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In this paper, we present a class of high order methods to approximate the singular value decomposition of a given complex matrix (SVD). To the best of our knowledge, only methods up to order three appear in the the literature. A first part is dedicated to defline and analyse this class of method in the regular case, i.e., when the singular values are pairwise distinct. The construction is based on a perturbation analysis of a suitable system of associated to the SVD (SVD system). More precisely, for an integer p be given, we define a sequence which converges with an order p + 1 towards the left-right singular vectors and the singular values if the initial approximation of the SVD system satisfies a condition which depends on three quantities : the norm of initial approximation of the SVD system, the greatest singular value and the greatest inverse of the modulus of the difference between the singular values. From a numerical computational point of view, this furnishes a very efficient simple test to prove and certifiy the existence of a SVD in neighborhood of the initial approximation. We generalize these result in the case of clusters of singular values. We show also how to use the result of regular case to detect the clusters of singular values and to define a notion of deflation of the SVD. Moreover numerical experiments confirm the theoretical results.

E ℓ (W ) = 0}. For each ℓ, 1 ⩽ ℓ ⩽ m and q, 1 ⩽ q ⩽ n, we know that there exists two Stiefel matrices U ∈ St m,ℓ , V ∈ St n,q , and a diagonal matrix Σ ∈ D ℓ×q ⩾0 be such that

f (U, V, Σ) =   E ℓ (U ) E q (V ) U * M V -Σ   = 0. (1.1)
When ℓ = m and q = n, the triplet (U, V, Σ) is the classical singular value decompsition (SVD) of the matrix M . If ℓ < m or q < n this abbreviated version of the SVD is referred as the thin SVD. The problem of computing a numerical thin SVD of M is to approximate the triplet (U, V, Σ) by a sequence (U i , V i , Σ i , ) i⩾0 such that the quantities f (U i , V i , Σ i ) i⩾0 converge to 0. We name SVD sequence a such type sequence (U i , Σ i , V i ) i⩾0 .

In the context of this paper we will say that a sequence (T i ) i⩾0 of a normed space with a norm ∥.∥ converges to T ∞ with an order p + 1 ⩾ 2 if there exists a positive constant c be such that ∥T i -T ∞ ∥ ⩽ c2 -(p+1) i +1 . We then say that the numerical method which defines the sequence (T i ) i⩾0 is of order p + 1. If p = 1 (respectively p = 2) we say that the method is quadratic (respectively cubic). Finally we say that a method associated to a map H is of order p if there exists a sequence x k+1 = H(x k ), k ⩾ 0, which converges at the order p. Moreover we shall consider the matrix norm ∥A∥ = max(∥A∥ 1 , ∥A * ∥ 1 ) where

∥A∥ 1 := max 1⩽i⩽m n j=1 |M i,j |.
Fundamental quantities occur throughout this study. From a triplet (U, V, Σ) ∈ E m×ℓ n×q we introduce :

1. ∆ = U * M V -Σ. 2. κ(Σ) = max 1, max 1⩽i⩽q 1 |σ i | , max i̸ =j 1 |σ i -σ j | + 1 |σ i + σ j |
where the σ i 's constitute the diagonal of Σ.

3. K(Σ) = max (1, max i σ i ).

Throughout the text p is a given integer greater or equal to one. The goal of this paper is the construction and the convergence analysis of a class of methods of order p + 1. The classical methods to compute the SVD are linear or quadratic : to best of our knowledge, there is no mention of any study in the literature on this subject of a method of order greater than three. These methods only use matrix addition and multiplication : there is no linear system to solve nor matrix to invert.

1.2. Construction of a quadratic method. We begin by explain how to construct a quadratic method to approximate the SVD. Let us given U, V, Σ and denote ∆ = U * M V -Σ. The first step is to consider multiplicative perturbations such type U Ω, V Λ and S of U , V , Σ respectively and also U 2 = U 1 (I ℓ + X) and

V 2 = V 1 (I q + Y ) multiplicative perturbations of U 1 = U (I ℓ + Ω) and V 1 = V (I q + Λ)
respectively. Expanding the quantities E ℓ (U 1 ), E q (V 1 ) and

∆ 2 := U * 2 M V 2 -Σ -S,
we get

E ℓ (U 1 ) = E ℓ (U ) + Ω + Ω * + Ω * E ℓ (U ) + E ℓ (U )Ω + Ω * Ω + Ω * E ℓ (U )Ω, (1.2) idem for E q (V 1 ) ∆ 2 = ∆ 1 -S + X * Σ + ΣY + X * ∆ 1 + ∆ 1 Y + X * (∆ 1 + Σ)Y. (1.3)
where

∆ 1 = U * 1 M V 1 -Σ.
Denoting ε = max(∥E ℓ (U )∥, ||E q (V )||, ∥∆∥), the second step is to determine two Hermitian matrices Ω, Λ, a diagonal matrix S, and two skew Hermitian matrices X, Y in order to get

max(||E ℓ (U 2 )||, ||E q (V 2 )||, ||∆ 2 ||) ⩽ O(ε 2 ). (1.4)
This occurs with Ω = -E ℓ (U )/2, Λ = -E q (V )/2 and (X, Y, S) a solution of the equation ∆ 1 -S + X * Σ + ΣY = 0. We will give in section 4 explicit formulas to solve this the linear equation where a solution is given by S = diag(∆ 1 ) and X, Y that are two skew Hermitian matrices. In fact a straighforward calculation shows that

E ℓ (U 1 ) = -(3I ℓ + 2Ω)Ω 2 (1.5)
idem for E q (V 1 ) ∆ 1 = ∆ + Ω(∆ + Σ) + (∆ + Σ)Ω + Ω(∆ + Σ)Ω (1.6)

∆ 2 = -X∆ 1 + ∆ 1 Y -X (∆ 1 + Σ)Y since X * = -X (1.7) E ℓ (U 2 ) = (I ℓ -X)E ℓ (U 1 )(I ℓ + X) + (I ℓ -X)(I ℓ + X) -I ℓ (1.8) idem for E q (V 2 ).
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The formula (1.5-1.6) imply ∥E ℓ (U 1 )∥ ⩽ O(ε 2 ) and ∥∆ 1 ∥ ⩽ O(ε). Similarly we have ∥E q (V 1 )∥ ⩽ O(ε 2 ). Moreover we will prove that ∥X∥, ∥Y ∥ ⩽ O(ε) in section 4. Plugging these estimates in the formulas (1.7-1.8) we find that the inequality (1.4) holds. From the point of view of the complexity this step is the key point of the methods presented here since this requires no matrix inversion. These ingredients pave the way for the construction of a quadradic method. The third step is to introduce the map

H 1 (U, V, Σ) =   U (I ℓ + Ω)(I ℓ + X) V (I q + Λ)(I q + Y ) Σ + S  
where Ω = -1 2 E ℓ (U ), Λ = -1 2 E q (V ), S ∈ D m×n is a diagonal matrix and X, Y are skew Hermitian matrices be such that ∆ 1 -S -XΣ + ΣY = 0. The behaviour of the sequence (U i , V i , Σ i ) i⩾0 defined by (U i+1 , V i+1 , Σ i+1 ) = H 1 (U i , V i , Σ i ), i ⩾ 0 is given by Theorem 1.2.

Remark 1.1. The Newton's method is based on the cancellation of the affine part of a Taylor expansion closed to a root of the function. Here we remark that only the cancellation of a part of the affine part is enough to build a numerical quadratic method. For instance in the expression (1.2), we cancel E ℓ (U ) + Ω + Ω * rather than

E ℓ (U ) + Ω + Ω * + Ω * E ℓ (U ) + E ℓ (U )Ω.
In the same way ∆ 1 -S + X * Σ + ΣY is cancelled rather than ∆ 1 -S + X * Σ + ΣY + X * ∆ 1 + ∆ 1 Y in the expression (1.3).

1.3. Construction of a method of order p + 1. We explain the main ideas that allow to generalize the previous method with the care to improve the condition of convergence. Taking in account the formulas (1.5 -1.8) we notice that to generalize the previous construction we need the following tools. We first require a method of order p + 1 to approximate the variety of Stiefel matrices. This is realized in considering a multiplicative perturbation U s p (Ω) of U where s p (u) is an univariate polynomial of degree p in order that U 1 = U (I ℓ + s p (Ω)) satisfies E ℓ (U 1 ) = O(E ℓ (U ) p+1 ). This is motivated by (1.5). Next we introduce a multiplicative perturbation U 1 c p (U 1 ) where c p (u) is an univariate polynomial of degree p such that (1 + c p (-u))(1 + c p (u)) -1 = O(u p+1 ). This is motivated by (1.8) where appears the expression (I ℓ -X)(I ℓ + X) -I ℓ . The polynomials s p (u) and c p (u) as well as the matrices Ω and X are defined respectively below and their properties will be precisely studied in sections 3 and 5.

Under these previous conditions a we will prove in Section 3 that a perturbation such type U 2 = U (I ℓ +s p (Ω))(I ℓ +c p (X)) satisfies E ℓ (U 2 ) = O(E ℓ (U ) p+1 ). Finally the third tool is to determine X, Y , and S in order to get the condition

||∆ p+1 || = O(||∆|| p+1 )
where

∆ p+1 = U * 2 M V 2 -Σ -S.
To introduce the map on which is based the method of order p + 1 we define the following quantities:

1. Let s p (u) the truncated polynomial of degree p of the series expansion of

-1 + (1 + u 2 ) -1/2 .
2. Let c p (u) the truncated polynomial of degree p of the series expansion of

(1 + u 2 ) 1/2 + u -1.
With these preliminaries we introduce the map H p :

(U, V, Σ) ∈ E m×n → H p (U, V, Σ) =   U (I ℓ + Ω)(I ℓ + Θ) V (I q + Λ)(I q + Ψ) Σ + S   ∈ E m×n (1.9)
This manuscript is for review purposes only.

where :

1. Ω = s p (E ℓ (U )) and Λ = s p (E q (V )).

2. Θ = c p (X) and Ψ = c p (Y ) where X and Y are defined below.

S

= S 1 +• • •+S p ∈ D m×n , X = X 1 +• • •+X p and Y = Y 1 +• • •+Y p with each
X k , Y k are skew Hermitian matrices in C ℓ×ℓ and C q×q respectively. Moreover each triplet (S k , X k , Y k ) are solutions of the following linear systems :

∆ k -S k -X k Σ + ΣY k = 0, 1 ⩽ k ⩽ p (1.10)
where the ∆ k 's for 2 ⩽ k ⩽ p + 1, are defined as

∆ 1 = (I ℓ + Ω)(∆ + Σ)(I q + Λ) -Σ, S 1 = diag(∆ 1 ) Θ k = c p (X 1 + • • • + X k ), Ψ k = c p (Y 1 + • • • + Y k ), 1 ⩽ k ⩽ p, ∆ k = (I ℓ + Θ * k-1 )(∆ 1 + Σ)(I q + Ψ k-1 ) -Σ - k-1 j=1 S j , (1.11) S k = diag(∆ k ), 2 ⩽ k ⩽ p.
We will see in section 5 that the formulas (1.10) cancel respectively the linear parts of each ∆ k . We will show that

||∆ p+1 || = O(||∆ 1 || p+1 ).
1.4. Main result. Then we state the folowing result which precisely shows the method associated to the map H p is of order p + 1.

Theorem 1.2. Let p ⩾ 1. From (U 0 , V 0 , Σ 0 ), let us define the sequence (U i+1 , V i+1 , Σ i+1 ) = H p (U i , V i , Σ i ), i ⩾ 0.
We denote ∆ = U * 0 M V 0 -Σ 0 , K = K(Σ 0 ) and κ = κ(Σ 0 ). We consider the constants defined in Table 1 : If

p = 1 p = 2 p ⩾ 3 a 2 4/
max((κK) a ||E ℓ (U 0 )||, (κK) a , ||E q (V 0 )||, κ a K a-1 ||∆ 0 ||) = ε ⩽ u 0 (1.12) then the sequence (U i , V i , Σ i ) i⩾0 converges to a solution (U ∞ , V ∞ , Σ ∞ ) of system
(1.1) with an order of convergence equal to p + 1. More precisely we have for i ⩾ 0 :

∥U i -U ∞ ∥ ⩽ γ 1 √ ℓ2 -(p+1) i +1 ε ∥V i -F ∞ ∥ ⩽ γ 1 √ q2 -(p+1) i +1 ε ∥Σ i -Σ ∞ ∥ ⩽ σ × 2 -(p+1) i +1 ε.
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1.5. Arithmetic Complexity. The computation of H p (U, V, Σ) only requires matrix additions and multiplications without resolution of linear systems. This is possible since there are explicit formulas for the equations (1.10). Table 2 gives the number of addition and multiplications to evaluate H p (U, V, Σ) where This implies 2(p + 1)(m 2 + n 2 ) + (m + 14n)p additions and 2(p + 1)(m

L k := ∆ k - S k -X k Σ + ΣY k . E ℓ (U ) s p (E ℓ (U )) c p (X) L k S k ∆ k matrix additions 1 p p 2 p matrix multiplications 1 p p 2 2p + 2 additions 10np (m + 4n)p multiplications (m -n + 8)np (m + n)mnp
3 + n 3 ) + (m 2 + mn + m -n + 8)np multiplications.
1.6. Outline of this paper. In section 2 we give a short overview on the computational methods for the SVD and we discuss about the method of Davies-Smith to update the SVD. We exhibit the links with the method associated to the map H 2 .

We also state a result on Davies-Smith method which will be proved in section 10.

In section 3 we study the approximation of the unitary group by high order methods.

We will use the polynomial s p (u) to define the sequence

U i+1 = U i (I ℓ + s p (E ℓ (U i ))),
i ⩾ 0, from a matrix U 0 closed to the unitary group. The result is that under condition ∥E ℓ (U 0 )|| < 1/4 the sequence (U i ) i⩾0 converges to the polar projection of U 0 . In section 4 we show how to explicitely solve the equation ∆ -S -XΣ + ΣY = 0. We also state a condition-like result that shows the quantity κ is the condition number of this resolution. In fact we will prove that : ∥X∥, ∥Y ∥ ⩽ κ∥∆∥. This bound plays a signifiant role in the convergence analysis. The section 5 is devoted to the convergence analysis. We introduce the notion of p-map for the SVD. This is convenient to states in Theorem 5.2 that the method associated to a p-map is of order p + 1. Then Theorem 1.2 derives from Theorem 5.2. The proof is done in sections 6, 7 and 8 for p = 1, p = 2, and p = 3 respectively. In section 11, we study the case of clusters of singular values and we show how to use the condition (1.12) to separate clusters of singular values. We introduce a notion of deflation for the SVD : the idea is to compute a thin SVD with one singular value per cluster. Finally we illustrate this by numerical experiments in section 12.

2. Related works and discussion.

2.1. Short overview on the SVD and the methods to compute it. "The practical and theoretical importance of the SVD is hard to overestimate".This sentence from Golub and Van Loan [START_REF] Golub | Matrix computations[END_REF] perfectly sums up the role of SVD in science and more particularly in the world of computation. The SVD was discovered by Belrami in 1873 and Jordan in 1874, see the historical survey of Stewart [START_REF] Stewart | On the early history of the singular value decomposition[END_REF] that traces the contributions of Sylvester, Schmidt and Weyl, the first precursors of the SVD. A recent overview of numerical methods for the SVD can be found in the Hanbook
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of Linear Algebra [START_REF] Hogben | Handbook of linear algebra[END_REF] mainly in chapters 58 and 59. On the aspects developments on modern computers, Dongarra and all [START_REF] Dongarra | The singular value decomposition: Anatomy of optimizing an algorithm for extreme scale[END_REF] give a survey of algorithms and their implementations for dense and tall matrices with comparison of performances of most bidiagonalization and Jacobi type methods. From a numerical linear algebra point of view, the SVD is at the center of the significant problems. Let us mention a few : the generalized inverse of a matrix [START_REF] Ben-Israel | Generalized inverses: theory and applications[END_REF], the best subspace problem [START_REF] Golub | An analysis of the total least squares problem[END_REF], the orthogonal Procrustes problem [START_REF] Eldén | A procrustes problem on the stiefel manifold[END_REF], the linear least square problem [START_REF] Golub | Matrix computations[END_REF], the low rank approximation problem [START_REF] Golub | Matrix computations[END_REF]. Finally, a very stimulating article of Martin and Porter [START_REF] Martin | The extraordinary svd[END_REF] describes the vitality of SVD in all areas by showing surprising examples.

There are two classes of methods to compute the SVD : bidiagonalizations methods and Jacobi methods. Since the time of precursors, Golub and Kahan in 1965 [START_REF] Golub | Calculating the singular values and pseudo-inverse of a matrix[END_REF] for bidiagonalization with QR iteration and Kogbeliantz in 1955 [START_REF] Kogbetliantz | Solution of linear equations by diagonalization of coefficients matrix[END_REF] for Jacobi twosided method, many various evolutions and ameliorations have been proposed. In our context (m ⩾ n), the bidiagonalzation methods reduce first the complex matrix under the form M = U M ′ V * where U , V are unitary and M ′ real and upper bidiagonal [START_REF] Dongarra | Block reduction of matrices to condensed forms for eigenvalue computations[END_REF].

Next the SVD is computed roughly by QR iteration with notable improvements as implicit zero-shift QR [START_REF] Demmel | Accurate singular values of bidiagonal matrices[END_REF] and differential qd algorihms [START_REF] Fernando | Accurate singular values and differential qd algorithms[END_REF]. In this vein of bidiagonalization methods, other alternatives to QR iteration have been developped. Let us mention the divide and conquer methods [START_REF] Gu | A divide-and-conquer algorithm for the bidiagonal svd[END_REF], [START_REF] Gates | Accelerating the svd two stage bidiagonal reduction and divide and conquer using gpus[END_REF], [START_REF] Li | An accelerated divide-and-conquer algorithm for the bidiagonal svd problem[END_REF], the bisection and inverse iteration methods [START_REF] Ipsen | Computing an eigenvector with inverse iteration[END_REF], [START_REF] Hogben | Handbook of linear algebra[END_REF] in chapter 55 and methods based on multiple relatively robust representation [START_REF] Dhillon | Multiple representations to compute orthogonal eigenvectors of symmetric tridiagonal matrices[END_REF], [START_REF] Willems | Computing the bidiagonal svd using multiple relatively robust representations[END_REF]. The Jacobi methods consist to successively apply rotations now called Givens rotations on the left and right of the original matrix in order to eliminate a pair of elements at each steps. Wilkinson [START_REF] Wilkinson | Note on the quadratic convergence of the cyclic jacobi process[END_REF] proves that the method is ultimately quadratic for the eigenvalue problem. After Kogbetliantz, the properties of two-sided Jacobi method applying two different rotations has been studied a lot :

global convergence [START_REF] Fernando | Linear convergence of the row cyclic jacobi and kogbetliantz methods[END_REF], [START_REF] Forsythe | The cyclic jacobi method for computing the principal values of a complex matrix[END_REF], quadratic convergence at the end of the algorithm [START_REF] Paige | On the quadratic convergence of kogbetliantz's algorithm for computing the singular value decomposition[END_REF], [START_REF] Bai | Note on the quadratic convergence of kogbetliantz's algorithm for computing the singular value decomposition[END_REF], behaviour in presence of clusters [START_REF] Charlier | On kogbetliantz's svd algorithm in the presence of clusters[END_REF], reliability and accuracy [START_REF] Drmač | New fast and accurate jacobi svd algorithm. i[END_REF], [START_REF] Drmač | New fast and accurate jacobi svd algorithm. ii[END_REF], [START_REF] Hari | Accuracy of two svd algorithms for 2× 2 triangular matrices[END_REF], [START_REF] Matejaš | Accuracy of the kogbetliantz method for scaled diagonally dominant triangular matrices[END_REF], [START_REF] Matejaš | On high relative accuracy of the kogbetliantz method[END_REF]. Let us also mention main improvements for the one-sided Jacobi method due to several forms of preconditionning [START_REF] Drmač | New fast and accurate jacobi svd algorithm. i[END_REF], [START_REF] Drmač | New fast and accurate jacobi svd algorithm. ii[END_REF] and [START_REF] Drmač | Algorithm 977: A qr-preconditioned qr svd method for computing the svd with high accuracy[END_REF] which uses a preconditionner QR to get high accuracy for the SVD. Finally the simultaneous use of block Jacobi methods and preconditionning improve convergence [START_REF] Bečka | New dynamic orderings for the parallel one-sided block-jacobi svd algorithm[END_REF], [START_REF] Okša | Asymptotic quadratic convergence of the two-sided serial and parallel block-jacobi svd algorithm[END_REF] and computing time [START_REF] Dongarra | The singular value decomposition: Anatomy of optimizing an algorithm for extreme scale[END_REF].

Other ways have been investigated related to classical topics studied in the field of numerical analysis. For instance, Chatelin [START_REF] Chatelin | Simultaneous newton's iteration for the eigenproblem[END_REF] studies the Newton method for the eigenproblem. This requires a resolution of a Sylvester equation. Since the resolution of Sylvester is expensive, several variants of Newton method are proposed but the quadratic convergence is lost. There is also the purpose of Edelman et al. [START_REF] Edelman | The geometry of algorithms with orthogonality constraints[END_REF] which explores the geometry of Grassmann and Stiefel manifolds in the context of numerical algorithms and propose Newton method in this context. It also requires to solve a Sylvester equation to get numerical results. These ideas also have been developped by Absil et al. [START_REF] Absil | Optimization algorithms on matrix manifolds[END_REF] in the context of the optimization on manifolds. Finally let us mention differential point of view developped by Chu [START_REF] Chu | A differential equation approach to the singular value decomposition of bidiagonal matrices[END_REF] where an O.D.E. is derived for the SVD in the context of bidiagonal matrices. The methods mentioned above have a most quadratic order of convergence.

To end this short review, let us mention methods based on the computation of the polar decomposition to deduce the SVD by spectral factorization of a Hermitian matrix. This idea has been introduced by Highm and Papadimitriou [START_REF] Higham | A new parallel algorithm for computing the singular value decomposition[END_REF]. More recently in 2014, Higham and Nakatsukasva improve this method to get the QDWH-SVD algorithm [START_REF] Higham | Backward stability of iterations for computing the polar decom-position[END_REF], [START_REF] Higham | Stable and efficient spectral divide and conquer algorithms forthe symmetric eigenvalue decomposition and the SVD[END_REF]. For a more complete history of the SVD we can refer to the chapter 4 section 3 of the very documented book A Journey through the History of Numerical Linear Algebra [START_REF] Brezinski | A Journey through the History of Numerical Linear Algebra[END_REF].
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2.2. The Davies-Smith method. The method of Davies and Smith [START_REF] Davies | Updating the singular value decomposition[END_REF] to update the singular decomposition of matrices in R m×n is probably the closest study to our. In our framework of notations, it consists to define the map

(U, V, Σ) → DS(U, V, Σ) =   U I ℓ + X + 1 2 X 2 1 =: U Γ 1 V I q + Y + 1 2 Y 2 1 =: V K 1 Σ + S =: Σ 1   (2.1) with S = S 1 + S 2 , X = X 1 + X 2 , Y = Y 1 + Y 2
where the S i 's, i = 1, 2, are diagonal matrices, the X i 's and Y i 's are skew Hermitian matrices that verify

X 1 Σ -ΣY 1 + S 1 = ∆ 1 := ∆ = U * M V -Σ (2.2) X 2 Σ -ΣY 2 + S 2 = ∆ 2 := - 1 2 X 1 (∆ + S 1 ) + 1 2 (∆ + S 1 )Y 1 . (2.3)
This gives an approximation at the order three of the SVD in the regular case under the condition that the quantity ∥∆ + Σ∥ is small enough. More precisely Davies and Smith states that if the condition κ 3 ε 3 ⩽ tol where tol is a given tolerance then

U Γ 1 ΣK * 1 V *
1 is an approximation of the SVD of M , such that :

1. ∥E ℓ (U Γ 1 )∥, ∥E q (V K 1 ) ⩽ 2(κε) 3 + O(κ 4 ε 4 ). 2. 1 ∥M ∥ ∥Γ * 1 U * M V K 1 -Σ 1 ∥ ⩽ 28 3 (κε) 3 + O(κ 4 ε 4 )
where the considered norm is that of Frobenius. Thanks to the map H p defined in the introduction with p = 2 , we improve the previous method and its analysis on several points.

1. The norm of E ℓ (U (I ℓ + Ω)(I q + Θ)) is in O(ε 3 ), see Theorem 2.1 below, while the norm of E ℓ (U Γ 1 ) depends on the norm of E ℓ (U ). In fact

E ℓ (U Γ 1 ) = Γ * 1 E ℓ (U )Γ 1 + E ℓ (Γ 1 ).
For this reason, Davies and Smith suggest to use a Givens type method after their update of the SVD to iterate the method.

2. Note that

Θ 2 = X 1 +X 2 + 1 2 (X 1 +X 2 )
2 is computed with the same arithmetic complexity as Γ 1 . There is a gain in the error analysis.

3. The analysis of the map H 2 takes in account all the terms of the series expansion of H 2 (U, V, Σ) with respect U, V, Σ. In this way, the Theorem 2.1 show that κ 5/4 K 2/5 ε (and not κε) is the quantity on which the method Davies Smith rests. This shows that the quantity K is not negligible in the error analysis.

4. The tolerance tol in the method associated to the map H p is determined by imposing a condition of contraction which is not the case in the Davies-Smith method, see the algorithm 2.3 of [START_REF] Davies | Updating the singular value decomposition[END_REF].

We defined a Davies-Smith revisited method introducing the map

(U, V, Σ) → DS(U, V, Σ) =   U (I ℓ + Θ 2 ) V (I q + Ψ 2 ) Σ + S =: Σ 1   (2.4) with S = S 1 + S 2 , X = X 1 + X 2 , Y = Y 1 + Y 2
where the S i 's, i = 1, 2, are diagonal matrices, the X i 's and Y i 's are skew Hermitian matrices defined by (2.2 -2.3). The following result specifies the behaviour of DS(U, V, Σ) and DS(U, V, Σ).
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Let us assume that

κ 5/4 K 2/5 ε 1 ⩽ ε ⩽ 0.1. Then the triplet (U 1 , V 1 , Σ 1 ) = DS(U, V, Σ) defined by (2.1) satisfies ∥∆ 1 ∥ := ∥U * 1 M V 1 -Σ 1 ∥ ⩽ (8 + 18ε + 33ε 2 )ε 3 . (2.5)
2. Let us assume that κ 6/5 K 3/10 ε 1 ⩽ ε ⩽ 0.1. Then the triplet ( Ū1 , V1 , Σ1 ) = DS(U, V, Σ) defined by (2.4) satisfies

∥ ∆1 ∥ := ∥ Ū * 1 M V1 -Σ1 ∥ ⩽ (6 + 21ε + 54ε 2 )ε 3 . (2.6)
Since κ 6/5 K 3/10 < κ 5/4 K 2/5 , the condition to update the singular value decomposition is better with the Davies Smith method revisited than the Davies Smith method.

3. Approximation of Stiefel matrices. The Stieffel manifold St m,ℓ generalizes the Unitary group. An important tool is the polar decomposition U 0 = π(U 0 )H of rectangular matrix U 0 where the polar projection π(U 0 ) is a Stiefel matrix and H is Hermitian positive semidefinite [START_REF] Horn | Matrix analysis[END_REF]. It is also well known that π(U 0 ) is indeed the closest element in St m,l to U 0 for every unitarily norm [START_REF] Fan | Some metric inequalities in the space of matrices[END_REF]Theorem 1]. Since we are doing approximate computations, the Stiefel matrices in an SVD are not given exactly, so we may wish to estimate the distance between an approximate Stiefel matrix and the closest actual Stiefel matrix. This is related to the following problem: given an approximately Stiefel m × ℓ matrix U , find a good approximation U + U for its projection on the manifold St m,ℓ . We define a class of high order iterative methods for this problem and provide a detailed analysis of its convergence, see also [START_REF] Kovarik | Some iterative methods for improving orthonormality[END_REF][START_REF] Björck | An iterative algorithm for computing the best estimate of an orthogonal matrix[END_REF][START_REF] Higham | Matrix nearness problems and applications[END_REF]. The theorem 3.3 establishes that our method converges towards the polar projection of the matrix U 0 ∈ C m×ℓ if U 0 is sufficiently close to the Stiefel manifold. In this case the matrix H is positive definite and can uniquely be written as the exponential of another Hermitian matrix.

3.1.

A class of high order iterative methods. We wish to compute U using an appropriate Newton iteration. Since the normal space in U of Stiefel manifol is composed of U Ω's where eΩ is an Hermitian matrix,it turns out that it is more convenient to write U + U = U (I ℓ + Ω). The following lemma gives the expression Ω so that U + U ∈ St m,ℓ it is the polar projection of U . Lemma 3.1. Let U ∈ C m×ℓ such that the spectral radius of E ℓ (U ) is strictly less than 1. Then

Ω = -I ℓ + (I ℓ + E ℓ (U )) -1/2 ⇒ E ℓ (U + U Ω) = 0. (3.1) Hence U (I ℓ + E ℓ (U )) -1/2 ∈ St m,ℓ is the polar projection of U .
Proof. If the spectral radius of E ℓ (U ) is strictly less than 1 then the matrix

(I ℓ + E ℓ (U )) 1/2 exists and Ω = -I ℓ + (I ℓ + E ℓ (U )) -1/2 is Hermitian positive definite matrix. With E ℓ (U ) = U * U -I ℓ and U = U Ω, we have E ℓ (U + U Ω) = (I ℓ + Ω * )(I ℓ + E ℓ (U ))(I ℓ + Ω) -I ℓ = E ℓ (U ) + 2Ω + ΩE ℓ (U ) + E ℓ (U )Ω + Ω 2 + ΩE ℓ (U )Ω. A straighforward calculation implies E ℓ (U +U Ω) = 0. Then U = U (I ℓ +Ω)(I ℓ +Ω) -1 . Hence U (I ℓ + E ℓ (U )) -1/2 ∈ St m,ℓ is the polar projection of U .
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Consequently an high order approximation of Ω = -I ℓ + (I ℓ + E ℓ (U )) -1/2 will permit to define an high order method to numerically compute the polar projection.

Evidently Ω commutes with U . The approximation of Ω can be obtained as follows.

Let us consider the Taylor serie of -1 + (1 + u) -1/2 at u = 0 :

s(u) = k⩾1 (-1) k 1 4 k 2k k u k = - 1 2 u + 3 8 u 2 - 5 16 u 3 + • • • For p ⩾ 1 we introduce s p (u) = p k=1 (-1) k t k u k and r p (u) = s(u)-s p (u).
The quantities

Ω p = s p (E ℓ (U )), R p = r p (E ℓ (U )) (3.2) commute with U * U . We have Ω p = Ω -R p and E ℓ (U + U Ω) = 0. A straightforward calculation shows that E ℓ (U + U Ω p ) = (U * + Ω p U * -R p U * )(U + U Ω p -U R p ) -I ℓ = E(U + U Ω) -2(I ℓ + Ω)U * U R p + R 2 p U * U = (I ℓ + E ℓ (U ))R p (-2I ℓ -2Ω + R p ) since U * U = I ℓ + E ℓ (U ) (3.3)
We are thus lead to the iteration that we will further study below:

U i+1 = U i (I ℓ + s p (E ℓ (U i )), i ⩾ 0. (3.4)
Theorem 3.3 below shows the convergence of the sequence (3.4) towards the polar projection of U 0 with a p order of convergence under the universal condition

∥E(U 0 )∥ < 1/4.

Error analysis.

Proposition 3.2. Let p ⩾ 1. Let U be an m × ℓ matrix with ε := ∥E ℓ (U )∥ < 1

and

Ω p = s p (E ℓ (U )). Let U 1 = U (I ℓ + Ω) and write ε 1 := ∥E ℓ (U 1 )∥. Then ∥Ω p ∥ ⩽ |s p (ε)| ⩽ -1 + (1 -ε) -1/2 and ε 1 ⩽ ε p+1 . (3.5) Proof. Let Ω p = s p (E ℓ (U )). We have ∥Ω p ∥ ⩽ |s p (ε)| ⩽ -1 + (1 -ε) -1/2 .
Since Ω is Hermitian which commutes with U we have

E ℓ (U 1 ) = (I ℓ + Ω p )U * U (I ℓ + Ω p ) -I ℓ = (I ℓ + Ω p ) 2 E ℓ (U ) + Ω 2 p + 2Ω p = (I ℓ + E ℓ (U ))(Ω 2 p + 2Ω p ) + E ℓ (U ).
Then using Lemma 3.4 below in sub-section, it follows easily that

E ℓ (U 1 ) = p k=0 α k E ℓ (U ) k E ℓ (U ) p+1
where

p k=0 |α k | ⩽ 1. Hence ε 1 ⩽ ε p+1 .
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Proposition 3.2 permits to analyse the behaviour of the sequence (U i ) i⩾0 deftined by (3.4).

Theorem 3.3. let p ⩾ 1. Let U 0 ∈ C m×ℓ be such that ∥E(U 0 )∥ ⩽ ε < 1/2.
Then the sequence defined by

U i+1 = U i (I ℓ + s p (E(U i )) i ⩾ 0, (3.6)
converges to a Stiefel matrix U ∞ ∈ St m,ℓ . More precisely, for all i ⩾ 0, we have

∥U i -U ∞ ∥ ⩽ √ ℓ 2 -(p+1) i +1 2ε 1 -2ε . (3.7) Moreover if ε < 1/4 then this sequence converges to the polar projection π(U 0 ) ∈ St m,ℓ of U 0 .
Proof. The Newton sequence (3.6) defined from U 0 = U gives

U i+1 = U 0 (I ℓ + Ω 0,p ) • • • (I ℓ + Ω i,p ) with Ω i,p = s p (E ℓ (U i )). An obvious induction using Proposition 3.2 yields ∥E ℓ (U i )∥ ⩽ 2 -(p+1) i +1 ε. In fact we have ||E ℓ (U i+1 )|| ⩽ ||E ℓ (U i )|| p+1 from Proposition 3.2 ⩽ 2 -(p+1) i+1 +p+1 ε p+1 ⩽ (2ε) p 2 -(p+1) i+1 +1 ε ⩽ 2 -(p+1) i+1 +1 ε since ε < 1/2.
We are using Lemma 3.6 to conclude. We have

∥Ω k,p ∥ ⩽ -1 + (1 -2 -(p+1) k +1 ε) -1/2 . Since ε ⩽ 1/2 then -1 + (1 -2 -(p+1) k +1 ε) -1/2 ⩽ 2 -(p+1) k +1 ε. Considering u 0 = ε, α 1 = 1
and α 2 = 0, the assumptions of Lemma 3.6 below are satisfied. Hence the sequence (U i ) i⩾0 converges to a matrix U ∞ which is an unitary matrix since the sequence (E ℓ (U i ) i⩾0 converges towards 0. We then have

∥U i -U ∞ ∥ ⩽ √ ℓ 2(α 1 + α 2 + α 1 α 2 u 0 ) 1 -2(α 1 + α 2 + α 1 α 2 u 0 )u 0 2 -(p+1) i +1 α 0 ε ⩽ √ ℓ 2 -(p+1) i +1 2ε 1 -2ε . We denote Z 0 = j⩾0 (I ℓ + Ω j,p ). We have U ∞ = U 0 Z 0 . From Lemma 3.6 Z 0 is invertible with ∥Z 0 ∥ ⩽ 2ε
. By induction on i, it can also be checked that all the Ω i,p 's commute. Whence Z 0 and Z -1 0 are actually Hermitian matrices. If ε < 1/4 we have

∥Z -1 0 -I ℓ ∥ ⩽ ∥Z -1 0 ∥∥I ℓ -Z 0 ∥ ⩽ 2ε/(1 -2ε) < 1. Then the logarithm log Z -1 0 is well defined. We conclude that Z -1 0 is the exponential of a Hermitian matrix, whence it is positive-definite. Since U 0 = U ∞ Z -1 0 , we conclude that U ∞ = π(U 0 ) the polar
projection of U 0 from the polar decomposition theorem.

Technical Lemmas.

This following Lemma is used in the proof of Proposition 3.2.

Lemma 3.4. Let p ⩾ 1. We have

(u + 1)(s p (u) 2 + 2s p (u)) + u = p k=0 α k u k u p+1
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where

p k=0 |α k | ⩽ 1. Proof. Let t i = (-1) i 1 4 i 2i i for i ⩾ 0.
The convolution of sequence binomial t i with itself is the sequence with general terms (-1) i . In fact it is sufficient to square

(1 + u) -1/2 : 1 1 + u = k⩾0 (-1) k u k = k⩾0   i+j=k t i t j   u k .
We proceed by induction. When p = 1 the lemma holds since

(u + 1)(h 1 (u) 2 + 2h 1 (u)) + u = (u + 1) u 2 4 -u + u = - 3 4 + 1 4 u u 2 and 1 4 + 3 4 = 1.
Let us suppose that the lemma holds for an indice p ⩾ 1 be given.

We first remark that α 0 = -2t p+1 . In fact since α 0 is the coefficient of u p+1 in

(u + 1)(s p (u) 2 + 2s p (u)) + u. Then α 0 = i + j = p 1 ⩽ i, j ⩽ p t i t j + i + j = p + 1 1 ⩽ i, j ⩽ p t i t j + 2t p = (-1) p -2t 0 t p + (-1) p+1 -2t 0 t p+1 + 2t p = -2t p+1 .
Next, writing h p+1 (u) = s p (u) + t p+1 u p+1 we get by straightforward calculations :

(u + 1)(s p (u) 2 + 2s p (u)) + u = p k=0 α k u k u p+1 + (u + 1)(2t p+1 s p (u)u p+1 + t 2 p+1 u 2(p+1) + 2t p+1 u p+1 ) = (α 1 + 2t p+1 (t 1 + 1))u p+2 + p k=2 (α k + 2t p+1 (t k + t k-1 ))u p+k+1 + t p+1 (2t p + t p+1 )u 2(p+1) + t 2 p+1 u 2p+3 := p+1 k=0 β k u k u p+2
Let us prove that p+1 k=0

|β k | ⩽ 1. In fact since t 1 = -1/2 and p k=1 |α k | = 1 -2|t p+1 | it follows: p+1 k=0 |β k | ⩽ p k=1 |α k | + |t p+1 | + 2|t p+1 | p k=2 (|t k-1 | -|t k |) + |t p+1 |(2|t p | -|t p+1 |) + t 2 p+1 ⩽ 1 -2|t p+1 | + |t p+1 | + 2|t p+1 |(|t 1 | -|t p |) + |t p+1 |(2|t p | -|t p+1 |) + t 2 p+1 ⩽ 1.
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The Lemma is proved.

The following Lemma 3.5 is used in the proof of Lemma 3.6.

Lemma 3.5. 1. Let 0 ⩽ u < 1. We have j⩾0 (1 + u 2 j ) = 1 1 -u . 2. Let p ⩾ 1 and 0 ⩽ ε < 1. We have for i ⩾ 0, j⩾0 (1 + 2 -(p+1) j+i +1 ε) ⩽ 1 + 2 -(p+1) i +1 2ε (3.8) 3. Let p ⩾ 1 and 0 ⩽ ε ⩽ 1/2. We have for i ⩾ 0, j⩾0 (1 -2 -(p+1) j+i +1 ε) -1/2 ⩽ 1 + 2 -(p+1) i +1 2ε (3.9)
Proof. For the item 1 we prove by induction that

k j=0 (1 + u 2 j ) = 1 -u 2 k+1 1 -u .
This holds when k = 0. Next, assuming the property for k be given we have

k+1 j=0 (1 + u 2 j ) = 1 -u 2 k+1 1 -u (1 + u 2 k+1 ) = 1 -u 2 k+2 1 -u .
Item 1 is proved. The item 2 follows from

j⩾0 (1 + 2 -(p+1) j+i +1 ε) ⩽ j⩾0 (1 + (2 -(p+1) i ) 2 j 2ε) ⩽ 1 +   j⩾0 (1 + (2 -(p+1) i ) 2 j ) -1   2ε ⩽ 1 + 1 1 -2 -(p+1) i -1 2ε from item 1. ⩽ 1 + 2 -(p+1) i 4ε. Since ε ⩽ 1/2 we have (1 -u) -1/2 ⩽ 1 + u, item 3 follows from : j⩾0 (1 -2 -(p+1) j+i +1 ε) -1/2 ⩽ j⩾0 (1 + 2 -(p+1) i+j +1 ε) ⩽ 1 + 2 -(p+1) i +1 2ε from item 2.
The Lemma 3.6 is used in Theorems 3.3 and 5.2.

Lemma 3.6. Let ε, u 0 , and α i , i = 1, 2, be real numbers such that ε ⩽ u 0 and

2(α 1 + α 2 + α 1 α 2 u 0 )u 0 < 1.
Let us consider a sequence of matrices defined by

U i+1 = U i (I ℓ + Ω i )(I l + Θ i ), i ⩾ 0,
where the norms of the Ω i 's and the Θ i 's satisfy

∥Ω i ∥ ⩽ α 1 2 -(p+1) i +1 ε and ∥Θ i ∥ ⩽ α 2 2 -(p+1) i +1 ε.
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Then the sequence (U i ) i⩾0 converges to a matrix U ∞ . If U ∞ is an unitary matrix then each U i is invertible and we have

∥U i -U ∞ ∥ ⩽ √ ℓ 2(α 1 + α 2 + α 1 α 2 u 0 ) 1 -2(α 1 + α 2 + α 1 α 2 u 0 )u 0 2 -(p+1) i +1 ε. Moreover each N i = j⩾0 (I ℓ + Ω i+j )(I ℓ + Θ i+j ) is invertible and satisfies ∥N i -I ℓ ∥ ⩽ 1 -2(α 1 + α 2 + α 1 α 2 u 0 )u 0 .
Proof. We remark that

U i = U 0 i-1 j=0 (I ℓ + Ω j )(I ℓ + Θ j ). Let N i = j⩾0 (I ℓ + Ω i+j )(I ℓ + Θ i+j ). Let us consider U ∞ = U 0 N 0 .
From assumption we know that

∥Ω j ∥ ⩽ α 1 2 -(p+1) j +1 ε and ∥Θ k ∥ ⩽ α 2 2 -(p+1) j +1 ε. Taking in account that ε ⩽ u 0 , it follows (1 + ∥Ω i+j ∥)(1 + ∥Θ i+j ∥) ⩽ 1 + (α 1 + α 2 + α 1 α 2 u 0 ) × 2 -(p+1) i+j +1 ε.
The matrix N i -I ℓ is written an infinite sum of homogeneous polynomials of degree k ⩾ 1:

N i -I ℓ = k⩾1 P k (Ω i , . . . , Ω i+j , . . . Θ i , . . . , Θ i+j , . . .)
Consequently for i ⩾ 0 we have :

∥N i -I ℓ ∥ ⩽ k⩾1 P k (∥Ω i ∥, . . . ∥Ω i+j ∥, . . . , ∥Θ i ∥, . . . , ∥Θ i+J ∥, . . .) ⩽ j⩾0 (1 + ∥Ω i+j ∥)(1 + ∥Θ i+j ∥) -1 ⩽ j⩾0 (1 + (α 1 + α 2 + α 1 α 2 u 0 ) × 2 -(p+1) i+j +1 ε) -1 ⩽ 2(α 1 + α 2 + α 1 α 2 u 0 )2 -(p+) i +1 ε from Lemma ?? ⩽ 2(α 1 + α 2 + α 1 α 2 u 0 )u 0 since ε ⩽ u 0 Since 2(α 1 + α 2 + α 1 α 2 u 0 )u 0 < 1 it follows that each N i is invertible. Since U ∞ = U 0 N 0 it is easy to see ∥U ∞ ∥ ⩽ ∥U 0 ∥(1 + 2(α 1 + α 2 + α 1 α 2 u 0 )ε).
We have

U i = U ∞ N -1 i . We deduce that ∥U i -U ∞ ∥ ⩽ ∥U ∞ N -1 i (I ℓ -N i )∥ ⩽ ∥U ∞ ∥ 1 1 -2(α 1 + α 2 + α 1 α 2 u 0 )u 0 2(α 1 + α 2 + α 1 α 2 u 0 )2 -(p+1) i +1 ε.
If U ∞ is an unitary matrix then each U i is invertible and

∥U ∞ ∥ ⩽ √ ℓ. The result is proved.
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Lemma 3.7. From U 0 ∈ C m×ℓ be given, let us define the sequence for i ⩾ 0,

U i+1 = U i (I ℓ + Ω i,p ) with Ω i,p = s p (E ℓ (U i )). Let ε = ∥E ℓ (U 0 )∥. Then we have ∥Ω i,p ∥ ⩽ (-1 + (1 -ε) -1/2 )ε (p+1) i -1
Proof. From Proposition 3.2 we know that

∥E ℓ (U i )∥ ⩽ ε (p+1) i . Since s p (u) ⩽ -1 + (1 -u) -1/2 we can write ∥Ω i,p ∥ ⩽ -1 + (1 -ε (p+1) i ) -1/2 . The function u → 1 u (-1 + (1 -u) -1/2
) is defined and is increasing on [0, 1]. We then find that

∥Ω i,p ∥ ⩽ 1 ε (-1 + (1 -ε) -1/2 )ε (p+1) i .
We are done.

4. SVD for perturbed diagonal matrices. C ℓ×ℓ and Y = (y i,j ) ∈ C q×q that are dend the tfined by the following formulas :

• For 1 ⩽ i ⩽ q, we take

S i,i = Re δ i,i (4.1) 
x i,i = -y i,i = Im δ i,i 2σ i i (4.2)
• For 1 ⩽ i < j ⩽ q, we take

x i,j = 1 2 δ i,j + δ j,i σ j -σ i + δ i,j -δ j,i σ j + σ i (4.3) y i,j = 1 2 δ i,j + δ j,i σ j -σ i - δ i,j -δ j,i σ j + σ i (4.4)
• For q + 1 ⩽ i ⩽ ℓ and 1 ⩽ j ⩽ q, we take

x i,j = 1 σ j δ i,j . (4.5)
• For q + 1 ⩽ i ⩽ ℓ and q + 1 ⩽ j ⩽ ℓ, we take

x i,j = 0. (4.6)
Then we have

∆ -S -XΣ + ΣY = 0 (4.7)
Proof. Since X and Y are skew Hermitian matrices, we have diag(Re(XΣ -ΣY )) = 0. In view of (4.1), we thus get

diag(Re ∆) = diag Re(XΣ -ΣY + S).
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By skew symmetry, for the equation

XΣ -ΣY = diag(Re ∆) = ∆ -S holds, it is sufficient to have σ i x i,i -σ i y i,i = i Im δ i,i , 1 ⩽ i ⩽ q. (4.8) σ i x i,i σ j x i,j -σ i x i,j σ j x j,j
σ i y i,i σ i y i,j -σ j y i,j σ j y j,j (4.9)

= i Im δ i,i δ i,j δ j,i i Im δ j,j , 1 ⩽ i < j ⩽ q σ j x i,j = δ i,j , q + 1 ⩽ i ⩽ ℓ, 1 ⩽ j ⩽ q. (4.10)
The formulas (4.2) clearly imply (4.8). The x i,j from (4.3) clearly satisfy (4.10) as well. For 1 ⩽ i < j ⩽ q, the formulas (4.9) can be rewritten as

σ j -σ i -σ i σ j Re x i,j Re y i,j = Re δ i,j Re δ j,i σ j -σ i σ i -σ j Im x i,j Im y i,j = Im δ i,j Im δ j,i .
Since σ i > σ j , the formulas (4.3-4.4) indeed provide us with a solution. The entries x i,j with q + 1 ⩽ i, j ⩽ ℓ do not affect the product XΣ, so they can be chosen as in (4.6). In view of the skew symmetry constraints x j,i = -x i,j and y j,i = -y i,j , we notice that the matrices X and Y are completely defined. Since Σ ∈ D ℓ×q we know that σ i > σ j for i < j. It follows

κ = κ(Σ) = max 1, max 1⩽i⩽q 1 σ i , max 1⩽i<j⩽q 1 σ i -σ j + 1 σ i + σ j (4.
|x i,j | ⩽ |δ i,j | 2 1 σ i -σ j + 1 σ i + σj + |δ i,j | 2 1 σ i -σ j + 1 σ i + σ j ⩽ κ|δ i,j | since |δ i,j | = |δ i,j |.
We also have

|x i,i | ⩽ |δ i,i | σ i and for q + 1 ⩽ i ⩽ ℓ and 1 ⩽ j ⩽ q, |x i,i | ⩽ |δ i,i | σ j .
Combined with the fact that ∥∆∥ ⩽ ε, we get ∥X∥ ⩽ κε. In the same way we also

have ∥Y ∥ ⩽ κε.
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(U, V, Σ) ∈ E m×ℓ n×q → H(U, V, Σ) =   U (I ℓ + Ω)(I ℓ + Θ) V (I q + Λ)(I q + Ψ) Σ + S   ∈ E m×ℓ n×q (5.1)
where Ω, Λ are Hermitian matrices, S a diagonal matrix and Θ, Ψ are skew Her-

mitian matrices. Let ∆ = U * M V -Σ and ∆ 1 = (I ℓ + Θ * )(I ℓ + Ω)U * M V (I q + Λ)(I q + Ψ) -Σ -S. We said that H is a p-map if there exists quantities a ⩾ 1, b ⩾ 0, τ , ζ 1 , ζ 2 , α 1 , α 2 , α 0 , α, ε be such that for all (U, V, Σ) satisfying max κ a K b ∥∆∥, κ a K b+1 ∥E ℓ (U )∥, κ a K b+1 ∥E q (V )∥ ⩽ ε we have : ||E ℓ (U (I ℓ + Ω))|| ⩽ ∥E ℓ (U )∥ p+1 and ∥E q (V (I q + Λ))∥ ⩽ ∥E q (V )∥ p+1 (5.2) κ a K b ∥∆ 1 ∥ ⩽ τ ∥∆∥ p+1 and κ a K b ∥S∥ ⩽ α∥∆∥ (5.3) ∥I ℓ + Θ∥ 2 , ∥I q + Ψ∥ 2 ⩽ ζ 1 ∥(I ℓ + Θ * )(I ℓ + Θ) -I ℓ ∥, ∥(I q + Ψ * )(I q + Ψ) -I q ∥ ⩽ 1 κ a K b+1 ζ 2 ε p+δ (5.4) ∥Ω∥, ∥Λ∥ ⩽ α 1 ∥∆∥ and ∥Θ∥, ∥Ψ∥ ⩽ α 2 α 0 ε. (5.5)
We are proving that the theorems cited in the introduction result from the following satement.

Theorem 5.2. Let an integer p ⩾ 1 and three reals a ⩾ 1, b, ε ⩾ 0. Let δ = 1 if p is odd and δ = 2 if p is even. Let us consider a p-map H as in (5.1). Let us consider a triplet (U 0 , V 0 , Σ 0 ) and define the sequence

for i ⩾ 0, (U i+1 , V i+1 , Σ i+1 ) = H(U i , V i , Σ i ). Let ∆ i = U * i M V i -Σ, K i := K(Σ i ) and κ i = κ(Σ i ) with K = K 0 and κ = κ 0 . Let us suppose max κ a K b ∥∆ 0 ∥, κ a K b+1 ∥E ℓ (U 0 )∥, κ a K b+1 ∥E q (V 0 )∥ ⩽ ε (5.6) (1 + αε) b (1 -2αε) a (2ε) p τ ⩽ 1. (5.7) (2ε) p (1 + αε) b+1 (1 -2αε) a (ζ 1 + ζ 2 ε δ-1 ) ⩽ 1. (5.8) 1 -8αε > 0 (5.9)
where the quantities α, τ , ζ 1 and ζ 2 are as in Definition 5.1. Then the sequence

(U i , V i , Σ i ) i⩾0 converge to an SVD of M and we have max κ a i K b i ∥∆ i ∥ , κ a i K b+1 i ∥E ℓ (U i )∥, κ a i K b+1 i ∥E q (V i )∥ ⩽ ε i ⩽ 2 -(p+1) i +1 ε (5.10) ∥Σ i -Σ 0 ∥ ⩽ (2 -2 2-(p+1) i ) αc κ ε (5.11)
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where c(1 -4αε) = 1. The inequality (5.11

) implies K -2αcε ⩽ K i ⩽ K + 2αcε and κ c ⩽ κ i ⩽ κ 1 -4αcε
. Morever if there exist positive constant u 0 such that ε ⩽ u 0 and 2(α

1 + α 2 + α 1 α 2 u 0 )u 0 < 1, then by denoting γ = 2(α 1 + α 2 + α 1 α 2 u 0 ) and σ = 0.82 × α we have ∥U i -U ∞ ∥ ⩽ 2 -(p+1) i +1 √ m γ 1 -γu 0 ε (5.12) ∥V i -V ∞ ∥ ⩽ 2 -(p+1) i +1 √ n γ 1 -γu 0 ε (5.13) ∥Σ i -Σ ∞ ∥ ⩽ 2 -(p+1) i +1 σε (5.14) Proof. Let us denote for each i ⩾ 0, U i,1 = U i (I ℓ + Ω i ) and U i+1 = U i,1 (I ℓ + Θ i ) with similar notations for V i,1 and V i+1 . Let ∆ i + Σ i = U * i M V i , Σ i+1 = Σ i + S i and also ε 0 = ε ε i = max(κ a i K b i ∥∆ i ∥, κ a i K b+1 i ∥E ℓ (U i )∥, κ a i K b+1 i ∥E q (V i )∥) κ 0 = κ κ i = κ(Σ i ) K 0 = K K i = K(Σ i )
We proceed by induction to prove (5.10 -5.11). The property evidently hold for i = 0.

By assuming this for a given i, let us prove it for i + 1. We first prove that ∥Σ i+1 -

Σ 0 ∥ ⩽ (2 -2 2-(p+1) i+1 ) αc κ ε under the assumption ∥Σ i -Σ 0 ∥ ⩽ (2 -2 2-(p+1) i ) αc κ ε with c = 1 + 4αcε. From Lemma 5.3 we have K -2αcε ⩽ K i ⩽ K + 2αcε and κ c ⩽ κ i ⩽ κ 1 -4αcε = 1 -4αε 1 -8αε κ.
Using these bounds and assumption (5.3)it follows that

∥Σ i+1 -Σ i ∥ = ∥S i ∥ ⩽ 1 κ a i K b i αε i ⩽ c κ 2 -(p+1) i +1 αε since a ⩾ 1 K ⩾ 1 and κ i ⩾ κ c . (5.15)
By applying the bound (5.15) we get

∥Σ i+1 -Σ 0 ∥ ⩽ ∥S i ∥ + ∥Σ i -Σ 0 ∥ ⩽ 2 1-(p+1) i 1 κ αcε + (2 -2 2-(p+1) i ) 1 κ αcε ⩽ (2 -2 1-(p+1) i (2 -1)) αc κ ε ⩽ (2 -2 -(p+1) i ) αc κ ε.
But it is easy to see that p ⩾ 1 implies

2 1-(p+1) i ⩾ 2 2-(p+1) i+1 . Hence ∥Σ i+1 -Σ 0 ∥ ⩽ (2 -2 2-(p+1) i+1 ) αc κ ε.
Then inequality (5.11) holds for all i. From (5.3) we have

∥Σ i+1 -Σ i ∥ = ∥S i ∥ ⩽ α κ i ε i .
We then deduce

K i - α κ i ε i ⩽ K i+1 ⩽ ∥Σ i ∥ + ∥Σ i+1 -Σ i ∥ ⩽ K i + α κ i ε i . (5.16)
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As in the proof of Lemma 5.3 we can obtain

κ i 1 + 2αε ⩽ κ i+1 ⩽ κ i 1 -2αε (5.17) We now prove that κ a i+1 K b i+1 ∥∆ i+1 ∥ ⩽ 2 -2 i+1 +1 ε.
Using both the assumption (5.3) and (5.16 -5.17) it follows

κ a i+1 K b i+1 ∥∆ i+1 ∥ ⩽ (1 + αε) b (1 -2αε) a κ a i K b i τ ∥∆ i ∥ p+1 ⩽ (1 + αε) b (1 -2αε) a τ ε p+1 i ⩽ (1 + αε) b (1 -2αε) a (2ε) p τ 2 -(p+1) i+1 +1 ε ⩽ 2 -(p+1) i+1 +1 ε since (1 + αε) b (1 -2αε) a (2ε) p τ ⩽ 1 from (5.7) .
We now can bound ∥E ℓ (U i+1 )∥. We have

∥E ℓ (U i+1 )∥ ⩽ ∥(I ℓ + Θ * i )U i,1 * U i,1 (I ℓ + Θ i )∥ ⩽ ∥(I ℓ + Θ * i )E ℓ (U i,1 )(I ℓ + Θ i ) + (I ℓ + Θ * i )(I ℓ + Θ i ) -I ℓ ∥ ⩽ (1 + ∥Θ i ∥) 2 ∥E ℓ (U i,1 )∥ + ∥(I ℓ + Θ * i )(I ℓ + Θ i ) -I ℓ ∥. (5.18)
From assumption (5.2)we know

∥E ℓ (U i,1 )∥ ⩽ ∥E ℓ (U i )∥ p+1 ⩽ 1 κ a i K b+1 i ε p+1 i
. It follows using both assumption (5.4), (5.22 -5.16) that

κ a i+1 K b+1 i+1 ∥E ℓ (U i+1 )∥ ⩽ (1 + αε) b+1 (1 -2αε) a (ζ 1 ε p+1 i + ζ 2 ε p+δ i ) ⩽ (1 + αε) b+1 (1 -2αε) a (2ε) p (ζ 1 + ζ 2 ε δ-1 )2 -(p+1) i+1 +1 ε ⩽ 2 -(p+1) i+1 +1 ε since (1 + αε) b+1 (1 -2αε) a (2ε) p (ζ 1 + ζ 2 ε δ-1 ) ⩽ 1 from (5.8) . Hence κ a i+1 K b+1 i+1 ∥E ℓ (U i+1 )∥ ⩽ 2 -(p+1) i+1 +1 ε. In the same way κ a i+1 K b+1 i+1 ∥E q (V i+1 )∥ ≤ 2 -2 i+1 +1 ε. Hence we have shown that ε i+1 ⩽ 2 -2 i+1 +1 ε.
This completes the proof of (5.10-5.11).

By applying Lemma 3.6 we conclude that the sequences (U i ) i⩾0 and (V i ) i⩾0

converges respectively towards U ∞ and V ∞ which are two unitary matrices since

∥E ℓ (U i )∥, ∥E q (V i ) ⩽ 2 -2 i +1 ε.
Hence the bounds (5.12 -5.13) hold. Finally the bound This manuscript is for review purposes only.

(5.14) follows from

∥Σ i+j -Σ i ∥ ⩽ i+j-1 k=i ∥Σ k+1 -Σ k ∥ ⩽ k⩾i 2 -(p+1) k +1 αε ⩽   k⩾0 2 -(p+1) k   2 -(p+1) i +1 αε ⩽ 2 -(p+1) i +1 × 0.82αε since k⩾0 2 -(p+1) k ⩽ k⩾3 2 -2 k ⩽ 0.82.
Hence the sequence

(Σ i ) i⩾0 admits a limit Σ ∞ . The triplet (U ∞ , V ∞ , Σ ∞ ) is a solution of SVD system (1.1
). The theorem is proved.

Lemma 5.3. Using the notations and asumptions of the proof of Theorem 5.2 we have with c = 1 + 4αcε :

K -2αcε ⩽ K i ⩽ K + 2αcε κ c ⩽ κ i ⩽ κ 1 -4αcε
Proof. Let us prove that K i ⩽ K + 2αε. We have

K i := ∥Σ i ∥ ⩽ ∥Σ 0 ∥ + ∥Σ i -Σ 0 ∥ ⩽ K + (2 -2 -(p+1) i +1 ) αc κ ε ⩽ K + 2αcε since κ ⩾ 1.
In the same way K i ⩾ K -2αcε. We have also

κ i ⩽ κ 1 -4αcε
. In fact, if σ i,j 's be the diagonal values of Σ i , the Weyl's bound [START_REF] Weyl | Das asymptotische verteilungsgesetz der eigenwerte linearer partieller differentialgleichungen (mit einer anwendung auf die theorie der hohlraumstrahlung)[END_REF] implies that

|σ i,j -σ 0,j | ⩽ ∥Σ i -Σ 0 ∥ ⩽ 2 αc κ ε 1 ⩽ j ⩽ n, (5.19) and K -2 αc κ ε ⩽ σ i,j ⩽ K + 2 αc κ ε 1 ⩽ j ⩽ n.
Hence, since κ, K ⩾ 1 we get

κ 1 + 2αcε ⩽ σ -1 i,j ⩽ κ 1 -2αcε (5.20)
Moreover for 1 ⩽ j < k ⩽ n, we have :

|σ i,k ± σ i,j | ⩾ |σ 0,k ± σ 0,j | -|σ i,k -σ 0,k | -|σ i,j -σ 0,j | ⩾ |σ 0,k ± σ 0,j | 1 - 1 κ|σ 0,k ± σ 0,j | 4αcε from (5.19) ⩾ |σ 0,k ± σ 0,j |(1 -4αcε) = |σ 0,k ± σ 0,j | 1 -8αε 1 -4αε > 0
since κ|σ 0,k ± σ 0,j | ⩾ 1 and (5.9)

(5.21)
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Taking in account the definition of κ and the inequalities (5.20) , (5.21), we then get

κ i = max 1, max j 1 σ i,j , max k̸ =j 1 |σ i,k -σ i,j | + 1 |σ i,k + σ i,j | ⩽ κ max 1 1 -2αcε , 1 1 -4αcε ⩽ κ 1 -4αcε = 1 -4αε 1 -8αε .
In the same way we have

|σ i,k ± σ i,j | ⩽ |σ 0,k ± σ 0,j | + |σ i,k -σ 0,k | + |σ i,j -σ 0,j | ⩽ |σ 0,k ± σ 0,j |(1 + 4αcε) = |σ 0,k ± σ 0,j |c.
We deduce that

κ i ⩾ κ c = (1 -4αε)κ. (5.22)
The Lemma is proved.

6. Proof of Theorem 1.2 : case p = 1.

To help the verification of certain parts of the proof, it is possible to download a Maple file at https://perso.math.univ-toulouse.fr/yak/files/2023/09/high-order-methods-for-svd-aided-proofs-with-Maple-09-23. mw After clicking on the link above, a Maple code is displayed in your internet browser.

Then choose the option to display the source code of the page. Next copy and paste the text into an editor. Finally save for example under svd-armentano-yak.mw. Open Maple to run this file.

Let

s = 1 + 1 2 ε 2 + 1 + 1 4 ε, τ = (3 + sε)s 2 , a = 2, b = 1, u 0 = 0.0289.
It consists to verify the assumptions of Theorem 5.2. Remember that (5.6) is satisfied from assumption since

max κ a K b+1 ∥E ℓ (U )∥, κ a K b+1 E q (V )||, κ a K b ∆|| ⩽ ε
where U , V , ∆ stand for U 0 , V 0 , ∆ 0 respectively. The item (5.2) follows of Proposition

3.2 since Ω = - 1 2 E ℓ (U ) and Λ = - 1 2 E q (V ).
Let us prove the item (5.3). To do that we denote ∆ 0,1 = (I ℓ + Ω)(∆ + Σ)(I q + Λ) -Σ and ε 0,1 = ∥∆ 0,1 ∥. From Proposition 3.2 and ||E ℓ (U )||, ∥E q (V )∥ ⩽ ε κ a K b+1 we know that ∥Ω∥, ∥Λ∥ ⩽ 1 2κ a K b+1 ε . We then apply Proposition 6.1 with w = 1 2 to get

ε 0,1 ⩽ 1 + 1 2 ε 2 + 1 + 1 4 ε ε κ a K b ⩽ sε κ a K b . (6.1)
This manuscript is for review purposes only.

From Lemma 4.3 we have ∥X∥, ∥Y ∥ ⩽ κε 0,1 . We deduce that the quantity

∆ 1 = (I ℓ -X)(∆ 0,1 + Σ)(I q + Y ) -Σ -S = -X∆ 0,1 + ∆ 0,1 Y -X∆ 0,1 Y -XΣY since ∆ 0,1 -S -XΣ + ΣY = 0, can be bounded by ∥∆ 1 ∥ ⩽ 2κε 2 0,1 + κ 2 ε 3 0,1 + κ 2 Kε 2 0,1 ⩽ 2 κ 3 K 2 + sε κ 4 K 3 + 1 κ 2 K s 2 ε 2 since κ, K ⩾ 1 and ε 0,1 ⩽ sε κ 2 K from (6.1) . ⩽ 1 κ 2 K (3 + sε)s 2 ε 2 = 1 κ 2 K τ ε 2
On the other hand S = diag(∆ 0,1 ).

It follows ∥S∥ ⩽ ε 0,1 ⩽ sε κ 2 K
. The quantity α of Definition 5.1 is equal to s. This allows to prove the assumption (5.7) that is

2ε 1 + sε (1 -2sε) 2 τ ⩽ 2 1 + sε (1 -2sε) 2 (3 + sε)s 2 ε ⩽ 1 since ε ⩽ u 0 = 0.0289.
We now prove the item (5.4). We have

∥I ℓ + Θ∥ 2 ⩽ (1 + ∥X∥) 2 ∥(I ℓ -X)(I ℓ + X) -I ℓ ∥ = ∥X∥ 2 .
Using Lemma 9.4 we know that ∥X∥ ⩽ κε 0,1 ⩽ sε κ a-1 K b . We deduce that

(1 + ∥X∥) 2 ⩽ (1 + sε) 2 = ζ 1 ∥(I ℓ -X)(I ℓ + X) -I ℓ ∥ ⩽ ζ 2 ε 2 κ 2a-2 K 2b where ζ 2 = s 2 . ⩽ 1 κ a K b+1 ζ 2 ε 2 since a = 2 and b = 1.
This allows to prove the assumption (5.8) that is

(2ε) (1 + sε) 2 (1 -2sε) 2 (ζ 1 + ζ 2 ε δ-1 ) ⩽ 2 (1 + sε) 2 (1 -2sε) 2 ((1 + sε) 2 + s 2 )ε since p = 1 implies δ = 1 ⩽ 0.443 ⩽ 1 since u ⩽ u 0 .
Finally 1 -8sε ⩾ 0.46 > 0. This proves the item (5.9).

We now verify the assumption (5.5). We have seen that ∥Ω∥, ∥Λ∥ ⩽ 1 2 ε. Hence

α 1 = 1 2
. On the other hand one has Θ = X and Ψ i = Y . From ∥X∥, ∥Y ∥ ⩽ sε ⩽ 2.042ε since u ⩽ u 0 , we can take α 2 = 2.042. Since γu 0 = 2(α 1 + α 2 + α 1 α 2 u 0 )u 0 < 0.15 then the bounds (5.12 -5.14) of Theorem 5.2 hold with γ = 5.14

γ 1 -γu 0 ⩽ 6.1 σ = 0.82s ⩽ 1.67.
The Theorem 1.2 is proved in the case p = 1.□
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∥∆ 1 ∥ ⩽ (1 + wε) 2 + 2w + w 2 ε ε κ a K b .
Proof. We have Ω * = Ω. A straightforward calculation shows that

∆ 1 = (I ℓ + Ω)∆(I q + Λ) + (I ℓ + Ω)Σ(I q + Λ) -Σ = (I ℓ + Ω)∆(I q + Λ) + ΩΣ + ΣΛ + ΩΣΛ.
Bounding ∥∆ 1 ∥ we get

∥∆ 1 ∥ ⩽ 1 + wε κ a K b+1 2 ε κ a K b + 2 wε κ a K b + wε κ a K b+1 2 K ⩽ (1 + wε) 2 + 2w + w 2 ε ε κ a K b since κ, K ⩾ 1.
The proposition is proved.

7. Proof of Theorem 1.2 : case p = 2. Let us introduce some constants and quantities.

w = 1 2 1 + 3 4 ε , s = (1 + wε) 2 + 2w + w 2 ε, a = 4 3 , b = 1 3 , u 0 = 0.046. (7.1) 
We also introduce

τ 1 = 2 + 2ε + 5 4 ε 2 + 1 4 ε 3 τ 2 = 3 + 1 2 (11 + 2τ 1 )ε + 1 2 (8 + 7τ 1 )ε 2 + 1 2 (2 + 7τ 1 + τ 2 1 )ε 3 (7.2) + 1 2 (3 + 2τ 1 )τ 1 ε 4 + τ 2 1 ε 5 + 1 4 τ 3 1 ε 6 τ = τ 1 τ 2 (7.3) α = (1 + τ 1 (sε)sε)s
Let us verify the assumptions of Theorem 5.2. The item (5.2) follows of Proposition 3.2 since Ω = s 2 (E ℓ (U )) and Λ = s 2 (E q (V )). Let us prove the item (5.3). We first bound ∥∆ 1 ∥ where

∆ 1 = U * 1 M V -Σ 1 .
We use the ∆ 0,i , 1 ⩽ i ⩽ 3, the quantities defined by the formulas (1.10-1.11). By definition of the map H 2 , we have ∆ 1 = ∆ 0,3 .

We introduce the quantities ε 0,i = ∥∆ 0,i ∥. From Proposition 3.2 in the case p = 2 and

assumption ||E ℓ (U )||, ∥E q (V )∥ ⩽ ε κ a K b+1 we know that ∥Ω∥, ∥Λ∥ ⩽ w κ a K b+1 ε with w = 1 2 1 + 3 4
ε . We then apply Proposition 6.1 to get

ε 0,1 ⩽ ((1 + wε) 2 + 2w + w 2 ε) ε κ a K b ⩽ sε κ a K b from (7.1) . (7.4)
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From Proposition 7.1 we can write

∥∆ 1 ∥ = ∥∆ 0,3 ∥ ⩽ 1 κ 4/3 K 1/3 τ (sε)s 3 ε 3 .
We now bound the norm of S = S 1 + S 2 . We have always from Proposition 7.1

∥S∥ ⩽ ∥∆ 0,1 ∥ + ∥∆ 0,2 ∥ ⩽ 1 κ 4/3 K 1/3 (1 + τ 1 (sε)sε)sε = 1 κ 4/3 K 1/3 αε. (7.5)
A numerical computation shows that the inequality (2ε) 2 (1 + αε) 1/3 (1 -2αε) 4/3 τ (sε)s 3 ⩽ 1 is verified for all u ⩽ u 0 . Then the assumption (5.7) holds.

We now prove the item (5.4). We have

∥I ℓ + Θ∥ 2 ⩽ (1 + ||c 2 (X)||) 2 ∥(I ℓ + Θ * )(I ℓ + Θ) -I ℓ ∥ ⩽ (1 + c 2 (-∥X∥))(1 + c 2 (∥X∥)) -1
From the bound (7.5) we deduce that

∥X∥ ⩽ ∥X 1 ∥ + ∥X 2 ∥ ⩽ κx κ 4/3 K 1/3 = x κ 1/3 K 1/3 with x = αε. On the other hand c 2 (u) = u+ 1 2 u 2 and (1+c 2 (-u))(1+c 2 (u))-1 = u 4 4 .
It follows :

∥I ℓ + Θ∥ 2 ⩽ 1 + x + 1 2 x 2 2 = ζ 1 ∥(I ℓ + Θ * )(I ℓ + Θ) -I ℓ ∥ ⩽ 1 4κ 4/3 K 4/3 (αε) 4 = 1 κ 4/3 K 4/3 ζ 2 ε 4 where ζ 2 = 1 4 α 4 ε 4 .
We now prove a part of assumption (5.8) that is (2ε

) 2 (1 + αε) 4/3 (1 -2αε) 4/3 (ζ 1 + ζ 2 ε) ⩽ 1. We have (2ε) 2 (1 + αε) 4/3 (1 -2αε) 4/3 (ζ 1 + ζ 2 ε) ⩽ 0.025 since u ⩽ u 0 .
This proves the item (5.8). The item 5.9 holds since 1 -8αε ⩾ 0.05 > 0 when ε ⩽ u 0 .

Let us prove the assumption (5.5). Using ε ⩽ u 0 we have ∥Ω∥, ∥Λ∥ ⩽ wε ⩽ α 1 ε with α 1 = 0.52 and ∥Θ∥, ∥Ψ∥

⩽ (1 + x/2)αε ⩽ α 2 ε with α 2 = 2.7 Moreover 2(α 1 + α 2 + α 1 α 2 u 0 )u 0 ⩽ 0.304 < 1
Then the bounds (5.12 -5.14) of Theorem 5.2 hold with γ = 6.56

γ 1 -γu 0 ⩽ 9.41 σ = 0.82α ⩽ 2.1.
The Theorem 1.2 is proved for p = 2. □ This manuscript is for review purposes only.

Proposition 7.1. Let p = 2, ε ⩾ 0. Let us consider ∆ 1 = U * 1 M V 1 -Σ such that ∥∆ 1 ∥ = ε 1 ⩽ ε κ 4/3 K 1/3
where κ = κ(Σ) and K = K(Σ). Let us consider τ 1 := τ 1 (ε) and τ := τ (ε) as in (7.3) Then we have

∥∆ 2 ∥ ⩽ 1 κ 4/3 K 1/3 τ 1 ε 2 , τ 3 := ∥∆ 3 ∥ ⩽ 1 κ 4/3 K 1/3 τ ε 3 , where ∆ 2 = (I ℓ + Θ * 1 )(∆ 1 + Σ)(I q + Ψ 1 ) -Σ -S 1 and ∆ 3 = (I ℓ + Θ * 2 )(∆ 1 + Σ)(I q + Ψ 2 ) -Σ -S 1 -S 2
with Θ 2 and Ψ 2 are defined by the formulas (1.11) for p = 2.

Proof. We denote e 2 (X) = X 2 /2, Θ 1 = X 1 + e 2 (X 1 ) and

Ψ 1 = Y 1 + e 2 (Y 1 )
.

Remember ∆ 1 +Σ = U * ΣV and ∆ 2 = (I ℓ +Θ * 1 )(∆ 1 +Σ)(I q +Ψ 1 )-Σ-S 1 .
Expanding ∆ 2 we find

∆ 2 = ∆ 1 -S 1 -X 1 Σ + ΣY 1 -X 1 ΣY 1 + 1 2 X 2 1 Σ + Σ 1 2 Y 2 1 + 1 4 X 2 1 ΣY 2 1 + 1 2 X 2 1 ΣY 1 - 1 2 X 1 ΣY 2 1 -X 1 ∆ 1 + ∆ 1 Y 1 -X 1 ∆ 1 Y 1 + 1 2 X 2 1 ∆ 1 + 1 2 ∆ 1 Y 2 1 + 1 4 X 2 1 ∆ 1 Y 2 1 + 1 2 X 2 1 ∆ 1 Y 1 - 1 2 X 1 ∆ 1 Y 2 1 = 1 2 (X 1 (-ΣY 1 + X 1 Σ) + (-X 1 Σ + ΣY 1 )Y 1 ) + 1 4 X 2 1 ΣY 2 1 + 1 2 X 1 (X 1 Σ -ΣY 1 )Y 1 -X 1 ∆ 1 + ∆ 1 Y 1 -X 1 ∆ 1 Y 1 + 1 2 X 2 1 ∆ 1 + 1 2 ∆ 1 Y 2 1 e + 1 4 X 2 1 ∆ 1 Y 2 1 + 1 2 X 2 1 ∆ 1 Y 1 + 1 2 X 1 ∆ 1 Y 2 1 = 1 2 (X 1 (-∆ 1 -S 1 ) + (S 1 + ∆ 1 )Y 1 ) + 1 4 X 2 1 ΣY 2 1 + 1 2 X 1 (-∆ 1 -S1)Y 1 (7.6) + 1 2 X 2 1 ∆ 1 + 1 2 ∆ 1 Y 2 1 + 1 4 X 2 1 ∆ 1 Y 2 1 + 1 2 X 2 1 ∆ 1 Y 1 - 1 2 X 1 ∆ 1 Y 2 1 .
We know that ∥∆ 1 ∥ ⩽ ε 1 . From the formula (7.6) we deduce

∥∆ 2 ∥ ⩽ 2κε 2 1 + 1 4 κ 4 Kε 4 1 + 2κ 2 ε 3 1 + 1 4 κ 4 ε 5 1 + κ 3 ε 4 1 ⩽ q 1 ε 2 1 with q 1 = 2κ + 2κ 2 ε 1 + 5 4 κ 4 Kε 2 1 + 1 4 κ 4 ε 3 1 (7.7) Since ε 1 ⩽ ε κ 4/3 K 1/3 it follows q 1 ε 1 ⩽ τ 1 ε with τ 1 = 2 + 2ε + 5 4 ε 2 + 1 4 ε 3 . Hence we have obtained ∥∆ 2 ∥ ⩽ τ 1 ε 2 κ 4/3 K 1/3 . From definition Θ 2 = c 2 (X 1 + X 2 ). Hence we can write Θ 2 = Θ 1 + X 2 + A 2 with A 2 := A 2 (X 1 , X 2 ) = c 2 (X 1 +X 2 ) -c 2 (X 1 ) -X 2 = 1 2 ((X 1 + X 2 ) 2 -X 2 1 ) = 1 2 (X 2 2 + X 1 X 2 + X 2 X 1 )
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In the same way

Ψ 2 = Ψ 1 +Y 2 +B 2 where B 2 = A 2 (Y 1 , Y 2 ). Expanding (I ℓ +Θ * 2 )(∆ 1 + Σ)(I q + Ψ 2 ) we get ∆ 3 = (I ℓ + Θ * 2 )(∆ 1 + Σ)(I q + Ψ 2 ) -Σ -S 1 -S 2 = (I ℓ + Θ * 1 -X 2 + A 2 )(∆ 1 + Σ)(I q + Ψ 1 + Y 2 + B 2 ) -Σ -S 1 -S 2 = (I ℓ + Θ * 1 )(∆ 1 + Σ)(I q + Ψ 1 ) -Σ -S 1 -S 2 + (I ℓ + Θ * 1 )(∆ 1 + Σ)(Y 2 + B 2 ) + (-X 2 + A 2 )(∆ 1 + Σ)(I q + Ψ 1 ) + (-X 2 + A 2 )(∆ 1 + Σ)(Y 2 + B 2 )
We know that

(I ℓ + Θ * 1 )(∆ 1 + Σ)(I q + Ψ 1 ) -Σ -S 1 -S 2 = ∆ 2 -S 2 -X 2 Σ + ΣY 2 = 0.
Expanding more ∆ 3 , we then can write by grouping the terms appropriately :

∆ 3 = -X 2 ∆ 1 Y 2 + ∆ 1 B 2 + A 2 ∆ 1 -X 2 ∆ 1 B 2 + A 2 ∆ 1 Y 2 + A 2 ∆ 1 B 2 (7.8) + Θ * 1 ∆ 1 Y 2 -X 2 ∆ 1 Ψ 1 + Θ * 1 ∆ 1 B 2 + A 2 ∆ 1 Ψ 1 (7.9) + G, where G = -X 2 ∆ 1 + ∆ 1 Y 2 -X 2 ΣY 2 + ΣB 2 + A 2 Σ + Θ * 1 ΣY 2 -X 2 ΣΨ 1 + Θ * 1 ΣB 2 + A 2 ΣΨ 1 -X 2 ΣB 2 + A 2 ΣY 2 + A 2 ΣB 2 .
The Lemma 7.2 modifies the quantity as sum of the following G i 's :

G 1 = 1 2 X 2 (∆ 2 -S 2 ) + 1 2 (S 2 -∆ 2 )Y 2 (7.10) G 2 = 1 2 (X 1 (∆ 2 -S 2 ) + (S 2 -∆ 2 )Y 1 ) + 1 2 (X 2 (-∆ 1 -S 1 ) + (S 1 + ∆ 1 )Y 2 ) (7.11) G 3 = 1 2 (X 1 (∆ 2 -S 2 )Y 1 + X 2 (∆ 1 -S 1 )Y 2 + X 1 (∆ 2 -S 2 ) Y 2 ) (7.12) + 1 2 (X 2 (∆ 1 -S 1 )Y 1 + X 1 (∆ 1 -S 1 )Y 2 + X 2 (∆ 2 -S 2 )Y 1 ) G 4 = 1 2 X 2 (S 2 -∆ 2 )Y 2 (7.13) G 5 = e 2 (X 1 )ΣR 2,1 + Q 2,1 Σe 2 (Y 1 ) + e 2 (X 1 )Σe 2 (Y 2 ) + e 2 (X 2 )Σe 2 (Y 1 ) (7.14) where Q 2,1 = 1 2 (X 1 X 2 + X 2 X 1 ) and R 2,1 = 1 2 (Y 1 Y 2 + Y 2 Y 1 )
. We are going to prove

∥∆ 3 ∥ ⩽ q 1 q 2 ε 3 1
where q 2 is defined below in (7.16). To do that we will use the bounds

1. ∥X 1 ∥, ∥Y 1 ∥ ⩽ κε 1 , ∥∆ 2 ∥ ⩽ q 1 ε 2 1 and ∥X 2 ∥, ∥Y 2 ∥ ⩽ κq 1 ε 2 1 . (7.15) 2. ∥Θ 1 ∥, ∥Ψ 1 ∥ ⩽ 1 + 1 2 κε 1 κε 1 . 3. ∥Q 2,1 ∥, ∥R 2,1 ∥ ⩽ q 1 κ 2 ε 3 1 . 4. ∥A 2 ∥, ∥B 2 ∥ ⩽ 1 2 (q 2 1 κ 2 ε 4 1 + 2q 1 κ 2 ε 3 1 ) = 1 2 (q 1 ε 1 + 2)q 1 κ 2 ε 3 1 .
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Considering the bounds of the norms of matrices given in (7.8-7.14), we get

1 q 1 ε 3 1 ∥∆ 3 ∥ ⩽ 1 4 q 3 1 κ 4 ε 6 1 + q 2 1 κ 4 ε 5 1 + (κ + q 1 )q 1 κ 3 ε 4 1 + 2κ 3 q 1 ε 3 1 + 2κ 2 q 1 ε 2 1 + 2κ 2 ε 1 from (7.8) + 1 2 κ 4 q 1 ε 4 1 + κ 3 (κ + q 1 )ε 3 1 + 3κ 3 ε 2 1 + 2κ 2 ε 1 from (7.9) + κq 1 ε 1 + 3κ + 3 2 κ 2 q 1 ε 2 1 + 3 2 κ 2 ε 1 + 1 2 κ 2 q 2 1 ε 3 1 from (7.10-7.13) + 1 2 κ 4 Kq 1 ε 3 1 + κ 4 Kε 2 1 . from (7.14)
Collecting the previous bound we get ||∆ 3 || ⩽ q 2 q 1 ε 3 1 where

q 2 = 3κ + 1 2 (11κ + 2q 1 )κε 1 + 1 2 (2κ 2 K + 6κ + 7q 1 )κ 2 ε 2 1 (7.16) + 1 2 (q 1 κ 2 K + 2κ 2 + 6κq 1 + q 2 1 )κ 2 ε 3 1 + 1 2 (3κ + 2q 1 )q 1 κ 3 ε 4 1 + q 2 1 κ 4 ε 5 1 + 1 4 q 3 1 κ 4 ε 6 1 .
Now we are bounding q 2 ε 1 . We remark that the monomials which appears in q 2 ε 1 are of the form q i 1 κ j K k ε i+l 1 for some (i, j, k, l) ∈ N 4 such that i ⩾ 0, 3j ⩽ 4l and 3k ⩽ l.

Since ε 1 ⩽ ε κ 4/3 K 1/3 and q 1 ε 1 ⩽ τ 1 ε the we have :

q i 1 κ j K k ε i+l 1 ⩽ (τ 1 ε) i κ j-4l/3 K k-l/3 ε l ⩽ τ i 1 ε i+l since κ, K ⩾ 1.
From the expression of q 2 it follows after straightforward calculation that q 2 ε 1 ⩽ τ 2 ε where

τ 2 = 3 + 1 2 (11 + 2τ 1 )ε + 1 2 (8 + 7τ 1 )ε 2 + 1 2 (τ 2 1 + 7τ 1 + 2)ε 3 + 1 2 (3 + 2τ 1 )τ 1 ε 4 + τ 2 1 ε 5 + 1 4 τ 3 1 ε 6 .
Since we also have q 1 ε 1 ⩽ τ 1 ε it follows

||∆ 3 || ⩽ τ 1 τ 2 ε 2 ε 1 ⩽ 1 κ 4/3 K 1/3 τ 2 τ 1 ε 3 . (7.17)
The Proposition is proved.

Lemma 7.2. Let us consider G = -X 2 ∆ 1 + ∆ 1 Y 2 -X 2 ΣY 2 + A 2 Σ + ΣB 2 + Θ * 1 ΣY 2 -X 2 ΣΨ 1 + Θ * 1 ΣB 2 + A 2 ΣΨ 1 -X 2 ΣB 2 + A 2 ΣY 2 .
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Then G = G 1 + • • • + G 5 with G 1 = 1 2 X 2 (∆ 2 -S 2 ) + 1 2 (S 2 -∆ 2 )Y 2 G 2 = 1 2 (X 1 (∆ 2 -S 2 ) + (S 2 -∆ 2 )Y 1 ) + 1 2 (X 2 (-∆ 1 -S 1 ) + (S 1 + ∆ 1 )Y 2 ) G 3 = 1 2 (X 1 (∆ 2 -S 2 )Y 1 + X 2 (∆ 1 -S 1 )Y 2 + X 1 (∆ 2 -S 2 ) Y 2 ) + 1 2 (X 2 (∆ 1 -S 1 )Y 1 + X 1 (∆ 1 -S 1 )Y 2 + X 2 (∆ 2 -S 2 )Y 1 ) G 4 = 1 2 X 2 (S 2 -∆ 2 )Y 2 G 5 = e 2 (X 1 )ΣR 2,1 + Q 2,1 Σe 2 (Y 1 ) + e 2 (X 1 )Σe 2 (Y 2 ) + e 2 (X 2 )Σe 2 (Y 1 )
where

Q 2,1 = 1 2 (X 1 X 2 + X 2 X 1 ) and R 2,1 = 1 2 (Y 1 Y 2 + Y 2 Y 1 ).
Proof. Let e 2 (X) = X 2 /2. We have

A 2 = e 2 (X 2 ) + Q 2,1 with Q 2,1 = 1 2 (X 1 X 2 + X 2 X 1 ).
Moreover Θ 1 = X 1 + e 2 (X 1 ). In the same way

B 2 = e 2 (Y 2 ) + R 2,1 with R 2,1 = 1 2 (Y 1 Y 2 + Y 2 Y 1 )and Ψ 1 = Y 1 + e 2 (Y 1 ). We also remark e 2 (X 2 ) = 1 2 X 2 2 . Expanding G
we can write G as the sum of the following quantities :

G 1 = -X 2 ΣY 2 + 1 2 X 2 2 Σ + 1 2 ΣY 2 2 G 2 = -X 2 ∆ 1 + ∆ 1 Y 2 + Q 2,1 Σ + ΣR 2,1 -X 1 ΣY 2 -X 2 ΣY 1 G 3 = -X 1 ΣR 2,1 + Q 2,1 ΣY 1 -X 2 ΣR 2,1 + Q 2,1 ΣY 2 -X 1 Σe 2 (Y 2 ) + e 2 (X 2 )ΣY 1 + e 2 (X 1 )ΣY 2 -X 2 Σe 2 (Y 1 ) G 4 = -X 2 Σe 2 (Y 2 ) + e 2 (X 2 )ΣY 2 G 5 = e 2 (X 1 )ΣR 2,1 + Q 2,1 Σe 2 (Y 1 ) + e 2 (X 1 )Σe 2 (Y 2 ) + e 2 (X 2 )Σe 2 (Y 1 )
We are going to transform the quantities G i 's. We first remark using

∆ 2 -S 2 -X 2 Σ + ΣY 2 = 0 that -X 2 ΣY 2 + 1 2 X 2 2 Σ + 1 2 ΣY 2 2 = 1 2 X 2 (-ΣY 2 + X 2 Σ) + 1 2 (-X 2 Σ + ΣY 2 )Y 2 = 1 2 X 2 (∆ 2 -S 2 ) + 1 2 (S 2 -∆ 2 )Y 2 .
Hence

G 1 = 1 2 X 2 (∆ 2 -S 2 ) + 1 2 (S 2 -∆ 2 )Y 2 .
Next we remember that

Q 2,1 = 1 2 (X 1 X 2 + X 2 X 1 ) and R 2,1 = 1 2 (Y 1 Y 2 + Y 2 Y 1 )
. On the other hand we have :

∆ i -S i -X i Σ + ΣY i = 0 for i = 1, 2

. Hence we can write

This manuscript is for review purposes only.

G 2 as G 2 = -X 2 ∆ 1 + ∆ 1 Y 2 + Q 2,1 Σ + ΣR 2,1 -X 1 ΣY 2 -X 2 ΣY 1 = -X 2 ∆ 1 + ∆ 1 Y 2 + 1 2 (X 1 (X 2 Σ -ΣY 2 ) + (-X 2 Σ + ΣY 2 )Y 1 ) + 1 2 (X 2 (-ΣY 1 + X 1 Σ) + (-X 1 Σ + ΣY 1 )Y 2 ) = -X 2 ∆ 1 + ∆ 1 Y 2 + 1 2 (X 1 (∆ 2 -S 2 ) + (S 2 -∆ 2 )Y 1 ) + 1 2 (X 2 (∆ 1 -S 1 ) + (S 1 -∆ 1 )Y 2 ) = 1 2 (X 1 (∆ 2 -S 2 ) + (S 2 -∆ 2 )Y 1 ) + 1 2 (X 2 (-∆ 1 -S 1 ) + (S 1 + ∆ 1 )Y 2 )
Next, by proceeding as above we see that

G 3 = -X 1 ΣR 2,1 + Q 2,1 ΣY 1 -X 2 ΣR 2,1 + Q 2,1 ΣY 2 -X 1 Σe 2 (Y 2 ) + e 2 (X 2 )ΣY 1 + e 2 (X 1 )ΣY 2 -X 2 Σe 2 (Y 1 ) = 1 2 (-X 1 ΣY 2 Y 1 + X 1 X 2 ΣY 1 -X 2 ΣY 1 Y 2 + X 2 X 1 ΣY 2 ) + 1 2 (X 1 X 2 ΣY 2 + X 2 X 1 ΣY 1 -X 1 ΣY 1 Y 2 -X 2 ΣY 2 Y 1 ) + 1 2 (-X 1 ΣY 2 2 -X 2 ΣY 2 1 + X 2 1 ΣY 2 + X 2 2 ΣY 1 ) = 1 2 (X 1 (∆ 2 -S 2 )Y 1 + X 2 (∆ 1 -S 1 )Y 2 + X 1 (∆ 2 -S 2 ) Y 2 ) + 1 2 (X 2 (∆ 1 -S 1 )Y 1 + X 1 (∆ 1 -S 1 )Y 2 + X 2 (∆ 2 -S 2 )Y 1 )
We now see that

G 4 = -X 2 Σe 2 (Y 2 ) + e 2 (X 2 )ΣY 2 = 1 2 (-X 2 ΣY 2 2 + X 2 2 ΣY 2 ) = 1 2 X 2 (S 2 -∆ 2 )Y 2 .
Finally

G 5 = e 2 (X 1 )ΣR 2,1 + Q 2,1 Σe 2 (Y 1 ) + e 2 (X 1 )Σe 2 (Y 2 ) + e 2 (X 2 )Σe 2 (Y 1 ).
8. Proof of Theorem 1.2 : case p ⩾ 3.

Notations.

Let us introduce some quantities to simplify the reading of expressions. We introduce the constants

θ = 0.354, η = 1 1 -θ , a = 4 3 , b = 1 3 , u 0 = 0.0297. (8.1)
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w = 1 ε (-1 + (1 -ε) -1/2 ), s = (1 + wε) 2 + 2w + w 2 ε = 2(1 -ε) -1 , a 1 (ε) = (1 + √ 1 -ε 2 ) -1 , a 2 (ε) = 1 ε 2 (a 1 (ε) -1/2) b 1 (ε) = ε 2 a 1 (ε) 2 √ 1 -ε 2 + 2a 1 (ε), b 2 (ε) = a 1 (ε) 2 √ 1 -ε 2 + 2a 2 (ε) α = ηs, (8.2) 
For i = 1, 2 we introduce

x i = a i (ηε), y i = b i (ηε), z i = a i (θε), r 1 = θ 2 z 1 +ηy 1 , t 1 = 1 + ηx 1 ε. and τ (ε) = 2(1 + η) + 2r 1 + θ 2 +2t 1 η + 3 2 η 2 + 1 2 ηθ 2 + 1 2 θ 4 ε 1 (8.3) + (z 2 1 + 2z 2 )θ 6 + 2y 1 z 1 θ 4 + 2r 1 + 2x 1 z 1 η 2 + η 2 y 2 1 θ 2 ε 2 1 + 2 (y 2 + x 1 y 1 ) η 3 + 2ηr 1 t 1 ε 2 1 + (2z 2 θ 8 + 2z 2 ηθ 6 + (2y 2 η 3 + r 2 1 )θ 2 + 2(x 2 + y 2 )η 4 )ε 3 1 .
The following lemma justifies these notations and will be use in the sequel.

Lemma 8.1. We have τ (sε)sε -θ ⩽ 0 and 2

(1 + αε) b/3 (1 -2αε) a/3 s 4/3 τ (sε) ⩽ 1 and for all ε ∈ [0, u 0 ].
Proof. From straighforward computations.

8.2. Proof. It consists to verify the assumptions of Theorem 5.2. Remember that

max(κ a K b+1 ∥E ℓ (U )∥, κ a K b+1 ∥E q (V )||, κ a K b ∥∆||) ⩽ ε
where U , V , ∆ stand for U 0 , V 0 , ∆ 0 respectively. The item (5.2) follows of Proposition 3.2 since Ω = s p (E ℓ (U )) and Λ = s p (E q (V )). Let us prove the item (5.3). To do that we denote ∆ 0,1 = (I ℓ +Ω)(∆+Σ)(I q +Λ)-Σ and ε 0,1 = ∥∆ 0,1 ∥. From Proposition 3.2

and assumption ||E ℓ (U )||, ∥E q (V )∥ ⩽ ε κ a K b+1 we know that ∥Ω∥, ∥Λ∥ ⩽ w κ a K b+1 ε .

We then apply Proposition 6.1 to get

ε 0,1 ⩽ ((1 + wε) 2 + 2w + w 2 ε) ε κ a K b ⩽ sε κ a K b from (8.2) . (8.4)
In view to use the Propositon 8.2, let us prove that τ (ε 0,1 )ε 0,1 ≤ θ. Using Lemma 8.1 we have

τ (ε 0,1 )ε 0,1 ⩽ τ (sε)sε since ε 0,1 ⩽ sε ⩽ θ from Lemma 8.1 since ε ⩽ u 0 .
From formulas (1.11) we have

∆ 1 = ∆ 0,p+1 = (I ℓ + Θ * p )(∆ 0,1 + Σ)(I q + Ψ p ) -Σ - p k=1 S k .
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The quantity τ which appears in (5.7) is equal to τ (sε) p s p+1 . Using Propositon 8.2 with τ := τ (sε) p s p+1 , we then get

∥∆ 1 ∥ = ∥∆ 0,p+1 ∥ ⩽ 1 κ a K b (τ (sε)s p+1 p ) p ε p+1 since ε 0,1 ⩽ sε.
On the other hand from definition S = S 1 + • • • + S p where S k = diag(∆ 0,k ). It follows

∥S i ∥ ⩽ ε 0,k = ∥∆ 0,k ∥. From Proposition 8.2 one has ε 0,k ⩽ τ (sε) k-1 ε k 0,1 ⩽ θ k-1 ε 0,1 since τ (sε)sε ⩽ θ and ε 0,1 ⩽ sε κ a K b We deduce ∥S∥ ⩽ p k=1 ε 0,k ⩽ 1 1 -θ ε 0,1 ⩽ αε κ a K b . (8.5)
The assumption (5.7) is satisfied. In fact we have

(2ε) p (1 + αε) b (1 -2αε) a τ (sε) p s p+1 ⩽ 2 (1 + αε) b/3 (1 -2αε) a/3 τ (sε)s 4/3 ε p since p ⩾ 3 and s ⩾ 1 ⩽ 1 from Lemma 8.1 since ε ⩽ u 0 . (8.6) 
We now prove the item (5.4). We have

∥I ℓ + Θ∥ 2 ⩽ (1 + ||c p (X)||) 2 ∥(I ℓ + Θ * )(I ℓ + Θ) -I ℓ ∥ ⩽ (1 + c p (-∥X∥))(1 + c p (∥X∥)) -1 Using Lemma 9.4 and ε 0,1 ⩽ s ε κ a K b we know that ∥X∥ ⩽ ηκε 0,1 ⩽ x κ a-1 K b = x κ b K b
with x = αε. We deduce both from Lemma 9.4 that

(1 + ||c p (X)|) 2 ⩽ (1 + x + x 2 a 1 (x)) 2 = ζ 1 (8.7)
and from Lemma 9.9 that

(1 + c p (-∥X∥))(1 + c p (∥X∥)) -1 (8.8) ⩽ 2 1 -x 2 + a 1 (x)x p+1 a 1 (x) 1 κ a-1 K b αε p+δ ⩽ 2 1 -x 2 + a 1 (x)x 3 a 1 (x)α p+δ 1 κ b K b p+δ ε p+1 ⩽ ζ 2 κ a K b+1 ε p+1 since p ⩾ 3 implies (p + δ)b ⩾ b + 1
where δ = 1 if p is odd and δ = 2 if p is even from Lemma 9.9. We then remark that

(2ϵ) p α p+δ ε δ-1 ⩽ (2α 5/3 ε) p since p + δ p ⩽ 5 3 (8.9)
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This allows to prove the assumption (5.8) that is (2ε

) p (1 + αε) b+1 (1 -2αε) a (ζ 1 + ζ 2 ε δ-1 ) ⩽ 1.
We first have since b + 1 = a

(2ε) p 1 + αε 1 -2αε a ζ 1 ⩽ 2 1 + αε 1 -2αε a/3 (1 + x + x 2 a 1 (x)) 2/3 ε p ⩽ (0.037) p ⩽ 0.00005 since ε ⩽ u 0 and p ⩾ 3.
We now remark that

ζ 2 = 2 1 -x 2 + a 1 (x)x 3 a 1 (x) ⩽ 0.998 since ε ⩽ u 0 implies x ⩽ 0.098.
Taking in account (8.8 -8.9) we get :

(2ε) p 1 + αε 1 -2αε a ζ 2 ε δ-1 ⩽ 2 1 + αε 1 -2αε a/3 α 5/3 ε p ⩽ (0.24) p ⩽ 0.013 since ε ⩽ u 0 and p ⩾ 3. Consequently (2ε) p (1 + αε) a (1 -2αε) a (ζ 1 + ζ 2 ε δ-1 ) ⩽ 0.015 < 1.
This proves the item (5.8).

The assumption (5.9) holds since 1 -8αε ⩾ 0.25 > 0 when ε < u 0 .

We now verify the assumption (5.5). From above we know that ∥Ω∥, ∥Λ∥ ⩽

w κ a K b+1 ε with w = 1 ε (-1 + (1 -ε) -1/2
). We can take w ⩽ α 1 = 0.52 since ε ⩽ u 0 .

On the other hand one has Θ = c p (X) and Ψ = c p (Y ). From above we know that

∥c p (X)∥, ∥c p (Y )∥ ⩽ (1 + xa 1 (x)) x with x = αε ⩽ α 2 ε with α 2 = 3.35 since ε ⩽ u 0 .
Since γu 0 = 2(α 1 + α 2 + α 1 α 2 u 0 )u 0 < 0.233 < 1 then the bounds (5.12 -5.14) of Theorem 5.2 hold with γ = 7.82

γ 1 -γu 0 ⩽ 10.2 σ = 0.82α ⩽ 2.62
The Theorem 1.2 is proved for p ⩾ 3.

□ Proposition 8.2. Let p > 2, ε ⩾ 0. Let us consider ∆ 1 = U * 1 M V 1 -Σ such that ∥∆ 1 ∥ = ε 1 ⩽ ε κ 4/3 K 1/3 where κ = κ(Σ) and K = K(Σ). Let us consider τ := τ (ε) as in (8.
3) and suppose τ ε ≤ θ. Then we have This manuscript is for review purposes only.

τ p+1 := ∥∆ p+1 ∥ ⩽ 1 κ 4/3 K 1/3 τ (ε) p ε p+1 where ∆ p+1 = (I ℓ + Θ * p )(∆ 1 + Σ)(I q + Ψ p ) -Σ -
Proof. Since the X k 's and Y k 's are skew Hermitian matrices, we have

Θ p = Θ p-1 + X p + A p with A p := A p (X 1 + . . . + X p-1 , X p ) = c p (X 1 + • • • + X p ) -c p (X 1 + • • • + X p-1 ) -X p
In the same way

Ψ p = Ψ p-1 +Y p +B p where B p = A p (Y 1 +• • •+Y p-1 , Y p ).
We remark that A p and B p are Hermitian matrices. Expanding

(I ℓ + Θ * p )(∆ 1 + Σ)(I q + Ψ p ) we get ∆ p+1 = (I ℓ + Θ * p )(∆ 1 + Σ)(I q + Ψ p ) -Σ - p l=1 S l = (I ℓ + Θ * p-1 -X p + A p )(∆ 1 + Σ)(I q + Ψ p-1 + Y p + B p ) -Σ - p l=1 S l = (I ℓ + Θ * p-1 )(∆ 1 + Σ)(I q + Ψ p-1 ) -Σ - p-1 l=1 S l -S p -X p Σ + ΣY p + (I ℓ + Θ * p-1 )(∆ 1 + Σ)(Y p + B p ) + (-X p + A p )(∆ 1 + Σ)(I q + Ψ p-1 ) + (-X p + A p )(∆ 1 + Σ)(Y p + B p ) + X p Σ -ΣY p .
From definition we know that

(I ℓ +Θ * p-1 )(∆ 1 +Σ)(I q +Ψ p-1 )-Σ- p-1 l=1 S l -S p -X p Σ+ΣY p = ∆ p -S p -X p Σ+ΣY p = 0.
Expanding more ∆ p+1 , we then can write by grouping the terms appropriately :

∆ p+1 = -X p ∆ 1 + ∆ 1 Y p -X p ∆ 1 Y p + ∆ 1 B p + A p ∆ 1 -X p ∆ 1 B p + A p ∆ 1 Y p (8.10) + A p ∆ 1 B p + Θ * p-1 ∆ 1 Y p -X p ∆ 1 Ψ p-1 + Θ * p-1 ∆ 1 B p + A p ∆ 1 Ψ p-1 (8.11) + G, where G = -X p ΣY p + ΣB p + A p Σ + Θ * p-1 ΣY p -X p ΣΨ p-1 + Θ * p-1 ΣB p + A p ΣΨ p-1 - X p ΣB p +A p ΣY p +A p ΣB p .
From the Lemma 8.3 the quantity G is sum of the following This manuscript is for review purposes only.

G i 's :

G 1 = d p (X p )Σ + Σd p (Y p ) (8.12) G 2 = Q p,2 Σ + ΣR p,2 + 1 2 C p-1 (∆ p -S p ) - 1 2 (∆ p -S p )D p-1 (8.13) + 1 2 X p p k=1 (∆ k -S k ) + 1 2 p k=1 (S k -∆ k )Y p G 3 = 1 2 C p-1 (∆ p -S p )D p-1 - 1 2 X p p-1 k=1 (∆ k -S k )Y p (8.14) + 1 2 X p p k=1 (∆ k -S k )D p-1 + 1 2 C p-1 p k=1 (S k -∆ k )Y p G 4 = 1 2 X p (S p -∆ p )Y p -X p Σd p (Y p ) + d p (X p )ΣY p . (8.15) G 5 = e p (C p-1 )ΣR p,1 + Q p,1 Σe p (D p-1 ) + e p (C p-1 )Σe p (Y p ) (8.16) + e p (X p )Σe p (D p-1 ) + Q p,1 ΣR p,1 + Q p,1 Σe p (Y p ) (8.17) + e p (X p )ΣR p,1 + e p (X p )Σe p (Y p ). (8.18) G 6 = -C p-1 ΣR p,2 + Q p,2 ΣD p-1 -X p ΣR p,2 + Q p,2 ΣY p (8.19) -C p-1 Σd p (Y p ) + d p (X p )ΣD p-1 + d p (C p-1 )ΣY p -X p Σd p (D p-1 ).
where the quantities Q p,i and R p,i are defined at Lemma ??. We now can bound ∥∆ p+1 ∥. To do that introduce the quantities where i = 1, 2 :

x i = a i (ηε), y i = b i (ηε), z i = a i (θε), r 1 = θ 2 z 1 + ηy 1 , t 1 = 1 + x 1 ηε
and the polynomial q := q(κ, K, ε 1 )

q = 2(1 + η)κ + 2r 1 + θ 2 +2t 1 η + 3 2 η 2 + 1 2 ηθ 2 + 1 2 θ 4 κ 2 ε 1 + (z 2 1 + 2z 2 )θ 6 + 2ηx 1 z 1 θ 4 Kκ 4 ε 2 1 + 2r 1 + 2x 1 z 1 η 2 + η 2 y 2 1 θ 2 + 2 (y 2 + x 1 y 1 ) η 3 + 2ηr 1 t 1 Kκ 4 ε 2 1 + (2z 2 θ 8 + 2z 2 ηθ 6 + (2y 2 η 3 + r 2 1 )θ 2 + 2(x 2 + y 2 )η 4 )Kκ 5 ε 3 1 .
The inequality τ (ε)ε ⩽ θ implies qε 1 ⩽ θ. In fact it is easy to see that the assumption

ε 1 ⩽ ε κ 4/3 K 1/3 implies qε 1 ⩽ τ (ε)ε since we simultaneously have κε 1 ⩽ ε, κ 2 ε 2 1 ⩽ ε 2 , Kκ 4 ε 3 1 ⩽ ε 3 and Kκ 5 ε 4 1 ⩽ ε 4 . We know that ∥∆ 1 ∥ ⩽ ε 1 . Let us suppose ∥∆ k ∥ ⩽ q k-1 ε k 1 for 1 ⩽ k ⩽ p and, prove that ∥∆ p+1 ∥ ⩽ q p ε p+1 1 
. We remark q ⩾ 2(θ + η) in order that the Lemmas 9.4-9.8 apply. To bound ∥∆ p+1 ∥ we use the following bounds : 1. We have for i = 1, 2, a i (θκε 1 ) ⩽ x i b i (ηκε 1 ) ⩽ y i .

2. For 1 ⩽ k ⩽ p, we know that ∥X k ∥, ∥Y k ∥ ⩽ κq k-1 ε k 1 from Proposition 4.3.

3. ∥C k ∥, ∥D k ∥ ⩽ ηκε 1 from Lemma 9.4 and also

p-1 k=1 ∆ k -S k ⩽ ηε 1 from Lemma 9.1.
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Lemma 8.3. Let us consider G = -X p ΣY p + A p Σ + ΣB p + Θ * p-1 ΣY p -X p ΣΨ p-1 + Θ * p-1 ΣB p + A p ΣΨ p-1 -X p ΣB p + A p ΣY p + A p ΣB p . Let C p-1 = X 1 + • • • + X p-1 and D p-1 = Y 1 + • • • + Y p-1 . Then G = G 1 + • • • + G 6 with G 1 = d p (X p )Σ + Σd p (Y p ) G 2 = Q p,2 Σ + ΣR p,2 + 1 2 C p-1 (∆ p -S p ) - 1 2 (∆ p -S p )D p-1 + 1 2 X p p k=1 (∆ k -S k ) + 1 2 p k=1 (S k -∆ k )Y p . G 3 = 1 2 C p-1 (∆ p -S p )D p-1 - 1 2 X p p-1 k=1 (∆ k -S k )Y p + 1 2 X p p k=1 (∆ k -S k )D p-1 + 1 2 C p-1 p k=1 (S k -∆ k )Y p G 4 = 1 2 X p (S p -∆ p )Y p -X p Σd p (Y p ) + d p (X p )ΣY p . G 5 = e p (C p-1 )ΣR p,1 + Q p,
) + Q p,1 = 1 2 X 2 p + d p (X p ) + Q p,1 with Q p,i = max(k:2k⩽p) k=i c k i1 + i2 = 2k i1, i > 0 L i1,i2 (C p-1 , X p ).
where the coefficients c k and the polynomials L i1,i2 are defined at the beginning of the section 9. Moreover Θ p-1 = C p-1 + e p (C p-1 ). In the same way

B p = e p (Y p ) + R p,1 = 1 2 Y 2 p + d p (Y p ) + R p,1 and Ψ p-1 = D p-1 + e p (D p-1
). We also know that

Θ * p-1 = -C p-1 + e p (C p-1 ) since C p-1 is a skew Hermitian matrix. Expanding G = -X p ΣY p + A p Σ + ΣB p + Θ * p-1 ΣY p -X p ΣΨ p-1 + Θ * p-1 ΣB p + A p ΣΨ p-1 -X p ΣB p + A p ΣY p + A p ΣB p ,
a straightforward calculation shows that we can write G as the sum of the following This manuscript is for review purposes only.

We group some terms of the previous expression :

-C p-1 ΣY p D p-1 + C p-1 X p ΣD p-1 = C p-1 (∆ p -S p )D p-1 -X p ΣD p-1 Y p + X p C p-1 ΣY p = -X p p-1 k=1 (∆ k -S k )Y p C p-1 X p ΣY p -C p-1 ΣY 2 p = C p-1 (∆ p -S p )Y p X p C p-1 ΣD p-1 -X p ΣD 2 p-1 = X p p-1 k=1 (∆ k -S k )D p-1 -C p-1 ΣD p-1 Y p + C 2 p-1 ΣY p = C p-1 p-1 k=1 (∆ k -S k )Y p -X p ΣY p D p-1 + X 2 p ΣD p-1 = X p (∆ p -S p )D p-1
In this way we get

G 3 + G 6 = 1 2 C p-1 (∆ p -S p )D p-1 - 1 2 X p p-1 k=1 (∆ k -S k )Y p + 1 2 C p-1 (∆ p -S p )Y p + 1 2 X p p-1 k=1 (∆ k -S k )D p-1 + 1 2 C p-1 p-1 k=1 (∆ k -S k )Y p + 1 2 X p (∆ p -S p )D p-1 + G 6 = 1 2 C p-1 (∆ p -S p )D p-1 - 1 2 X p p-1 k=1 (∆ k -S k )Y p + 1 2 X p p k=1 (∆ k -S k )D p-1 + 1 2 C p-1 p k=1 (S k -∆ k )Y p + G 6 with G 6 = -C p-1 ΣR p,2 + Q p,2 ΣD p-1 -X p ΣR p,2 + Q p,2 ΣY p -C p-1 Σd p (Y p ) + d p (X p )ΣD p-1 + d p (C p-1 )ΣY p -X p Σd p (D p-1 )
.

We now see that

G 4 = -X p Σe p (Y p ) + e p (X p )ΣY p = 1 2 (-X p ΣY 2 p + X 2 p ΣY p ) -X p Σd p (Y p ) + d p (X p )ΣY p = 1 2 X p (S p -∆ p )Y p -X p Σd p (Y p ) + d p (X p )ΣY p .
Finally G 5 remains unchanged. 3. L i1,i2 (X, Y ) is the sum of monomials which the degree of each monomial with respect X is i 1 (respectively with respect Y is i 2 ).

Lemma 9.1. Let for 1 ⩽ k ⩽ i, ∥∆ k ∥ ⩽ q k-1 ε k 1 with qε 1 ⩽ θ < 1. Then || i k=1 ∆ i || ⩽ ηε 1 with η = 1 1 -θ .
Proof. The proof is obvious.

Lemma 9.2. Let us denote a 1 (u) = 1 1 + √ 1 -u 2 and a 2 (u) = a 1 (u) -1/2 u 2 . We have 1. |e p (u)| = max{k : 2k⩽p} k=1 |c k |u 2k ⩽ u 2 a 1 (u). 2. |d p (u)| = max{k : 2k⩽p} k=2 |c k |u 2k ⩽ u 4 a 2 (u) = u 2 a 1 (u) - 1 2 . 
Proof. It follows from classical Taylor series expansion.

Lemma 9.3. Let b 1 (u) = u 2 a 1 (u) 2 √ 1 -u 2 + 2a 1 (u) and b 2 (u) = a 1 (u) 2 √ 1 -u 2 + 2a 2 (u). We have (x + y) 2i a i (x + y) -x 2i a i (x) -y 2i a i (y) ⩽ b i (x + y)xy(x + y) 2i-2 .
Proof. To prove the case i = 1 we write (x + y) 2 a 1 (x + y) -x 2 a 1 (x) -y 2 a 1 (y) = x 2 (a 1 (x + y) -a 1 (x)) + y 2 (a 1 (x + y) -a 1 (y)) + 2xya 1 (x + y)

= (2x + y)xa 1 (x) √ 1 -x 2 + 1 -(x + y) 2 + (2y + x)ya 1 (y) 1 -y 2 + 1 -(x + y) 2 + 2 xya 1 (x + y) Using y ⩽ x, a 1 (y) ⩽ a 1 (x) and √ 1 -x 2 , 1 -y 2 ⩽ 1 -(x + y) 2 we get (x + y) 2 a 1 (x + y) -x 2 a 1 (x) -y 2 a 1 (y) ⩽ (x + y) 2 a 1 (x + y) 1 -(x + y) 2 + 2 xya 1 (x + y) = b 1 (x + y)xy.
To prove the case i = 2 we write from definition of a 2 (u) :

(x + y) 4 a 2 (x + y) -x 4 a 2 (x) -y 4 a 2 (y) = (x + y) 2 a 1 (x + y) -x 2 a 1 (x) -y 2 a 1 (y) -xy ⩽ (x + y) 2 a 1 (x + y) 2 1 -(x + y) 2 + 2a 1 (x + y) -1 xy ⩽ a 1 (x + y) 2 1 -(x + y) 2 + 2a 2 (x + y) xy(x + y) 2 ⩽ b 2 (x + y)xy(x + y) 2 .
We are done.
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Lemma 9.4. Let C p-1 = X 1 + • • • + X p-1 . Let us suppose q ⩾ 2(θ + η)κ, v = qε 1 ≤ θ < 1, η = 1 1 -θ and ∥X k ∥ ⩽ κ q v k , 1 ≤ k ≤ p -1. Then we have 1. ∥C p-1 ∥ ⩽ ηκε 1 . € 2. ∥e p (C p-1 )∥ ⩽ a 1 (ηκε 1 )η 2 κ 2 ε 2 1 .
3. ||e p (X p )|| ⩽ a 1 (θκε 1 )κ 2 q 2(p-1) ε 2p 1 .

Proof. We have

∥C p-1 ∥ ⩽ p-1 k=1 ∥X k ∥ ⩽ p-1 k=1 κq k-1 ε k 1 ⩽ 1 1 -v κε 1 ⩽ ηκε 1 .
From Lemma 9.2 we know that |e p (u)| ⩽ u 2 a 1 (u). Since q ⩾ 2(θ + η)κ and

ε 1 ⩽ θ q it follows that ηκε 1 ⩽ ηθ 2(η + θ) = θ 2(1 + θ -θ 2 )
, we can see the quantity

a 1 (ηκε 1 ) is well defined when ηκε 1 ⩽ 1. That is to say θ 2(1 + θ -θ 2 )
⩽ 1. This is the case since θ < 1. It follows

∥e p (C p-1 )∥ ⩽ a 1 (ηκε 1 ) (ηκε 1 ) 2 .
We now bound ∥e p (X p )∥. Always from Lemma 9.2 we have ∥e p (X p )∥ ⩽ a 1 (κq p-1 ε p 1 )(κq p-1 ε p 1 ) 2

⩽ a 1 (θκε 1 )κ 2 q 2(p-1) ε 2p 1 since qε 1 ⩽ θ < 1.

We are done.

Lemma 9.5. Let us suppose 2(θ + η)κ ≤ q, v = qε 1 ≤ θ and ∥X k ∥ ⩽ κ q v k , 1 ≤ k ≤ p -1. Then we have ∥d p (C p-1 )∥ ⩽ a 2 (ηκε 1 )η 4 κ 4 ε 4 1 and ||d p (X p )|| ⩽ a 2 (θκε 1 )κ 4 q 4(p-1) ε 4p 1 .
Proof. The proof is like to that of Lemma 9.4.

Lemma 9.6. Let us suppose 2(θ + η)κ ≤ q, v = qε 1 ≤ θ and ∥X k ∥, ∥Y k ∥ ⩽ κ q v k , 1 ≤ k ≤ p. Then we have ∥Θ p-1 ∥ ⩽ (1 + ηκε 1 a 1 (ηκε 1 ))ηκε 1 .
Proof. We have ∥Θ p-1 ∥ ⩽ ∥C p-1 ∥ + ∥e p (C p-1 )∥. Using ∥C p-1 ∥ ⩽≤ ηκε 1 and Lemma 9.4 the conclusion follows.
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(θ + η)κ ≤ q, v = qε 1 ≤ θ and ∥X k ∥ ⩽ κ q v k , 1 ≤ k ≤ p. Let Q p,i = max(k:2k⩽p) k=i c k i1 + i2 = 2k i1, i > 0 L i1,i2 (C p-1 , X p ), i = 1, 2.
We have

∥Q p,i ∥ ⩽ b i (ηκε 1 )η 2i-1 κ 2i q p-1 ε p+2i-1 1 i = 1, 2.
Proof. Let ∥C p-1 ∥ ⩽ x and ∥X p ∥ ⩽ y. We have using Lemma 9.2 :

∥Q p,i ∥ ⩽ max(k:2k⩽p) k=i |c k | i 1 +i 2 =2k i 1 >0,i 2 >0 (2k)! i 1 !i 2 ! x i1 y i2 ⩽ k⩾i |c k |((x + y) 2k -x 2k -y 2k ) ⩽ (x + y) 2i a i (x + y) -x 2i a i (x) -y 2i a i (y).
We apply the Lemma 9.3 with the bounds y ⩽

κ q v p ⩽ κq p-1 ε p 1 and x ⩽ x + y ⩽ κ q v 1 -v ⩽ ηκε 1 .
We then get :

∥Q p,1 ∥ ⩽ b i (ηκε 1 )η 2i-1 κ 2i q p-1 ε p+2i-1 1 .
The result follows.

Lemma 9.8. Let ∥X p ∥, ∥Y p ∥ ⩽ κq p-1 ε p 1 , 2(θ + η)κ ≤ q and qε 1 ⩽ θ < 1. Then || -X p Σd p (Y p ) + d p (X p )ΣY p || ⩽ 2Ka 2 (θκε 1 ))κ 5 q 5(p-1) ε 5p 1 .

Proof. Let Z p := -X p Σd p (Y p ) + d p (X p )ΣY p . Then from Lemma 9.5 we deduce ∥Z p || ⩽ 2Ka 2 (θκε 1 )κ 4 q 5(p-1) ε 5p 1 .

We are done.

Lemma 9.9. For |u| < 1 we have

|(1 + c p (-u))(1 + c p (u)) -1| ⩽ 2 1 + u 2 + a 1 (u)u p+1 a 1 (u)u p+δ where δ = 1 if p is odd and δ = 2 if p is even. Proof. Remember that e(u) = √ 1 + u 2 + u -1 and e(u) = c p (u) + r p (u). Since (1 + e(u))(1 + e(-u)) = 1 and r p (u) = r p (-u) it follows (1 + c p (-u))(1 + c p (u)) -1 = (1 + e(-u) -r p (-u))(1 + e(u) -r p (u)) -1 = (1 + e(-u))(1 + e(u)) -1 -(1 + e(-u))r p (u) -(1 + e(u))r p (u) + r p (u) 2 = -(2 + e(u) + e(-u) -r p (u)) r p (u) = -2 1 + u 2 -r p (u) r p (u)
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1. ∥∆ 2 ∥ ⩽ q 1 ε 2 1 and ∥X 2 ∥, ∥Y 2 ∥ ⩽ κq 1 ε 2 1 . 2. ∥Θ 1 ∥, ∥Ψ 1 ∥ ⩽ 1 + 1 2 κε 1 κε 1 .
Considering the bounds of the norms of matrices given in (10.3), we get ||∆ 3 || ⩽ q 3 q 1 ε 3 1 where

q 3 = 2κ(Kκ + 1) + (Kκ + 2 + Kq 1 )κ 2 ε 1 + (κ + q 1 )κ 2 ε 2 1 . A straighforward calculation shows that if ε 1 ⩽ ε κ 5/4 K 2/5 then ||∆ 3 || ⩽ q 3 q 1 ε 3 1 ⩽ τ 3 τ 1 ε 3 (10.4)
where

τ 3 = 4 + (3 + τ 1 )ε + (1 + τ 1 )ε 2 .
A straightforward computation shows that for all ε ⩽ 0.1 we have

τ 3 τ 1 ⩽ 8 + 18ε + 28ε 2 .
We finally get

κ 5/4 K 2/5 ∥∆ 3 ∥ ⩽ (8 + 18ε + 33ε 2 )ε 3 .
Then the part 1 of Theorem 2.1 is proved.

We use the proof of Proposition 7.1 to proof the part 2 of Theorem. We have

∥ Ū * 1 M V1 -Σ1 ∥ ⩽ q 2 q 1 ε 3 1
where q 1 is defined in (7.7) and q 2 in (7.16). A straightforward calculation shows that

if ε 1 ⩽ ε κ 6/5 K 3/10 then ∥ Ū * 1 M V1 -Σ1 ∥ ⩽ q 2 q 1 ε 3 1 ⩽ τ 2 τ 1 ε 3 (10.5)
where τ = τ 1 τ 2 given in (7.3). Moreover τ 2 τ 1 ⩽ 6 + 21ε + 54ε 2 for ε ⩽ 0.1. This proves te part 2. The Theorem holds. □ 11. Application in the clusters case.

11.1. Definiton of Clusters and first properies. We use the Fortran or Matlab notation for submatrices, i.e., A i:j,k:l is the submatrix of A with lines and columns between the subscripts i, j and k, lrespectively. We consider e integers q i 's such that e i=1 q i = q. We also associate the integers ℓ i , 1 ⩽ i ⩽ e, defined by

ℓ i = 1 + i-1 j=1 q j
The first goal is to precise the notion of cluster of singular values.

Definition 11.1. Let e integers q i 's such that e i=1 q i = q. We associate the integers ℓ i , 1 ⩽ i ⩽ e, defined by ℓ i = 1 + i-1 j=1 q j . From ∆ ∈ C ℓ×q with ℓ ⩾ q, we consider This manuscript is for review purposes only. its sub-matrices ∆ i := ∆ ℓi:ℓi+1-1,ℓi:ℓi+1-1 ∈ C qi×qi , 1 ⩽ i ⩽ e. We define the matrix

Diag q1•••qe (∆) =      ∆ 1 0 0 0 . . . 0 0 0 ∆ e 0     
We name by D ℓ×q q1,...,qe the set of these matrices.

Definition 11.2. Let integers q i 's and ℓ i 's be as in Definition 11.1. Let δ ⩾ 0 and define the set D ℓ×q q1...qe (δ) of the matrices whose diagonal

Σ = diag(σ 1 , • • • , σ q ) ∈ D ℓ×q satisfies |σ k -σ j | ⩽ δ ℓ i ⩽ j, k ⩽ ℓ i+1 -1, 1 ⩽ i ⩽ e (11.1) |σ j -σ l | > δ, ℓ i ⩽ j ⩽ ℓ i+1 -1, ℓ k ⩽ l ⩽ ℓ k+1 -1, 1 ⩽ i < k ⩽ e (11.2)
We name D ℓ×q q1...q e (δ) the set of clusters of size δ relatively to integers q 1 , • • • , q e . We also name by µ = (q 1 , . . . , q e ) the multiplicity of cluster associated to Σ.

We have

Proposition 11.3. Let δ ⩾ 0 and ∆ ∈ D ℓ×q q1•••qe (δ). The tuple (q 1 , • • • , q e )
where each integer q i ⩾ 1 is the only one such that the inequalities (11.1-11.2) hold.

Proof. Let us suppose there exists two tuples

(m 1 , • • • , m d ) and (q 1 , • • • , q e ) such
that the inequalities (11.1-11.2) hold for the diagonal matrix Σ = diag(σ 1 , . . . , σ q ).

Let us suppose for instance m 1 < q 1 . Then we first have from the inequality (11.2) :

|σ m1 -σ m1+1 | > δ.
In the other hand, since m 1 < q 1 we can write from the inequality (11.1) |σ m1 -σ m1+1 | ⩽ δ. This is not possible and the proposition holds. 1. The matrix S is defined by

S = Diag q1•••qe (∆) ∈ D ℓ×q q1...qe (11.3) 2. 
Diag q1•••qe (X) = 0 (11.4)

Diag q1•••qe (Y ) = 0 (11.5) 3. For 1 ⩽ i < k ⩽ e, 1 ⩽ j ⩽ q i -1, and 1 ⩽ l ⩽ q k -1 we take x ℓi+j,ℓ k +l = 1 2 δ ℓi+j,ℓ k +l + δ ℓ k +l,ℓi+j σ ℓ k +l -σ ℓi+j + δ ℓi+j,ℓ k +l -δ ℓ k +l,ℓi+j σ ℓ k +l + σ ℓi+j (11.6) y ℓi+j,ℓ k +l = 1 2 δ ℓi+j,ℓ k +l + δ ℓ k +l,ℓi+j σ ℓ k +l -σ ℓi+j - δ ℓi+j,ℓ k +l -δ ℓ k +l,ℓi+j σ ℓ k +l + σ ℓi+j (11.7)
4. For q + 1 ⩽ i ⩽ ℓ and 1 ⩽ j ⩽ q, we take

x i,j = 1 σ j δ i,j . (11.8)
This manuscript is for review purposes only.

5. For q + 1 ⩽ i ⩽ ℓ and q + 1 ⩽ j ⩽ ℓ, we take 

κ(Σ) = max   1, max 1⩽i⩽e 1 |σ i | , max 1 ⩽ i < k ⩽ e |σ k -σi| > δ 1 |σ k -σ i | + 1 |σ k + σ i |    (11.11)
The analysis of error is given by the following result. V (I q + Λ)(I q + Ψ) Σ + S   ∈ E m×ℓ,n×q q1,...,qe (11.14) where :

(U ) = U * U -I ℓ , E q (V ) = V * V -I q , ∆ = U * M V -Σ
1. Ω = s p (E ℓ (U )) and Λ = s p (E q (V )). This manuscript is for review purposes only.

Theorem 11.7. If the sequence define by (U i+1 , V i+1 , Σ i+1 ) = H p (U i , V i , Σ i ), i ⩾ 0 from (U 0 , V 0 , Σ 0 ) ∈ E m×ℓ,n×q q1,...,qe verifies the asumptions of Theorem 1.2 then it converges at the order p + 1 to (U ∞ , V ∞ , Σ ∞ ) ∈ St m,ℓ × St n,q ×D m×n q1,...,qe such that

U * ∞ M V ∞ - Σ ∞ = 0.
Proof. The proof is similar to that of Theorem 1.2.

11.5. Deflation method for the SVD. The sequence (U i , V i , Σ i ) i⩾0 of Theorem 11.7 is not a SVD sequence since the Σ i 's belong to D m×n q1,...,qe . We can use the Theorem 1.2 to detect the presence of clusters of singular values.

To simplify the presentation we suppose m = n in order that κ(Σ) = max 1, max

1⩽i<j⩽n 1 |σ i -σ j | + 1 |σ i + σ j | .
To do that we introduce an index of deflation whose the existence is given by the following proposition.

Proposition 11.8. Let us consider (U 0 , V 0 , Σ 0 ) ∈ E m×m m×m and

∆ 0 = U * 0 M V 0 -Σ 0 . Let e = max K a-1 ∥∆ 0 ∥ u 0 , K a u 0 ∥E m (U )∥, K a u 0 ∥E m (V )∥ 1/a
Let us suppose e ⩽ 1. Then there exists an index q ⩽ m be such that we can rewrite the diagonal matrix Σ 0 under the form Σ 0,q Σ 0,n-q where κ(Σ 0,q )e ⩽ 1. Let us consider U 0,q and V 0,q the sub matrices of U 0 and V 0 respectively corresponding to Σ 0,q . Then Theorem 1.2 applies for the sequence define from (U 0,q , V 0,q , Σ 0,q ) ∈ E m×q m×q by (U i+1,q , V i+1,q , Σ i+1,q ) = H p (U i,q , V i,q , Σ i,q ), i ⩾ 0.

Proof. The existence of the index q is obvious since q is at least equal at 1. In this case κ(Σ 0,1 ) = 1.

Definition 11.9. Let us consider the notations and the assumption of Proposition 11.8.We name indice of deflation of (U 0 , V 0 , Σ 0 ) the maximum of indices q such that κ(Σ 0,q )e ⩽ 1. If q is the index of deflation we name (U 0,q , V 0,q , Σ 0,q ) a deflation of (U 0 , V 0 , Σ 0 )

To determine the index of deflation and a deflation of (U 0 , V 0 , Σ 0 ), we propose the following algorithm. We denote κ i,j = max 1,

1 |σ i -σ j | + 1 |σ i + σ j |
. Following the matlab notation if A is a matrix and k a vector of indices A(:, k) means the matrix composed by the columns indexed by the vector k. Moreover #k is the size of k.

Algorithm to determine the index of deflation (11.16) Input (U 0 , V 0 , Σ 0 ) such that e ⩽ 1 Ouput (U 0,q , V 0,q , Σ 0,q ) a deflation of (U 0 , V 0 , Σ 0 ) 1. Let Σ 0 = diag(σ 0,1 , . . . , σ 0,n ) where σ 0,1 ⩾ • • • ⩾ σ 0,n 2. k = 1 i = 1

while i ⩽ m do
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4. j = 1

5.

while i + j ⩽ n and κ i,i+j e > 1 do j = j + 1 end while 6. if i + j ⩽ n and κ i,i+j ⩽ 1 then k = [k, i + j] end if 7. i = i + j 8. end while 9. q = #k 10. Σ 0,q = Σ 0 (k) U 0,q = U 0 (k) V 0,q = V 0 (k)

Theorem 11.10. Let (U 0 , V 0 , Σ 0 ) that satisfies the Proposition 11.8. The algorithm 11.16 computes a deflation of (U 0 , V 0 , Σ 0 ).

Proof. When k = 1 we have κ(Σ 0 (:, 1)) = 1 and κ(Σ 0 (:, 1))e ⩽ 1 from assumption.

The loop 3-8 of the algorithm consists to determine an ordered list of indices k such that for all i ∈ k such that i + 1 ∈ k we have κ i,i+1 e ⩽ 1. Hence κ(Σ 0,q )e ⩽ 1 and the Theorem follows.

12. Numerical Experiments. Our numerical experiments are done with the Julia Programming Language [START_REF] Balbaert | Julia 1.0 programming complete reference guide: discover Julia, a high-performance language for technical computing[END_REF] coupled with the library ArbNumerics of Jeffrey Sarnoff. To intialize our method we proceed in two steps 1. The triplet (U 0 , V 0 , Σ 0 ) is given by the function svd of Julia with 64-bit of precision unless otherwise stated.

2. From this (U 0 , V 0 , Σ 0 ) we determine (U 0,q , V 0,q , Σ 0,q ) by the Algorithm 11.16.

We consider for i ⩾ 0 the quantities

ε i = max((κ i K i ) a ∥E ℓ (U i )∥, (κ i K i ) a ∥E q (V i )∥, κ a i K a-1 i ∥∆ i ∥)
where a, u 0 are defined in Theorem 1.2. All the Tables below show the behaviour of e i = -⌊log 2 (ε i /u 0 )⌋.

The strategy of practical computations is to initialize the method with q bits of precision. Next the iteration i is done with q(p + 1) i bits of precision. This setting of precision is done efficiently thanks to the library ArbNumerics at each iteration.

12.1. Random matrices. σ 1 where σ 1 is the greatest singular values [START_REF] Beckermann | On the singular values of matrices with displacement structure[END_REF]. There is a strong decrease of singular values to This manuscript is for review purposes only. 0. The computation of a deflation by the Algorithm 11.16 gives different values of q for Σ 0,q following the value of p . For instance with 64-bit of precision and n = 200, if p = 1 then q = 11 : Σ 0,q is constituted of the first ten singular values and one among the other 190's. If p ⩾ 2 then q = 15 : Σ 0,q is constituted of the first fourteen singular values and one among the other 185's. Table 4 gives the behaviour of iterates from a computation of a deflation. 

Iterations

σ 3n+i = 2 -i 1 ⩽ i ⩽ n.
The condition e ⩽ 1 of the Proposition 11.8 holds if 4 × 2 n 3 a ε 0 ⩽ u 0 where ε 0 = max(∥∆ 0 ∥, ∥E m (U 0 )∥, ∥E m (V 0 )∥). a deflation is greater in the case p = 1 than for p ⩾ 2. This is confirmed by numerical experimentation. If p = 1 then n ⩽ 26 (respectively if p ⩾ 2 then n ⩽ 41)
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1. Introduction. 1 . 1 .

 11 Notations and main goal. Let us consider an m × n complex matrix M ∈ C m×n where we can assume m ⩾ n without loss of generalty. The terminology "diagonal" for a matrix of C m×n is understood if it is of the form diag(σ 1 , . . . , σ n ) 0 and design by D m×n the set of such type matrices and also E m×ℓ n×q = C m×ℓ × C n×q × D ℓ×q . For ℓ ⩾ 1, we denote the identity matrix in C ℓ×ℓ by I ℓ and for W ∈ C m×ℓ we define E ℓ (W ) = W * W -I ℓ . The variety of Stiefel matrices is St m,ℓ = {W ∈ C m×ℓ :

Theorem 2 . 1 .

 21 Let us consider M , U , V , Σ as in the introduction, ∆ = U * M V -Σ and ε 1 = ∥∆∥. Let κ = κ(Σ) and K = K(Σ).

4. 1 .

 1 Solving the equation ∆ -S -XΣ + ΣY = 0. The following proposition shows how to explicitly solve this linear equation under these constraints without inverting a matrix. Proposition 4.1. Let Σ = diag(σ 1 , . . . σ q ) ∈ D ℓ×q and ∆ = (δ i,j ) ∈ C ℓ×q . Consider the diagonal matrix S ∈ D ℓ×q and the two skew Hermitian matrices X = (x i,j ) ∈

Definition 4 . 2 .

 42 Let Σ = diag(σ 1 , . . . σ q ) ∈ D ℓ×q and ∆ ∈ C ℓ×q . We name condition number of equation XΣ -ΣY = ∆ -S the quantity

11 ) 4 . 2 .

 1142 Error analysis. Proposition 4.3. Under the notations and assumptions of Proposition 4.1, assume that X, Y and S are computed using (4.1-4.4). Given ε with ∥∆∥ ⩽ ε, the matrices X, Y and S solutions of ∆ -S -XΣ + ΣY = 0 satisfy ∥S∥ ⩽ ε (4.12) ∥X∥, ∥Y ∥ ⩽ κε (4.13) Proof. From the formula (4.1) we clearly have ∥S∥ ⩽ ∥∆∥ ⩽ ε.

5 .

 5 Convergence analysis : a general result. Definition 5.1. Let an integer p ⩾ 1. Let δ = 1 if p is odd and δ = 2 if p is even. Let us consider the map

Proposition 6 . 1 .

 61 Let ε ⩾ 0 and a, b > 0. Let ∆ 1 = (I ℓ + Ω)(∆ + Σ)(I q + Λ) -Σ with Ω * = Ω. Let us suppose ∥∆∥ ⩽ ε κ a K b and ∥Ω∥, ∥Λ∥ ⩽ wε κ a K b+1 with κ = κ(Σ)

S

  l , with Θ p and Ψ p are defined by the formulas (1.11).

9 .

 9 Useful Lemmas and Propositions. The notations are those of the introduction and sections 6, 7 and 8. We also denote :1. e p (u) = max{k : 2k⩽p} k=1 c k u 2k where c k = (-1) k+1 (2k)! 4 k (k!) 2 (2k -1).

2 . 2 u 2 +

 222 c p (u) = u + e p (u) = u + 1 d p (u) with d p (u) = max{k : 2k⩽p} k=2 c k u 2k .

Lemma 9 . 7 .

 97 Let us suppose 2

11. 2 . 1 . 11 . 4 .

 21114 Solving ∆ -S -XΣ+ΣY = 0 in the clusters case. We state without proof the result that is generalizes the Proposition 4.Proposition Let Σ ∈ D ℓ×q q1...qe (δ) and ∆ = (δ i,j ) ∈ C ℓ×q . Consider the matrix S ∈ D ℓ×q q1...qe and the two skew Hermitian matrices X = (x i,j ) ∈ C ℓ×ℓ and Y = (y i,j ) ∈ C q×q that are defined by the following formulas:

9 )

 9 Then we have ∆ -S -XΣ + ΣY = 0. (11.10) Definition 11.5. Under the previous framework, we name condition number of equation ∆ -S -XΣ + ΣY = 0 the quantity

Proposition 11 . 6 .

 116 Under the notations and assumptions of Proposition 11.4, assume that S, X and Y are computed using (11.3-11.9). Given ε with ∥∆∥ ⩽ ε, the matrices X, Y and S solutions of ∆ -S -XΣ + ΣY = 0 satisfy ∥S∥ ⩽ ε (11.12) ∥X∥, ∥Y ∥ ⩽ κε (11.13) 11.3. Method of order p+1 in the clusters case. Let p ⩾ 2 and E m×ℓ,n×q q1,...,qe = C m×ℓ × C n×q × D m×n q1,...,qe .We denote E ℓ

  and we define the map H p by (U, V, Σ) ∈ E m×ℓ,n×q q1,...,qe → H p (U, V, Σ) =   U (I ℓ + Ω)(I ℓ + Θ)

2 .

 2 S = S 1 + • • • + S p ∈ D m×n q1...q l , X = X 1 + • • • + X p and Y = Y 1 + • • • + Y p with each X k , Y k are skew Hermitian matrices. Moreover each triplet (S k , X k , Y k )are solutions of the following linear systems :∆ k -S k -X k Σ + ΣY k = 0, 1 ⩽ k ⩽ pwhere the ∆ k 's for 2 ⩽ k ⩽ p + 1, are defined as∆ 1 = (I ℓ + Ω)(∆ + Σ)(I q + Λ) -Σ, e S 1 = Diag q1,...,qe (∆ 1 ) Θ k = c p (X 1 + • • • + X k ), Ψ k = c p (Y 1 + • • • + Y k ), 1 ⩽ k ⩽ p, ∆ k = (I ℓ + Θ * k-1 )(∆ 1 + Σ)(I q + Ψ k-1) -Σk = Diag q1,...,qe (∆ k ), 2 ⩽ k ⩽ p.
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12. 3 .

 3 Matrices with prescribed singular values. Let us define M = U ΣV where U and V are two unitary matrices of size 4n × 4n and Σ = diag(σ 1 , . . . , σ 4n )whereσ 3(i-1)+j = 2 i 1 ⩽ i ⩽ n, 1 ⩽ j ⩽ 3,

Table 1

 1 

			3	4/3
	u 0 0.0289 0.046 0.0297
	γ 1	6.1	9.41	10.2
	σ	1.67	2.1	2.62

Table 2

 2 

1

  Σe p (D p-1 ) + e p (C p-1 )Σe p (Y p ) + e p (X p )Σe p (D p-1 )+ Q p,1 ΣR p,1 + Q p,1 Σe p (Y p ) + e p (X p )ΣR p,1 + e p (X p )Σe p (Y p ). G 6 = -C p-1 ΣR p,2 + Q p,2 ΣD p-1 -X p ΣR p,2 + Q p,2 ΣY p -C p-1 Σd p (Y p ) + d p (X p )ΣD p-1 + d p (C p-1 )ΣY p -X p Σd p (D p-1 ).sProof. We have A p = e p (X p

Table 3

 3 Table 3 confirms the behaviour of iterates expected by the convergence analysis. 12.2. Cauchy matrices. The classical Cauchy matrix is defined by

	Iterations / Order	2	3	4		5	6	7
	0	7	8	9		8	8	8
	1	18	35	47		59	69	85
	2	44	112	194		311	427	604
	3	92	346	787	1571	2580	4353
		M =	1 i + j 1⩽i,j⩽n	.	
	Its singular values satisfy the inequalities σ 1+k ⩾ 4 exp	2 Log(4n) π 2	-2k

Table 4

 4 

Table 5

 5 gives the necessary precision that we need to get the size of Cauchy matrices as index of deflation.

	n	n ⩽ 7 8 ⩽ n ⩽ 14 15 ⩽ n
	bits precision	64	128	⩾ 256

Table 5

 5 

  Table 6 gives the quantity -log 2 3 a u 0 4 a 2 na with respect n. For instance a C matrix of size 100 × 100, Proposition 11.8 applies if ε 0 ⩽ 2 -139 for p ⩾ 2 and for p = 1, it is necessary to have ε 0 ⩽ 2 -206 . Hence the precision required on ε 0 to get

	p/4n 4 20 40 60	80 100 120 140 160 180
	p = 1 14 46 86 126 166 206 246 286 326 366
	p ⩾ 2 11 33 59 86	113 139 166 193 219 246

Table 6

 6 
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4.

∥Q p,i ∥, ∥R p,i ∥ ⩽ η 2i-1 y i κ 2i q p-1 ε p+2i-1 1 from Lemma 9.7. 5. ∥e p (X p )||, ∥e p (Y p )||⩽ z 1 κ 2 q 2(p-1) ε 2p 1 ⩽ θ 2 z 1 κ 2 q p-1 ε p+1 1 and ∥e p (C p-1 )||, ∥e p (D p-1 )||⩽ x 1 η 2 κ 2 ε 2 1 from Lemma 9.4, qε 1 ⩽ θ and p ⩾ 3.

6. ∥d p (X p )||, ∥d p (Y p )||⩽ z 2 κ 4 q 4(p-1) ε 4p 1 and ∥d p (C p-1 )||, ∥d p (D p-1 )||⩽ x 2 η 4 κ 4 ε 4 1 from Lemma 9.5 and qε ⩽ θ.

7. ∥A p ∥, ∥B p ∥≤ r 1 κ 2 q p-1 ε p+1 1 since A p = e p (X p ) + Q p,1 and B p = e p (Y p ) + R p,1 .

8. ∥Θ p-1 ∥, ∥Ψ p-1 ∥ ≤ t 1 ηκε 1 from Lemma 9.6.

|| -

Using the bounds above we then get ∥∆ p+1 ∥ ⩽ α p+1 q p-1 ε p+1

where

) from (8.17 -8.18) +Kκ 5 (2η 4 (x 2 + y 2 )ε 3 1 + 2z 2 ηq 3(p-1) ε 3p 1 + 2y 2 η 3 q p-1 ε p+2

1

) from (8.19) Since p ⩾ 3 and θ < 1 it follows (qε 1 ) k(p-1) ⩽ (qε 1 ) 2k ⩽ (τ ε) 2k ⩽ θ 2k . Plugging this in α p+1 , we then get

Collecting the expression above following ε 1 and using that κ, K ⩾ 1, we finally find that α p+1 ⩽ q. We then have proved that ∥∆ p+1 ∥ ⩽ q p ε p+1

1

. We finally get

The theorem is proved.
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quantities :

We are going to transform some quantities G i 's. We first remark using ∆ p -S p -

Next we remark that

On the other hand we have :

Hence we can write G 2 as

Next, by proceeding as above and using e p = 1 2 u 2 + d p (u), we see that
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We have

where δ = 1 if p is odd and δ = 2 if p is even. We deduce that

We are done.

Lemma 9.10. For i ⩾ 0, we have

Proof. We proceed by induction. The assertion holds for i = 0. By assuming for i let us prove it for i + 1. We have

We are done.

From the definition of the map DS we have

and the X i 's are skew Hermitian matrices be such that ∆ i -S i -X i Σ + ΣY i = 0. The goal is to bound the norm of

We first expand ∆ 2 and as in the proof of Proposition 7.1

we have ∥∆ 2 ∥ ⩽ q 1 ε 2 1 where

and q 1 ε 1 ⩽ τ 1 ε with τ 1 = 2 + 2ε + 5 4 ε 2 + 1 4 ε 3 . We now expand ∆ 3 to get :

We know that

Plugging the previous relation in (10.2) we find

We are going to prove ∥∆ 3 ∥ ⩽ q 1 q 2 ε 3 1 where q 2 is defined below in (7.16). To do that we will use the bounds
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a 64-bits precision is enough so that Proposition 11.8 holds. Table 7 shows for p = 1

(respectively p ⩾ 2) the quantities q + = #{σ > 1} and q -#{σ > 1} from a Σ 0,q given by the initialization. In each case of Table 7 the first number matches for q + and the second for q -. The 64-bit precision used for p = 1 (respectively p ⩾ 2) until the size 100 (respectively 140). For larger sizes, 128-bits precision are used. The quantity q + is always equal to n which is the number of multiple singular values.

q + , q -/4n