ d ) /X denote the full subcategory of fibrant objects in the injective covariant model structure. This determines a (pseudo-)functor Cat op d+1 -→ FibCat, where Cat d+1 is a category of fibrant objects as in Construction 4.15. We will write coPSh Seg,inj d -→ Cat d+1 for its Grothendieck construction. The same proof as in Lemma 4.30 shows that coPSh Seg,inj d -→ Cat d+1 is a homotopy cartesian fibration between categories of fibrant objects. In fact, unraveling the definitions shows that coPSh Seg,inj d can be identified with the category of fibrant objects for a model structure on Fun [1], sPSh(∆ × ∆ d ) : indeed, one can take a left Bousfield localization of the injective model structure whose fibrant objects are injective fibrations Y -→ X that model Segal copresheaves in the sense of Definition 4.25. In particular, the localization of coPSh Seg,inj d -→ Cat d+1 is precisely the functor coPSh Seg d -→ Cat d+1 from Definition 4.25.

Theorem 4 . 32 (

 432 Rectification of Segal copresheaves, cf. [7, Theorem A]). For each d ≥ 0, there is a commuting diagram of categories of fibrant objects vertical functors are homotopy cartesian fibrations and the horizontal functors induce equivalences upon localization. Proof. The bottom horizontal functors induce equivalences on localizations by Proposition 4.20. By Proposition A.7 and [33, Corollary 2.4.4.4], the top horizontal functors induce equivalences on localizations as soon as the induced functors between fibers have this property. For the right square, this is immediate: the maps on fibers are induced by the Quillen equivalence between the injective and projective covariant model structure. For the left square, one has to verify that for any enriched category C, the functor N : Fun enr (C, Cat d ) -→ coPSh Seg,proj d (N(C)) induces an equivalence on localizations. This functor sends an enriched functor F : C -→ Cat d to the obvious left fibration

  Note that this functor arises from a right Quillen functor N : Fun enr (C, sPSh(∆ d )) -→ sPSh(∆ × ∆ d ) /N(C) between the projective model structure on enriched functors and the projective covariant model structure on sPSh(∆ × ∆ d ) /N(C) . It follows from [7, Theorem A] that the derived unit and counit maps are pointwise weak equivalences in ∆ d . Consequently, N is a right Quillen equivalence (even when sPSh(∆ d ) is endowed with the injective, rather than d-categorical model structure) and the result follows.

Corollary 4 . 1

 41 33 (cf. [7, Theorem A]). For each (d + 1)-category C, there is an equivalence of 1-categories c Fun d+1 (C, Cat d ) coPSh Seg d (C). ∼ Proof. It follows from Theorem 4.32 that the functor coPSh Seg d -→ Cat d+1 is modeled by π : EnrFun d -→ Cat(Cat d ). Proposition A.7 now implies that for any enriched category C, the localization of the fiber π -1 (C) is a model for the fiber coPSh Seg d (C) over the corresponding (d + 1)-category. The fiber π -1 (C) is precisely the category of enriched functors C -→ Cat d , whose localization models c 1 Fun d+1 (C, Cat d ) by Proposition 4.24. Remark 4.34. For d = 0, this gives a version of (un)straightening for left fibrations over 1-categories. For d > 0, viewing C as a presheaf on ∆ × ∆ d , the above result essentially corresponds to (un)straightening for left fibrations, applied pointwise in ∆ d . Corollary 4.35. Let C be a 1-category, viewed as a 2-category. Then there is an equivalence

Example 4 . 36 .Example 4 . 37 .

 436437 Let C be a (d + 1)-category and let Tw(C) : ∆ op -→ Cat d be the functor given by Tw(C)(n) = C [n] op ⋆[n] . Restriction along the inclusions [n] op ֒-→ [n] op ⋆[n] ←֓ [n] induces a natural map of (d + 1)-fold simplicial spaces Tw(C) C op × C.The Segal conditions on C imply that this is a Segal copresheaf. By Corollary 4.33, this corresponds to a (d + 1)-functor that we will denote byMap C : C op × C -→ Cat d .This functor is easily described using point set models: if C is an enriched category, then the above map of simplicial spaces is modeled by the object Tw(N(C)) -→ N(C) op × N(C) in coPSh Seg,proj (N(C)). Unraveling the definitions, this left fibration is exactly the image underN : Fun enr (C op × C, Cat d ) -→ coPSh Seg,proj (N(C)) ofthe (strict) mapping space functor Map C (-, -) : C op × C -→ Cat d . Consider a map in coPSh Seg d We will say that x is a representation of X if it defines a cocartesian arrow in coPSh Seg d . Note that if we model C by an enriched category C, then c * : Fun enr (C, Cat d ) -→ Cat d admits a left adjoint c ! preserving trivial fibrations. It follows from Proposition A.7(4) that the map * -→ Map C (c, -) in EnrFun d defines such a cocartesian arrow in coPSh Seg . Consequently, (4.38) defines a representation of X if and only if it induces an equivalence Map C (c, -) ≃ X. We will use the language of Example 4.37 to partially address the functoriality of Corollary 4.33: Notation 4.39. For a regular uncountable cardinal κ, let us write coPSh Seg d (κ) for the category of Segal copresheaves X -→ C whose fibers are essentially κ-small. The codomain projection coPSh Seg d (κ) -→ Cat d+1 is a cartesian fibration. Taking the subcategory with only cartesian morphisms, we obtain a right fibration π : coPSh Seg d (κ) cart -→ Cat d+1 . Note that there is a canonical element u ∈ coPSh Seg d (κ) cart , corresponding under the equivalence of Corollary 4.33 to the identity functor Cat d (κ) -→ Cat d (κ) on the small (d + 1)-category of κ-small d-categories. Proposition 4.40. The element u : * -→ coPSh Seg d (κ) defines a representation of the right fibration coPSh Seg d (κ) cart -→ Cat d+1 .In other words, for every (d + 1)-category C, there is a 1-functorial equivalence between the space of (d + 1)-functors C -→ Cat d (κ) and the space of Segal copresheaves X -→ C with κ-small fibers.

  [START_REF] Boavida De Brito | Segal objects and the Grothendieck construction[END_REF] Lemma 1.31],[START_REF] Kazhdan | The Yoneda lemma for complete Segal spaces[END_REF] Lemma 2.3.6],[START_REF] Rasekh | Yoneda lemma for D-simplicial spaces[END_REF] Theorem 5.25]): Lemma 4.42. Let C be a (d + 1)-category and consider an arrow in coPSh Seg d of the form(4.38). Then x defines a representation of p : X -→ C if and only if it determines an initial object in each 1-category X(-, n d ).Proof. Assuming x defines a representation of X -→ C, we can model C by an enriched category and identify x with the canonical map id c : * -→ N (Map C (c, -)). One easily verifies that id c defines an initial object in each degree n d .Conversely, suppose that x defines an initial object in each X(-, n d ). Note that there is a fully faithful inclusion coPSh Seg d ֒-→ Fun(∆ d , coPSh Seg 0 ) which admits a left adjoint and preserves cartesian arrows. This implies that (4.38) defines a cocartesian arrow in coPSh Seg d as soon as it does in Fun(∆ d , coPSh Seg 0 ). It therefore suffices to verify that each * -→ X(-, n d ) defines a cocartesian arrow in the category of Segal copresheaves over 1categories. This reduces everything to the case d = 0, where we can consider the diagram * One easily verifies that the right square defines a cocartesian arrow in the category coPSh Seg 0 of left fibrations. On the other hand, since x ∈ X is an initial object, the left square represents the terminal copresheaf on X, i.e. it also defines a cocartesian arrow in coPSh Seg 0 . The composite is then a cocartesian arrow as well, as desired. Proof of Proposition 4.40. By (the opposite of) Lemma 4.42, it suffices to show that u defines a terminal object in coPSh Seg d (κ) cart . Let us write EnrFun d (κ) ⊆ EnrFun d for the subcategory of tuples (C, F ) consisting of a small Cat d -enriched category and an enriched functor F : C -→ Cat d whose values are homotopy equivalent to κ-small objects. Lemma 4.28 and Theorem 4.32 imply that EnrFun d (κ) -→ Cat(Cat d ) is a homotopically cartesian fibration between categories of fibrant objects, whose localization models coPSh Seg d (κ) -→ Cat d+1 . The object u ∈ coPSh Seg d (κ) simply corresponds to the tuple u = (Cat d (κ), id) consisting of the enriched category of κ-small dcategory models, together with the identity (or more precisely, with the fully faithful inclusion Cat d (κ) ֒-→ Cat d ). Proposition A.7 now implies that coPSh Seg d (κ) cart arises as the localization of the (1, 1)category H = EnrFun d (κ) hocart of such tuples (C, F ), with homotopy cartesian maps between them (see Appendix A for more details). We have to show that Map H[W -1 ] (-, u) is the terminal (very large) presheaf. To this end, let ψ : H -→ H[W -1 ] denote the localization and consider the adjoint pair between categories of very large presheaves ψ ! : Fun H, S very large Fun H[W -1 ], S very large : ψ * .

Variant 4 . 44 . 4 . 4 .

 44444 Associated to the cartesian fibration coPSh Seg d (κ) -→ Cat d+1 is a cartesian fibration of 1-categoriesX = Fun [1], coPSh Seg d (κ) × Fun([1],Cat d+1 ) Cat d+1 Cat d+1 .The same argument as Theorem 4.32 shows that p : X -→ Cat d+1 can be obtained as the localization of a homotopy cartesian fibration X -→ Cat(Cat d ) between categories of fibrant objects; here X is the Grothendieck construction of the functor sending a Cat d -enriched category C to the full subcategory of Fun enr ([1] × C, Cat d ) on the homotopically κ-small objects. Repeating the argument from Proposition 4.40 then shows that the underlying right fibration X cart -→ Cat d+1 is representable by Fun d+1 ([1], Cat d (κ)). More on representability. Let C be a (d+1)-category and consider the (d+1)-functor (4.45) h : C op Fun d+1 C, Cat d adjoint to the (d + 1)-functor Map C : C op × C -→ Cat d defined in Example 4.36. If C arises from an enriched category C, then Proposition 4.24 provides an explicit model for h: it arises from the usual (strictly) enriched Yoneda embedding

Definition 4 . 46 .

 446 Let C be a (d + 1)-category. A functor F : C -→ Cat d is said to be representable if it is contained in the essential image of (4.45).Remark 4.47. Let F : C -→ Cat d be a functor and let p : X -→ C be the corresponding Segal copresheaf. From the above presentation in terms of enriched categories, one sees that F is representable if and only if p admits a representation in the sense of Example 4.37. By Lemma 4.42, this is equivalent to the 1-category X(-, 0 d ) admitting an initial object and each X(-, 0 d ) -→ X(-, n d ) preserving the initial object. The representing object is the image of this initial object in C. Example 4.48. For each object c of a (d + 1)-category C, consider the (d + 1)-functor ev c : Fun d+1 (C, Cat d ) Fun d+1 ( * , Cat d ) = Cat d given by restriction along c : * -→ C. Then the functor ev c is corepresentable by an object of Fun d+1 (C, Cat d ), which in turn is given by the corepresentable functor h c . Indeed, this is a special case of the enriched Yoneda lemma, proven in the ∞-categorical setting in [28, 6.2.7]. In terms of strict models, one can also deduce this from the strict version of the enriched Yoneda lemma: choosing a strictly enriched model C for C, one can model ev c by the strictly enriched functor ev c : Fun enr (C, Cat d ) • -→ Cat d evaluating a strictly enriched functor at the object c ∈ C. By the classical enriched Yoneda lemma, this functor is corepresented by h c = Map C (c, -).

Proposition 4 .

 4 49. Let g : C -→ D be a map of (d + 1)-categories. Then g admits a left adjoint if and only if for each object d ∈ D, the functor Map D (d, g(-)) : C -→ Cat d is representable.

  (a) to the 2-functor ho (2,2) (Cat d ) op -→ Cat (1,1) sending C -→ ho (1,1) Fun d (C, Cat d-1 ), and (2-)morphisms to the corresponding restriction functors and natural transformations. (b) to the localization functor Cat sPSh(∆ d-1 ) -→ ho (2,2) (Cat d ) sending each (strictly)sPSh(∆ d-1 )-enriched category to the corresponding d-category (viewed as an object in the homotopy (2, 2)-category of d-categories). Note that this is indeed a 2-functor, since it is naturally tensored over Cat[START_REF] Ayala | Fibrations of ∞-categories[END_REF][START_REF] Ayala | Fibrations of ∞-categories[END_REF] via the cartesian product.

Corollary 4 .

 4 50. Let g : C -→ D be a map of d-categories which admits a fully faithful left adjoint. If q : D ′ -→ D is any functor, then the base change g ′ : C × D D ′ -→ D ′ admits a fully faithful left adjoint as well. Proof. For d ′ ∈ D ′ , let c ∈ C be a representing object for Map D (q(d ′ ), g(-)). Then (c, d ′ ) ∈ C × D D ′ provides the desired representing object for Map D ′ (d ′ , g ′ (-)).

Remark 4 .

 4 51. Using a similar argument, one can show the following two assertions: (1) Consider a pullback diagram Λ 2 [2] -→ Fun([1], Cat d ) sending each i to a functor g i : C i -→ D i admitting a fully faithful left adjoint. If the functors C 0 -→ C 2 ←-C 1 preserve the essential images of these left adjoints, then the pullback g : C 0 × C2 C 1 -→ D 0 × D2 D 1 admits a fully faithful left adjoint as well. (2) Consider a tower N op -→ Fun([1], Cat d ) sending each i to a functor g n : C n -→ D n admitting a fully faithful left adjoint. If the functors C n+1 -→ C n preserve the essential images of these left adjoints, then the map lim n C n -→ lim n D n admits a fully faithful left adjoint.

Definition 4 .

 4 54. Let f : C -→ D be a map between two (d + 1)-categories which are tensored over Cat d . For each c ∈ C and K ∈ Cat d , the composite map

Remark 4 .

 4 59. Lemma 4.57 and Proposition 4.58 do not require a full tensoring over Cat d .

)Corollary 5 . 9 .

 59 If p : D -→ C is a pre-cocartesian fibration, then Fun d+1 (B, D) -→ Fun d+1 (B, C) is a pre-cocartesian fibration for any (d + 1)-category B. Furthermore, for any B ′ -→ B, the restriction functor Fun d+1 (B, D) -→ Fun d+1 (B ′ , D) preserves cocartesian 1morphisms. (4) Consider the subcategory of Fun([1], Cat d+1 ) whose objects are pre-cocartesian fibrations and morphisms are squares that f preserves cocartesian 1-morphisms. This subcategory is closed under limits. Proof. (1) is easily verified. For (2), note that the map (5.2) for D ′ -→ C ′ is the base change of the same map for D -→ C. The result then follows from Corollary 4.50. Consider a square of (d + 1)-categories

Remark 5 . 15 .

 515 The definition of a d-cocartesian fibration p : D -→ C exhibits an alternating pattern: odd-dimensional cells are required to admit p-cocartesian lifts and even-dimensional cells are required to admit p-cartesian lifts. Let us explain heuristically why this should encode a fully covariant diagram of d-categories indexed by C.

Remark 5 . 18 .

 518 It will follow from straightening that the notion of a d-cocartesian fibration essentially stabilizes at the level of (d+1)-categories: if p is a d-cocartesian fibration between (d + k)-categories for k ≥ 2, then p arises as the base change of a d-cocartesian fibration D ′ -→ |C| d+1 , where |C| d+1 is the (d + 1)-category obtained by inverting all morphisms in dimension > d + 1. Definition 5.19 (Lateral k-morphisms). Let p : D -→ C be a d-cocartesian fibration between n-categories. For any 1 ≤ k ≤ d, let α ∈ D(1, . . . , 1, 0 n-k ) be a k-morphism in D, considered as a 1-morphism α : f -→ g between two (k -1)-morphisms f, g : x -→ y. Let p (k-1) : Map D (x, y) Map C (p(x), p(y))

  Since p : D -→ C is a d-cocartesian fibration, the functor µ(a 1 ) * postcomposing with µ(a 1 ) is strong, i.e. it preserves lateral k-morphisms. Since f sends marked k-morphisms to lateral k-morphisms, it follows that µ(a 1 ) * • f does as well. On the other hand, since µ(a 0 ) is a cocartesian 1-morphism, the map µ(a 0 ) * is an equivalence of d-categories. This implies that g sends marked k-morphisms to lateral k-morphisms as well.Proof of Proposition 5.25. Let us start by verifying that π : Cocart d -→ Cat d+1 is a homwise d-cocartesian fibration. Let p 0 : D 0 -→ C 0 and p 1 : D 1 -→ C 1 be fibrations. We have to check that the induced map on mapping (d + 1)-categoriesπ : Map Cocart d (p 0 , p 1 ) Fun d+1 (C 0 , C 1 )is a d-cocartesian fibration. To see this, note that one can identify(5.27) Map Cocart d (p 0 , p 1 ) = Fun ♮ d+1 (D 0 , D 1 ) × Fun d+1 (D0,C1) Fun d+1 (C 0 , C 1 )where Fun ♮ d+1 (D 0 , D 1 ) ⊆ Fun d+1 (D 0 , D 1 ) is the full sub-(d + 1)-category spanned by those functors D 0 -→ D 1 preserving lateral k-morphisms. The result then follows from Lemma 5.26 and stability of d-cocartesian fibrations under base change (Lemma 5.22).

  Then f ′ α is lateral since f ′ preserves lateral k-morphisms and βg is lateral since lateral natural transformations are detected pointwise. Consequently, their horizontal composite is a lateral k-morphism as well.It remains to check that π :Cocart d -→ Cat d+1 is a pre-cartesian fibration. Given a map f : C 1 -→ C 2 and a d-cocartesian fibration p 2 : D 2 -→ C 2 , let p 1 : D 1 = D 2 × C2 C 1 -→ C1 be the base change. We have to show that the canonical (strong) map of cocartesian fibrations f : D 1 -→ D 2 defines a cartesian lift of f , i.e. that for any p 0 : D 0 -→ C 0 , the square Map Cocart d (p 0 , p 1 ) Map Cocart d (p 0 , p 2 ) Fun d+1 (C 0 , C 1 ) Fun d+1 (C 0 , C 2 )

6. 1 .Theorem 6 . 1 . 1

 1611 Straightening and unstraightening: 1-categorical version. Our first goal will be to prove the following: There is an equivalence of cartesian fibrations between 1-categories coPSh Seg d Cocart d Cat d+1 . ∼ In particular, for each (d + 1)-category C this induces equivalences of 1-categories c Fun d+1 (C, Cat d ) coPSh Seg d (C) Cocart d (C) ∼ ∼ between (Segal) copresheaves of d-categories on C and d-cocartesian fibrations over C.

(

  a1) Each D(n)(1,...,d)-op -→ C(n)(1,...,d)-op is a (k -1)-st stage fibration and each [n] -→ [n ′ ] induces a strong map between (k -1)-st stage fibrations. (a2) The map of categories D(-, 0 d ) -→ C(-, 0 d ) is a cocartesian fibration and each map D(-, 0 d ) -→ D(-, n d ) × C(-, n d ) C(-, 0 d ) preserves cocartesian arrows (over C(-, 0 d )). A strong map between k-th stage fibrations is a commuting square such that: (b1) evaluating at [n] ∈ ∆ in the first coordinate yields a strong map of (k -1)-st stage fibrations. (b2) the map D(-, 0 d ) -→ D ′ (-, 0 d ) preserves cocartesian arrows.

Proposition 6 . 4 .Fib

 64 For each 1 ≤ k ≤ d, there is an equivalence of categories Let us fix k ≥ 1 and start with the following observation: if p : D -→ C is a k-th stage fibration, then each(6.5) 

′ k- 1

 1 and n d-k -→ n ′ d-k induces a map preserving cartesian arrows. Denoting I = ∆ ×k-1 × ∆ ×d-k op , we therefore obtain a diagram Fib (k-1) d Fun I, Fib left,cart

Fib

  

Corollary 6 . 6 .

 66 Consider a strong morphism of k-th stage fibrations This square is cartesian if and only if the map f induces equivalences on fibers D c -→ D ′ c for each object c ∈ C.

Lemma 6 . 7 .

 67 Let p : D -→ C be a d-th stage fibration from a (d + 1)-fold category to a (d + 1)-category. Then the following two conditions are equivalent: (1) For any object c ∈ C, the fiber D c is a d-category in the first d-variables, and constant in the last variable. (2) D is a (d + 1)-category. Morphisms. A commuting square determines a strong morphism between d-cocartesian fibrations if and only if the induced square on d-categories of morphisms induces a strong morphism between (d -1)-cartesian fibrations and the map c 1 (D) -→ c 1 (D ′ ) preserves cocartesian 1-morphisms. Comparing this with condition (b1) and (b2) shows inductively that such strong morphisms coincide with strong morphisms of d-th stage fibrations.

6 . 2 .

 62 Cocart d , as desired. The second part of Theorem 6.1 now follows directly from Corollary 4.33. Straightening and unstraightening: uniqueness and further properties. The equivalence of Theorem 6.1 arises from an iteration of explicit combinatorial maneuvers. The purpose of this intermezzo is to argue that at the level of objects, the precise construction of this equivalence is essentially irrelevant: Proposition 6.10. There is a contractible space of equivalences of right fibrations coPSh Seg,cart d Cocart cart d Cat d+1 . ∼ Combining this with Proposition 4.40 (in the large setting) and rephrasing everything in terms of presheaves rather than right fibrations (using straightening), we obtain: Corollary 6.11. For any small (d + 1)-category C, there is a unique 1-natural equivalence Un : c 0 Fun d+1 C, Cat d c 0 Cocart d C : St ∼ between the spaces of copresheaves C -→ Cat d and of d-cocartesian fibrations D -→ C. We will refer to these functors as unstraightening and straightening. Remark 6.2 also gives a unique 1-natural equivalence c 0 Fun d+1 (C op , Cat d ) ≃ c 0 Cart d (C).

  [START_REF] Barwick | On the unicity of the theory of higher categories[END_REF]: Proposition 6.13. Let CAT d+1 be the (very large) (d+2)-category of large (d+1)-categories and let Aut CAT d+1 (Cat d ) ⊆ Fun d+1 (Cat d , Cat d ) be the full sub-(d + 1)-category on those (d + 1)-functors that are equivalences. Then Aut CAT d+1 (Cat d ) ≃ * .Proof. Let φ : Cat d -→ Cat d be an equivalence of (d + 1)-categories. Since φ preserves the terminal object, we can pick a (unique) element u ∈ φ( * ). By the enriched Yoneda lemma[28, 6.2.7] (or Example 4.48), u induces a natural transformation of (d + 1)-functors u : Map Cat d ( * , -) -→ φ(-). Note that the domain can be identified with the identity on Cat d , so that u is in particular a natural transformation between two automorphisms of the 1-category Cat d . By[START_REF] Barwick | On the unicity of the theory of higher categories[END_REF] Theorem 10.1], u is a natural equivalence.We conclude that Aut CAT d+1 (Cat d ) has an essentially unique object, given by id Cat d ≃ Map Cat d ( * , -). Using the enriched Yoneda lemma once more, the endomorphism d-category of this object can be identified with Map Cat d ( * , * ) ≃ * , which concludes the proof. Proof of Proposition 6.10. By Theorem 6.1, the space of such equivalences is a nonempty torsor over the automorphism group G of the right fibration coPSh Seg,cart d -→ Cat d+1 . Note that this right fibration fits into a pullback square coPSh Seg,cart d coPSH Seg,cart d Cat d+1 CAT d+1 π π ′ where coPSH Seg,cart d is the category of Segal copresheaves X -→ C over large (d + 1)categories, whose fibers are essentially small. Applying Proposition 4.40 in the large setting (with κ = κ sm the supremum of all small cardinals), the right fibration π ′ corresponds under (some 1-natural version of) unstraightening to the presheaf F : CAT op d+1 -→ S big representable by the (d + 1)-category Cat d . We then obtain equivalences of spaces of automorphisms Aut CAT d+1 (Cat d ) Aut(F ) Aut(F Cat d+1 ) ≃ G.

Example 6 . 14 .

 614 The proof of Theorem 6.1 shows that over C = * , the (un)straightening equivalence of Corollary 6.11 is homotopic to the identity on Cat d . Since (un)straightening intertwines restriction of copresheaves with base change of d-cocartesian fibrations, it follows that the straightening of a cocartesian fibration p : D -→ C is given pointwise by St(p) c ≃ D c . Example 6.15. Let p : D -→ C be a d-cocartesian fibration and let γ : c 0 -→ c 1 be a 1-morphism in C. The straightening of p determines a functor γ * : D c0 -→ D c1 that can be understood explicitly as follows. For any diagram σ 0 : K -→ D c0 , there exists a unique extension of σ 0 to a map σ : [1] × K -→ D that covers γ : [1] -→ C and preserves cocartesian arrows. The restriction σ 1 : {1} × K -→ D 1 to the fiber over 1 then presents the composite diagram γ * • σ 0 . In particular, applying this when σ 0 = id Dc 0 gives a description of γ * .

Example 6 . 16 . 2 .] 0 1 where

 61621 Let C 2 be the 2-cell and let[START_REF] Ayala | Factorization homology I: Higher categories[END_REF] lax denote the 2-category 0 1The projection p :[START_REF] Ayala | Factorization homology I: Higher categories[END_REF] lax -→ C 2 sending 0 → 0 and 1, 2 → 1 is a 1-cocartesian fibration. By Examples 6.14 and 6.15, the straightening St(p) : C 2 -→ Cat 1 is given by the diagram * [1the natural transformation is the only possible one. In other words, the straightening St(p) = Map C2 (0, -) is representable by 0. Likewise, let K be a d-category and consider the diagram F K : C 2 -→ Cat d encoding the evident natural transformation from (0, id) to (1, id) :K -→ [1] × K. Then Un(F K ) ≃ [2] lax × K.Now let q : D -→ C 2 be a general d-cocartesian fibration, so that St(q) describes a natural transformation µ : f 0 -→ f 1 between two functors f 0 , f 1 : D 0 -→ D 1 . As in Example 6.15, one can obtain µ as follows: there is a unique map[START_REF] Ayala | Factorization homology I: Higher categories[END_REF] lax × D 0 -→ D over C 2 restricting to the identity on {0} × D 0 , and µ is given by its restriction {1 ≤ 2} × D 0 -→ D 1 .Example 6.17. Given a 2-category C, let us denote by Tw lax (C) -→ C op × C the 1cocartesian fibration arising as the unstraightening of Map C : C op × C -→ Cat 1 . We will refer to Tw lax (C) as the lax twisted arrow 2-category of C.Explicitly, Tw lax (C) is the image under the functor Ψ ⊥ of the Segal copresheaf Tw(C) -→ C op × C (Example 4.36). Unraveling the definitions, one arrives at the following explicit description of Tw lax (C) as a bisimplicial space. For each [m], [n] ∈ ∆, consider the bisimplicial space (in fact, set)

  the inclusion of an upwards closed subset. Using this for low values of Theorem 6.20 (Straightening and unstraightening). The (d + 1)-category of natural equivalences of (d + 2)-functors Cat op d+1 -→ CAT d+1 St : Cocart d (-) Fun d+1 -, Cat d : Un ∼ is equivalent to a single point. Since Cat d is itself a large (d + 1)-category, it will be convenient to first study a version of the above result where we bound the cardinality. Notation 6.21. Let κ be a regular uncountable cardinal. Consider the (d + 2)-functor π : Cocart d (κ) -→ Cat d+1 whose domain is the full subcategory of Cocart d on the dcocartesian fibrations with κ-small fibers. This is a (d + 1)-cartesian fibration, and we will write Cocart κ d : Cat op d+1 -→ Cat d+1 for its image under the (natural) straightening of Corollary 6.11. Note that the values of this functor are indeed small categories: Corollary 6.11 identifies their spaces of objects with the spaces of enriched functors C -→ Cat d (κ). Let us start by recording some properties of the (d + 2)-functor Cocart κ d . Lemma 6.22. Let f : C -→ C ′ be a functor of (d + 1)-categories. Then the (d + 1)-functor

  Proof. The (d + 2)-functor π : Cocart d (κ) -→ Cat d+1 can be modeled by a strict functor of Cat d+1 -enriched categories π : Cocart d (κ) -→ Cat d+1 . Here Cocart d (κ) is the enriched subcategory of Fun [1], Cat d , whose objects are fibrations in Cat d+1 that present d-cocartesian fibrations with κ-small fibers and with Map Cocartd(κ) (p, q) ⊆ Map Fun([1],Cat d ) (p, q) the maximal subobject in Cat d+1 that is a model for the full sub-d-category of strong morphisms. Example 6.14 identifies the values of Cocart κ d (-) with the fibers of π. Since π is a fibration in the model category of Cat d+1 -enriched categories, the fibers of π can be modeled by the strict fibers of π. Furthermore, as we already know that the fibers Cocart κ d (C) are (d + 1)-categories (instead of (d + 2)-categories), we can model each Cocart κ d (-) by the Cat d -enriched category underlying Cocart κ d (C) = π -1 (C). As a Cat d -enriched category (rather than a Cat d+1 -enriched category), this fiber is strictly tensored over Cat d (κ): the tensoring of p : D -→ C with K ∈ Cat d (κ) is simply given by D × K -→ C. Note that for any map f : C -→ C ′ in Cat d+1 , taking (strict) base change along f defines an enriched functor f * : Cocart κ d (C ′ ) -→ Cocart κ d (C) which strictly preserves the tensoring over Cat d (κ). It therefore remains to verify that this f * indeed presents the value of Cocart κ d (-) on f . To see this, note that associated to f is a strict diagram of Cat d+1 -enriched categories Cocart

  representable by Cat d . Note that the restriction of Cocart κsm d to Cat d+1 ⊆ CAT d+1 is precisely the functor Cocart d from Theorem 6.20. This proves the existence of a natural equivalence Cocart d (-) ≃ Fun d+1 (-, Cat d ) between (d+2)-functors Cat op d+1 -→ CAT d+1 . For uniqueness, let us write F : CAT op d+1 -→ CAT for the (d + 2)-functor represented by Cat d . Let us then write Iso

Lemma A. 2 .

 2 Let B ∈ FibCat. Consider a (pseudo-)functor B op -→ FibCat; b -→ E(b) and denote by p : E -→ B its (classical) Grothendieck construction. Suppose that the following two assertions hold: (a) For every weak equivalence f : b 0 -→ b 1 , the functor f * : E(b 1 ) -→ E(b 0 ) induces an equivalence on localizations. (b) Let f : b 0 -→ b 1 be a morphism and g : x -→ f * y a morphism in E(b 0 ). Then there exists a factorization f = pi with p : b ′ 0 -→ b 1 a fibration and i : b 0 -→ b ′

Proof.Remark A. 3 .

 3 One easily verifies that pullbacks along fibrations exist and that the base change of an (acyclic) fibration remains an (acyclic) fibration. The terminal object in E is given by * ∈ E( * ) and each x -→ * is a fibration. Condition (a) implies that for any weak equivalence f : b 0 -→ b 1 , the functor f * : E(b 1 ) -→ E(b 0 ) detects weak equivalences (which are detected in the localization). Using this, one readily verifies that the weak equivalences have the 2-out-of-6 property. Finally, the factorization condition is precisely (b). Suppose that B op -→ FibCat arises from a diagram of model categories N(b) and Quillen adjunctions f ! : N(b 0 ) ⇆ N(b 1 ) : f * , by letting E(b) ⊆ N(b) be the full subcategory of fibrant objects. In this case, condition (b) follows from the following assertion: for every map f : b 0 -→ b 1 in B, there exists a factorization f = pi with p : b ′ 0 -→ b 1 a fibration and i : b 0 -→ b ′ 0 a weak equivalence such that i ! : N(b 0 ) -→ N(b ′ 0 ) preserves all weak equivalences.

Example A. 4 .

 4 Consider a model category M and a diagram of model categories and left Quillen functors M -→ ModCat L sending b -→ N(b). Let p : N -→ M be the Grothendieck construction of this diagram and let us say that a map α : x -→ y in N is: • a (trivial) fibration if p(α) : px → py is a (trivial) fibration and the map x → p(α) * y is a (trivial) fibration in N(px). • a (trivial) cofibration if p(α) : px → py is a (trivial) cofibration and the map p(α) ! x → y is a (trivial) fibration in N(py). Harpaz and Prasma have shown that this determines a model structure on N if the diagram b -→ N(b) satisfies three conditions [20]: (a) every weak equivalence in M induces a Quillen equivalence on fibers, (b) for every trivial cofibration in M, the associated left Quillen functor preserves weak equivalences and (c) for every trivial fibration in M, the associated right Quillen functor preserves weak equivalences. The diagram of model categories indexed by M induces a diagram of categories of fibrant objects M fib,op -→ FibCat sending each fibrant object b in M to the full subcategory of fibrant objects in N(b). In light of Remark A.3, conditions (a) and (b) from [20] imply conditions (a) and (b) from Lemma A.2. The category of fibrant objects resulting from Lemma A.2 is then simply the category of fibrant objects associated to the model category N from [20].

( 1 )( 2 )

 12 The pullback square of relative categories E(b) E {b} B p induces a cartesian square upon localization at the weak equivalences. The functor between localizationsE hocart [W -1 ] -→ E[W -1] is a subcategory inclusion, whose image is the wide subcategory of cartesian morphisms for p :E[W -1 ] -→ B[W -1 ]. (3) The localization p : E[W -1 ] -→ B[W -1 ] is a cartesian fibration.

( 4 )

 4 Suppose that f : b 0 -→ b 1 is a morphism in B such that f * : E(b 1 ) -→ E(b 0 ) admits a left adjoint f ! that preserves acyclic fibrations. For every x 0 ∈ E(b 0 ), the natural arrow x 0 -→ f ! x 0 in E determines a p-cocartesian arrow in E[W -1 ].

  [START_REF] Buckley | Fibred 2-categories and bicategories[END_REF], it follows that for each morphism γ : b ′ ∼ -→ b in Span B (px 0 , px 1 ), the induced map on fibersγ * : Span E(b) (α * x 0 , β * x 0 ) -→ Span E(b ′ ) (γ * α * x 0 , γ * β * x 0 )induces an equivalence on classifying spaces. It follows that (A.9) satisfies the conditions of Quillen's Theorem B; consequently, the classifying space functor | -| : Cat (1,1) -→ S preserves all pullbacks along it.In particular, this implies that the pullback square of (2, 2)-categories Span E(b) Span E {b} Span B

  * x 1 . The composite x 0 ∼ և α * (x 0 ) ∼ և x ∼ -→ β * (x 1 ) -→ x 1 then provides the desired lift.

(A. 10 )β

 10 Span E (x 0 , x 1 ) Span E (x 0 , x 2 ) Span B (b 0 , b 1 ) Span B (b 0 , b 2 ) ( α,x12, β)•(-) (α,b12,β)•(-) induces a homotopy cartesian square of classifying spaces. Since the vertical maps are cartesian fibrations satisfying the conditions of Quillen's Theorem B, it suffices to show that for any span (γ, b 01 , δ) : b 0 b 1 in Span B (b 0 , b 1 ), the induced map between fibers induces an equivalence on classifying spaces. To see this, let us denote the composite span (α, b 12 , β) • (γ, b 01 , δ) by where b 02 = b 01 × b1 b 12 . Recall from the beginning of the proof that the fibers of the vertical maps in (A.10) are themselves given by categories of spans. Unraveling the definition, the map between the vertical fibers over (γ, b 01 , δ) can then be identified with the composite SpanE(b01) (γ * x 0 , δ * x 1 ) Span E(b02) (γα ′ ) * x 0 , (βδ ′ ) * x 2Span E(b02) (γα ′ ) * x 0 , (αδ ′ ) * x 2 (α ′ ) * f •(-)

  In other words, it is the double category that looks like

	00	01	. . .	0n
		11	. . .	. . .
			. . .	. . .
				nn.

There is an evident map Ar[n] -→ [n, n], and we denote by π hor : Ar[n] -→ [n, 0] and π vert : Ar[n] -→ [0, n] the obvious projections.

Example 2.7. Let n ≥ 0 and consider the double category Tw[n] defined by

2-op -→ Cat oplax , where Cat oplax is

  

			a certain double category
	whose objects are categories, horizontal and vertical morphisms are functors and squares are
	oplax squares		
	D 00	D 01	
	D 10	D 11 .	
	Lemma 2.15. Consider a strong map of (left, cart)-fibrations over C
	D	f	E
	p	q	
		C.	

x 02 and x 02 x 22 are degenerate and x 11 -→ x 13 and x 13 x 33 are degenerate, and whose image in C consists only of degenerate arrows (since C is complete).

  

	In other words, given a solid diagram in D of the form	
	x 00	x 01	x 02	. . .	x 0m
		x 11	x 12	. . .	x 1m
			x 22	. . .	x 2m
				. . .	. . .
					x mm
	whose image in C has a fixed dashed extension (i.e. including the top squares), there exists
	a contractible space of dashed extensions as indicated. This follows immediately from the
	fact that each D(-, n) -→ C(-, n) is a left fibration of categories.
	For completeness of X(-, 0), recall the simplicial set H = ∆[3]/ ∼ in the definition (2)
	of completeness, and note that a map			
		H = ∆[3]/ ∼	X(-, 0)	
	corresponds to a diagram in D of the form			
	x 00	x 01		x 02	x 03
		x 11		x 12	x 13
				x 22	x 23
					x 33
	in which x 00 -→				
						π
					0]	C.

  is the subspace of those diagrams (2.19) such that Ar[m] × [0, n] -→ D sends the vertical arrows in each Ar[m] × {i} with 0 ≤ i ≤ n to equivalences. By Lemma 2.18, X is double category and one sees that each simplicial subspace Ψ

  and the last identification follows from Lemma 3.23. The remaining natural transformation θ

* is induced by a natural map θ : T [m, n] -→ B[m, n] of vertically marked bisimplicial spaces over [m, n]. This map is defined as follows: for every (s, t)-simplex of T [m, n], determined by a quadruple (α, β, γ, δ) as in (3.22), consider the map

  An object X is fibrant if and only if it is fibrant in the injective model structure and it is a d-category model.(3) A weak equivalence between d-category models is a levelwise weak equivalence of simplicial sets (in the Kan-Quillen model structure). We will write Cat d for the full subcategory of sPSh(∆ d ) on the injectively fibrant d-category models. Remark 4.16. The d-categorical model structure is a left Bousfield localization of the injective model structure on sPSh(∆ d ). Since the latter is a model for the ∞-category of functors ∆ op d -→ S [33, Proposition A.3.4.13], it follows immediately that Cat d is equivalent to the localization of Cat d at the d-categorical (equivalently: pointwise) weak equivalences.Remark 4.17. The injective model structure on sPSh(∆ d ) is a monoidal model structure for the cartesian product [41, Proposition 2.9], which presents the cartesian monoidal structure on Fun(∆ op d , S). Corollary 4.9 shows that Fun(∆ op d , S) ⇆ Cat d is a monoidal localization for the cartesian product; this implies that the d-categorical model structure on sPSh(∆ d ) is monoidal as well. In particular, this implies that the category Cat d is cartesian closed.

  a weak equivalence. To factor a map Y -→ X in CatAlg d into a weak equivalence followed by a fibration, one can simply factor it into a weak equivalence followed by a fibration with respect to the d-categorical model structure on sPSh(∆

d ); such fibrations are isofibrations by the right lifting property against {0} -→ H, where H is the simplicial set from Section 2. Construction 4.19. Let us write Cat(Cat d-1 ) for the (1, 1)-category of categories (strictly) enriched over the cartesian monoidal category Cat d-1 . There is a fully faithful functor N : Cat(Cat d-1 ) ֒-→ CatAlg d given by the nerve: it sends an enriched category C to the simplicial diagram in Cat d-1 given by

  Proposition A.3.2.4], since the (d -1)-categorical model structure on sPSh(∆ d-1 ) is excellent in the sense of[START_REF] Lurie | Higher topos theory[END_REF] Definition A.3.2.16]. It follows from[START_REF] Lurie | Higher topos theory[END_REF] Theorem A.3.2.24] that Cat(Cat d-1 ) (with the above classes of Dwyer-Kan equivalences and isofibrations) is the category of fibrant objects associated to this model category. Fun ∆ op , sPSh(∆ d-1 ) is a Quillen equivalence between the dcategorical model structure and the 'complete Segal model structure' of loc. cit., which detects cofibrations and weak equivalences. The last functor takes a fibrant replacement, so it follows that L DK • N induces an equivalence on localizations. Remark 4.21. Let us write N : Cat(Cat d-1 ) -→ Cat d for the composite functor L DK • N . By Remark 4.13, N(C) is a d-category which comes with a Dwyer-Kan equivalence N(C) -→ N(C) from the nerve of C; in particular, every object of N(C) is homotopic to an object from C and for any two objects in C, Map C (c 0 , c 1 ) is a model for the (d -1)-category of maps between their images in N(C). Cat d of d-categories is given by N(Cat d ), where Cat d is enriched over itself as in Remark 4.17. Remark 4.23. Note that the 1-category underlying the (d + 1)-category Cat d arises from the simplicially enriched category of fibrant-cofibrant objects in the d-categorical model structure; in particular, it is equivalent to Cat d [33, Lemma A.3.6.17]. It follows from [21] that our definition of Cat d (via point-set models) coincides with the definition of Cat d as the d-category-enriched ∞-category associated to Cat d , viewed as enriched over itself using the cartesian closed structure.

	Proposition 4.20. The three categories of fibrant objects considered above fit into a diagram of fully faithful inclusions Cat(Cat d-1 ) CatAlg d Cat d The resulting objects are then related by a Dwyer-Kan equivalence. Furthermore, the composite functor L DK • N : Cat(Cat d-1 ) -→ Cat d can be identified with the composite Cat(sPSh(∆ d-1 )) Seg sPSh(∆ d-1 ) sPSh(∆ d ) Cat d N UnPre (-) fib where Seg sPSh(∆ d-1 ) is the category of Segal precategories from [34, §2]. Here the first functor N is a right Quillen equivalence preserving weak equivalences [34, Theorem 2.2.16, Remark 2.Definition 4.22. The (large) (d + 1)-category

N

that preserve fibrations and weak equivalences. The induced functors on localizations are equivalences, so that each of these relative categories is a model for Cat d .

Proof. The right inclusion

Cat d -→ CatAlg d has a homotopy inverse L DK , given by taking a fibrant replacement of a d-categorical algebra model in the d-categorical model structure. 2.19]. The functor UnPre is a left Quillen equivalence preserving weak equivalences by [34, Proposition 2.3.1, 2.3.9, Lemma 2.3.14]: this uses the fact that the subcategory inclusion sPSh(∆ d ) ֒-→

Remark 4.55. Likewise, a (d + 1)-category C is cotensored over Cat d if C op is tensored over Cat d ; in this case we will write c K for the cotensoring of c ∈ C with K ∈ Cat d . A functor f : C -→ D is cotensored if all natural maps µ : f (c K ) -→ f (c) K are equivalences.

Example 4.56. The (d + 1)-category Cat d is evidently tensored and cotensored over Cat d itself. Likewise, every functor (d + 1)-category Fun d+1 (C, Cat d ) is tensored and cotensored over Cat d , with (co)tensoring computed pointwise. This follows conceptually from the description of enriched functor ∞-categories by Hinich [START_REF] Hinich | Yoneda lemma for enriched ∞-categories[END_REF]Section 6]. Less elegantly, one can see this by working with the strict model M • = Fun enr C, Cat d

• provided Proposition 4.24. Indeed, for each K ∈ Cat d and a fibrant-cofibrant enriched functor F , there is a natural isomorphism Map Catd K, Map M • (F, -) ∼ = Map M • F × cst(K), -. so that the pointwise product F × cst(K) with the constant functor determines a (strict) tensoring on M • . Dually, let Q(F K ) ∈ M • be a projectively cofibrant replacement of the pointwise fibrant enriched functor F K (-) = Map Cat d (K, F (-)). Then there is a natural equivalence

∼ which exhibits Q(F K ) as a cotensoring. The latter is an equivalence since f is fully faithful on the underlying 1-categories, so that f is a fully faithful functor between (d + 1)-categories as well. It is essentially surjective since it is essentially surjective on the underlying 1-categories.

Proposition 4.58. Let C be a (d+1)-category that is tensored over Cat d and let F : C op -→ Cat d be a (d + 1)-functor. If F is cotensored and the underlying 1-functor

) be the element corresponding (by the Yoneda lemma) to the natural equivalence of 1-functors Map C (-, c u ) ∼ -→ c 0 (F ). Viewing x u as an element in F (c u ), the enriched Yoneda lemma provides a natural transformation of (d + 1)-functors Map C (-, c u ) -→ F . To see that this is an equivalence, note that for any K ∈ Cat d and d ∈ C, there is a commuting square

The vertical functors are equivalences because F is cotensored. Since the top map induces an equivalence on underlying spaces, it follows that the bottom map induces an equivalence on the underlying spaces for all K ∈ Cat d . By the Yoneda lemma, this implies that the map

Using this, the result follows from the fact that Fun d+1 (B, -) preserves limits and adjunctions (with fully faithful left adjoint).

Finally, for (4) one can directly see that the subcategory is closed under products. It then suffices to verify that it is closed under pullbacks and limits of (countable) towers. This comes down to verifying that (5.2) admitting a fully faithful left adjoint is closed under such limits, which follows from Remark 4.51. Alternatively, one can also deduce this from Corollary 5.7, using an inductive argument to find enough cocartesian lifts in the limits.

Lemma 5.5. Let p : D -→ C be a map of (d + 1)-categories and α : d 0 -→ d 1 a 1-morphism in D. Then the following are equivalent:

(1) For every d 2 ∈ D, the square of mapping d-categories

Proof. Using the description of the mapping objects in Fun d+1 ([1], D) from Example 4.10, the map appearing in (2) can be identified with

Map C (pd 1 , pd ′ 1 )

In particular, condition (1) is equivalent to condition (2) in the case where β is the identity on d 2 . Conversely, the above map arises as the base change of

. It follows that (1) implies (2).

Corollary 5.7. A map p : D -→ C of (d + 1)-categories is a pre-cocartesian fibration if and only if the following condition holds: for every map γ : c 0 -→ c 1 in C and every d 0 ∈ p -1 (c 0 ), there exists an arrow α : d 0 -→ d 1 in D with p(α) = γ, satisfying the equivalent conditions of Lemma 5.5.

In this case, the p-cocartesian morphisms are precisely the morphisms satisfying the equivalent conditions of Lemma 5.5. For the 1-categorical case, see also [START_REF] Ayala | Fibrations of ∞-categories[END_REF].

Proof. Using Proposition 4.49, the existence of lifts α satisfying the second condition of Lemma 5.5 is equivalent to p being a pre-cocartesian fibration.

Remark 5.8. The condition appearing in Corollary 5.7 can also be reformulated as follows: the map c 1 (D) -→ c 1 (C) is a cocartesian fibration of 1-categories and each map of 1-categories D(-, 0 d ) -→ D(-, n d ) preserves cocartesian arrows. Using this, a map f : D -→ D ′ preserves cocartesian 1-morphisms if and only if the map c 1 (D) -→ c 1 (D ′ ) preserves cocartesian arrows in the the usual sense. be the induced map between (n + 1k)-categories of (k -1)-morphisms between x and y. Then α is said to be (p-)lateral if it is:

When p is an d-cartesian fibration, we define lateral k-morphisms similarly, but with the cases of k even and odd exchanged. In particular, the meaning depends on whether p is considered as a d-cocartesian or d-cartesian fibration.

Unraveling the definitions, a square (5.11) defines a strong morphism between two dcocartesian fibrations if and only if the map f preserves lateral k-morphisms for all k ≤ d.

Lemma 5.20. Let p : D -→ C be a map of n-categories covering a map of spaces q : T -→ S, as in Corollary 5.9. Then p is a d-cocartesian fibration if and only if each map on fibers

Proof. This follows by induction, using Corollary 5.9. 

) is pre-cocartesian and restriction preserves cocartesian 1-morphisms. To see that it is locally (d -1)-cartesian, consider the following diagram of simplicial (n -1)-categories, given in simplicial degree m by

Using Lemma 5.21, it follows by inductive hypothesis that the vertical maps define simplicial diagrams of (d -1)-cartesian fibrations and strong morphisms between them. Furthermore, the horizontal maps define strong morphisms between these (d -1)-cartesian fibrations.

Taking pullbacks along the rows, we then obtain another simplicial diagram of (d -1)cartesian fibrations and strong morphisms. By Corollary 4.9, this is precisely the map

We conclude by induction and Lemma 5.21 that q is locally (d -1)-cartesian. From the above description one readily verifies that restriction along [ 

Let us first verify that g sends all marked 1-morphisms in A to cocartesian morphisms in D: indeed, for every such map α : a 0 -→ a 1 , there is a commuting square in D of the form

µ

The horizontal arrows are cocartesian since µ was a cocartesian natural transformation (Lemma 5. Proof. We proceed by induction on d, the case d = 0 being obvious. Note that a d-th stage fibration is either a left or a right fibration in the last variable, so that D(

). This immediately shows that (2) implies (1). For the converse, note that (1) implies that the fibers of D(0) -→ C(0) are spaces, so that D(0) is a space. It then remains to verify that D(1) is a d-category. Since D(1) -→ C(1) is the opposite of a (d -1)-st stage fibration, the inductive hypothesis says that it suffices to verify that its fibers are (d -1)-categories. In particular, we can reduce to the case where C ≃ c 1 (C) is a 1-category. In this case, take a morphism γ : c 0 -→ c 1 in C and consider the map on fibers D(1) γ -→ D({0}) c0 . Since the target is a space, it suffices to verify that the fiber over each point d 0 ∈ D c0 is a (d -1)-category. Using condition (a2), we can take a cocartesian lift α : d 0 -→ d 1 of γ such that precomposition with α determines an equivalence of (d -1)-fold categories

The domain is a (d -1)-category since the fiber D c1 is a d-category by assumption. d defined by Lemma 6.7 are subcategories of Fun [START_REF] Ayala | Fibrations of ∞-categories[END_REF], Cat ⊗d+1 . It therefore suffices to show that these two subcategories have the same objects and morphisms. We will do this by induction on d, the case d = 0 being evident.

Objects. Let p : D -→ C be a map between (d + 1)-categories. By inductive hypothesis and Lemma 5.21, p satisfies condition (a1) if and only if p is a homwise (d -1)-cartesian fibration. Assuming that p satisfies these equivalent conditions, it remains to show that p satisfies condition (a2) if and only if it is a pre-cocartesian fibration. To see this, consider the base change

For any 1-morphism α : d 0 -→ d 1 and object d 2 in D ′ (or equivalently, in D), we have

The left and right face of the cube are cartesian. By our assumption on p, the vertical arrows are (d -1)-cartesian fibrations and the front and back face determine strong maps of (d - m and n, one sees that the 2-category Tw lax (C) has objects given by morphisms in C, and 1-and 2-morphisms can be depicted by diagrams in C of the form

Here 

St(p) core1

(2) The restriction to cocartesian arrows p ′′ : (c 1 D) cocart -→ c 1 C is a 0-cocartesian fibration, whose straightening St(p ′′ ) can be identified with the 1-functor

St(p) core0

Proof. By replacing p by its base change D × C c 1 C -→ c 1 C, we can reduce to the case where C is a 1-category. In this case, Lemma 5.17 implies that a d-cocartesian fibration q : E -→ C is a 1-cocartesian fibration if and only if E is a 1-category. Consequently, p ′ is the terminal 1-cocartesian fibration over C equipped with a natural map to p. Under straightening, this corresponds to the terminal Cat 1 -valued copresheaf on C equipped with a natural transformation to St(p). This is precisely the composite functor given in (1). Likewise, Lemma 5.17 implies p ′′ is the terminal 0-cocartesian fibration with a map to p ′ . Under straightening, this corresponds to the terminal space-valued presheaf with a natural map to St(p ′ ), which is precisely the functor given in (2). 6.3. Straightening and unstraightening: higher functoriality. Theorem 6.1 shows that for every (d + 1)-category C, there is an equivalence between the 1-category of dcocartesian fibrations over C and the 1-category underlying Fun d+1 (C, Cat d ). We will now refine this equivalence to a natural equivalence of (d + 2)-functors with values in (d + 1)categories, using Theorem 6.1 one categorical dimension higher. for the (d + 2)-functor corresponding to π under the (unique) 1-natural straightening equivalence of Corollary 6.11 (in the large setting).

We now come to our main result:

Here φ is given on Cocart κ d (C ′ ) × {1} by the fiber inclusion, and on Cocart κ d (C ′ ) × {0} by the strict base change functor f * (which comes with an evident natural transformation to the fiber inclusion). One easily sees that this enriched functor φ models a map of (d+1)-cartesian fibrations (i.e. it preserves cartesian 1-morphisms). Example 6.15 then shows that the strict functor f * indeed presents (up to homotopy) the value of the straightening Cocart κ d (-) on the arrow f , so that the latter is tensored as well.

Lemma 6. [START_REF] Haugseng | Two-variable fibrations, factorisation systems and ∞-categories of spans[END_REF] It remains to verify that for any K ∈ Cat d+1 and C ∈ Cat d+1 , the comparison map

from Definition 4.54 is an equivalence of (d + 1)-categories. This will follow immediately from Lemma 4.57 once we show the following two claims: (a) µ induces an equivalence on the underlying 1-categories.

(b) Both the domain and codomain of µ are tensored over Cat d (κ) and µ is tensored over Cat d (κ). Let us start with assertion (a). As a first reduction, note that µ depends in particular 1-functorially on K and C. Since both its domain and codomain send colimits in K and C to limits (Lemma 6.23 and Corollary 4.9), it suffices to verify that µ is an equivalence on underlying 1-categories for generating objects K and C. We can therefore reduce to the case where K and C are contained in Θ d+1 . In particular, we may assume that K is κ-small and that for any object k ∈ K, K(k, k) ≃ * , and likewise for C. By Theorem 4.32, Theorem 6.1 and Lemma 6.18, the 1-cartesian fibration between 1categories π : 

) such that for any two maps K -→ K ′ and C -→ C ′ , the functoriality on the left hand side is homotopic to restriction of functors on the right hand side (we will not need any information about composition or homotopy coherence).

Using these identifications, the map µ therefore determines an endofunctor that fits into a commuting diagram of 1-categories

Here r denotes the functor restricting to the sets of (isomorphism classes of) objects of K and C. Note that µ is (by construction) homotopic to the identity when applied to monoidal unit K = * . Up to homotopy, we may therefore assume that the bottom map in the square is the identity. The restriction functor r preserves κ-small limits and colimits and detects equivalences. By our assumption that K and C are κ-small, it has a left adjoint r ! sending each (k, c, A) to the representable functor K(k, -) × C(c, -) × A; this follows directly from the point-set presentation of r in terms of enriched functor categories. The above square then shows that µ : c 1 Fun d+1 (K × C, Cat d (κ)) -→ c 1 Fun d+1 (K × C, Cat d (κ)) preserves κ-small limits and colimits and detects equivalences as well, and admits a left adjoint µ ! . It suffices to show that for any G : K × C -→ Cat d (κ), the unit map η : G -→ µµ ! (G) is an equivalence. Since µ and µ ! both preserve κ-small colimits, it suffices to verify this when G = r ! (k, c, A) is left Kan extended from an object. By adjunction, η is then determined by a map φ k,c : A -→ K(k, k) × C(c, c) × A depending (1-)naturally on A. Since K and C were assumed to have trivial endomorphisms, we therefore obtain an endomorphism φ k,c : id -→ id of the identity functor on Cat d (κ). There is a contractible space of such natural endomorphisms by [START_REF] Barwick | On the unicity of the theory of higher categories[END_REF]Theorem 10.1].

The map φ k,c is therefore naturally (in A) homotopic to {id k } × {id c } × id A . This means precisely that η is homotopic to the identity, so in particular an equivalence. We conclude that µ ! and µ form an adjoint equivalence, so that µ does indeed induce an equivalence on the underlying 1-categories, as asserted.

We now turn to assertion (b). Note that the construction of µ (Definition 4.54) implies that for any object k ∈ K, the composite with evaluation at k 

Appendix A. Technicalities on categories of fibrant objects

The purpose of this appendix is to describe a version of the Grothendieck construction for categories of fibrant objects, in the following sense: