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ABSTRACT
The present paper focuses on the numerical investigation of

the transient response of a rotorshaft affected by unilateral contact
occurrences with friction mechanisms. Rotor-stator contact is initi-
ated radially at the shaft level. The components are modeled under
the rigid bodies assumption and the rotor dynamical response is
investigated in the time domain. The turbomachine is assumed to
be driven by two torques: the first one is prescribed while the sec-
ond one is induced by friction using Coulomb’s model. Particular
attention is paid to the accurate prediction of the unknown rota-
tional speed transient. The proposed methodologies are grounded
on the Carpenter and Moreau-Jean time-marching algorithms,
implying the use of Lagrange multipliers to solve the frictional and
unilateral contact conditions. The simplest procedure considers
only sliding friction while the most sophisticated one involves
convex analysis in order to deal with normal and friction forces
independently is case of stiction. The solutions predicted by
the algorithms are compared and show good agreement. The
sensitivity study on the stator properties and friction coefficient
allows the identification of the conditions affecting the rotational
speed limitation. Based on the response post-processing in the
time and frequency domains, it is found that a higher friction
coefficient, a stiffer stator support or a lighter stator leads to a
decrease of the rotational speed maximum value.
Keywords: time-marching, unilateral contact, rotor, stator,
turbomachinery, rigid bodies, Coulomb’s friction, rotational
speed, transient dynamics

1. INTRODUCTION
Gas turbine engines are commonly used to power aircraft

such as airplanes and helicopters. They can exhibit various
designs yet always with four main areas involving the airflow:
the compression side, the combustion chamber, the expansion
side, and the secondary air system (SAS). The latter is a complex
network of cavities where the gas turbine disks are immersed.

After the combustion, burnt gases flowing through the turbine
blading provide mechanical power to the shaft of which a part is
used to drive the compressor. In the present work, only the turbine
stage is considered. The turbine rotation axis is shifted radially
with regard to the engine centerline which leads to the emergence
of various contact zones. The first rotor-stator contact interface
to appear, and of most interest, is located in the SAS. Contact
occurs in a gasket mounted on the shaft upstream of the turbine
bladed disc. Its nominal functions are to control the cooling
airflow and to maintain an air pressure equilibrium along the shaft.
The tightness is guaranteed by a ring although there still exist
a gap about several hundreds of microns between the ring and
its envelope. For the sake of simplicity, the sealing ring and the
envelope are respectively called rotor and stator in the rest of the
document. Subsequent blade-carter contacts occurrences are not
accounted for. The main objective of this paper is to investigate the
dynamical response of the shaft when rubbing in the seal occurs.
The rotational velocity is an unknown of the problem affected
by unilateral contact and frictional occurrences. In addition
to the driving torque from aerodynamics, the turbomachine is
subjected to a braking torque generated through frictional contact
mechanisms.

The paper is organized as follows. Section 2 provides a
literature overview on unilateral and frictional contact in rotordy-
namics. The turbine modeling and the derivation of the governing
equations are presented in Section 3. In Section 4, the solution
methods are detailed as well as the prerequisites for the gap assess-
ment and the contributions of the unilateral and frictional contact
efforts in the equations of motion. These methods are compared
in Section 5 and applied to perform a parametric study on the
friction coefficient, the stator support stiffness and the stator mass.

2. RUBBING IN TURBOMACHINES
Rotordynamics in presence of radial unilateral contact and

friction is a research field widely investigated in literature [1–3].
The literature shows that a rotor confined within a stator might
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generate rubbing mechanisms along with various and complex
dynamical responses. Its center of gravity may orbit in the same
direction as or opposite direction to the rotation of the engine.
These two responses are called respectively forward and backward
precessional motions [4]. Backward motion can be split into two
subcategories that are: (1) dry whirl when the rotor rolls without
slipping; (2) dry whip if the rotor rolls and slips. The latter is
known to be “one of the more serious and destructive of the
malfunctions that occur in rotating machinery” [5]. It should be
noted that, in practice, the precessional motions can switch from
forward to backward in an abrupt manner and it is possible that
the rotor bounces on the neighboring components [4, 6]. Several
parameters, such as friction coefficient and rotation speed [7, 8],
affect the precessional response.

Also, gyroscopic terms, commonly ignored for simplicity,
might have drastic consequences on the overall dynamics by
coupling even further the nonlinear mechanisms in the response [9].
Another common assumption is to consider the rotation speed as
constant or at least as a known function of time [4]. Instead, when
frictional contact occurrences are involved, the torque is specified,
at least on some interval of time, and the rotational velocity Ω(𝑡)
becomes an unknown of the problem [1, 2], as assumed in the
present paper. This affects the governing equations, most notably
the gyroscopic and stiffness matrices. They depend respectively
on Ω(𝑡) and its first derivative in time, along with the inertial
forces inducing centrifugal stiffening effects [9].

2.1 Contact theory and friction
Unilateral contact conditions prevent mechanical bodies to

penetrate each other and always creates a reaction force in the
normal direction to the contact. A classical formulation relies on
the Signorini conditions [10] expressed at the displacement level,
stating that there exist two positive definite quantities, the normal
force 𝐹N and the normal distance 𝑑N between the rotor and the
stator, whose product equals zero at all times:

𝑑N ≥ 0, 𝐹N ≥ 0, 𝑑N · 𝐹N = 0. (1)

The first inequality in Equation (1) reflects that penetration is not
allowed while the second one means that traction between the
bodies is prohibited. The above conditions can be condensed in a
complementarity formulation

0 ≤ 𝑑N ⊥ 𝐹N ≥ 0. (2)

In case of rubbing, there exists also a friction force valued with
𝐹f which can be assessed by micro- or macro-models. Micro-
models account for the surface condition. They may introduce
time-dependency with kind of friction memory and hysteresis
phenomena [11]. However, these models imply more parameters
to identify and to calibrate by experiments [12]. Macro-models
are preferred in the present study. They define the friction force
opposed to the relative speed v𝑡 between the bodies in contact.
Its magnitude is commonly dictated by Coulomb’s friction model
involving the static and dynamic friction coefficients, 𝜇s and 𝜇d
respectively, with the conditions{︄

|𝐹f | = 𝜇d𝐹N if | |v𝑡 | | ≠ 0
|𝐹f | ≤ 𝜇s𝐹N otherwise.

(3)

In a vast majority of research works [3, 11, 13], and in the present
paper as well, Coulomb’s model is simplified by defining a single
friction coefficient 𝜇 = 𝜇s ≈ 𝜇d.

2.2 Solution algorithms

Unilateral and frictional contact introduces a strong nonlin-
earity in the governing equations and dedicated numerical tool
able to generate a meaningful approximate solution should be
implemented. Transient phenomena being of prior interest in the
present work, preference is given to time-domain integrators [14].
The combination of an integrator and the numerical treatment of
the Signorini and Coulomb conditions led to the implementation of
well-known algorithms such as the Moreau [15] or Carpenter [16]
procedures. If the strict enforcement of Signorini conditions is de-
sired, a regularization of the contact, like the penalty method [10],
might not be appropriate. Instead, the use of Lagrange multipliers
is possible, as achieved for instance in [1, 17] through Carpenter’s
algorithm. The Lagrange multiplier is a mathematical quantity
that does not have necessarily any physical meaning. In Car-
penter’s algorithm, described further in the present document,
the multiplier is associated to the normal contact force 𝐹N. In
Moreau-Jean procedure, the multiplier has the physical meaning
of an impulse 𝑟N.

The impenetrability condition is not the only one that should
be satisfied in order to accurately model unilateral contact. At
the instant of impact between two bodies, it is known that the
normal velocity should satisfy an impact law guaranteeing the
solution uniqueness. The most widely-used is the Newton impact
law stating 𝑣+N = −𝑒𝑣−N , where 𝑣−N (resp. 𝑣+N) represents the normal
velocity right before (after) an impact, 𝑒 ∈ [0, 1] being a restitution
factor. If 𝑒 = 0, the impact is dissipative while 𝑒 = 1 corresponds
to an “elastic" impact and there is no energy loss [18]. Moreau [15]
differentiated the Signorini conditions in time and the normal
contact effort/distance relation from Equation (2) becomes an
impulse 𝑟N/normal velocity condition. The introduction of the
Newton impact law in Equation (2) forms an expression of the
unilateral contact constraints at velocity level, which reads{︄

0 ≤ (𝑣+N + 𝑒𝑣−N ) ⊥ 𝑟N ≥ 0 if 𝑑N < 0
𝑟N = 0 otherwise.

(4)

This approach has the drawback to present residual penetration,
issue solved in [19]. Also, the assessment of the friction force
is another challenging task because of the nonsmoothness of the
Coulomb model [18]. Works in rotordynamics, in a vast majority,
consider that the relative tangential velocity on the contact interface
never vanishes due to the high rotational speeds involved, and thus
only slipping is accounted for [1, 7, 13, 17]. When sticking cannot
be ignored, two dominant strategies to manage the multi-valued
features of the law exist. The first approach is to regularize the
Coulomb model: with a ramp function when the slip velocity goes
under a user-defined tolerance [7] or with a tanh function [20].
The second approach uses mathematical concepts from convex
analysis [21] and is further developed in the present document.
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3. ROTOR-STATOR MODEL
3.1 System of interest

The rotor is composed of the turbine and rotor disks mounted
on a shaft, see Figure 1. For a helicopter gas turbine, dimension
the sealing ring (i.e. the rotor) radius is of several centimeters.
The turbine, considered disconnected from the compressor and

Shaft

Turbine disc 

Stator

Rotor

FIGURE 1: System of interest and reference frames

is only supported by the rear bearing, and by the stator through
contact with the rotor disc (i.e. the sealing ring). The stator is
an annular ring with linear and symmetric support located with
distance 𝛿 from the shaft free extremity. In this paper, the shaft,
the discs and the stator are all simplified as perfectly rigid. The
bearings are defined by symmetric constant stiffness and damping.
While the rigid bodies assumption is a first step to predict the
rotordynamics with a few degrees of freedom, the uncoupling
of the compressor and turbine stages is a configuration to be
investigated on the real system as well. Aerodynamics aspects
are out-of-scope in this research. Therefore, the driving torque
applied to the turbine disc 𝜏a is set to a constant and the turbine’s
recoil due to the axial pressure gradient is neglected.

3.2 Mathematical model
3.2.1 Frames and coordinates systems. A rigid body com-

monly features six degrees-of-freedom (dofs): three translations
for its center of mass 𝐺 and three rotations. The frames involved
in the definition of these rotations are detailed in Figures 1 and 2:

• (𝑈,𝑉,𝑊): moving reference frame rigidly connected to the
body, where𝑊 is the symmetry axis while 𝑈,𝑉 define the
diametral axes.

• (𝑋,𝑌, 𝑍): fixed reference frame. The shaft center line
initially coincides with the 𝑍-axis.

• (𝑥1, 𝑦1, 𝑧1) and (𝑥2, 𝑦2, 𝑧2) are intermediate frames.
Hsieh & al. [22] defined the mobile frame with a first rotation

by an angle 𝜙 about the 𝑍-axis, followed by a second rotation
by an angle 𝛼 about 𝑥1 = 𝑥2, and finally a third one by an angle
𝜓 about the 𝑊-axis. These rotations are illustrated in Figure 2.
The authors also defined the angular displacements 𝜃𝑥 and 𝜃𝑦 by
projection of the angle 𝛼, being small, on the (𝑋,𝑌 )−plane, ie

𝜃𝑥 = 𝛼 cos 𝜙 and 𝜃𝑦 = 𝛼 sin 𝜙. (5)

The other consequence of the small angle assumption is
that the resultant rotation about the 𝑊-axis is 𝜃𝑤 = 𝜙 + 𝜓. The
rotational velocity Ω(𝑡), of primary interest in the present work,
corresponds to �̇�𝑤.

=
=

=

FIGURE 2: Rotations from fixed to moving reference frame [22]

3.2.2 Equations of motion. From Huygens’ principle, the
kinetic energy of a body of mass 𝑚 with axial symmetry reads

2𝐸𝑐 = 𝑚(�̇�2
𝐺 + �̇�2

𝐺 + �̇�2𝐺) + 𝐽𝑑 (𝜔2
𝑢 + 𝜔2

𝑣) + 𝐽𝑝𝜔2
𝑤. (6)

where 𝐽𝑑 and 𝐽𝑝 stand for diametral and polar mass moments of
inertia. (𝑥𝐺 , 𝑦𝐺 , 𝑧𝐺) correspond to the center of mass translations.
As already said, no effort along the 𝑍-direction is considered and
the displacement 𝑧𝐺 is removed from Equation (6). The quantities
𝜔𝑢, 𝜔𝑣 and 𝜔𝑤 represent the rotational velocities components in
the moving frame and are given by⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜔𝑢 = �̇� cos𝜓 + �̇� sin𝛼 sin𝜓
𝜔𝑣 = −�̇� sin𝜓 + �̇� sin𝛼 cos𝜓
𝜔𝑤 = �̇� + �̇� cos𝛼.

(7)

By inserting Equations (5) and (7) into Equation (6), the kinetic
energy becomes

2𝐸𝑐 = 𝑚(�̇�2
𝐺+ �̇�2

𝐺)+𝐽𝑑 (�̇�2
𝑥+�̇�2

𝑦)+𝐽𝑝 �̇�2
𝑤+𝐽𝑝 �̇�𝑤(�̇�𝑥𝜃𝑦−�̇�𝑦𝜃𝑥). (8)

For the contact treatment, the displacements at the rotor level
(𝑥𝑟 , 𝑦𝑟 ) rather than center of mass are more appropriate. If the
rotor has length 𝐿, points 𝐺 and 𝑅 are respectively located at a
distance 𝑑 and 𝐿 − 𝛿 from the bearing 𝐵, and the translations 𝑞𝐺
of point 𝐺 are simplified to the linear interpolation

𝑞𝐺 = 𝜈𝑞𝑟 + (1 − 𝜈)𝑞𝑏 (9)

where 𝜈 = 𝑑/(𝐿 − 𝛿). The two angles 𝜃𝑥 and 𝜃𝑦 may also be
expressed as functions of points 𝑅 and 𝐵 considering the first-order
approximations

𝜃𝑥 ≈ − 𝑦𝑟 − 𝑦𝑏
𝐿 − 𝛿 and 𝜃𝑦 ≈ 𝑥𝑟 − 𝑥𝑏

𝐿 − 𝛿 . (10)

Consequently, the displacement of the rotor is defined by gener-
alized coordinates qT = (𝑥𝑏, 𝑦𝑏, 𝑥𝑟 , 𝑦𝑟 , 𝜃)⊤ where subscript 𝑤 in
the spinning rotation is dropped for simplicity. The kinetic energy
becomes

2𝐸𝑐 = 𝑀11 (�̇�2
𝑏 + �̇�2

𝑏) + 𝑀22 (�̇�2
𝑟 + �̇�2

𝑟 ) + 2𝑀12 (�̇�𝑏 �̇�𝑟 + �̇�𝑏 �̇�𝑟 )
+ 𝐽𝑝 �̇�2 + 𝐻�̇� (( �̇�𝑏 − �̇�𝑟 ) (𝑥𝑟 − 𝑥𝑏) − (�̇�𝑟 − �̇�𝑏) (𝑦𝑏 − 𝑦𝑟 )) (11)
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with𝑀11 = (1−𝜈)2𝑚+𝐽𝑑/(𝐿−𝛿)2,𝑀12 = 𝜈(1−𝜈)𝑚−𝐽𝑑/(𝐿−𝛿)2,
𝑀22 = 𝜈2𝑚 + 𝐽𝑑/(𝐿 − 𝛿)2 and 𝐻 = 𝐽𝑝/(𝐿 − 𝛿)2. Gravity and
bearing stiffness 𝑘𝑏 contribute to the potential energy of the system
in the following manner:

𝐸𝑝 =
𝑘𝑏
2
(𝑥2
𝑏 + 𝑦2

𝑏) + 𝑚𝑔(𝜈𝑦𝑟 + (1 − 𝜈)𝑦𝑏). (12)

Without contact, the Lagrange equations yield the Ordinary Dif-
ferential Equations (ODE)

MT (qT)q̈T + (�̇�GT + Db)q̇T +KbqT = fext. (13)

The terms Kb and Db relate to the bearing stiffness and damping
matrices while the mass matrix MT (qT), the gyroscopic matrix
GT and external forces vector fext are given by

M(qT) =
⎛⎜⎜⎜⎜⎜⎝
𝑀11 0 𝑀12 0 𝐻𝑦 (qT)
0 𝑀11 0 𝑀12 𝐻𝑥 (qT)
𝑀12 0 𝑀22 0 −𝐻𝑦 (qT)
0 𝑀12 0 𝑀22 −𝐻𝑥 (qT)

𝐻𝑦 (qT) 𝐻𝑥 (qT) −𝐻𝑦 (qT) −𝐻𝑥 (qT) 𝐽𝑝

⎞⎟⎟⎟⎟⎟⎠
,

GT =

⎛⎜⎜⎜⎜⎜⎝
0 𝐻 0 −𝐻 0
−𝐻 0 𝐻 0 0
0 −𝐻 0 𝐻 0
𝐻 0 −𝐻 0 0
0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎠
, fext =

⎛⎜⎜⎜⎜⎜⎝
0

−(1 − 𝜈)𝑚𝑔
0
−𝜈𝑚𝑔
𝜏a

⎞⎟⎟⎟⎟⎟⎠
(14)

with 𝐻𝑥 (qT) = 𝐻
2 (𝑥𝑟 − 𝑥𝑏) and 𝐻𝑦 (qT) = −𝐻2 (𝑦𝑟 − 𝑦𝑏). The

stator is rigid and has two dofs: qs = (𝑥s, 𝑦s)⊤. Its dynamics is
governed by the classical linear ODE

Msq̈s + Dsq̇s +Ksqs = 0. (15)

with

Ms =

(︃
𝑚s 0
0 𝑚s

)︃
, Ds =

(︃
𝑐s 0
0 𝑐s

)︃
, Ks =

(︃
𝑘s 0
0 𝑘s

)︃
.

By grouping Equations (13) and (15), the whole system is
defined by mass, gyroscopic, damping and stiffness matrices (resp.
M,G,D,K) of size 7 × 7 with the combination of the above
generalized coordinates q = (qT, qs)⊤, which gives

M(q)q̈ + (�̇�G + D)q̇ +Kq = fext. (16)

4. NUMERICAL SOLUTION METHODS
4.1 Gap and contact efforts directions

A preliminary task to any contact solution method is the
assessment of the distance between the bodies. A front view of the
rigid rotor of radius 𝑅𝑟 confined within the stator (of radius 𝑅𝑠) is
proposed in Figure 3. The point 𝑠 corresponds to the stator center.
For rigid bodies, the minimal distance is obtained along the sr
vector between point 𝑝 and its projection 𝑝′ along the normal unit
vector n on the stator. The normal distance 𝑑N is defined by a
scleronomous relation

𝑑N = 𝑅𝑠 − 𝑅𝑟 − ||sr| | = 𝑔0 −
√︂
(𝑥𝑟 − 𝑥𝑠)2 + (𝑦𝑟 − 𝑦𝑠)2 (17)

between the generalized coordinates q = (𝑥𝑏, 𝑦𝑏, 𝑥𝑟 , 𝑦𝑟 , 𝜃, 𝑥𝑠 , 𝑦𝑠)
and with 𝑔0 being the initial gap value equal to 𝑅𝑠 − 𝑅𝑟 .

O

S r

p
p'

FIGURE 3: Gap and contact local frame

The analytic expression of the normal distance allows the
identification of the vector CN, which reflects the contribution of
the Lagrange multiplier 𝐹N to the equations of motion. Since the
effort 𝐹N is acting along the normal direction, CN is equal to the
normal distance gradient ∇q𝑑N and yields

CN =

(︃
0, 0,

𝑥𝑠 − 𝑥𝑟
| |sr| | ,

𝑦𝑠 − 𝑦𝑟
| |sr| | , 0,

𝑥𝑟 − 𝑥𝑠
| |sr| | ,

𝑦𝑟 − 𝑦𝑠
| |sr| |

)︃⊤
. (18)

When friction is considered, it is oriented along the tangential unit
vector t in Figure 3 which must be defined as well. The friction
force contribution to the equations of motion is provided by the
vector CT, orthogonal to CN, which gives

CT =

(︃
0, 0,

𝑦𝑟 − 𝑦𝑠
| |sr| | ,

𝑥𝑠 − 𝑥𝑟
| |sr| | ,−𝑅𝑟 ,

𝑦𝑠 − 𝑦𝑟
| |sr| | ,

𝑥𝑟 − 𝑥𝑠
| |sr| |

)︃⊤
. (19)

Note that the component −𝑅𝑟 reflects the braking torque induced
by friction. Consequently, the contact efforts acting within the
system (rotor and stator) and denoted f𝑐 ∈ R7, are computed as

f𝑐 = CN · 𝐹N + CT · 𝐹f (20)

The contact efforts vector is added to Equation (16) to form the
governing ODE with contact occurrence

M(q)q̈ + (�̇�G + D)q̇ +Kq = fext + f𝑐 . (21)

It can be noted that the above procedure can be extended to the case
of multiple contact points. As a result, each point 𝑘 is assigned to
a pair of Lagrange multipliers. There are 𝑘 gap functions, (𝐹N, 𝐹f)
are both replaced by vectors of size 𝑘 , and CN and CT are defined
as rectangular matrices with 𝑘 columns.

4.2 Carpenter Algorithm
This method is selected for its simplicity of implementation

while satisfying the non-penetration constraint. The main steps
of the Carpenter algorithm are the following: the time-domain
𝑡 = [𝑡𝑠 , 𝑡𝑒] is discretized by 𝑡𝑖 , 𝑖 = 0, . . . , 𝑁 spaced with time step
ℎ = (𝑡𝑒 − 𝑡𝑠)/𝑁 . From this discretization, we define the unknowns
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q𝑖 ≈ q(𝑡𝑖). The time derivatives are approximated via the explicit
centered finite difference scheme

q̇𝑖 =
q𝑖+1 − q𝑖−1

2ℎ
and q̈𝑖 =

q𝑖+1 − 2q𝑖 + q𝑖−1

ℎ2 . (22)

This integrator requires initial conditions for the two first time
steps, q0 and q1. Equation (22) is inserted in Equation (21) which
provides the expression M̄(𝜃𝑖+1)q𝑖+1−D̄q𝑖+K̄(𝜃𝑖+1)q𝑖−1 = fext

𝑖 +f𝑐𝑖
with

M̄(𝜃𝑖+1) = M(qi)
ℎ2 +

(︁ 𝜃𝑖+1−𝜃𝑖−1
2ℎ

)︁
G + D

2ℎ

D̄ =
2M(qi)
ℎ2 −K

K̄(𝜃𝑖+1) = M(qi)
ℎ2 −

(︁ 𝜃𝑖+1−𝜃𝑖−1
2ℎ

)︁
G + D

2ℎ
.

(23)

In the present work, the mass matrix M is function of the known
turbine displacements q𝑖 (see Equations (13) and (21)) and M(q𝑖)
must be updated at each time step. Note that matrices M̄ and
K̄ are functions of 𝜃𝑖+1, because of the time discretization of
the unknown rotational velocity �̇�𝑖 in Equation (22). As already
said, rotation 𝜃 is part of the generalized coordinates vector q
but dependencies of matrices to this degree-of-freedom are made
explicit1. Then, three tasks are completed for each time step
𝑛 = 1, . . . , 𝑁 − 1:

• Prediction of the contact-free displacement vector by solving

qp
𝑖+1 = M̄(𝜃p

𝑖+1)−1 [︁D̄q𝑖 − K̄(𝜃p
𝑖+1)q𝑖−1 + fext

𝑖

]︁
. (24)

• Gap computation 𝑑p
N through Equation (17) and penetration

check (𝑑p
N < 0).

• Correction applied to qp
𝑖+1 if a penetration is detected. For

simplicity, we assume only one point of contact with the
corresponding gap 𝑑p

N,𝑖+1. In the present method, only one
Lagrange multiplier 𝐹N,𝑖+1 is involved. The Coulomb friction
force in sliding phase is 𝐹f,𝑖+1 = −𝜇 sign(v𝑡 · t)𝐹N,𝑖+1. The
contributions of this sole multiplier to the dynamics is then
given by the vector CNT which is a combination of CN and
CT such as

CNT = CN − 𝜇 sign(v𝑡 · t)CT. (25)

Correction is achieved simultaneously in the normal and
tangential directions through the equations{︄

𝐹N,𝑖+1 = −(C⊤NM̄(𝜃𝑖+1)−1CNT)−1𝑑
p
N,𝑖+1,

q𝑖+1 = qp
𝑖+1 + M̄(𝜃𝑖+1)−1CNT𝐹N,𝑖+1.

(26)

Due to the unknown rotational velocity �̇�𝑖 (and 𝜃𝑖+1) in
Equation (23), Equations (24) and (26) are coupled and nonlinear
in q𝑖+1 and a dedicated nonlinear solver must be introduced. In this
paper, two versions of Carpenter’s algorithm were implemented
in Python.

1Since 𝜃𝑖+1 belongs to vector q𝑖+1, writing the matrices M̄(q𝑖+1 ) and K̄(q𝑖+1 )
would also be appropriate.

• The first one, named Carp-QN, was introduced in [1]. The
entire Carpenter algorithm, Equations (17), (24) and (26), is
embedded within a quasi-Newton loop and is fully iterative.
All three prediction, verification and correction steps are
applied at most itMax times.

• The second one, called Carp-oneVC and introduced in this
work, is a simplification of the above method considering
that the time step ℎ is small. Equation (24) for prediction
is solved by calling the Python function fsolve2. It finds
the root of a nonlinear function through a Newton loop
given an initial guess q0

𝑖+1. In other words, the prediction
step remains iterative. For each time step, the first guess
is computed through Equation (23), without contact and
assuming that angular acceleration is linear. Therefore two
initial angular accelerations 𝛾0 and 𝛾1 should be defined.
Given the predicted solution qp

𝑖+1, the rotor-stator distance
𝑑

p
N,𝑖+1 is assessed and the solution is corrected if needed. The

procedure detailed in Algorithm 1 completes a verification
and a correction step at most once. This approach is faster
but introduces an error since the matrix M̄(𝜃p

𝑖+1) is computed
with the predicted rotation angle only.

Algorithm 1 Carp-oneVC

Require: 𝑖 ← 0, q0 and 𝜃0 ← 𝛾0
Require: 𝑖 ← 1, q1 and 𝜃1 ← 𝛾1

for 𝑖 = 1, . . . , 𝑁 − 1 do
{Assumption of linear angular acceleration}
𝜃0
𝑖+1 ← 2𝜃𝑖 − 𝜃𝑖−1

{Contactless initial guess}
𝜃0
𝑖+1 ← 𝜃0

𝑖+1ℎ
2 + 2𝜃𝑖 − 𝜃𝑖−1

q0
𝑖+1 ← M̄(𝜃0

𝑖+1)−1 [︁D̄q𝑖 − K̄(𝜃0
𝑖+1)q𝑖−1 + fext

𝑖

]︁
{Nonlinear solver: finds solution qp

𝑖+1 of Equation (24) with
initial guess q0

𝑖+1}
Solve M̄(𝜃p

𝑖+1)q
p
𝑖+1 −

[︁
D̄q𝑖 − K̄(𝜃p

𝑖+1)q𝑖−1 + fext
𝑖

]︁
= 0

{Gap computation through Equation (17)}
𝑑

p
N,𝑖+1 ← 𝑔0 −

√︂
(𝑥p
𝑟 ,𝑖+1 − 𝑥

p
𝑠,𝑖+1)2 + (𝑦

p
𝑟 ,𝑖+1 − 𝑦

p
𝑠,𝑖+1)2

if 𝑑p
N,𝑖+1 ≥ 0 then
{No correction}
𝐹N,𝑖+1 ← 0
𝐹f,𝑖+1 ← 0
q𝑖+1 ← qp

𝑖+1
else

{Correction}
𝐹N,𝑖+1 ← −(C⊤NM̄(𝜃p

𝑖+1)−1CNT)−1𝑑
p
N,𝑖+1

𝐹f,𝑖+1 ← −𝜇 sign(v𝑡 · t)𝐹N,𝑖+1
q𝑖+1 ← qp

𝑖+1 + M̄(𝜃p
𝑖+1)−1CNT𝐹N,𝑖+1

end if
{Update (𝜃𝑖+1 is in q𝑖+1)}
𝜃𝑖+1 ← (𝜃𝑖+1 − 2𝜃𝑖 + 𝜃𝑖−1)/ℎ2

end for

2https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.fsolve.html
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4.3 Moreau-Jean algorithm and Siconos
The Moreau-Jean algorithm can be used in order to propose a

reference solution method that involves all sources of nonsmooth-
ness: the Signorini conditions at speed level and the Coulomb
friction model with sticking phase considered.

First of all, in order to admit a nonsmooth solution, equa-
tions of motions (16) must be differentiated in time between two
neighbor instants spaced by d𝑡, as performed in [3]. By denoting
C(v) = �̇�G + D, the governing equations become{︄

M(q)𝑑v + [C(v)v +Kq − fext]d𝑡 = dfc

q̇ = v
(27)

where dv and dfc define speed and contact effort variations.
Equation (27) is then discretized with an integrator from the
𝜃-method family (with parameter denoted 𝛾 to not be confused
with rotation 𝜃). However, integrating non-linear terms imply
more developments detailed in section 10.1.2 of [18]. The smooth
terms [C(v)v +Kq − fext] are collected in the vector f (q, v, 𝑡).
With d𝑡 set to the time step ℎ, the governing equations become{︄

M(q𝑖+𝜂) (v𝑖+1 − v𝑖) + ℎ˜︁f𝑖+𝛾 = r𝑖+1,
q𝑖+1 = q𝑖 + ℎ((1 − 𝛾)v𝑖 + 𝛾v𝑖+1)

(28)

with {︄˜︁f𝑖+𝛾 = (1 − 𝛾)f (q𝑖 , v𝑖 , 𝑡𝑖) + 𝛾f (q𝑖+1, v𝑖+1, 𝑡𝑖+1),
q𝑖+𝜂 = (1 − 𝜂)q𝑖 + 𝜂q𝑖+1.

(29)

Note that the impulse quantity r𝑖+1 is related to contact efforts by
the integral

∫
dfc. In this case, the Lagrange multiplier has the

physical meaning of a normal impulse 𝑟N instead of the normal
force 𝐹N, as already said in Section 2. Similarly, a frictional
impulse 𝑟f is defined.

The last line of Equation (29) reflects that the non-linear
mass matrix is evaluated with a weighted interpolation of the
displacement vector q where the weight parameter is denoted
𝜂. Then, the dynamics is linearized and the solution v𝑖+1 is
computed through an Newton loop with the iteration matrix˜︁M = M(q𝑖+𝜂) + ℎ𝛾∇vf (q, v, 𝑡) + ℎ2𝛾2∇qf (q, v, 𝑡). The last two
terms are the Jacobian matrices of the smooth terms with respect
to displacement q and v. If the ODE was linear time invariant, one
would retrieve the classical iteration matrix ˜︁M = M+ℎ𝛾D+ℎ2𝛾2K
used for instance in [3].

The prediction step is the same as in Carpenter’s algorithm,
except that the predicted quantity is the velocity vp

𝑖+1 and not
directly the displacement. For the correction step, the normal
effort 𝐹N and the friction force 𝐹f (and so, the related impulses)
may be independent in case of dry whirl (i.e. sticking friction)
and thus two distinct Lagrange multipliers must be introduced.
They are grouped into the vector 𝚲𝑖+1 = (𝑟N, 𝑟f)⊤𝑖+1 whose domain
of definition is a cone of slope 𝜇, also known as Coulomb’s
cone 𝐾, illustrated in Figure 4 for a 2D contact. As a result, the
contact efforts in the fixed frame are r𝑖+1 = (CNCT)𝚲𝑖+1 and the
expression of the corrected speed is

v𝑖+1 = vp
𝑖+1 + ˜︁M−1 (CNCT) 𝚲𝑖+1. (30)

arctan 𝜇 𝑟N · n

𝑟f · t

𝚲

𝐾

arctan (1/𝜇)

𝐾∗

v̂

�̂�𝑡 · t

𝜇�̂�𝑡 · n

n

t

FIGURE 4: Coulomb cone and SOCCP for slipping [18]

In order to incorporate the Newton impact law, the term 𝑒Nv𝑖 is
added to both sides of Equation (30) and the result is projected on
the normal direction in the contact reference frame. This projected
speed is defined in discrete time by �̂�N,𝑖+1 := C⊤N (v𝑖+1 + 𝑒Nv𝑖) and
depends on 𝚲 with

�̂�N,𝑖+1 = C⊤N ˜︁M−1 (CN,CT)𝚲𝑖+1 + C⊤N (vp
𝑖+1 + 𝑒Nv𝑖). (31)

Since friction is accounted for, an impact law along the tan-
gential direction must also be defined, involving another resti-
tution coefficient 𝑒t [18, 23]. The above procedure is repeated
which leads to the definition of the projected tangential speed
�̂�𝑡 ,𝑖+1 := C⊤T (v𝑖+1 + 𝑒tv𝑖), also computed with

�̂�𝑡 ,𝑖+1 = C⊤T ˜︁M−1 (CN,CT)𝚲𝑖+1 + C⊤T (vp
𝑖+1 + 𝑒tv𝑖). (32)

Denoting the modified local speed by v̂ = (�̂�N + 𝜇 |�̂�𝑡 |, �̂�𝑡 )⊤ (in-
dex 𝑖 is dropped for simplicity) and introducing the symbol ⊥
that represents orthogonality between v̂ and contact efforts, the
Signorini-Coulomb conditions imply to solve, at every time step,
the complementarity problem

𝐾∗ ∋ v̂ ⊥ 𝚲 ∈ 𝐾 (33)

where 𝐾∗ is the dual of cone 𝐾. The system formed by Equa-
tions (31) to (33) is known as a Second Order Cone Complemen-
tarity Problem (SOCCP) [18], which is illustrated for a sliding
contact in Figure 4.

The procedure described above is available in Siconos [24].
Siconos is a C++ numerical tool dedicated to nonsmooth prob-
lems. In this program, a projected version of Moreau-Jean
algorithm is available too [19]. The term projected means that the
solution strictly satisfies both Signorini conditions at speed and
displacement levels.

To summarize, four solution methods are selected in the
present paper with features listed in Table 1. Concerning the resti-
tution factor 𝑒N, it is not explicitly defined in Carpenter algorithm.
The method is equivalent to work with a fully dissipative impact.
As a result, for sake of comparison, the impact law in Moreau-Jean
algorithms (Sic-Mor and Sic-Proj) is 𝑒N = 𝑒t = 0.
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Name Friction Signorini (contact law)
Displacement Velocity

Carp-oneVC Sliding Yes No
Carp-QN Sliding Yes No
Sic-Mor Total No Yes
Sic-Proj Total Yes Yes

TABLE 1: Contact solvers and properties

5. RESULTS
A reference case is first defined and run for the four proposed

solution algorithms. The friction coefficient is set to 0.1 and the
time step, to ℎ = 10−6 s. Time is normalized by a reference time
𝑡ref. The same solution is predicted by all four solvers, hence
only the response for Sic-Proj is presented in Section 5. Partial
contact takes place at the beginning since separations emerge,
see Figure 5(b). After 0.80𝑡ref, the normalized distance 𝑑N/𝑔0
vanishes, meaning that contact becomes permanent. The relative
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FIGURE 5: Time response for reference case with Sic-Proj

velocity in tangential direction is never zero (see Figure 5(c)),
reflecting dry whip, with 𝐹f = 𝜇𝐹N. The friction torque is plotted
in Figure 5(d) and normalized by the aerodynamic torque 𝜏a. It
turns out that this ratio is always smaller than unity and the turbine
rotational velocity thus increases. Figure 5(a) shows that the
maximal authorized velocity Ωlim is reached at 𝑡 = 0.76𝑡ref.

In the remainder, two contact solvers are selected: Sic-Proj
since it involves all the constraints management and Carp-oneVC

for its smaller CPU compared to Carp-QN for identical results.
The next sections focus on parameter studies in order to identify
in which conditions overspeed is safely limited. The sensitivity of
the dynamics to three quantities 𝜇, 𝑘s and 𝑚s is investigated.

5.1 Sensitivity to friction coefficient
5.1.1 Time domain. Speed transients in Figure 6 show that

the rotational velocity stays under Ωlim for 𝜇 > 0.22. Even if

0 0.5 1 1.5 2

0.8

1

1.2

1.4

𝑡/𝑡ref [-]

Ω
/Ω

lim

FIGURE 6: Sensitivity of rotational velocity to friction coefficient: 𝜇 = 0
( ), 𝜇 = 0.1 (ref) ( ), 𝜇 = 0.2 ( ), 𝜇 = 0.22 ( ) , 𝜇 = 0.25 ( )

the speed transients for the frictionless case and the reference
case 𝜇 = 0.1 are similar, these two simulations predict different
dynamics. When analyzing precessional speeds (see Figure 7(a))
for the frictionless case, it turns out that 𝑣prec converges to positive
values, reflecting a forward precessional motion. However, the
type of precesionnal motion becomes of less interest here since
contact separation takes place for 𝑡 > 0.85𝑡ref (see Figure 7(c)).
For 𝜇 = 0.1, the precessional speed is subjected to an abrupt
transition between forward (positive) and backward (negative)
precessional motions. For 𝑡 > 1.3𝑡ref, the precessional speed is
still oscillating but remains always negative, reflecting transition
to dry whip. However this transitions takes place too late to affect
the rotational speed transient. For 𝜇 = 0.25, see Figure 7(a),
the precessional speed shows more negative value with regard to
reference case. The mean value decreases with friction coefficient
and 𝑣prec becomes always negative for 𝑡 > 1.15𝑡ref. In other words,
the higher the friction coefficient, the more dominant the backward
precessional motion. As already said, this phenomenon comes
with larger unilateral contact efforts, which is confirmed by the
increase of the frictional torque in Figure 7(b).

5.1.2 Frequency analysis. Rotordynamics can also be inves-
tigated through the spectral content of the solution. A spectrogram
is a frequency analysis tool displaying the time evolution of a
spectrum 𝑋 ( 𝑓 , 𝑡) ( 𝑓 being the frequency) related to signal 𝑥(𝑡)
through Fourier transform. In the present document, the spectro-
grams of two time signals related to perpendicular displacements
(for instance along 𝑋 and𝑌 axes) are combined to assess a merged
spectrogram 𝑋𝑌 ( 𝑓 , 𝑡). This particular time-frequency diagram
is derived from full-spectrum [25] and is used in [12] to provide
information about vibratory amplitudes and related frequency con-
tent, along with the direction of the precessional motion. A peak
lying in the positive (resp. negative) frequency domain reflects
occurrence of forward (resp. backward) precessional motion. In
the present document, full-spectrograms are obtained by taking
rotor displacements (𝑥𝑟 , 𝑦𝑟 ) for vibration signals in time domain.
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FIGURE 7: Response sensitivity to friction coefficient: 𝜇 = 0 ( ),
𝜇 = 0.1 (ref) ( ), 𝜇 = 0.2 ( ), 𝜇 = 0.25 ( )

The eigenfrequencies of the coupled rotor-stator system
should first be identified. In the present document, rotor and
stator are considered coupled by setting stator displacements
(𝑥𝑠 , 𝑦𝑠) equal to the rotor displacements (𝑥𝑟 , 𝑦𝑟 ). This approach
is equivalent to add the stator mass at the rotor level. The eigenfre-
quencies are function of the rotational velocity through gyroscopic
effects, see Equation (13). Therefore, the rotational velocity is
imposed Ω = �̇� in a range going from 0 to Ω𝑙𝑖𝑚. The resulting
system has four dofs (𝑥𝑏, 𝑦𝑏, 𝑥𝑟 , 𝑦𝑟 ) and as many eigenfrequencies
being functions of the rotational velocity. They are displayed in
the Campbell diagram in Figure 8. For each rotational speed are
calculated four positive eigenvalues. At rest, there exist two double
modes of natural frequencies denoted 𝑓1 and 𝑓2, which then split
into forward (subscript f ) and backward (subscript b) modes. The
Campbell diagram can be used to determine the eigenfrequencies
with respect to time implicitly through Ω(𝑡). At instant 𝑡, Ω(𝑡)
is assessed and reported in the Campbell diagram to evaluate
the eigenfrequencies. The resulting curves are thus 𝑓 (Ω(𝑡)).
Negatives values − 𝑓 (Ω(𝑡)) are considered as well for response
investigation in negative frequencies domain in case of backward
precessional motion. These curves are then superimposed to the
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FIGURE 8: Campbell diagram: eigenfrequencies for coupled turbine and
stator, 𝑓1b ( ), 𝑓1f( ), 𝑓2b( ), 𝑓2f( )

merged spectrogram of the rotor vibration.
Figure 9(a) corresponds to the frictionless case and shows a

superposition between the spectrogram and the second forward
precession mode 𝑓2f, reflecting a vibratory resonance of the
forward precessional motion There are no other matches between
the frequency content of rotor vibration and modes, although the
other peaks remain close. The highest peak lies in the positive
frequency domain at 190 Hz, confirming the occurrence of a
forward precessional motion. Note that after 0.9𝑡ref, the peaks of
low magnitude vanish. Spectrograms are powerful tools able to
reflect nonlinear and or transitions phenomena [12]. However,
the type of the transition phenomenon at causing the spectrum
modification cannot be identified by the sole investigation in
frequency domain. In the present case, the steep variation of
frequency content is due to contact separation after 0.9𝑡ref (see
Figure 7(c)).

Spectrogram and time evolution of eigenfrequencies for the
reference case 𝜇 = 0.1 are displayed in Figure 9(b). At the
beginning of the simulation (𝑡 < 0.2𝑡ref), there still exists a
vibratory resonance on the second forward mode 𝑓2f and the
highest peak is located at 190 Hz. However, the spectrum in the
low-frequency range tends to become symmetric with respect to
the zero frequency, which confirms equipartition between forward
and backward precessional motions in the rotor response. Towards
the end of the simulation, the highest peak is found approximately
at −15 Hz meaning that a backward precessional motion emerges,
in agreement with Figure 7(a). Note that the lowest peaks suddenly
vanish for time after 0.8𝑡ref. This phenomenon was already visible
for frictionless case but this time, the transition in frequency
content corresponds to a permanently closed contact, as confirmed
by Figure 7(c). The various spectrograms exhibit changes in the
dynamics for both 𝜇 = 0 and 𝜇 = 0.1 but are not capable to
discriminate between transition from partial contact to permanent
contact (cf. 𝜇 = 0.1) or to contact separation (cf. 𝜇 = 0). To this
end, the frequency-domain analysis should be complemented by
investigations in directly in the time domain.

A longer simulation is thus run for 𝜇 = 0.25 where the rota-
tional velocity stays under the allowed limit. The corresponding
spectrogram is shown in Figure 9(c). At the beginning of the
simulation, there exists a superposition between the spectrum and
the second forward mode 𝑓2f only. For 𝑡 > 0.7𝑡ref, two super-
positions appear with the backward modes ( 𝑓1b and 𝑓2b) in the
negative frequency range. The associated peaks become dominant
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FIGURE 9: Rotor response spectrograms 𝑋𝑌 ( 𝑓 , 𝑡) and time evolution
of eigenfrequencies: 𝑓1b ( ), 𝑓1f ( ), 𝑓2b ( ), 𝑓2f ( )

and confirms the resonance of the backward precessional motion.
Around 2.7𝑡ref, secondary peaks arise and reflect a transition from
dry whip to dry whirl. Note that when the rotor is decelerating,
which is the case here, the frequencies of forward and backward
motions tend to the same value for each mode: 𝑓1b (𝑡) ≈ 𝑓1f (𝑡)
and 𝑓2b (𝑡) ≈ 𝑓2f (𝑡) for 𝑡 > 2.6𝑡ref. This effect is only caused by
the decrease of Ω(𝑡). Gyroscopic effects become less important
and the forward and backward modes exhibit similar frequencies.

5.2 Sensitivity to the stator support stiffness
In this section, the friction coefficient is set back to 0.1 and the

stator stiffness 𝑘s is varied. The stiffnesses to be tested, denoted
with the symbol ∗, are made non-dimensional through a division by
the reference stiffness 𝑘s,ref. Figure 10 shows that the normalized
rotational velocity Ω/Ωlim ≥ 1 during the entire simulation only
for 𝑘∗s > 5.
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FIGURE 10: Rotational speed transients: 𝑘∗s = 4 ( ), 5 ( ), 6 ( ),
8 ( ) and 10 ( )

The friction torque is plotted in Figure 11(a) for 𝑘∗s = 10.
When 𝑡 < 0.45𝑡ref, contact is partial since the torque vanishes
for short periods of time. During closed contacts, the friction
torque generated is smaller than the driving torque but steadily
increases. For 𝑡 > 0.45𝑡ref, the friction torque never vanishes
and contact becomes permanent. Moreover, it overcomes the
torque induced by the aerodynamical forces so that the rotational
speed decreases. The increased friction torque can be explained
by the precessional speed displayed in Figure 11(b). Indeed,
for 𝑡 > 0.5𝑡ref, precessional speed becomes strictly negative and
keeps decreasing: dry whip is taking place. This is confirmed by
the spectrogram in Figure 12. The main peak corresponds to a
negative frequency (≈ −109 Hz) and superimposes with the first
rear mode 𝑓1𝑏. Another main peak appears at ≈ −500 Hz which
remains close to the second backward mode 𝑓2𝑏 for 𝑡 > 0.75𝑡ref.
When contact is partial, the frequency content of the rotor vibration
is richer but still shows good agreement with the eigenfrequencies
of the coupled system. As already noticed in Figure 9(c), the
spectrogram shows the emergence of additional secondary peaks
when 𝑡 ≥ 𝑡ref. This phenomenon is related to a transition from dry
whip to pure rolling of the rotor. the presence of dry whirl is also
confirmed in Figure 11(c) showing the relative tangential velocity
at the contact location. One can observe a major difference between
Carp-oneVC, only accounting for sliding, and Sic-Proj. With
Carp-oneVC, the relative velocity remains small but switches
between negative to positive values. Instead, Sic-Proj and the
treatment of the true Coulomb model, strictly satisfies pure rolling
motion conditions. However, the corresponding spectrograms are
in good agreement.

5.3 Modification of stator mass
The present section investigates how the stator mass affects

the dynamical response of the system. A parameter study is
conducted on 𝑚s, 𝑘s and 𝜇. The stator mass is normalized by
a reference mass 𝑚s,ref and three values are tested: a reference
𝑚∗s = 1 along with 𝑚∗s = 2.10 and 𝑚∗s = 3.15. The friction
coefficient is set to the reference value 𝜇 = 0.1. For each mass
above, the stiffness 𝑘s starts at 𝑘ref and increased. A simulation is
run with same duration and the maximum rotational speed Ωmax is
found. Results for both Carp-oneVC and Sic-Proj are reported
in Figure 13(a). It turns out that, for the considered masses, the
increase of 𝑘s leads to a decrease of Ωmax. For the reference mass
𝑚∗s = 1, as already said, the maximum rotational velocity remains
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FIGURE 11: Time responses for 𝑘∗s = 10: Carp-oneVC ( ) and
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under Ωlim as soon as 𝑘s > 5.5𝑘s,ref. This effect reduces when
the mass increases. Indeed, for 𝑚∗s = 2.10, the maximum speed
no longer monotonously decreases with 𝑘s. However, there are
still operating parameters for which rotational speed limitation is
obtained. For the largest mass, the stiffness needs to be further
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FIGURE 13: Maximum rotational speed-stiffness diagram for three stator
masses: 𝑚∗s = 1 ( ), 𝑚∗s = 2.10 ( ) and 𝑚∗s = 3.15 ( )

increased to induce a decrease of Ωmax. However, it is not possible
to find a realistic stiffness guaranteeing max(Ω(𝑡))/Ωlim < 1. The
same conclusions are drawn for both solvers which provide similar
results with slight differences when the mass increases. These
differences are expected since, if impacts do not occur exactly at
the same instant, solvers provide distinct responses.

For 𝜇 = 0.17, Figure 13(b) shows again that a stiffer sta-
tor leads to a reduced max(Ω(𝑡)). Results are shown for the
Sic-Proj solver only but equivalent solutions were predicted
with Carp-oneVC. For all masses, there is a stiffness threshold for
which max(Ω(𝑡)) ≤ Ωlim is achieved. Accordingly, the combined
increase of 𝜇 and 𝑘s implies a rotor deceleration even for the
highest mass. This threshold increases with mass and decreases
with 𝜇. For instance, for the reference mass, the limitation is
satisfied for 𝑘s > 2𝑘s,ref instead of 5.5𝑘s,ref.

To summarize, a large friction coefficient and a stiff stator
support lead to a rotorshaft deceleration for the largest set of stator
masses. However, the friction coefficient is the most difficult
variable to control and identify.

6. CONCLUSION
Contact treatment with Lagrange multipliers in time domain

is implemented to predict the transient response of the rigid
rotor and stator. The unknown rotational velocity makes the
resolution non trivial due to gyroscopic effects and algorithms
must be adapted. The present paper confirms that approaches
based on Carpenter and Moreau-Jean algorithms show results in
agreement. Variations in the friction coefficient, the stator stiffness
at supports and the stator mass govern the occurrence of backward
precessional motion which is in agreement with literature [5].
The subsequent increase of the contact efforts, commonly to be
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avoided have a strong influence on the rotational velocity. For
a well-chosen set of parameters, the braking torque generated
by friction overcomes the driving torque from aerodynamics.
The rotational speed is then bounded and the rotor is able to
slow down. Existence of a backward precessional motion is also
confirmed through frequency analysis. A frequency-domain study
also shows that spectral content of the dynamics coincides with
coupled rotor-stator modes.
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NOMENCLATURE

𝑚 Mass [kg]
𝑘 Stiffness [N/m]
𝑐 Damping [N s/kg]
𝐹 force [N]
𝑟 Impulse [N s]
𝑒 Restitution factor [-]
𝑑 Local distance [m]
ℎ Time step [s]
𝑓 Frequency [Hz]
𝜏 Torque [N m]
𝜇 Coulomb friction coefficient [-]
Ω Angular velocity [rad/s]
𝑔0 Initial gap [m]
𝑡ref Simulation reference time [s]
Ωlim Rotational velocity limit [rpm]
(𝑋,𝑌, 𝑍) Fixed frame
(𝑈,𝑉,𝑊) Moving frame connected to center of mass
(𝐽𝑑 , 𝐽𝑝) Diametral and polar mass moments of inertia
(𝑥, 𝑦) Displacements in 𝑋 and 𝑌 directions
(𝜙, 𝛼, 𝜓) Rotation angles from fixed to moving frame
(𝜃𝑥 , 𝜃𝑦 , 𝜃𝑤) Rotation angles about 𝑋 , 𝑌 and𝑊 axes
v Generalized velocity coordinates [m/s]
q Generalized displacement coordinates [m,rad]
v𝑡 Tangential relative speed at contact level[m/s]
fext Generalized external efforts vector [N,N m]
f𝑐 Generalized contact efforts vector [N,N m]
n, t Normal and tangential unit vectors in contact local frame

Superscripts and subscripts
𝑖 discrete time index
N normal component
𝑡 tangential component
f friction
T turbine
G center of mass
s stator
r rotor
b bearing
ref reference
p predicted
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