
HAL Id: hal-04197213
https://hal.science/hal-04197213

Submitted on 8 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Identification and Localization COVID-19
Abnormalities on Chest Radiographs

van Tien Pham, Thanh Phuong Nguyen

To cite this version:
van Tien Pham, Thanh Phuong Nguyen. Identification and Localization COVID-19 Abnormalities
on Chest Radiographs. AICV, Mar 2023, Marrakesh, Morocco. pp.251-261, �10.1007/978-3-031-
27762-7_24�. �hal-04197213�

https://hal.science/hal-04197213
https://hal.archives-ouvertes.fr


Identification and localization COVID-19
abnormalities on chest radiographs ⋆

Van Tien Pham[0000−0003−3890−7188]

Thanh Phuong Nguyen[0000−0002−5646−8505]
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Abstract. Solutions to screen and diagnose positive patients for the
SARS-CoV-2 promptly and efficiently are critical in the context of the
COVID-19 pandemic’s complex evolution. Recent researches have demon-
strated the efficiency of deep learning and particularly convolutional neu-
ral networks (CNNs) in classifying and detecting lung disease-related
lesions from radiographs. This paper presents a solution using ensem-
ble learning techniques on advanced CNNs to classify as well as local-
ize COVID-19-related abnormalities in radiographs. Two classifiers in-
cluding EfficientNetV2 and NFNet are combined with three detectors,
DETR, Yolov7 and EfficientDet. Along with gathering and training the
model on a large number of datasets, image augmentation and cross val-
idation are also addressed. Since then, this study has shown promising
results and has received excellent marks in the Society for Imaging In-
formatics in Medicine’s competition. The analysis in model selection for
the trade-off between speed and accuracy is also given.

Keywords: chest X-ray · COVID-19 radiographs · classification and
detection · deep neural network · medical imaging

1 Introduction

As the global coronavirus disease 2019 (COVID-19) pandemic, caused by severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2), spreads throughout
the world, radiology is becoming increasingly important in giving clinical in-
sights to help in illness diagnosis, treatment, and management. An increasing
interest and use of chest X-ray (CXR) imaging has been demonstrated in a num-
ber of recent research [6], with some studies predicting a higher dependence on
portable CXR and the high value of portable CXR for critically sick patients.
CXR imaging systems are more widely available across the world than computed
tomography (CT) scanners due to their lower cost and shorter decontamination
periods. For identifying SARS-CoV-2, CXR imaging can be beneficial for pa-
tients with negative reverse transcription–polymerase chain reaction (RT-PCR)
findings. As a result of the popularity of chest radiology imaging systems in cur-
rent healthcare systems and the availability of portable equipment, radiography
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examinations may be performed more quickly and with more availability, mak-
ing this a good complement to RT-PCR testing [14]. Hence, CXR is an essential
component of certain screening methods that have been presented. However, one
of the most significant obstacles is the requirement for trained radiologists to in-
terpret radiography imaging, as the visual indications might be subtle. While
standards exist to assist radiologists in distinguishing COVID-19 from other
forms of infection, radiologists’ judgments vary. As a result, computer-aided
diagnostic tools that can help radiologists analyze radiography pictures more
quickly and reliably to discover COVID-19 patients are greatly sought.

Motivated by the urgent need of solutions to fight against the COVID-19
pandemic, this work tackles the problem of classification and detection COVID-
19 abnormalities on chest radiographs via ensemble of deep CNNs. In particular,
the radiographs will be categorized as 4 types: negative for pneumonia or typical,
indeterminate, or atypical for COVID-19. Furthermore, the appearance of glass
ground opacity and the extent to which they cover lung areas in the chest X-ray
were also detected to help radiologists assess the COVID-19 pneumonia. Models
from this research are evaluated in the competition [10] hosted by the Society for
Imaging Informatics in Medicine, the Foundation for the Promotion of Health
and Biomedical Research of Valencia Region and the Radiological Society of
North America (SIIM-FISABIO-RSNA) on Kaggle. Our main contributions are:

– First, an in-depth exploratory data analysis is conducted on the SIIM-
FISABIO-RSNA COVID-19 dataset [10] to reflect its properties and then
suggest appropriate methods. Also, many open access benchmark datasets
are collected and reviewed in order to pre-train models.

– Second, this work proposes a novel framework covering well-known object
classifiers and detectors. Many methods, including transfer learning, data
augmentation, and ensemble learning, are used to enhance the performance
of models. This study also suggests using a classifier as a initial filter to
eliminate false positive samples before passing to detectors. Separating the
pulmonary approach proven to be an effective method concurrently.

– Third, several comparative evaluations are analyzed in terms of accuracy
and computing cost. The recommendations for CXR-diagnosis practical ap-
plications are then highlighted.

2 Related works

Aim to interpret radiographic images better, many machine learning systems
have been proposed [6], and the results show that the accuracy of radiographic
imaging in detecting patients infected with COVID-19 is very promising while
the cost of time is much reduced. Wang et al. [22] customized deep CNN models
for identifying normal, pneumonia, and COVID-19 patients in the COVID-Net
project. To provide systems aiding COVID-19 diagnosis, a variety of models [5]
have been trained using X-ray and CT images. Shi et al. [15] retrieved a list of
characteristics from CT images, including volume, histogram, and surface fea-
tures. The open source COVID-19 Image Data Collection [4] is an example of
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current initiatives to advocate for open access and solutions for radiography-
driven COVID-19 case detection. Bilateral abnormalities, ground glass opac-
ity, and interstitial abnormalities have all been identified in CXR radiograph of
SARS-CoV-2 positive patients [7]. Similarly, in this study, we follow these con-
cepts but also the rule of the SIIM-FISABIO-RSNA’s competition with the 2
main tasks. For each test study in classification task, it’s required to make a de-
termination within 4 labels: Negative for Pneumonia (NP), Typical Appearance
(TA), Indeterminate Appearance (IA) and Atypical Appearance (AA). For each
test image in detection task, a bounding box along with the Opacity class for
findings and a corresponding confident score should be predicted. Otherwise, if
there are no findings, the prediction should be none 1 0 0 1 1 (none is the class
ID for no finding, and this provides a one-pixel bounding box with a confidence
of 1.0). We aim to accelerate the performance by updating the latest classifiers
and detectors on huge datasets and further comparing with other researches in
both performance and precision. Besides, many advanced techniques and tricks
such as image augmentation, ensemble learning are implemented.

3 Proposed framework

This research proposes a framework for both classification and detection of
COVID-19 abnormalities as illustrated in Fig. 1. For classification task, an input
CXR which tagged as study level is inferred by the 4-classes classifiers. Mean-
while, the detection task is applied to CXRs marked as image level. At first,
the input image is categorized into Finding or No finding by an EfficientNetV2
pre-trained as a 2-classes classifier to eliminate false positives. The No finding
class indicates that there is no abnormality in this image, hence the ultimate
prediction is None. On the contrary, the Finding sample is passed through a
lung detector. Next, the dissected thorax is inferred by three detectors to find
the location of the lesions which is labelled as Opacity. Finally, predicted bound-
ing boxes and corresponding confident scores are then ensembled using weighted
box fusion method to produce location of the lesion.

Fig. 1. Our framework for COVID-19 abnormalities classification and detection.

The training process of the models utilized in the framework is depicted in
Fig. 2. The SIIM COVID-19 dataset is the primary dataset used in this study
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for training and assessing models. To improve the generalization of the models,
we also gather various external datasets. All data is preprocessed according to
the method described in subsection 4.1, and image augmentation is performed as
outlined in subsection 3.1. The models are trained through multiple iterations,
with the best models selected through k-fold cross validation. These top models
are then consolidated into a model zoo for use in the inference phase.

Fig. 2. Flow of training and validating models from raw data.

3.1 Data augmentation

Image augmentation is one of the key techniques used in deep learning and
computer vision tasks to increase the quality and generality of trained models
by creating fresh training samples from the existing data. The most prevalent
augmentation strategies according to the expertise in medical image analysis
are Blur, CLAHE, Cutout, ElasticTransform, GridDistortion, HorizontalFlip,
IAASharpen, PiecewiseAffine, RandomResizedCrop, ShiftScaleRotate, and Ver-
ticalFlip. In this work, we adopted all of these method through the Albumenta-
tion library [2] while training models in the both tasks. Additionally, we apply
Mosaic augmentation for detection task since this method not only modifies
data on one image but also randomly combines data from four images into a
new synthetic one as depicted in Fig. 3.

Fig. 3. Synthetic labels generated by Mosaic augmentation

3.2 COVID-19 abnormalities classifier

For classification task, two separate architectures, Normalizer-Free Networks
(NFNet) [1] and EfficientNetV2 [17], are trained as 4-classes classifier to classify
input image into 4 categories: NP, TA, IA and AA. NFNet is designed with the
aim of overcoming instabilities for large learning rate or strong data augmenta-
tion with the proposal of the adaptive gradient clipping, which clips gradients
based on the unit-wise ratio of gradient norms to parameter norms. A family
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of Normalizer-Free ResNets from NFNet-F0 to NFNet-F6 are constructed and
achieved higher validation accuracies on ImageNet while being faster to train.
In this work, a NFNet-F5 is firstly pretrained on the CheXpert [8] and MIMIC-
CXR [9] dataset and then fine-tuned on the main dataset at the image size
of 512x512. EfficientNetV2 optimizes training time and parameter efficiency by
combining training-aware neural architecture search and scaling. Crucial charac-
teristics of the EfficientNetV2’s backbone are: it heavily uses both MBConv and
the newly introduced Fused-MBConv in the initial layers; it favors a lower kernel
size but adds more layers; it eliminates the final stride-1 state employed in Effi-
cientNet. During training, the regularization and image size are also adaptively
changed as the concept of progressive learning to assist the network learn basic
representations quickly and simply. Transfer learning technique are applied in
this research on an EffcienNetV2-M which is pre-trained on the ChestX-ray14
dataset [23] with the aim of making it more general. Both of the two classifiers
use a Binary Cross Entropy loss LBCE blended loss of each class as in Eq. 1.
The hyperparameters are selected empirically as follow: α = 0.2, β = 0.2 and
γ = 0.3 in order to reduce class imbalance phenomenon. Experiments show that
this contrivance improves both cross-validation as well as final submission score.

LBCE = αLnegative + βLtypical + γLindeterminate + (1−α− β − γ)Latypical (1)

For detection task, instead of feeding chest radiographs directly to the object
detectors, we first use a 2-classes classifier to filter out images that may con-
tain abnormalities associated with the COVID-19 disease. As shown in Fig. 1, a
EfficientNetV2-S is chosen as a classifier to separate inputs CXR into two cat-
egories No finding and Finding, corresponding to normal image and abnormal
image respectively. This model is trained on these two classes extracted from
the main dataset where we process Negative for Pneumonia labels as No finding
and other labels as Finding. Initial weights are also pre-trained on the RICORD
dataset [19] which contains 1000 CXRs rated by 3 different radiologists using
the same 4-classes taxonomy as in the main dataset. This 2-classes classifier
scheme brings two benefits: reduction of false positive rate and acceleration of
speed during the inference phase. Because classifiers are frequently more accu-
rate than detectors, this technique is extremely effective in filtering out early
negative samples, especially for imbalanced datasets as observed in similar stud-
ies [13]. This rapid classifier also narrows down the CXRs that must be inferred
on by the slower object detection models. For example, in the training dataset,
there are 1736 No finding images out of 6334. This implies that more than a
fourth of the entire data are eliminated, which leads to speed acceleration.

3.3 Lung detector

The purpose of lung detection is to separate between voxels that correspond
to lung tissue and those that relate to surrounding anatomy. This localization
serves to reduce background noise to assist the posterior detectors focus more
on lung lesions, based on the assumption that nCoV virus-associated lesions
are exclusively found in the lung area. A typical method for this task is the
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simple center-crop at about 70% to 80% of the image. This approach proves to
be effective and robust in cases where the lung is exactly in the center of the
image. However, several factors influence this, including the capture angle, the
radiologist’s alignment, and the patient’s standing position. When we examine
the samples in this work’s dataset, we see that the rib cage frequently deviates
from the center of the picture. Therefore, a Yolov7 architecture is chosen instead
of the center-crop method. 6334 CXRs in the training dataset are manually
annotated to extract the lung bounding box. This data are then fed into training
loops where a Yolov7 is employed to train on a single fold. Experiments show that
this model boosts average precision while comparing with the simple center-crop.

3.4 COVID-19 lesion detector

The goal is to localize all findings, of the unique class Opacity, on a lung-cropped
CXR with bounding boxes along with a confidence score. An example is shown
as in Fig. 1 in which SOTA detectors (DETR, Yolov7 and EfficientDet) predict
three different bounding boxes with score of 0.72, 0.65 and 0.78 respectively.
DETR [3], combines a transformer encoder-decoder architecture with a set-based
global loss that requires bi-partite matching to force unique predictions. Yolov7
[21] focuses on improving the accuracy without increasing the inference cost.
EfficientDet [18] proposes a weighted bi-directional feature pyramid network for
multiscale feature fusion and a compound scaling approach.

For implementation, DETR models are trained with ResNet-101 as backbone,
an encoder-decoder transformer, a feed forward network and a learning rate of
0.001. Yolov7-E6 models are trained with E-ELAN as backbone and a learning
rate of 0.005. EfficientDet-D7 model are also trained with SGD optimizer with a
learning rate of 0.001 and EfficientNet as backbone. A Cosine Annealing sched-
uler and a Focal Loss function are applied. All backbone networks are pretrained
on the RSNA dataset with Opacity class. Input image are scaled to 1024x1024
with a random augmentation described in 3.1 in training while during inference
time, test time augmentation only consists of the horizontal and vertical flip.
K-fold cross validation is employed to identify problems such as overfitting or
selection bias, as well as to provide insight into how the models will generalize
to an independent dataset, by splitting the training dataset into 5 folds based
on patient’s ID metadata extracted from DICOM data in the training stage.

3.5 Ensemble technique

The ensemble technique combines predictions of several models to achieve higher
predictive performance than each of the constituent one could accomplish alone.
These predictions consist of coordinates of the bounding box rectangle selected
using non-maximum suppression based methods [11]. However, these approaches
only produce boxes from a single model and can not adequately yield blended
localization of predictions combined from various models. Therefore, we adopt
the Weighted Boxes Fusion [16] in which coordinated of bounding rectangles as
well as confidence scores from models are fused to construct the average boxes.
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4 Experiments

4.1 Data collection and Evaluation protocol

Our proposed method is evaluated on different benchmark datasets. Tab. 1 sum-
marizes data collection including 7 available CXR datasets from public sources.
They are improved by augmentation techniques mentioned in subsection 3.1. In
this work, a NFNet-F5 is firstly pretrained on the CheXpert dataset [8] and then
fine-tuned on the main dataset at the image size of 512x512. Transfer learning
technique are applied in this research on an EffcienNetV2-M which is pre-trained
on the ChestX-ray14 dataset [23] in order to improve its generalization. Initial
weights are also pre-trained on the RICORD dataset [19] which contains 1000
CXRs rated by 3 different radiologistis using the same 4-classes taxonomy as
in the main dataset. The data is split in the ratio of 80:20 for the training and
testing subsets. All images are in DICOM format and have been de-identified to
safeguard patient privacy. A panel of qualified radiologists labels them based on
the presence of opacity as well as the overall appearance.

Table 1. Description of collected CXR datasets.

Dataset #Observations #Image #Patient Annotation Year

ChestX-ray14 [23] 15: No finding, 14 Pathologies 112,120 30,805 Classification 2017

MIMIC-CXR [9] 14: No finding, 12 Pathologies, Support devices 377,110 65,379 Classification 2019

CheXpert [8] 14: No finding, 12 Pathologies, Support devices 224,316 65,240 Classification 2019

VinDr-CXR [12] 28: No finding, 22 Lesions, 5 Diseases 18,000 18000 Detection 2020

BIMCV COVID-19+ [20] 20: Normal, COVID-19, Other findings 5381 1311 Classification 2020

RICORD [19] 4: Typical, Indeterminate, Atypical, Negative appearance for COVID-19 1,000 361 Classification 2021

SIIM [10]
4: Typical, Indeterminate, Atypical, Negative appearance for COVID-19
2: No finding, Opacity

7897 7268
Classification
Detection

2021

All experiments are conducted on a RTX 1080. F1-score and mean Average
Precision (mAP) at IoU 0.5:0.95 are employed as evaluation metrics.

4.2 Results and discussions

The experimental results of the classifiers are shown in Tab. 2. Covid-net [22]
is selected as baseline model for comparing with the classifiers in this research.
We modified the last fully connected layer and retrain the model to adapt with
our datasets. Experiments show that the baseline model proved to be inefficient
with 2 classes IA and AA, which are unavailable in it’s original dataset. Our
classifiers generally achieved better performance on the testing dataset.
Table 2. F1 score of the COVID-19 abnormalities classifiers on the SIIM test set

Classifier
F1 score

Negative for Pneumonia Typical Appearance Indeterminate Appearance Atypical Appearance

Covid-net [22] 0.71 0.74 0.48 0.53

NFNet [1] 0.79 0.72 0.59 0.56

EfficientNetv2 [17] 0.83 0.75 0.61 0.54

The outcomes reveal a significant disparity between the four classes. When
inferring the NP class, the EfficientNetv2 model earns the greatest F1 score
of 0.83, while the NFNet model meets 0.79. The TA class achieved the sec-
ond highest results, at 0.75 and 0.72 respectively for EfficientNetv2 and NFNet.
The lowest result belongs to the case of the AA class, only 0.56 and 0.54 for
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the two classifiers. The challenges come from the complexity of the ”Atypical”
class definition, which includes a range of abnormalities reported uncommonly
for COVID-19 pneumonia such as pneumothorax or pleural effusion, pulmonary
edema, lobar fusion, solitary pulmonary mass or nodule, diffuse small nodules
and cavity. The model might not have enough samples of each abnormality to
draw useful representations from given the variety of ways that unusual things
might appear along with the dearth of data available for this class (10%). The
features of the IA layer are also unclear, which leads to its low result, 0.59 and
0.61, respectively. There is a huge difference between the results of 2 classes NP
and TA compared to 2 classes AA and IA. This is reasonable because symptoms
on the NP and TA classes are often very specific and easily distinguishable, rep-
resenting virus-positive and negative cases, respectively. In addition, the number
of samples of these two classes also accounts for the majority of the test set.

Tab. 3 shows comparison between methods integrated in the proposed frame-
work. If only the discrete models are counted, Yolov7 clearly outperforms the
other two models with the best score of 0.563. A solid outcome was also achieved
by the DETR architecture, which reached 0.542 accuracy points. When the Ef-
ficientDet model only managed to attain an accuracy of about 0.5, which is
roughly 10% less than DETR and Yolov7, it became clear that it was not appro-
priate for this kind of situation. This can be accounted for by the lack of ample
and diverse training data for a data-hungry architecture like EfficientNet.

Table 3. Evaluation of the COVID-19 lesion detector on the SIIM test set

Detector
Accuracy (mAP@ IoU 0.5:0.95) Performance
Discrete model Lung localized Inference speed (FPS) GPU memory requirement (MB) Model size (MB)

DETR [3] 0.542 0.587 25 2683 232

Yolov7 [21] 0.563 0.591 34 3520 290

EfficientDet [18] 0.499 0.574 19 1903 187

Our Fusion 0.605 0.612 8 8106 709

The lung region identification and separation strategy proved to be very effec-
tive as it improved the accuracy for all models. For each of the three situations,
the accuracy increased clearly, by 5%, 8%, and 15%, respectively. The most note-
worthy of which is the application of lung separation by Yolov7 followed by the
use of EfficientDet, which has produced a result of 0.499 to 0.591, an increase of
15%. The reason for this is most likely because the EfficientDet model, with the
help of the lung partition model, has made it easier to focus on the core region
of the lung. The case of overlapping two Yolov7 models proved to be ineffective
when the results only increased by about 5%, this is because the architectural
repetition in the two phases reduces the diversity of the results.

It should be noticed that the accuracy is significantly increased by employing
the weighted box fusion technique, which merges predictions from three different
models. It achieves an accuracy of up to 0.605, which is 7% higher than Yolov7
and a 21% increase over EfficientDet. The fusion solution reached an outstanding
score of 0.612 in the case of previously recognized lung regions. However, as
compared to the single findings, this outcome is only moderately improved by
roughly 4%. This can be explained that the accuracy of the alternatives prior to
compositing is already fairly high, so blending the results makes little sense.
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Concerning performance evaluation, three factors are addressed. For inference
speed, the Yolov7 architecture achieved the best results, 34 fps. DETR comes in
second with 25 fps and EfficientDet comes in third with 19 fps. When all three
models were performed in succession, the calculation speed dropped considerably
to only 8 fps. In terms of GPU memory required when referencing the model, the
best result belongs to EfficientDet with about 2 GB of GPU, while DETR (resp.
Yolo7) consumes about 2.6GB (resp. 3.5 GB). If performing parallel models, the
required memory is up to more than 8 GB. For memory space, EfficientDet needs
only 187 MB, while DETR (resp. Yolov7) takes up 232 MB (resp. 290 MB).

The preceding results are used to make recommendations for the implemen-
tation of deep learning models in real-world scenarios. Diagnostic errors need to
be kept to a minimum in both the general medical profession and COVID detec-
tion in particular. In order to merge these three models in a way that provides
the best level of accuracy, it is important to employ the lung region separation
technique and the weighted box fusion approach. This manner is much more
expensive, it often results in a reduction of more than 4 times the computation
speed when referring the model, increasing both the amount of GPU memory
needed and the size of the storage. This approach is appropriate in cases where
the accuracy is a priority, such as severe or highly suspected cases. On the other
hand, we can use the Yolov7 straightforward model for a better trade-off be-
tween the accuracy and the consuming time. Though there may be a little, 5%,
reduction in precision, there is a four-fold gain in calculating speed. The Effi-
cientDet model can be used when the available hardware is constrained in terms
of capacity because it consumes small resources to achieve satisfactory accu-
racy. Alternately, we can adopt the DETR model, which will provide a greater
precision while only slightly increasing the amount of resources needed.

5 Conclusions

We have proposed a framework consisting of two classifiers and three detectors
enhanced by ensemble learning approach to categorize and locate COVID-19
related anomalies. The results are thoroughly analyzed to provide recommen-
dations in the application of deep learning models in practice. The limitations
in data imbalance as well as the performance of the models will be improved in
future researches. Our code is available at this address for research purpose.
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