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ABSTRACT. In this paper, we consider the complex Ginzburg Landau equation
dvu = (1 +iB)Au + (1 +16)|ul’"u — au where 8,4, € R.

The study aims to investigate the finite time blowup phenomenon. In particular, for fixed 5 € R,
the existence of finite time blowup solutions for an arbitrary large |d] is still unknown. Especially,
Popp et al [24] formally conjectured that there is no blowup (collapse) in such case. In this work,
considered as a breakthrough, we give a counter example to this conjecture. We show the existence
of blowup solutions in one dimension with § arbitrarily given and 8 = 0. The novelty is based
on two main contributions: an investigation of a new blowup scaling (flat blowup regime) and a
suitable modulation.

1. Introduction

In this paper, we are interested in the complex Ginzburg-Landau (CGL) equation
(1 +iB)Au + (1 + i8)|ulP~tu — au,
u(.,0) = wupe L®RYN,C),

where 3,9 and « are positive real numbers, p > 1, and u(zx,t) € C.

Ut

(CGL) (1.1)

Equation (1.1) is named after V. Ginzburg and L. Landau, which has a long history in math-
ematics and physics. In particular, the cubic case, i.e. p = 3, has been developed to describe
the behavior of a superconductor or a superfluid near its critical temperature, where fluctuations
in the order parameter become large, and the system exhibits complex, nonlinear behavior. In
particular, the (CGL) captures the phenomenon of spontaneous symmetry breaking, in which the
system transitions from a high-symmetry state to a low-symmetry state due to small perturbations.
Additionally, the (CGL) equation also describes a variety of phenomena in physics, such as non-
linear waves, second-order phase transitions, superconductivity, superfluidity, and the evolution of
amplitudes of unstable modes for any process exhibiting a Hopf bifurcation; we refer the reader to
the review by Aranson and Kramer [1] and the references therein for more detail.

The (CGL) equation can be also derived from the Navier-Stokes equations via multiple-scaling
methods in several problems, most notably in convection (e.g. see ref. [22]). However, our intention
here is not to treat it as a model for fluid turbulence but as an example of a nonlinear PDE which
we can use to explore new methods.
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From the PDE point of view, the local Cauchy problem is well posed in a variety of functional
spaces by using the semi-group theory (see [5, 11, 12]). Our framework, the functional space L (RY)
will be chosen as a convenient way allow us to derive the asymptotic behavior of the blowup. In
particular, we say a solution to (1.1) blowing up in finite time if there exists 7" € (0, +o0) such that

T fu(t) | ) = 0. (1.2)

Moreover, a point zg € RY is said to be a blow-up point of the blowup solution if there is a sequence
{(x;,t;)}, such that x; — x¢, t; — T and |u(xj,t;)| — © as j — c0. The set of all blow-up points
is called the blow-up set.

The study of singularity formation (such as collapse, chaotic or blowup) for equation (1.1) has
been received a lot of attention in many works in the last decays. Typically, we mention to Stew-
artson and Stuart [29] in the description of an unstable plane Poiseuille flow; Hocking, Stewartson,
Stuart and Brown [14] or in the context of binary mixtures in Kolodner and al, [15, 18], where the au-
thors describe an extensive series of experiments on travelling-wave convection in an ethanol/water
mixture, and they observe collapse solution that appear experimentally. We cite also the result of
Turitsyn [30], who gave a harp sufficient criteria for collapse for equation (1.1) in the case of the
subcritical bifurcation.

In this paper, we study the equation (1.1) as a nonlinear Partial Differential Equations (PDEs).
Historically, a huge literature has been made on the blowup for PDEs in general, and on construction
blowup solutions in particular.

Let’s shift our focus to the literature on construction blowup solutions to the (CGL). The question
of the existence of a blow-up solution for equation (2.1) remained open so far. Indeed, classical
methods based on energy-type estimates break down. We cite the result of [6] and [7] which studied
the CGL equation in the case 5 = §. We also point out that (2.1) may have blow-up in the focusing
case, namely 6 > 0. In [27] and [4], the authors give some evidence for the existence of a radial
solution which blows up in a self-similar way.

Now, let us focus on the special case 5 = 6 = 0 which reduces (1.1) to the classical heat equation
O = Au + |[ulP"lu, and p > 1. (1.3)

There exists an extensive literature spanning over six decades that one has investigated on blowup
phenomena for (1.3). For a more comprehensive understanding of this field, we recommend referring
to [28] for detailed insights into blowup studies. Regarding a specific reference, we mention to [2]
(also mentioned in [20]) in which the authors constructed blowup solutions to (1.3) and described
their blowup asymptotic via explicit blowup profiles. In particular, in one dimension, given a
blow-up point a, we are able to construct a solution such that

e cither

sup
lz—a|< KA/ (T—t) log(T—t)

(T —t)r—Tu(z,t) — fo, <\/(T ) Toa(T = t)|> ‘ — 0, (1.4)

the authors in [2] constructed a solution such that
e or forsome keN, k>2 and b> 0

(T — )7 u(x,t) - fy <(x_a)>‘ -0, (1.5)

Sup (T — t)1/2k

|z—a|<K(T—t)1/2k
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as t — T, for any integer k > 0, where

foo(z) = (p—1+ bozZ)_Til with by = (p—1)*
0 =L

1 (1.6)
fo(z) = (p— 1+ b|z|**) " »T where b > 0.

If (8,9) + (0,0), some results are available in the subcritical case by Zaag [31] (5 = 0) and
Masmoudi and Zaag [21] (5 # 0). More precisely, if

p— 0% —B6(p + 1) > 0, so-called subcritical, (1.7)

then, the authors construct a solution of equation (1.1), which blows up in finite time 7' > 0 only
at the origin such that for all ¢ € [0,T),

P2 -3
'wsub(t)u(.,t) - <p ~l+ 7o f)sﬁlg(lT _ t)|) y < \/Ilci%f(Ti—t)l’ (1.8)
where
Beun(t) = (T =) Jlog(T — 1),
and
(p—1)? 0 and 2w g L)

bsub =
Ap— 62 = Bo(1 +p)) (p—1)°
Note that this result was previously obtained formally by Hocking and Stewartson [13] (p = 3) and

mentioned later in Popp et al [25] (see those references for more blow-up results often approved
numerically, in various regimes of the parameters).

For the critical case i.e. p— 82— 3d(p+ 1) = 0, there are also construction of a blow-up solutions
made. We mention to [23] (for the case § = 0) and [10] (for the case 5 # 0). More precisely, the
authors constructed blowup solutions to equation (1.1) (see Theorem 2 in [10]) and described the
blowup profile by

1446
beri|z|? ) = C

<
(T — )| log(T — t)|2 . L |leg(T -t

)

Veri(t)u(z, t) — (p -1+

where
7 14i8 ) .
wcri(t) = (T — t)ﬁ |]0g(T _ t)|—1lt e—zu\/ﬁ’
with the constants v = v(8,p), u = (8, p) determined as in [10], and

2 (p = D*(p + 1)
T16(1+02)(p(2p — 1) = (p—2)02)((p + 3)82 + p(3p + 1))

As a matter of fact, the works [21], [23], and [10] have encountered unresolved cases, where the
condition

p—6>—pB(p+1) <0. (1.10)

remains unknown. Furthermore, the methodology employed in those works appears inapplicable
to address (1.10). Specifically, in [25], Popp et al put forth a formal conjecture stating that, for
a fixed f3, the existence of finite time blowup solutions for arbitrarily large |§| is not available (we
refer to Remark 1.1 for further details). Contrary to this conjecture, our paper establishes a proof
for the special case 8 = 0. More precisely, our result reads.
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Theorem 1. Let 3 =0, p> 1 and k € N,k > 2, then there exist vy such that for all vy € (0,7),
there exists T(y) such that for all T € (0,T), there exists initial data ug € L*(R) such that the
corresponding solution to equation (2.1) blows up in finite time T and only at the origin. Moreover,
there exists a flow b(t) € C1(0,T) such that

(i) For allt € [0,T), it holds that

@—w?ﬂwﬁ—nm('”l> S(T-030 0 ast T, (1.11)
(T =) ] | oo ()
where fyy) is defined by
146
—1
funy ) = (p =1+ 0O™) " (112)

(i1) There exists b* := b*(ug,v,T) > 0 such that b(t) — b* ast — T and
b(t) — b*| < (T —£)=%) vt e (0,T), (1.13)

Corollary 2. Under the same hypothesis of Theorem 1, it holds that

S N T (N b
(T —t)» T u(-t) - f, QT—wﬁ>

where b* is defined in ii) of Theorem 1.

<(T—10)30% ast — T, (1.14)
L (R)

Remark 1.1 (Comments on the result). Kuznetsov and co-authors in different publications, [17],
[16], [19] and ([26], section 2, page 87) made a conjecture saying that collapse of the solutions of
the CGL equation (2.1) may be suppressed for suitable parameters  and 6. They suggest that
the imaginary cubic term (when p =3, B = b and § = —c) in the CGLE provides a stabilization
mechanism which can eventually suppress the collapse. For the understanding of this mechanism
they write the CGL equation in terms of modulus and phase (u(z,t) = A(z,t)e'®*@ and k = 0,)
i one dimension, then we have

A = A1+ A% —k?) —2Bk0,A — BAOLA + 02A (1.15)
2 0x (A%
ok = 00,A% — 2Bkosk + B0, <6f4‘4> + 0y <(A2)> (1.16)

Then, for =0, 6 >> 1, the last term on the RHS of (1.16) is assumed to be negligibly small
compared to the first one. As a result of the phase gradient mechanism (PGM) and due to the
formation of sharper gradients of the amplitude the propagation speed will grow steadily during the
blow up which results in a narrowing of the pulse and (eventually) a suppression of the blow up.
Thus the PGM provides the comparison of the pulse up to its disappearance.

In Theorem 1, we give a counter example to this conjecture when B =0 and for all § € R. Indeed,

this conjecture is false if we consider a blow-up solution as in (1.11) with scaling equal to ( L .
P

—t)2k
Indeed, if we introduce the following self-similar variables y = —%—+, s = —log(T — t), w(y, s) =
is
(T — t)_ll’%u(:v,t), then w satisfy (see equation (2.3)):

1 14146 s
dsw = T72(s)Aw — YA Vw — ptll w + (1 + i6)|wP~ w, with I(s) = e~ 205w,
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Let us now write w = We'¥ and K = 0y, then we have

— 1 — - Y
= p—1 _ - 7252 2424 Y
0sW W (W b1 17K > +1 (?yA 2k(9yA (1.17)
— — 2 5 [/L ’y
_ p—1 2 Ko, 2 _
0K = §0,(WP ™y +1 [ay( )+ayK] ay[%K]. (1.18)

Following the conjecture of physicists, even if K grow, he will not be able to suppress the blow-up
1

because the fourth term in equation (1.17) is coming with I(s)~2 = e *0=%) which decay to 0 as

we approach the blow-up time T.

Remark 1.2. In our paper, we focus on the construction of solutions in the case § = 0, but we
believe that the construction of blow-up solution such in (1.11) is possible for the case B % 0, but
there is additional difficulty coming from the fact that the linearized operator in that case is not
self-adjoint and is not diagonalisable. However, we think that we could have a critical condition for
the construction of such profile.

Remark 1.3. (Difficulty and the strategy of the proof)

e To prove a result such in Theorem 1, usually we consider the perturbation as the linearisation
of the solution around the profile and then we prove that the perturbation goes to 0 as we
approach the blow-up time. In this work we use a tricky linearisation introduced by Bricmont
and Kupiainen in [3]. Indeed, we will introduce the following perturbation,modulo a phase,
u(T — t)_p%l]fb]*(pfl)fb_l — (p— 1+ by?*). The study of such linearisation will simplify the
computations as you will see in section 5.

o Qur construction in this work is inspired by the work of Bricmont and Kupiainen in [3] and
our recent result [9]. But this is far from being a simple adaptation of the construction made in
the case of the nonlinear heat equation because of the complex structure of the CGL equation
2.1. Indeed we have a potential term V' (see (2.11)) which appear in the linearized equation.
We note that the computation of the projection of the potential are much more difficult to
handle (see Lemma 5.9 and 5.12).

e The proof of Theorem 1 relies on the understanding of the dynamics of the self-similar version
of (2.1) (see (2.3) below) around the profile (2.7). Moreover, we proceed in two steps:

— First, we reduce the question to a finite-dimensional problem: we show that it is enough
to control a (2k)-dimensional variable in order to control the solution (which is infinite
dimensional) near the profile.

— Second, we proceed by contradiction to solve the finite-dimensional problem and conclude
using a topological argument.

Structure of the paper: To be more convenient for readers, we mention here the structure of
the paper. In Section 2, we give a formal approach to our problem and setup the main linearized
problem around the suitable approximation. Next, we show in Section 3 spectral properties of the
linear operators. In particular, Section 4 plays a central role in our paper that reduces our problem
to a finite dimensional one and the conclusion to the finite dimensional one. Finally, the conclusion
yields the proof of Theorem 1 and Corollary 2 (see Section 4.5). In Section 5, we provide a priori
estimates to our solution which plays an important role in our analysis. Finally, in the last Section,
we give necessary estimates on the action of semigroups on the negative part of the solution. We
hope this make clear the structure of the paper.

Acknowledgements: The work of Hatem Zaag is supported by ERC Advanced Grant LFAG /266
“Singularities for waves and fluids”. The work of Duong Giao Ky is supported by a grant from the
Vietnam Academy of Science and Technology under the grant number CTTH00.03/23-24.



6 G. K. DUONG, N. NOUAILI AND H. ZAAG

2. Formulation of the problem

In this section, we aim to formulate our main problem. First, we formally explain how the
profile in Theorem 1.11 is selected, and we then make the linearized problem around the selected
approximation.

Let 8 = a = 0, then the complex Ginzburg Landau equation (1.1) reads
Oru = Au + (14 i6) julP~u. (2.1)

Now, we assume that u is a solution to (2.1) on [0,7) for some T" > 0, and k > 2 is an integer
number. We introduce the k-similarity variables as follows

w(y.s) = (T =85 ule,t), y = —— s = —In(T —1). (2:2)
(T —t)2*
Thanks to (2.1), w solves the following equation
1 141
dsw = I72(s)Aw — —y - Vw — ﬂw + (1 +i0)|w|P w, (2.3)
2k p—1
where I(s) is defined by
I(s) = e3(17%). (2.4)

In our paper, we are interested in a formal solution to (2.3) of the form

o wi(y) o wi(y)
W) = 2 7o) T 4 e

J=0

where w; is assumed to be smooth and globally bounded. Plugging this ansatz into (2.3) and
looking at the leading order, we obtain

1 oy Wo
Vg — (1
SRy Vo ( +Z§)p_1

Since we aim to search global solutions w, wg must be the same. Up to modulo a phase, there
exists b > 0 such that

+ (1 +46) |wo|Ptwg = 0.

2k — L2
wo(y) = (p— 1+ by*")” »—1 for some b > 0. (2.5)
Thus, (2.5) formally explains how the profile in Theorem 1.11 arises.
Next, we is motivated by [3], to introduce the linearized problem as follows
w(yv S) = eZA(Q(S)fb(s) (yv 3) (1 + €b(s) (y7 S)Q(ya 5)) ) (26)

the functions fy5) and ey, are given by

_14i8

fn@) = (p=1+b(s)™) ", (2.7)

and
ey(s)(y) = (p —1+ b(S)y%)f1 : (2.8)

It is worth noting that the combined influence of the two parameters b(s) and é(s) is crucial to our
analysis, as they govern the dynamics of neutral modes in our construction problem. As a matter of
fact, our linearized problem is not only focused on linearisation with respect to the variable ¢, but
also extends to determine the flows (6,b) (so-called modulations). Thanks to (2.3), which allows
us to express (q,b,0) as follows:

0sq = Lssq + B(q) + T(q) + N(q) + Ds(Vq) + Rs(q) + V(q), (2.9)
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where
1
Lssq=1"2(s)Aq— oy Va+ (1 +i0)R(a),, (2.10)
V(g) = ((p—1ep — 1) [(1 +i0)Rq — q], (2.11)
-1 -3
N(q) = (1 +10) <|1 +epqP 1+ epq) — 1 — 2epRq — P 5ol — P 5 6b¢7> ’ (2.12)
and /
Blg) = 29y (140 + (p+id)esq) ,
T(q) = —i0'(s)(e;' —q) =—ib'(s) (p— L+ by* —q),
—92p+id 2k—1 (2‘13)
Dy(q) = —I(s)BEp4kby”" e, Vg,
Ry(q) = I7%(s)y* 2 (041 + asyey + (063 + Oé4y2k€b) Q) )

with the explicitly determinated constants as follows

. . . 2
ar = —(1+i9)2k(2k — l)p—fl ay =4(1+10)(p+ 15)k2(1:71)2, ] (2.14)
az = —(p+1i0)2k(2k — 1)ty as =4(p +i0)(2p — 1 +i0)k> V.

Our aim is to construct a triple (¢, b, 0)(s), s € [~ InT, +00) where 6(-),b(-) € C*([~log T, x0),R)
are suitably selected such that equation (2.9) has a unique solution ¢(+, s) on [—In T, ) satisfying

q(s)
S)|r0 = — 0 as s — o,
oo, = | 2]
where the constant M is defined by
2
M= Lpl' (2.15)
p —

Choosing such a value for M involves a delicate process. On the one hand, it ensures that that the
linearisation (2.6) is effective, providing us with a rigorous approximation. On the other hand, it
allows us to effectively control the nonlinearity A, as we showed in (5.33).

3. Spectral properties of linear operators

In this section, we aim to give some spectral properties of the linear operators appearing in our
paper.

First, let us introduce

I(s) _I*()y?
ps = \/(ﬁe o (3.1)

Then, we introduce LZS (R, C) as the weighted Hilbert space defied by
L%s (R,C) = {f e L? (R, C) such that JR |f1?psdy < ~|—oo} . (3.2)
For each m € N, we recall h,,(z) as the Hermite polynomial of degree m defined by
(5] ml
hm(2) = ) o™ 3.3
=) ;m(m_%)!z (33)

By a simple computation, it is easy to check

Jhnhmpsdy = 2"n16,m. (3.4)
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Now, we define the scaled function H,,

%
Hm -] ™ I 2 ¢ m—2€. )
) = 1) = X g (1) (35)
Thanks to (3.4), it holds that
(Hy,(.,s), H, f H,( ps(y)dy = I722"n15,,,,. (3.6)
We introduce .
Losa=17*(s)Aq = 2y - Vg, (3.7)
and )
Loq =12 ()Aq——ky Vg+q=Loysq+q. (3.8)
We can easily derive the decomposition of the operator Ls in Jordan block as follows
1 -3z Hm(ya 8) + m(m - 1)(1 - l)I_Q(S)anf2 it mz>= 27
LsHm(y,s) = { (= 5) : ' (3.9)
(1—22) Hn(y, s) if me{0,1}.

For some s > o, we represent Ko, and Ks, as the semigroups associated with the linear
operators Lo s and L, respectively. As a matter of fact, the semigroups are fundamental solutions
to the following

0sKos,0 = Lo,sKo,s,0 for all s > o,
(3.10)
’CO,U,U = Id7
and
aslcs,a = ﬁsKs,o’ for all s > g,
(3.11)
Koo = Id.

Thanks to Mehler’s formula, the kernels of the semigroups are explicit (initially proved in [2]) and
given by

Kooy, z) =F <e*%y - z) and Kso(y,2) = e 7F (e*%y - z) (3.12)
where )
L 2¢2 I s
]:(5) = \(/85) _L4E Wlth L2(S,O') = m and I(S) = 65(1_%). (313)
In particular, it holds that
KosoHn(.,0) = e DGR H, (., s) and Ky gHy(.,0) = D=3 H, (., 5). (3.14)

Next, we are based on (3.9) to represent the Jordan block for Lss. We define
{ i = (1+i6)Hyn(y, ), Hon = iHyn(y, 5)lm e N}, (3.15)
where H,,(y, s) is defined in (3.5). Thus, it holds that for each m > 2

. m\ - 1. A
Los(Hm) = (1- %) Hyy -+ m(m = 1)(1 = )17 (5) B, 5.16)
Loa(fn) = —EHp+mlm— 1)1 — })I2(s) o,
and for m € {0, 1}, we have
~ m ~
£575(Hm) = 1——) H,,

Lss(Hp) 2 Ho,.
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3.1. Decomposition of ¢

In this part, we aim to introduce decomposition of the solution ¢ along time-dependent polyno-
mials {H,,n > 0} (also {H,, H,,n = 0}). Let us expand ¢ by

W5 = ) Qus)Haly:s) +a_(y,9) (3.18)
0<n<[M]
where M defined as in (2.15), and H,, is defined in (3.5), Qn(s) € C, g_ satisfy
Janps
(3.19)

Qn(g; s) = W

Additionally, we can understand that q_ is the rest part of ¢ which is orthogonal to H, for all
n < [M]ie.

fq_(y, $)H,(y, s)ps(y)dy = 0 for all n < [M].

For more convenience, we define two projectors P, [y and P_ [ (P; and P- for short)

(3.20)
and
P_an(q) = a— Py - (3.21)
Thus, by introducing
q+ = Py and ¢- = P_ ), (3.22)
Wwe can express
q=q+ +q-. (3.23)

Definition 3.1 (§-decomposition). We define the projectors 2y s and 2g 5 on complex numbers
by
Dps(z) = R(z) = 2 and D3 5(2) = J(2) — RN(2) = 2, (3.24)

for each z € C, then we have a unique decomposition for each z € C that

z = z(1+41i6) +iz.

Consequently,

Lemma 3.2. The projectors 2y 5 and 2 s hold true:
(i) It is easy to check the following properties: for all A € R, 21,29 € C

Dys(z1+ 22) = Dns(z1) + Dro(z2) and Dgs(z1 + 22) = D 5(21) + L 5(22), (3.25)
and
Dxs(A\z1) = A2x5(21) and D5 5(A\z1) = AZg 5(21), (3.26)
and
Dy s(L+10)X) = A, and Dg 5(iX) = . (3.27)
(ii) Let V(q) defined as in (2.11), then
V(g) =0 and V(g) = (1 — (p— 1)ey) . (3.28)

Proof. 1t directly replies on Definition 3.1. We kindly refer readers to check the details. I
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According to Definition 3.1, we can decompose g, and ¢_ as follows

Gr = D) QuHn(s)= D GuHn(s) + GnHn(s), (3.29)
n<[M] n<[M]
and
g— = (1+140)G— +ig—, (3.30)

where ¢,,d, € R and ¢_,{_ are real-valued functions. In particular, these components can be
explicitly expressed by

Gn(s) = Pa(q) := 22s(Qn), dn(s) = Puar(q) == 25,5(Qn).- (3.31)
and
G- = Zys(q-) and ¢— = Dg5(q-). (3.32)

Finally, we obtain the unique decomposition as follows

9,9) = | D () Ha(y,8) + () Haly, s) | + (L +1i0)q-(y, ) +iG—(y, ). (3.33)
n<[M]

3.2. Equivalent norms

In this section, we establish equivalent norms used in our paper. Let us introduce LY, defined by

LY (R) = {g such that (1 + |y|M)"tge L®(R)}. (3.34)
LY, is complete with the norm
lgllg, = 1+ ly*) " gl (3.35)
since L* is complete with |.|z». In particular, we also introduce |.|s as follows
(M]
lals = > lgml + la—ls, (3.36)
m=0
where
la-(y, 5)|
_|ls =SUp — 7+ 3.37
|q |S yp I,M(S) + |y|M ( )
As a matter of fact, we have the following equivalence:
Ci(s)lalzg < llgls < Ca(s)lglLg for some €1, Cy € RY, (3.38)

which yields L is also complete with |.|.

4. The proof assuming some technical results

In this section we give the complete proof of Theorem 1. The main idea is to reduce the problem
to a finite dimensional problem (2k-dimensional one) which is classical and can be solved by a
topological argument. We hope that the explanation of the strategy we give in this section will be
more reader friendly. Below, we give the main steps:

e The first step: we construct a shrinking set V4 4 4,,6,(5) including necessary bounds such that
the belonging in this set completely implies the result in Theorem 1.

e In the second step: we construct initial data at initial time sy for (2.9) which is parameterized
by 2k parameters in accordance with the 2k projections o, .., Gor_1 of ¢ on H,,n < 2k.



FLAT BLOW-UP SOLUTIONS FOR THE COMPLEX GINZBURG LANDAU EQUATION 11

e In the third step: we impose two orthogonal conditions
Zas ([ o06) 51wt ) = 25  [at) o )22, 0) =0, (41)

which are responsible for nullifying two projections ¢sx and g of g onto ]:I% and Hy. According

0 (3.16), the projections involve the zero modes arising as big challenges in the construction.
Therefore, the appearance of these modulations is critical to our construction. Additionally,
we show the locally unique existence of the solution (g, b, ) to the coupled problem (2.9) &
(4.1).

e In the fourth step: By using the spectral approach of the linear operator Lss, we reduce
the control of (¢,b,0)(s) (an infinite dimensional problem) to a 2k-dimensional one involving
(o, -+ Gor—1)-

e In the last subsection, we solve the finite dimensional one by using a topological argument
and we give the complete conclusion to Theorem 1.

4.1. Definition of a shrinking set

In this section, we define a “shrinking set” which control the behavior of the solution by some
error bounds.

Definition 4.1 (Shrinking set). Let k > 2,k e N,y > 0,bp > 0,0p e R,s > 1 and A > 1, we define
VA ~.b0.00(8) as the set of all (q,b,0), where q € (L3;(R),R) satisfying the following conditions:
(i) The first condition: for all n satisfying 0 < n < M, we have

lGn| < I77(s) and |G,| < I77(s). (4.2)
(ii) The second condition:
q—(y,s) - q-(y, s) _
— < I77(s), ' = < AI77(s). (4.3)
=M 4y M e I=M M

where I(s) defined as in (2.4); Gn and §p, given as in (3.31); and §— = Py 5(q-).4— = D35(q-)
and the negative part q— defined as in (3.22).
(iii) The third condition:

5} < b < 2bg, (4.4)
= < 18] < 2/60). (4.5)

In below, we show some rough bounds for functions belonging to Vi 4 4,,6,(s) for some s > 1.

Lemma 4.2. Let (q,b) € Va4 p.6,(8) arbitrarily given, then the following estimates hold

g (I <CI(s) | D, (I7™(s) + yl™) | Yy e R, (4.6)

n<[M]
lg—(y)| < CAI™7(s)(I~ ( )+ |y, vy e R, (4.7)
‘ﬂ{|y|> }q+(y)‘<01 (s) ("M (s) + [yM) ,Vy e R, (4.8)
1y 2ya()| < CALT () (17 (s) + |y|M) vy e R, (4.9)

where C' > 0 is a universal constant depending only on the nonlinear power p and k.

Proof. The result immediately follows by the definition of V4 4,6, (s). We kindly refer the reader
to check these estimates. I
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4.2. Preparation of initial data

Let us now prepare initial data to our problem. We consider d= (czo, - czgk,l) € R?* and we
introduce

2k—
¢(d7 Y, 30 Z H ya 80 (410)

By the orthogonality of {ﬁ s H}.}, we can easily check that
Po(3) = 0, and Py() = 0, (4.11)

which satisfy (4.1) at so.
In below, we show important properties for initial data defined in (4.10).

Lemma 4.3 (Reparing of initial data). Let d = (d;)o<i<on—1 € R2* satisfying maxo<i<or_1

Az" <2
and by > 0 arbitrarily given. Then, there exists v1(bg) > 0 such that for all v € (0,7v1), there exists

s1(,b0) = 1 such that for all sy = s1, the following properties are valid with 1(d,y, so) defined in
(4.10):

(i) There exits a quadrilateral Dy, < [—2,2]** such that the mapping
r:D,, — R*
(JO, ---,6{%—1) = (&07 ---,%k—l)’
is linear one to one from Dy, to V(sq), with
V(s) = [~177(s), I7(s)]*", (4.13)

where (7,20, ...,1&2;@_1) are the coefficients of initial data w(do, ...,cfgk_l) corresponding to the
decomposition (3.33). In addition to that, we have

F’ﬁﬂ)so c OV(so) and deg (F\5D50> # 0. (4.14)

(4.12)

(ii) For all (cfg, s cZQ,H) € Dg,, the following estimates are valid
‘?/30‘ < T77(50), oons Y2k ‘ <I7(s0), thor=..=1n =0 and ) =0,1_ =0. (4.15)

Proof.
- The proof of item (i): From (4.10), definition’s H, as in (3.5) and (3.31), and by a direct
computation we can prove that there exists a square matrix o7, satisfying

o = Id+ oy, with oy, = (i), |ai;] < CT %(s0),

and we have

vo do
d
w'l — I (so) | |, (4.16)
¢2k—1 d2k—l

which immediately concludes item (i).
- The proof of item (ii): From (4.10), 1/1((1%, ...,CZ%_I,SO) is a polynomial of order 2k — 1, so it
follows that

Un = 0,Yn € {2k, .., M}, ¥, = 0,Yn € {0,.., M} and ¢_ =

In addition, since (do, e d%_l) € Ds,, we apply item (i) to deduce that (¢, ..., 1/1%_1) € f/(so) and
Un| <

< I7%(sg),Vn € {0, ..., 2k — 1}
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which concludes item (ii) and the proof Lemma 4.3.1

Remark 4.4. Note that so = —In(T) is the master constant. In almost every argument in this
paper it is almost to be sufficiently depending on the choice of all other constants (o and by). In
addition, we denote C' as the universal constant which is independent to by and sq.

4.3. Local in time solution of problem (2.9) & (4.1)

In this part, we prove the local existence of solution to the problem (2.9) & (4.1). The result
reads.

Proposition 4.5 (Local existence of the coupled problem (2.9) & (4.1)). Let d e R satisfying

<2, 7>0 by >0,6) € Rand A = 1. Then, there exits sa(7y,bg,00) = 1, such that for

all s9 = sg, the following holds: if we take initial data (1,bg,6p) with ¢ defined as as in (4.10),
then there exists sjoc > so such that the coupled problem (2.9) & (4.1) has a unique solution

(¢,0,0)(5) € VA ~.0.6,(5) 01 [0, Sioc]-

Proof. First, it is classical that equation (2.3) is locally well-posed in L*(R). So, with initial data
(1, by, 0p) and the transformation in (2.6), there exists 51 > s such that equation (2.3) uniquely
exists on [sp, 51]. Now, let us introduce ji = (b, ) and define

D5 (J [w(y, s)(foep) e — (p —1+ by%)] szpsdy>

T s 5 (J [w(s)(fbeb)_le_w — (P -1+ by%)] Hopsdy> < Fale, ) >

By (3.19) and (4.11), we have

F(s0, fio) = 0 where jig = (bo, 0o)-

So, the result will be a direct consequence of the implicit function theorem. Let us recall the
Jacobian matrix of F in accordance with the variable (i

JalF(s, fi) = < a5 ) aefl(s’? ) ; (4.18)

OpFa(s, i) 0OpFa(s, L)
where
09 F1(s, i) Q&a,a( ZJUJ s) fvey) ™ _iaszPsdy)
(o) = @ ([ |5l () e = o | Hapaty).
o F2(s, i) = Zg ,5( f )(foep) ! ZaHopsdy>

p+id

pasFa(s.) = 2as ([ 57 [l ()~ 2] Hop. ).

The main goal is to prove

Det (Jﬁ[F](S,/I)) ’(S,ﬁ)Z(So,ﬁo) #* 0 (419)

- Ezpansion for 0yF1(so, i) |z_z,- Thanks to (2.6) and (4.10), it follows that

w(so)fb;le_w =1+ epVY, (4.20)
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which yields
p+id
p—1
So, we derive from (4.10) that

1+ 1+
ka =y + nykebO‘I/. (421)

2% 1 _—ifp _
’LU(So)y (fbo) € p— 1 Yy D 1

j];—tzf [w(s)y%(fb)_le_w - y%] Hoppsdy = ;—i__il(sf_4k(so)24k(2k)! (1+0(I " (s0))) -

Therefore, we get

(5070 gy, = 1M 002 (20! (1 4+ O ().

- Expansion for 0pF1(so, i) | : Using (4.20) again, we get

H={io
—1 Jw(s())(fboebo)_le_wOHQkpsdy = —ibol " (s9)2*%(2k)!.

Thus, it follows that
9o F1(s0, 1) 15—, = 0. (4.22)

- Exzpansion for 0vF2(s0, f) |;—z,: By using (4.21), we obtain

< CI_2k($0).

ObF2 (0, 1) | 7=z,

- Ezpansion for dpFa(so, [i) | : By the same way, we get

H=fo
QFa(s0.p0) = (~(p—1) = I (s0)do) =617 (s0) (8o +do) + COI(s0)
= (1=p)+ 0T (s0))-
By combining the previous expansions, we obtain

(5.0 =(soi0) = (L= D)2 (RN (s0) (1 + O (s0))) + 0, (4.24)

provided that sg > s21. Thus, it is a direct consequence of the implicit function theorem that there
exists [i(s) = (6(s),b(s)) € C ([s0, S1oc], R?) N C* (50, S10c), R?) with sio¢ € (0, 51) such that

Det (J;[F](s, 7))

F(s,fi(s)) = 0,Vs € [50, S1oc],

and

bo |60
— < b(s) < 2bp and —
9 (s) 0 and =5
In particular, (¢,0,0)(s) € Vap0,00(S) Vs € [50,510c], thanks to the continuity of the solution.
Finally, we get the conclusion of the proposition. I

< 0(s) < 26|

Remark 4.6 (Propagating the existence). By the way in the proof of Proposition 4.5 we can
prove that if the solution (q,b,0) exists on [sg,5] for some 5 > so and (q,b,0)(5) € Varp0,60(5)-
Then, there exists € > 0 such that the solution (q,b,0) to problem (2.9) € (4.1), uniquely exists on
[s0,5 + €]. Since we can prove

Det (Ja[F1(s, 1) | s, = (1 = 2)2* (2R)T () (1 + O(AI(5))) # 0,/ = (b,6)(5).
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4.4. Reduction to a finite dimensional problem

As we defined shrinking set Va 4 4,.6,(s) in Definition 4.1, it is sufficient to prove there exists a
unique global solution (g, b, ) on [sg, +o0) for some sy sufficient large that

(q,b,0)(s) € VA,%boﬁo (s),Vs = so.

In particular, we show in this part that the control of infinite problem is reduced to a finite
dimensional one. As an important step to get the conclusion of our result, we first show the
following a priori estimates.

Proposition 4.7 (A priori estimates). Let bp > 0 and k € N,k > 2,by > 0, then there exists
v3(k,bo) > 0 such that for ally € (0,~3), there exists s3(7y,bo) such that for all sg = s3, the following
property holds: Assume (q,b,0) is a solution to problem (2.9) & (4.1) that (¢,b,6)(s) € Va4,b0,60(S)
for all s € [3,s0] for some § = sg, and qox(s) = 0 for all s € [3,s0], then for all s € [1,5], with
so < 7 < 8, the following properties hold:

(1) (Smallness of the modulation parameter 0(s)). It holds that
0/(s)| < CA’T™(s), Vs € [s0,5].
(13) (Oscillation the modulation flow b(s)). It holds that

¥(s)| < CA2T2(s) and %bo <b(s) < Zbo, Vs € [50, 5],
(iii) (ODEs of the finite modes). For all j € {0, ..., [M]}, we have
. J\ -
i)~ (1- 2 ) s

< CI™(s), Vse [so0,3]

< CA’T™2(s), Vse [s0,5].

35) + 2-5(5)

(tv) (Control of the infinite-dimensional part q—): For q— = (1 +i0)§— + ij—, we have
@- ()]s < e 7T a-(@)o + C (I 57(s) + e 311 5(0))
and s—o s—o
@-(5)]s < ¢ a0l + C (I7(s) + ¢ 71 17(0)),
where p = min(p, 2).

Proof of Proposition /4.7. This result plays an important role in the proof of Theorem 1. For the
reader’s convenience, we put the complete proof of Proposition 4.7 in Section 5.1

Consequently, we have the following result.

Proposition 4.8 (Reduction to a finite dimensional problem). Let k € N,k > 2,bg,600 > 0 and
A > 1, then there exists y4(bo) such that for all v € (0,74), there exists s4(by,~) such that for all
S0 = 84, the following property holds: Assume that (q,b,0) is a solution to problem (2.9) & (4.1)
in accordance with initial data (q,b,0)(so) = (¥(dy, ..., dax—1, 50), bo, Oo) where Y(dy, ..., dax—1), S0)
defined as in (4.10) with maxo<i<or—1|di| < 2; and (q,b)(s) € Varyp0,00(5) for all s € [sg,5] for
some 5 > s that (q,b)(5) € OV ~.y.6,(5), then the following properties are valid:

(i) (Reduction to some finite number of modes): Consider {o,...,Gax—1 be projections of q

corresponding to (3.31) then, we have

(4o, -+ Gok—1) (8) € AV(3),
where V(5) = [-I177(5), I77(5)]?* and 1(s) is given by (2.4) .
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(ii) (Transverse crossing) There exists m € {0,..,2k — 1} and w € {—1,1} such that

wWim(8) = I77(8) and w—— |,_. > 0.

Remark 4.9. In (i) of Proposition /.8, we show that the solution q(s) crosses the boundary
OV b0,00(S) at 5 with positive speed, in other words, that all points on 0V ~p,.6,(5) are strict exit
points in the sense of [8, Chapter 2].

Proof. Let us start the proof Proposition 4.8 assuming Proposition 4.7. Let us consider § < §3 and

sp = sz such that Proposition 4.7 holds.

- Proof of item (i): From item (i) in Proposition 4.7, it is sufficient to show that for all s € [so, 5]
the following are valid

1d;(5)] < %z—v(s), Vje{2k+1,...[M]} (note that go = 0), (4.25)
1d;(5)| < %I—V(s),w e{l,.[M]} (note that do = 0), (4.26)

and
i), < 3170, (o), < 31776, (4.27)

+ For (4.25): Using item (ii) in Proposition 4.7, we arrive at

1 ! j y{1 1
ii(s) + =177 —(1—-=)gi(s)+2(=—= )17 I=2(s)). 4.2
50| = (15 )60 £ 3 (5r-3) @ o TE). g
Hence, with j > 2k, < 74,1 and initial data §;(so) = 0 that g;(so) € (—3177(s0), 2177 (s0)), it
follows from (4.28) that

1

gj(s) € (—;1_7(8), 21_7(5)> , Vs € [so, 5],

which concludes (4.25). We proceed in a similar fashion to prove (4.26).

+ For (4.27): Since, the proof for §_ is the same as for §_, we only prove the inequality satisfied
by ¢ in (4.27). We divide into two cases that s — sp < sp and s — sg = sg. According to the first
case, we apply item (iii) of Proposition 4.7 by 7 = s¢ that

i), < (1

provided that v < 42 and sp > s42(7). In the second case, we use item (iii) again with 7 = s — s,
and we obtain

_pf1 s—s

_ p 1
¥ 7(s)+e = I_pTHV(so)) < =177(s),

@-(s)l, < e P+ C (17550 (s) 4 e T I (r))
< O ()7 (r) + T3 ()7 (s) < %I‘”’(s).

Thus, (4.27) completely follows. Finally, using the definition of Vi 5 4,.4,(s); the fact (¢,0)(5) €
OVA~b0.00(5); estimates (4.25), (4.26) and (4.27); and item (ii) of Proposition 4.8, we get the
conclusion of item (i).
- Proof of item (i1): As a consequence of item (i), there exist m = 0,..2k — 1 and w = +1 such that
Gm(5) = wI~°(5). By item (ii) in Proposition 4.7, we see that for § > 0

_m

wd,,(3) > ( 2k> Wi (5) — CI"2(3) = C ((

which concludes the proof of Proposition 4.8. 1

Lm

S (3) = 17(5)) > 0,
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4.5. Conclusion of Theorem 1
In this part we aim to give the complete proof to Theorem 1 by using a topological shooting

argument:

The proof of Theorem 1. First, we aim to prove that there exist (620, ..,cfgk,l) e Dy, such that
problem (2.9) & (4.1) with initial data (¢ (dp, ..., dax—1, So), bo, 0o) and (dy, ..., d2k—1, So) defined as
in (4.10), has a solution (qg 4.~ b,0)(-) defined for all s € [sp,0) such that

(qdowd%il,b, 0)(s) € Varyp0,0,(s) for all s > sq.

Now, let us start to the proof the existence. Let by > 0,0¢ > 0,7 = 0 and sy such that Lemma
4.3 and Propositions 4.7-4.8 hold, and we denote T' = e > 0 (small since sy is large enough).
We proceed by contradiction, we assume that for all (620, ey a?zk.,l) € D, (the set defined in Lemma
4.3) there exists s, = s*(do, . CZZk,l) < 400 such that

qu07"7d\2k—1 (s) € VA7’77b0760 (8)7 vs € [SO? 8*]’
qcz07~~7522k—1(8*) € 5VA7’Y7b0790 (8*)

By using item (i) of Proposition 4.8, we get (do, .., Gok—1)(Sx) € 0V (sx) and we introduce ® by

[D)SO — a[_]_7 1]2k
(d(), ..dzkfl) g I’Y(S)(Qm ) g2k71)(3*)7

which is well defined and satisfies the following properties:

D .

(i) @ is continuous from Dy, to d[—1,1]?* thanks to the continuity in time of ¢ on the one hand,
and the continuity of sy in (dp, ..., d2og—1) on the other hand, which is a direct consequence of
the transversality in item (ii) of Proposition 4.8.

(ii) It holds that @ | D4 has nonzero degree. Indeed, for all (do, ..., dog—1) € dDs,, we derive from

item (i) of Lemma 4.3 that s, (dp, ..., dop_1) = so and

deg (<I> |6JD>50> # 0.

From Wazewski’s principle in degree theory such a ® cannot exist. Thus, we can prove that there

exists (dy, ..., dgx—1) € Ds, such that the corresponding solution (g, b)(s) € VA bo,00(5): Vs = so.
and by (iii) of Proposition 4.8, ® is continuous.

In the following we will prove that ® has nonzero degree, which mean by the degree theory

(Wazewski’s principle) that for all s € [sp,0) ¢(s) remains in V4, p,.6,(s), which is a contra-

diction with the Exit Proposition.

Indeed Using Lemma 4.3, and the fact that ¢(—InT) = 1/1407”’62%71, we see that when (CZ(), - cZQ,H) is

on the boundary of the quadrilateral Dr, gy, .., fox—1(—InT) € [—I727(s),1727(s)]** and ¢(—InT) €
VA ~.b0.60(— InT) with strict inequalities for the other components.

By Proposition 4.8, ¢(s) leaves V4 4,6, at so = —InT, hence s, = —InT"

Using (ii) of Proposition 4.8, we get that the restriction of ® on the boundary of Dg, is of degree
1, which means by the shooting method that for all s € [sg, 20) ¢(s) remains in V4 5 4,6, (5), which
is a contradiction. R A

We conclude that there exist (dy, .., da_1) € Ds, and (b,0)(-) € (C1(—InT, +00))? such that for all

s=—InT = s, (qd}),..,ai%,l’bv 0)(s) € Varybo,00(s) for all s > sg. In particular, we obtain

< CI7(s). (4.29)

ol
L

1+ [y|M
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Now, we use the above existence to conclude the proof of items in Theorem 1.

- The proof of item (i) in Theorem 1: We derive from (2.6), M = %, and the following estimate

__ 2kp _
\foes] = |HIP <CA+ |y "7 1) = C(+ |y|™™)
that
s 1
lw(s) = fogs)l o = |fosyena(s)| = < CT7(s), with I(s) = e3(17%),

Now, we still write b(t) = b(s) with s = —In(T" —t) and, we hope no risk of confusion to arise here,
then using (2.2), we get

(T =) 5 Tu(-t) — foe) <(T’7|5);k>

which concludes item (i).
- The proof of item (ii) in Theorem 1: Since (q,b)(s) € Va, py,0,(s) for all s > sg, we derive from
item (i) in Proposition 4.7

<CT-1)30-0) vt e (0,T),T = e,
LOO

¥ (7)) < Ce T (177) (4.30)
that the integral

f B b (1)dT converges.
@ "

Let b* = b(sg) + J V' (7)dr, then we have

S0

b(s) — b* as s — +0o0.
In particular, we again use (4.30) that
Ib(s) — by| < Ce=7(1=%).,
By using that fact that t =T — e™®, we obtain
Ib(t) — b*| < C(T — £)"(=%) vt e [0, T),

which completely concludes item (ii). Finally, we get the conclusion of Theorem 1. §

Additionally, we end this part by completing the proof of Corollary 2.

1+48

Proof of Corollary 2. Let us introduce the function F(a) = (p — 1 + (ab(t) + (1 — a)b*) y**) " »-1,
where a € [0, 1]. We can easily derive

[F'(a)| < C(bo) [b(t) — b¥| < C(T — )" (1=%),
then, we obtain

' 1
[ foy = fox| = IL F'(a)da| < C(T -ty (17%),

which concludes the proof of Corollary 2. I
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5. A priori estimates

In this section, we aim to give the complete proof to Proposition 4.7. We divide the section into
three parts:

e Subsection 5.1: we project the terms in the equation (2.9) on {H,, H,} for all n € {0, .., [M]}
and derive a priori estimates for ¢, and ¢,.

e Subsection 5.2: we provide the estimation to the infinite parts i.e. P_ (defined in (3.21)) of
the terms in equation (2.9).

e Subsection 5.3: we use the established estimates in Parts 1 and 2 and we derive the conclusion
of Proposition 4.7.

5.1. The finite dimensional part ¢,

In this part we give projection of equation (2.9) on the eigenfunctions of the operator L5 . More

precisely, we will find the main contribution in the projections ]57,,, M and Pn, m of the eight terms
appearing in equation (2.9): dsq, Lssq, Vq, B(q), T(q), N(q), Ds(Vq) and R;.

Let A >1,bp > 0,00 > 0,7 € (0,3) and sy > 1 and we also assume that (q,b,0)(s) € Va4.5.00(5)
for all s € [sg, §] for some § > sg. Then, the following results hold true.

+ First term: 0qq.

Lemma 5.1. For all 0 < n < M, we have

PmM (0sq) = 0sGn+ (1 — %)(n +1)(n 4+ 2)I72(5)Gns2, (5.1)
P (0sq) = 0Oslin+ (1= £)(n+ 1)(n+ 2)I72(8)dn+2.
Proof. The result follows by Definition 3.1 and the identities in [9, Lema 5.1]. I
+ Second term: L; .q.
Lemma 5.2. For all0 <n < M, we have
. n. . 1 _ R
P, (Lssq) =(1— ﬂ)qn + (1 - %)(n + 1) (n + 2)I72(5)Gno, 52)
. n 1 _ . '
Po(Lssq) = —5rdn+ (1= 2)(n+1)(n+2)1 2(5) G-

Proof. 1t follows by Definition 3.1 and [9, Lemma 5.2] &

/
+ Third term B(q) = b(s)ly% (14130 + (p+id)epq).
p —_—
Lemma 5.3. There exists s1(A) = 1, such that for all s > s1, we have
a) For 0 < n < [M], n % 2k,

Po(B(q))] < I (s)[17(s),

b) For 0 <n < [M],
|Pa(B(q))| < CV ()T (s),

c) Forn = 2k,

Pr(B(a)) ~ —2H/(s)

= < O (s)[I77(s).
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Proof. First, we use the orthogonality of {H,,,n = 1} to derive

0 if n> 2k,
[ Hatputy = { ()13 + 022 it =2k, (5.3
O(I~%72) if n <2k

Thanks to (3.6), (3.19) and Definition 3.1, the estimates in the lemma immediatly follow by
UkaHn(s)qpsdy < CI77727(s), for all n < [M]. (5.4)

To proof (5.4), we are based on (3.18) that we obtain

JyQ’“equnpsdy = > Qi) Jy%Hn(S)Hj(S)Psdy + JyQ’“ebq—ansdy
J<[M]

~ Qu)Hal3; + v e Hopudy
Accordingly Definition 3.1, it follows that
|@n ()| [ Hn(s)[2, < CI7"(s).

Additionally, we apply (4.7) to estimate

Uy%eb(y)Hn(S)qpsdy‘ < CAI7(s) f PRI (s) + [yl T+ [y]™)ps (y) dy.

Now, we aim to prove that for all n < [M]

U [y (M (s) + [y M) T (s) + !yI”)ps(y)dy’ < O #Mm(s). (5:5)

By changing variable z = I(s)y and ps’s definition in (3.1), we get

2
2]

0 07 6) sy < CTH ) [ o)

which concludes (5.5). In particular, it also follows
[ e py| < car g < crn),

provided that s > s1(A, k). Thus, (5.4) holds true. Finally, we finish the proof of the lemma.

+ Fourth term: T'(q) = —i@’(s)(eb_l +q) = —i0'(s)(p — 1 + by?** + q).

Lemma 5.4 (Projection of T(¢q) on H, and H,. ). For 0 < n < [M], the projection on H, is
given by

~ - 9/q2k ifn = 2](7,

Po(T(q)) = { —0' (1 + 6*)Gp — 6Gn) else.
and the projection on H,, is given by

—0 (p—1) + (1 +0*)G) ifn=0,
Pu(T(q)) = —0' (b — 6Gar,) if n = 2k,
—0' ((1 + 6%)Gn — 0din) else.
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Proof. First, we apply (3.25) and (3.31) express as follows

Pu(T(@)) = =0'(5) (Pali(p = 1)) + bPu(iy™) + Pulia))

Pu(T(@)) = =0'(5) (Palilp — 1)) + bPuliy™) + Paliq)

)

the first two term are easy to derive. To obtain the projection P, (iq) and P, (iq) we can first write
iH, = Mﬁ—ﬁ@
iH, = (1+0)H, —H,.
and it follows then )

Po(iq) = 6Gn — Gn,

Po(iq) = (1+62)Gn — 6.
Using the modulation condition (4.1) we get

PuT) = =0 (Puli(p = 1)) + bPaliy™) + Pulia))
& Gor if n = 2k,
- { —0 (1 + 6%)4n — 0Gn)  else.

»
3
I

-0’ (pn(z(p —1)) + bpn(iy%) + PH(ZQ)) )
0 ((p—1) + (1 +8%)g) ifn=0,
= —0' (b — 0qax) if n =2k,
—0' (1 + 6*)Gn — 6n) else.
Finally, we finish the proof of the lemma. &

+ Fifth term: N(q) = (1 + i0) <|1 + epq|P L1 + epq) — 1 — 2e,Rq — %ebq - %ebqf)

Lemma 5.5. Let s> 1, L > 1,L € N. Then, the term N = N(q) defined in above, satisfies

sup [N - 3 Bixa’'q" + Bir)d 7| < C (lal**)
lyl<1 =0 0<j k<L
2<j+k<L

where B;k s an even polynomial of degree less or equal to K and the rest Bék satisfies

Vlyl < 1]Bjx| < C(1 + [y|**").
Moreover
V]y\ <1 ’Bjyk + Bng’ <C.
On the other hand, in the region |y| = 1, we have
IN(q)| < Clesgl?, or C|1 + epql”

for some constant C and p = min(p, 2).
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Proof. We notice that in the region |y| < 1 and for s > C where C is a fixed constant, e, is bounded
from above and from below. Using a Taylor expansion in terms of epq and eq, we see that IV can
be written as

Vs=1land |yl <1, |[N — Z Cjeierqqu < Cleyg)" 1.
0<jm<K
2<j+m<K

Using (3.33) and the fact that
L
eb(y,s) = Y, By
1=0
we can expand (ep)* in terms of y

L
e = DT AL [y[PM] < Cly R, (5.6)
=0

where A;m and flém depends on b. By the definition of the set we can easily see that |A§m| +
AL, S0 |

If we introduce Bj,, = 3.5, Al ly[P* and Bjm=e]"" =30, Al ly[?* Then we get from the
above computation

sup [N — ' > Bix(W)d'T" + By q"| < C (lg/* ' +1),
‘y|<1 =0 0 <],k < K
2<j+k<K

where le}k is an even polynomial of degree less or equal to K and the rest lek satisfies
Vly| < 1Bjxl < O+ [y[**).

Moreover
V]y\ <1 |Bj,k + Bjﬁ’ < C.

Hence the Lemma is proved. 1

Using Lemma 5.5, we have the following lemma.

Lemma 5.6. There exits s3(A,bg,00) = 1 such that for all s € [sg,§], for some § > sg, and
0 < n < [M], it holds that

Pu(N ()| + [Pa(N(0))] < CAT1(5). (5.7)

Proof. Tt is enough to prove (5.7) for the projection on H,, it implies the same for P,(N) and
P,(N). We write

j HoNps)dy = | HoNps@)dy + | HaNps(y)dy.
lyl<1 ly|>1

Using Lemma 5.5, we deduce that
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HoNps(y)N = | Hups(y) D, > Bi k()7 + Bjx(y)d'T*
2<jtk<L

< CJ‘ |Hn||€bQ|L+1ps'
lyl<1

Let us write

[M] 7
¢ =D aH +aH +q- |,
1=0

Using the fact that |¢|rz» < 1 (which holds for large s from the definition of the shrinking set
VA ~.b0.00(8)) » then we have

@~ | <C(la-V +la-).
Using the fact that q(s) € Via 5.0, (5), we have |¢_| + |G| < CAI (I~ + |y|), we obtain
Pj—qi‘éCUﬂ;”U*M4ﬂyM5,
and
=] < cAar @M+ ),

thus give us the desired estimation in (5.7) for the second integral in (5.8).
Let us focus on the L.H.S of inequality (5.8), we note that H,, satisfies for all |y| < 1, |Hpn(y, s)| <
C(1+ |y|™), we have also by the definition of the shrinking set

lesg(y, s)|FT < o177 (EHD),

it follows that

J} |Hylleva 1 ps < CI7VEFD y (14 [y|")psdy < CTEFD=20,

yl<1 y|<1

which gives the good estimation | S|y‘<1 H,Nps| < CI-*—2n,

To end the proof we estimate S|y|>1 H,Npsdy. By Lemma 5.5, the definition of V4 - p,.4,(s) and
using Lemma A.2 from [9], we get

Hoy(1+ 177791 + [y|MP))ps| < Ce™ 5.
ly|>1

oo

H,Nps
ly|>1

<C

Thus end the proof of the Lemma. 1

0
+ Sixth term: Dg(q) = _];:214kb3/2k1]2(3)ebVq.

Lemma 5.7. For ~ € (0, %), there exists sq(A,bg,00,7) = 1 such that for all s € [so, 5] for some

5= sp, and 0 < n < [M], it holds that
1P, (Dy(q))| < CI72(s) and |Py(Ds(q))| < CI7%(s)
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Proof. By (3.19) and Definition 3.1, it is sufficient to prove

1Qn(q)(s5)] < CI™2(s) for all s € [so, 5],
provided that s > s4(A, by, 0y, ). Additionally, we reply on (3.36), we only need to verify

J Dy( n,osdy‘ < I (s).

By Ds(q)’s definition, we can express

+ 10
JDanpsdy = —1;

So, it follows by integration by parts which is quite the same as [9, Lemma 5.5]. We kindly refer
the reader to check the details. Finally, we finish the proof of the lemma. I

4bkI™%(s )J k=L e,V qH,psdy.

+ Seventh term: R,(q) = I72(s)y?* 72 (a1 + aay® ey, + (a3 + auy® ep) q).

Lemma 5.8. For v € (0, %), there exists s5(A,bg,0p,v) = 1 such that for all sy = s5,s € [so, 5],
and n < [M]
|Pa(Rs(q))] < CI7*7(s) and |Pa(Rs(q))] < CT™*(s).

Proof. We refer to the proof of Lemma 5.3. 1

Eighth term: V(q) = ((p — 1)ep — 1) [(1 + i6)Rq — q]

Lemma 5.9. For v € (0, %), there exists sg(A,bo,00,7) = 1 such that for all sy = sg, s € [so0, 5], we
have
Po(V(q)) = 0 and | P, (V(q))| < CI™*(s).

Proof. First, we reply on the fact that ¢ = (1 + i0)q + i)
Vig) = —i(l—ep—1))(Sq—3Rqg) =i((p—1)ey—1)q.
Thanks to Definition 3.1, it immediately follows that
VneN, B,(V)=0.
We write, for L € N,

T b j b L+1
o) = (0~ 1) [20 (-5 2) + (-5 eb<y,s>], (5.9

then we deduce that
L b J b L+1
CDer — 1 = —byer — b ek b ek
(p— e e, = . < V) es(y, )
Let us first estimate fy%j(éﬁﬁq — Sq)Hppsdy, we write

Jy%j(mq — Sq)Hypsdy = J Y2 (6Rq — Sq)Hppsdy + f Y2 (§Rq — Sq) Hppsdy.
lyl<1 ly|=1

We recall that for all g € Vi 4 p.9,, by Claim 4.2
V(g <CT 71+ [y,
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then by Lemma A.1 from [DNZ22], we obtain

< CI7"e 510 < OT"272(5), Vs € [s0, s*]. (5.10)

J y?M (6Rq — Sq) Hppsdy
ly|=1

Using (3.33), we write

f Y2 (§Rq — Sq) Hppsdy = J
lyl<1

e Y (6Rqy — Sqr) Hupsdy + f Y (6Rq- — Sq_) Hppsdy
yl<

lyl<1

(5.11)
Using the bound on ¢_ given by (4.3), the second integral can be bounded as follows
f y*M (6Rq- — Sq-)Hppsdy| < CJ v M (s) + Y1) Hupsdy (5.12)
ly|<1 ly|<1
If we introduce the change of variabe z = yI(s) and p(z)dz = ps(y)dy, we can write
. o , a2
J g (I M (s) + [y Hupsdy = T-M" 2’”(S)J |27 (1 + 2[M) P (2)]e™ 4 dz.
lyl<1 |z|<I(s)
< CI M—n=2k(g),
we conclude that there exist g, such that for all 0 < v < g, we have
J | y?RI(6Rq_ — Sq_)Hppsdy| < CI727722(s) . (5.13)
yl<1

Let us focus on the first integral of equation (5.11), using estimation given by (4.2), we obtain
Y~ (0Rqy — Sq1) Hpsdy Yy g Hppsdy | =S Yy qs Hopsdy |
lyl<1 lyl<1 lyl<1

we will just give the estimate on f v g, psHydy:
lyl<1

[M]

= ZQzJ y*M H, H, ps (y)dy
1=0 lyl<1

= 0if2%kj+i<n
<

f kajQ—i-ansdy

lyl<1 (5.14)
CI=2V(s)[72ki=l=n(s) < CT=2~2(s) if 2kj + 1 =n

By (5.10), (5.13) and (5.14), we conclude that

[Pa(V)] < CI7(s).

5.2. Estimates of the infinite dimensional parts of the terms in equation (2.9)

Let (¢,0,b) be a solution to the problem (2.9) & (4.1) on [sg, §] for some 5§ > 0. Under the
assumption (q,6,b)(s) € VA ~.p.6,(5) for s € [sg,5]. Then, we aim to provide the following results.

+ First term: P_ (0,q) where P_(-) defined as in (3.21).

Lemma 5.10. For all s € [so, §], we have

N ) ]
P_ (35q) = Osq— — I72(s) (1 . k) Y+ 1)(n+2) (qn+2Hn + qn+2Hn> , (5.15)

n=[M]-1
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where 1(s) given as in (2.4). Consequently,

N
D5 (P_(85q)) = 0sd— — I7%(s) (1 - ) N+ 1)+ 2)duraHals),
M

23,5 (P-(05q)) = 0sG- — I7%(s) <1 —~ 1) D1 (1) (n+ 2)Gns2Ha(s).

Proof. First, we based on (3.24), (3.15) and (3.32) that it is sufficient to prove (5.15).

From definition (3.21), we can express

[(M]

P—(aSQ) = asq - Z (Pn(aSQ)ﬁn + Pn(aSQ)Hn>
n=0
[M] [M]
= 55(]— + Z as (dnﬁn + (jan> - (Pn(aSQ)ﬁn + Pn(GSQ)ﬁn> .
n=0 n=0

Using the fact that d;H,, =0 if n =0 or 1, and for all

00ty (39) =l = 1) (1= 1) 1290l

Hence, we deduce from Lemma 5.1 that

Po(0sq) = Osln+ (1= )+ 1)(n+ 2T %(5)dns2,
pn (0sq) = OsGn+ (1 — %)(n +1)(n + 2)172(3)%—1-27
which implies
1\ A i .
P_(0sq) = 0sq— — I *(s) <1 - k:> [%] 1(” +1)(n+2) <Qn+2Hn + Qn+2Hn) ;

Finally, (5.15) follows and we conclude the proof of the lemma. &

+ Second term L;q.
Lemma 5.11. For all s € [sg, 5], it holds that

[M]
1 P
P (£67SQ) = E5,5q7 - 1_2(5) <1 - k) (n + 1)(” + 2) (Qn+2Hn + Qn+2Hn) .
n=[M]-1
Consequently, we have
1 [M]
Zas (P-(Lout) = £ui- — 1) (1- 1) (14 1)(n + 2dns2H(5),
n=[M]-1
1 [M]
D5 (P-(Ls54q)) = Losq— — I7%(s) <1 — k:> (n+ 1)(n + 2)dnt+2Hn(s),
n=[M]-1

where Lo s and Ly defined as in (3.7) and (3.8), respectively.

(5.16)
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Proof. First, we are based on (3.24) to have
D5 (L550-) = LsG— and g5 (L5,59-) = Lo,sq—

So, we need only to prove (5.16) which is quite similar to the result in Lemma 5.10. Indeed, by
using (3.21), we firstly obtain

[M] [M]
P (Eé,s) - £67sq7 = Z (pn(ﬁé,SQ)I:In - (jn£5,sﬁn> Z £6 sq - pn(£5,sq>f{n)
n=0 n=0

Combining identities in (3.16) and (3.17) with Lemma 5.2, we conclude

i ) ) Nl )
> (Pulssa) H — anLsHn) = —17%(s) (1 - k) N+ D)+ 2)dasaHy
n=0 n=[M]-1
] o § 1\ M 3
3 (Bl = PolCssa) ) = =17%6) (1= 1) %, (0 Dot 2) et
n=0 TL:[M]—I

Finally, the conclusion of (5.16) follow by adding all above related terms, and we finish the proof
of the lemma. 1

+ Third term: V(q) = ((p —1)ep — 1) ((1 +i0)Rq — q).

Lemma 5.12. There exists s7(A, bo,0p) = 1 such that for all sy = sz, it holds that for all s € [sg, 5],
s (P-(V(g) =0, (5.17)
and
|26 (P-(V(@))) = (1 = (p = D)ey) 4| < CT () (T (s) + [y[M). (5.18)
Proof. First, we immediately conclude (5.17) by item (ii) in Lemma 3.2. It remains to prove (5.18).
Using item (ii) in that Lemma again, we have
Vig)= (1= (p—Dep)ig= (1 —(p—1)ep)i(d+ +¢-)-
Regarding to (3.21), we have
P (V(g)) =(1=(p—1e )ifi— = (1 —(p—1ep)igy + (1= (p— ep)ig-
S Qul(l—(p— Ve = Y Qul( = (p— V)ey)id ) Hy
<[M] n<[M]
= (1= (p—Dep)igy — Y, Qu((1—(p—1)ep)igy)Hn
n<[M]
2. @ul(1= (= Der)ig)Hy =i [(1) = (ID],
<[M]
where
(I) = (1 - (p - l)eb)q+ - Z Qn 1 - (p - l)eb)q+)Hn7
n<[M]
S Qul(1 ~ (p— D)ey)d) Ha
<[M]
- Estimate for (I): First, we have
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L= (—De)dr(s) = D Gl —(p—1)ep)Hn(s)
n<[M]

For each n < [M], we chose L, = [ "] then we apply (5.9) to derive that

y2k(Ln+1)
(1 - ( - 1>eb>Q+ 2 Z Cn,j, an Z Cnb H (3)7
n<[M]j= M]
which yields
y2k(Ln+1) k(Lm+1)
(I) = Z 6n7b€7Hn(s) — Qn 2 cmb H,,(s) | Hn(s)
n<[M] b n<[M]
ka(Ln-s-l)
— > Qu(I)Hu(s), where I; = > &, >———Hy(s).
n<[M] n<[M] €
We aim to proof that
(D] <CTM(s) +[y[*), (5.19)
it is sufficient to prove
[L] < CIM(s) + [y™). (5.20)
Indeed, for each n < [M], we express as follows
y2k(Lnt1) y2k(Lnt1) 2k(Ln+1)
THn(S) < ﬂ{|y‘<1} THn(S) + ﬂ{|y\>1} o Hn(S)

Since 2k(Ly,, + 1) = M — n, we estimate

2k(Lp+1)

Ljyl<1) < CyM(I(s) + y|™) < C(I M (s) + [y™M).

Beside that, it also holds true

y2k(Ln+1)
————Hn(s)
€y

|2k (1L — 2557

< M T (1) ) < €M) + o)

Ly =1

since 1 + L,, 2k % e[0,1] for all n < [M].
Thus, taklng the sum over n to the concerning bounds, we get the conclusion of (5.19).
- Estimate for (II): We now notice that

bka

[1—(p—1Dep| = ’p—l—!—by%
By the definition of @, in (3.19), we can bound as follows
Qn((1 = (p— Dep)q-)| = CAI™(s )fRy2k|Hn(y7 ST M (s) + ly*)ps(y)dy.

Since |Hy| < C(I7™(s) + |y|™) and by changing variable z = I(s)y, we estimate the integral as
follows

< Oy, (5.21)

1Qn((1 = (p— 1)ep)g—)| = CAIP—17n=M=2k(4) fR 2|2 B (2)] (1 + yz\M)e*¥dz

< CAIM=7=2k (), (5.22)
Consequently,
(Qu((L = (p = Dev)d—) Haly, s)] < CT 772417 4 [y[) < OT77(s) (17 + [y M)
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which yields
(ID)| < CT7772(s) (17 (s) + |y|M) . (5.23)
Combining (5.19) with (5.23), we conclude
25,5 (P-(V(9)) = (1= (p = Dep)g—| < CT7(s) (I~ (s) + [y["),

which concludes (5.18). Finally, the conclusion of the lemma follows. &

b'(s)
p—1
Lemma 5.13. For all s € [sg, 5], it holds that

|P-(B(a))(s)| < CAY' ()| 177 (s) (I~ (5) + [y ™).

+ Fourth term B(q) = y?F (1406 + (p + i6)epq)-

Consequently,

|25 (P-(B(9))(5))] +2s,5 (P-(B(q))(s))] < CAW' ()T ()T (s) + |y|™).
Proof. From definition of P_ as in (3.21), it immediately follows that

P ((1+io)y™) =0,
So, we obtain
b'(s) oy 2k
P_(B(q)) = - [ P-((p +i0)y™erq).

Accordingly Definition 3.1, it is sufficient to check that

P_((p +i0)y**epq)| < CATV(s) (I7M(s) + [y[M). (5.24)

First, let x € C(R) satisfying
x(x) =1 for all |z| < % and x(z) = 0 for all |z| > 1. (5.25)
Then, we decompose 1 = x + (1 — x) = x + x© and we reply on (3.21) and (3.23) that
P ((p +i8)y™esa) = P-((p + i6)y* xenas) + P-((p + i6)y*x°eqs) + P-(p + id)y*erq- ).
Since g— = (1 +49)g— + ig— and the fact that (q,b,0)(s) € VA ~.p9.6,(5), we can bound as follows
la-| < CAIT (s)(IM (s) + [y|™).

Hence, we argue in a similar fashion as in the proof of (5.23) to estimate

Qullp + id)yPena Y Ha| < CT () (1M [y M),

the, using (3.21), we conclude that
P_((p+ i0)y™enq-)| < CAT(5) (I (s) + [y™). (5.26)

Additionally, we use the fact that (q,b,0)(s) € VA 5.6, (5) again that

[M]
X“q+] < CT77(s) D (I7"(s) + [y|") < CI7 ()T M () + [y|™), since Jy| =

n=0

N | —

Similarly (5.23), we have

(Quly™enan) Ha| < CT7 72 ()17 (s) + [y[M).
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Accordingly (3.21) and the fact |y**ey| = < 1, we conclude that

P-((p+ i0)y™xCenas)| < CI ()T (5) + [yl ™). (5.27)
Let |y| < % and L € N, L > 1, we deduce from (3.33) and the identity (5.9) that

y2kebQ+ = Z Cj (b)kaj ((jnﬁn + (jnﬁn) + Y/

j<L

n<[M]

=Y GOt adh) Y GO G, + dll) + Y
J<L JsL
n<[M] n<[M]

2kj+n<[M] 2kj+n=[M]+1

— Y+ Yy +7Y,

where Y satisfies .
‘Y‘ < CI7(s)|y|E*Y, for all [y| < 1.

Since x = 1 — x“ and P_(Y1) = 0, we have then
P(x1) = P_(%i) = P_(xV1) = —P_(x'Y1).
In the same way for (5.27), we obtain
[P-(x*Y1)| < CI7(s) (I~ (s) + yI™),

which yields
|P-(xY1)| < CI7(s) (I M (s) + [y|™).
Now, by changing variable z = yI(s), we can prove that

< C(K, n)]|f||L%e*% with s > 1 and for some n € N, and K > 0. (5.28)

J JHupsdy
lyl=3

where | - |12 is similarly defined in (3.35). By applying (5.28), we have
|Qn(xY2)| < CI7~IMIFU=2 () ¥n < [M],
since the indices in Y5 always satisfy that 2kj + n < [M] + 1. Hence, we arrive at
|Qn(XY2)Hy| < CI77(s)(I7Y (s) + [y[™), Vo < [M],

In the other hand, we have

IXY2| < CI77(s) Do WP I + Lyl [ < oM (s) + [ylM).
J<L
n<[M]
2kj+n=[M]+1
So, we have
|P-(xYa)| < CT 7 (s)(I~ M (s) + [y[™),
which concludes
|P-((p + i)y xenas)| < CT ()T (5) + [yl ™). (5.29)

Thus, (5.24) follows by (5.26), (5.27) and (5.29). Finally, we finish the proof of the lemma. I

+ Fifth term T(q) = —i0'(s)(e; ' + q) = —i0/(s)(p — 1 + by** + q).
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Lemma 5.14. For all s € [sg, 5], it holds that
P_(T(q)) = —ib'(s)q—(s).
Consequently,
ys (P-(T(q))) = —0G- — G- and 25, (P-(T(q))) = 0(G— + 4-).
Proof. Using the definition of P_ given in (3.21), we have
P_(T(q)) = —8'(s)P_(iq) = —it/(s)a- — —it/(s)q_ ()
In addition to that, we use the definition in (3.24), we have
ig- =i{(1+10)¢— +iG-} = (1 +4d) [—6G— — g—] +i0(6G— + G—)

which yields the complete conclusion of the lemma. o

31

+ Sixth term: N(q) = (1 + i9) <|1 +epqP M1 + epq) — 1 — 2epRq — P tepq — prg’eb(j). We

have the following result.

Lemma 5.15. There exists s12(A) = 1 such that for all so = s12, and for all s € [so, 5] it holds

that
|P_ (N(q)(s))| < CAm@2) = minte2)7(5)(1-M () 4 [y| ™).

Proof. Let x defined as in (5.25), and we decompose N = N(q) as follows
N =xN+(1—-x)N =xN + x°N.
It suffices to verify the following:
[PL(X"N)(5)] < C(A™X P2 7m0 @27 () (17M () 4 [y|M)
|P_(XN)(s)| < CAPT>7(s) (17 M (s) + [y[M) ,

provided that s = s¢ with sg = s12(A, M)
- For (5.30): First, let us prove that

XN (g)] < CAMER) = mm@0 (o) (1M (5) + [y[M), p > 1,
The proof of (5.32) is divided into two cases where p > 2 and p € (1,2).
+ Case 1: p = 2 . By a simple expansion, we estimate
XN (@) < Cx“(leval® + lesal?)
Since supp(x©) < {|y| = 3}, the estimate in (4.9) implies
[X“evq| < CAI (s)[y[M 2",

. 2k
Notice that M = pfq, then we get

el < C (A1 (s)ea(m)ly™)” = € (17 ()eswly )yl )"
< CIP(s)lylrt < CIP(s)lylrt < TP (s) (I (s) + [yl™),
Similarly,
XCepal* < CAP T2 (s) g2V =2K)x e < CA2T27(s)[y|7 T2\
< CA2T2(s)|y| 1Py < CA2I=2(s)(I7M (s) + [y|™) since p = 2.
Hence, (5.32) holds true for all p > 2.

(5.33)
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- Case 2 i.e. pe (1,2): we observe that
XN ()] < Cx“lesal”.
By the same way of (5.33), we deduce that
XN (q)] < CAPITPY(5)(I7M (s) + y[™).
So, (5.32) also holds true for the case p € (1,2).

Now, we use (5.32) to establish for all n < [M]

Qn(X“N(g)(s)| < A ®2 1 mi“(”’Qh(S)J (™M (s) + [y1") [ Ha(y, 5)lps (y)dy

ly|=

N |=

< CAmax(p,Q)I* min(p,2)7(8)6* Il(fsj)

)

which yields

3 1@uOEN ()] [Hny, 5)] < CAREA[-mnG27(5)e= 5 N (14 [y]")
n<[M] n<[M]

< CI~ @27 () (1M () + [y|M),

provided that s > s12.1(A, M).
Consequently,

PN < XENG) Y] [Qu(x N ()| [Haly, s)|
n<[M]

< CASCD =002 (5) (1Y (5) + [y ),
which concludes (5.30).
- For (5.31). Since supp(x) < {|y| < 1}, so it is suffices to consider |y| < 1 and we have
les(y)a(y, )] < CAT(s) V|y[ < 1.

Therefore, we use a simple Taylor expansion to obtain the following for some K e N, K > 1

XN = x <NK,1 + Nk + NK) :

where
j+¢ J L

Nk = Z agje(es)’ @ @, arje€R,

0<jl<K

2<j <K

K

i 0y by f5 b

Nk = Z Z Ao, K j b1 05,00 (€0) 4 T2 G2,

j:20<€1+52<j*1f3+f4:j—(£1+€2)

£1=0,02=0 03=0,04=>0

where da g j.0,05.05,0, € R and Ny satisfies
|XNK’ < C’X€bQ|K+1 < CAK-i-lI—(K-i-l)'y(S).
By an analogue to (5.30), it leads to
|P-(XN)| < CT*7(s)(I" M (s) + [y|™),
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provided that K > Kj22(A, M). From (3.29), we have the following decomposition

¢ oktrrIM] nj _mj prni4+m;
Nk = Z cnm,e, k0 Y IL g7 @ H? Y + N2
0<|n|<K
0<|m|<K
2<|n|+|m|<K
0<I<K

:= Nk,1,1 + Nk 12, respectively,

where n = (n1,..npp7) and m = (ma, ..., mp), 2| = 2 ni and [m| = > m;.
Then Ng 12 satisfies

IXNK 2] < CAQI_ZV(S)\y]%(KH), povided that s > s123(A).
By the same way to (5.22), we get the following bound
Qn(xXNi.12)| < C AR 2r+n=M=2h(K+1) (o)
By repeating a similar process as for (5.30), we obtain
[P~ (xNi1,2)| < CA2 T (s) (1M (s) + [y|M),

provided that K > Kj93(M)(fixied at the end of the proof).
For Nk 1,1, we decompose as follows

¢kl M] nj; _mj ni+m;
NK,l,l = Z Cn,m,Z,Kb Y szlq]‘Jq]' ]Hj] !

0<|n|<K

0<|m|<K

2<|n|+|m|<K
0<UI<K
M] .
M G (ng+my) +2ke<[M]

0 2kl [M] nj _mj peni+m;
+ Z Cnym, ¢, KDY szlq]'qu ]Hj] J
0<|n|<K
0<|m|<K
2<|n|+|m|<K
0<UI<K
Zglffj(nj+mj)+2kz>[M]+1

= Ng111+ Ng.11.2, respectively.

byl IR ]

Since N 11,1 is a polynomial in y of degree less or equal than [M], it follows that
P_(xNka1,1) = =P((1 = Xx)Nk111) = —P-(X"Nk1,1,1)-

bbbl bt A
In a similar way in (5.30), we have

_ LI - -
[P (XNl < X Ngaal + CAT (s)e 10 3 (L4 [yl") < CAI > ()T + [yl™),

n<[M]

provide that s > s124(A, M).
Estimate for Ng 11,2, we firstly have the fact that

Nical < CA2(s) ) Iy (17209054 ) [y Er= )
0<|n|<K
0<|m|<K
2<|n|+|m|<K
O<t<K
M Gy +my) +2ke=[M]+1
[M]
< CA2I27(s)(I7M(s) + |y|M), since Z j(nj+mj) + 2kl = [M]+1 and |y| < 1.
=0
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Additionally, we have
|Qn(XNK1,1,2)

[M] . ) )
< CA 2 (s) Z f |y’2k€ M (g +my) (s) + |y,Zj:OJ(nJ+mJ)> Ho (3, 8)|ps () dy
0<|n|<K
0<|m|<K
2<n|+|m|<K
O<(<K
S (nj4my)+2ke=[M]+1

< CA21727+717[M]71 (S),

where the last estimate is obtained by the same technique as in (5.22) and the fact that Zj[]\:/[g Jj(nj+
mj) + 2kl = [M] + 1.

Consequently,
|P_(xNr1,12)| < [xNk1,12| + Z |Qn(XNk 1,1,2)|| Hyl
n<[M]
< CA I (s)(I7M(s) + M) + CAPT21(s) Y 1M () (17" (s) + [yl™)

n<[M]
S CAT2(s) (7™M (s) + |y|M).
Combining the established estimates, we conclude that
[P-(eN)| < |P-(xNica)+] + |P-(xNi2)] + [P (eNic)|
< IP- (N 1,0)+ + P- (N1, 12)+ + [P (Vk1.2)+H + [P- (Vi) + |P- (Vi)
< CAI™(s)(I7M () + [yI™),
which concludes (5.31). Finally, we get the conclusion of the lemma. R

p+z§

+ Seven term D;(q) = 4/<:b 2k=11-2(5)e,Vg.

Lemma 5.16. For all s € [so, 5], and s,T € [so,5],s > 7, it holds that

[Kaar (P BTN < €107 (14 L) ar o,
Kar(P- (D)) < 7 (1 + \g) AT,

where Bz/q) = 25,5(D-(q)) and D/T\(q) = 5 s5(D-(q)) with 255 and Dy 5 defined in (3.24).

Proof. First, we observe that the proof of the two estimates are the same. So, it is sufficient to give
the proof to the first one. According to the definition of Zg 5, we can write

Kosr(Dr(9) = 2.5 (Ko.sxD+(q)) -

By the same argument of [9, Lemma 5.13] in combining with Lemma 6.1, we obtain the following
estimate

Kawr (D)l < C1 () (14 2 ).
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which yields

205D, < 0170 (14 2=

Thus, the first estimate in the lemma follows. Finally, we conclude the proof of the lemma. §

+ Eighth term R(q) = ka*QI*Q(s)eb (oq + agy%eb + (043 + 044@/2]“6;,) q). We have the follow-
ing result.

Lemma 5.17. For all s € s, 8], it hold that we then have
|P- (R(q))] < CI7 (I (s) + [y[™).
Proof. The result is quite the same Lemma as 5.13. We kindly refer the reader to check the detail. I

5.3. Conclusion of the proof of Proposition 4.7.

We consider (q,0)(s) € Vayb0.00(5), Vs €[50, 5]. In addition, we let v < v3(by) and so > s3(7, bo)
such that Lemmas 5.1-5.9 are valid.
- Proof of (i) of Proposition 4.7: First we prove the smallness of the modulation parameter 6 given

by (i) of Proposition 4.7. We project equation (2.9) on Hy = iHy, using the fact that gy = 0 and
Lemma 5.4 we get

sGo = 0= —0'(s)((p — 1) + (1 +6%)do) + Bo(T(q)) + Po(N(q)) + Po(Ds(Vq)) + Po(Rs(q) + V(q)),
then, we obtain by estimations given in Lemmas 5.3, 5.6, 5.7, 5.8 and 5.9
16'(s)| < CT*(s).

- Proof of (ii) of Proposition 4.7: We project equation (2.9) on Hoyy, and take on consideration that
Gor = 0 and applying the results in Lemmas 5.1-5.9, we obtain

IV (s)] < CT"2/(s) = Ce Y (170)s, (5.34)

Besides that, we have b(sg) = by, then we derive
|b(s) — bo| < f |/ (1)|dT < CJ I~2(7)dr,
S0 S0

which implies
3 )
1 < b(s) < Zbo,Vs € [so, 8],
provided that sy = s3(v, bg) large enough. Thus, we get the conclusion of item (ii).

- Proof of (iii) of Proposition 4.7:
By Lemmas 5.1-5.9, (i) and (ii) of Proposition 4.7, we obtain for all n € {0,..[M]},

Ouin = (1= 57 ) dn| < CT72(s), Vs & [0, 3],
< CI™2(s),Vs € [s0, 3]

n
o+ s

sdn + o dn

which concludes item (iii) of Proposition 4.7.

- Proof of (iv) of Proposition 4.7 First, we reply on equation (2.9) and the decomposition in
(3.31) to obtain the following system

0sq = Ls(q) + %,
asq = /CO,sq + nf/q + %25
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where Ly s and Ly respectively defined as in (3.7) and (3.8), and
V=1—(p—1e,
= 2ys (V' (5)B(q) +i0'(s)T(q) + N(q) + Ds(Va) + Rs(q))
o = D35 (V' (s)B(q) +i0'(s)T(q) + N(q) + Ds(Va) + Rs(q)) -
Applying the infinite projection P_ defined as in (3.21), we get
0sG—(s) = Lsq- + P (%),
0sq—(s) = LosG—+ Vg
+(P-(Vq) = VG-) + P (%)
In particular, we can write the above system in integral form as follows
4-(s) = KsolG-(0) +§, Ksr (P- (%) (7)) dr,
i-(5) = KosoG-(0)+ 5, Kosr (Vq-(7))dr
+§0 Kos,r (P_(7q) — V- + P_ (%) (7)) dr.
Now, we claim the following

Claim 5.18. Let p = min(p,2), then it holds that
Kor (P— (1) (1), < Ce 11757 (x), 5.35)
Kow.r (P_(¥d) = Vi + P_ (%) (1)), < Ce 7177(7),
provided that sy = s14(A).

S

Proof. As the estimates involving to %1 and %, are the same, we will just give the proof of the
estimate involving to #». Indeed, we use (5.18) to obtain

((P-(Vq) = V) (7)], < CI7(7).

Additionally, the infinite projection P_ commutes with 2y 5 and Zg 5. Hence, we apply a priori
estimates established in Lemmas 5.10 - 5.17 to obtain

P (%) (7)], < CT~ ™5 (7),

provided that 7 > o > sp > s14,1(A). Thus, we combine with the semigroup estimates in Lemma

6.1 to derive
__min(p,2)+1
2

Ko7 (P (#82) (7)], < Ce 710701

T

)
provided that v € (0, 1) and we obtain (5.35). I

(1)

Now, let us give the proof of item (iv) of Proposition 4.7. Taking | - [s-norm defined in (3.37)
and using Lemma 6.1, we obtain

i) < g + | K (21()], dr

_s=o T _s=r __pt1
<@ + | HE (ar,

g

S S
G (s)]s < e PG ()], +f IVl o) 47 + f Kar( Pa(r))], dr

< PN + | -l + [ O (ar,

o
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since |¥|r» < 1. By using Gronwall’s lemma, we get

s—o p+1

0-(s)]s < ¢ 7T g (@)l + C (I 5 () + e 1175 (),

and s—o s—o
0-()ls < € 7T 1a- (o)l + C (I (s) +€ 7T T7(0))

which concludes the proof of item (iv) and also finish the proof of Proposition 4.7.

6. Spectral gap estimates on semigroups

37

In this section, we provide spectral gap estimates for semigroups Lo s and L. More precisely,

the results read.

Lemma 6.1. Let us consider Lo and Ly defined as in (3.7) and (3.8), and their semigroup be

Ko,r0 and K; ., respectively. It holds that
_ P (e
Koro-1. < Ce 71 g o,
1
Kroq-|, < Ce 717 g |, , 720,
where | - |, defined as in (3.37).
Proof. The technique of the proof is based on [3]. First, we derive from (3.12) that

T—0
IC’T,O’ =€ ]CO,T,U-

Then, (6.2) is a direct consequence of (6.1). Indeed, let us assume that (6.1) holds.

follows that
Krog-|, = € |Koroq-|, < Ce e 717 g_|,,
which yields (6.1). Now, it suffices to prove (6.1). Let us define
O(z) = ¢- (2L;') and 0(2) = Koroq—(L712).
Using (3.12) again, we obtain

0(2) = Korolq-) (L7 '2) = JR F (e%Lilz - y’) q-(y)dy'

1 ze T3 — )2 _
= \/471_(1 = e—(r—a)) JR exp <_ El(l — 6(703)) q— (Ia 1zl)dz/

= J T (2, 2)0(2")d7,
R

where e(T=9)£(z, 2) defined by

_ 1 (ze= 2 — 2')?
(t—o)L AN _ R ————
e z,7) = ex .
( ) \/47'('(]_ — @_(T_U)) P ( 4(1 — 67(770))
- The case T — o < 1: From (3.37), we have
©(2)] < I (o) (1 + [2[*)]g-1o-

Now, we apply the classical estimate in [2, Lemma 4, page 555] that we obtain

)| < CI M (@)1 + 1) la- 1,

Returning the original variable z = Iy, we obtain
Ko,r0q- ()] < CI™M ()M (7) (1M () + [y1")la—lo,

Hence, it

(6.3)
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which implies

[M]+1

Koroa—|, < CI™M(0)IM()|q_|o < Ce™ 2 "|q_|,, since 7 — o < 1.

- The case T — o = 1: We use the following decomposition

O(z) = J N (z,2)f(2)d, (6.4)
where :
, e(z;)z (ze= 20 — 2')? p _E)?
N (2,2") i) p < 11— U))> and f(2') =e 1 O(z2)
Since ) e
(ze1 j e—_i) LY = a2 (2 1—_2 :_;) ’
we can write
e% z—zZe 7 )?
N (z,7) = V(L — e G-0)) P <_ 51(1 — e—(7—02)>
So, we have
A (2, )| < Ce T2 (2] 4 2] T @ E (2, ), forall n > 0, e N, (6.5)

Next, let us define

V) = | femiEa
—a0
From (6.3), we have

JR(Z')mf(z’)dz' 0 for all m e {0,...,1} and [£()] < M (1 + |2 M)e=F gL
It is similar to [2, Lemma 6, page 557], we can estimate
‘f“m)(z)] < Ce*#I;M(l + |2)M=™, for all m < [M] + 1. (6.6)
Now, by using integration by part in (6.4) then combining with estimates (6.5) and (6.6), we obtain
2)| =
Since (2.15) and the fact M < [M] + 1, we have then

16(2)] < Ce= LM (14 |2M)|q_|, = Ce 1T =M (14 2[M)|g_|,,
which yields that

[M]+1
2

DN (2, 2) ORI ()| < Cem 2 LM (14 |2 g

!’Co,r,o(q—)(y)\r < Ce »- = ‘q |

Thus, we get the conclusion of (6.1) for the case 7 — o > 1. Finally, we finish the proof of the
lemma. §
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