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Introduction

In this paper, we are interested in the complex Ginzburg-Landau (CGL) equation # u t " p1 `iβq∆u `p1 `iδq|u| p´1 u ´αu, up., 0q " u 0 P L 8 pR N , Cq, (CGL) (1.1) where β, δ and α are positive real numbers, p ą 1, and upx, tq P C.

Equation (1.1) is named after V. Ginzburg and L. Landau, which has a long history in mathematics and physics. In particular, the cubic case, i.e. p " 3, has been developed to describe the behavior of a superconductor or a superfluid near its critical temperature, where fluctuations in the order parameter become large, and the system exhibits complex, nonlinear behavior. In particular, the (CGL) captures the phenomenon of spontaneous symmetry breaking, in which the system transitions from a high-symmetry state to a low-symmetry state due to small perturbations. Additionally, the (CGL) equation also describes a variety of phenomena in physics, such as nonlinear waves, second-order phase transitions, superconductivity, superfluidity, and the evolution of amplitudes of unstable modes for any process exhibiting a Hopf bifurcation; we refer the reader to the review by Aranson and Kramer [START_REF] Aranson | The world of the complex ginzburg-landau equation[END_REF] and the references therein for more detail.

The (CGL) equation can be also derived from the Navier-Stokes equations via multiple-scaling methods in several problems, most notably in convection (e.g. see ref. [START_REF] Newell | Finite bandwidth, finite amplitude convection[END_REF]). However, our intention here is not to treat it as a model for fluid turbulence but as an example of a nonlinear PDE which we can use to explore new methods.

From the PDE point of view, the local Cauchy problem is well posed in a variety of functional spaces by using the semi-group theory (see [START_REF] Cazenave | Semilinear Schrödinger Equations[END_REF][START_REF] Ginibre | The cauchy problem in local spaces for the complex ginzburg-landau equation. differential equations, asymptotic analysis, and mathematical physics[END_REF][START_REF] Ginibre | The cauchy problem in local spaces for the complex ginzburg-landau equation. ii. contraction methods[END_REF]). Our framework, the functional space L 8 pR N q will be chosen as a convenient way allow us to derive the asymptotic behavior of the blowup. In particular, we say a solution to (1.1) blowing up in finite time if there exists T P p0, `8q such that lim tÑT }uptq} L 8 pR N q " `8.

(1.2)

Moreover, a point x 0 P R N is said to be a blow-up point of the blowup solution if there is a sequence tpx j , t j qu, such that x j Ñ x 0 , t j Ñ T and |upx j , t j q| Ñ 8 as j Ñ 8. The set of all blow-up points is called the blow-up set.

The study of singularity formation (such as collapse, chaotic or blowup) for equation (1.1) has been received a lot of attention in many works in the last decays. Typically, we mention to Stewartson and Stuart [START_REF] Stewartson | A non-linear instability theory for a wave system in plane poiseuille flow[END_REF] in the description of an unstable plane Poiseuille flow; Hocking, Stewartson, Stuart and Brown [START_REF] Hocking | A nonlinear instability in plane parallel flow[END_REF] or in the context of binary mixtures in Kolodner and al, [START_REF] Kolodner | Traveling wave convection in an annulus[END_REF][START_REF] Kolodner | Characterization of dispersive chaos and related states of binary-fluid convection[END_REF], where the authors describe an extensive series of experiments on travelling-wave convection in an ethanol/water mixture, and they observe collapse solution that appear experimentally. We cite also the result of Turitsyn [START_REF] Turitsyn | Nonstable solitons and sharp criteria for wave collapse[END_REF], who gave a harp sufficient criteria for collapse for equation (1.1) in the case of the subcritical bifurcation.

In this paper, we study the equation (1.1) as a nonlinear Partial Differential Equations (PDEs). Historically, a huge literature has been made on the blowup for PDEs in general, and on construction blowup solutions in particular.

Let's shift our focus to the literature on construction blowup solutions to the (CGL). The question of the existence of a blow-up solution for equation (2.1) remained open so far. Indeed, classical methods based on energy-type estimates break down. We cite the result of [START_REF] Cazenave | Finite-time blowup for a complex Ginzburg-Landau equation with linear driving[END_REF] and [START_REF] Cazenave | Finite-time blowup for a complex Ginzburg-Landau equation[END_REF] which studied the CGL equation in the case β " δ. We also point out that (2.1) may have blow-up in the focusing case, namely βδ ą 0. In [START_REF] Plecháč | On self-similar singular solutions of the complex Ginzburg-Landau equation JOURNAL[END_REF] and [START_REF] Budd | Multibump, blow-up, self-similar solutions of the complex Ginzburg-Landau equation[END_REF], the authors give some evidence for the existence of a radial solution which blows up in a self-similar way. Now, let us focus on the special case β " δ " 0 which reduces (1.1) to the classical heat equation B t u " ∆u `|u| p´1 u, and p ą 1.

(

1.3)

There exists an extensive literature spanning over six decades that one has investigated on blowup phenomena for (1.3). For a more comprehensive understanding of this field, we recommend referring to [START_REF] Quittner | Superlinear parabolic problems[END_REF] for detailed insights into blowup studies. Regarding a specific reference, we mention to [START_REF] Bricmont | Universality in blow-up for nonlinear heat equations[END_REF] (also mentioned in [START_REF] Merle | Stability of the blow-up profile for equations of the type ut " ∆u[END_REF]) in which the authors constructed blowup solutions to (1.3) and described their blowup asymptotic via explicit blowup profiles. In particular, in one dimension, given a blow-up point a, we are able to construct a solution such that as t Ñ T , for any integer k ą 0, where f b 0 pzq " `p ´1 `b0 z 2 ˘´1 p´1 with b 0 " pp´1q 2 4p , f b pzq " `p ´1 `b|z| 2k ˘´1 p´1 where b ą 0.

(1.6)

If pβ, δq " p0, 0q, some results are available in the subcritical case by Zaag [START_REF] Zaag | Blow-up results for vector-valued nonlinear heat equations with no gradient structure[END_REF] (β " 0) and Masmoudi and Zaag [START_REF] Masmoudi | Blow-up profile for the complex Ginzburg-Landau equation[END_REF] (β " 0). More precisely, if p ´δ2 ´βδpp `1q ą 0, so-called subcritical, (1.7) then, the authors construct a solution of equation (1.1), which blows up in finite time T ą 0 only at the origin such that for all t P r0, T q,

› › › › › ψsub ptqup¨, tq ´ˆp ´1 `bsub | ¨|2 pT ´tq| logpT ´tq| ˙´1`iδ p´1 › › › › › L 8 ď C 1 `a| logpT ´tq| , (1.8) 
where ψsub ptq " pT ´tq 1`iδ p´1 |logpT ´tq| ´iµ , and b sub " pp ´1q 2 4pp ´δ2 ´βδp1 `pqq ą 0 and µ " ´2b sub β pp ´1q 2 p1 `δ2 q.

(1.9)

Note that this result was previously obtained formally by Hocking and Stewartson [START_REF] Hocking | On the nonlinear response of a marginally unstable plane parallel flow to a two-dimensional disturbance[END_REF] (p " 3) and mentioned later in Popp et al [START_REF] Popp | The cubic complex ginzburg-landau equation for a backward bifurcation[END_REF] (see those references for more blow-up results often approved numerically, in various regimes of the parameters).

For the critical case i.e. p ´δ2 ´βδpp `1q " 0, there are also construction of a blow-up solutions made. We mention to [START_REF] Nouaili | Construction of a blow-up solution for the complex ginzburg-landau equation in some critical case[END_REF] (for the case β " 0) and [START_REF] Duong | Construction of blow-up solutions for the complex ginzburg-landau equation with critical parameters[END_REF] (for the case β ‰ 0). More precisely, the authors constructed blowup solutions to equation (1.1) (see Theorem 2 in [START_REF] Duong | Construction of blow-up solutions for the complex ginzburg-landau equation with critical parameters[END_REF]) and described the blowup profile by

› › › › › › ψcri ptqupx, tq ´˜p ´1 `bcri |x| 2 pT ´tq| logpT ´tq| 1 2 ¸´1`iδ p´1 › › › › › › L 8 ď C 1 `| logpT ´tq| 1 4
, where ψcri ptq " pT ´tq with the constants ν " νpβ, pq, µ " µpβ, pq determined as in [START_REF] Duong | Construction of blow-up solutions for the complex ginzburg-landau equation with critical parameters[END_REF], and

b 2 cri " pp ´1q 4 pp `1q 2 δ 2 16p1 `δ2 qppp2p ´1q ´pp ´2qδ 2 qppp `3qδ 2 `pp3p `1qq .
As a matter of fact, the works [START_REF] Masmoudi | Blow-up profile for the complex Ginzburg-Landau equation[END_REF], [START_REF] Nouaili | Construction of a blow-up solution for the complex ginzburg-landau equation in some critical case[END_REF], and [START_REF] Duong | Construction of blow-up solutions for the complex ginzburg-landau equation with critical parameters[END_REF] have encountered unresolved cases, where the condition p ´δ2 ´βδpp `1q ă 0.

(1.10) remains unknown. Furthermore, the methodology employed in those works appears inapplicable to address (1.10). Specifically, in [START_REF] Popp | The cubic complex ginzburg-landau equation for a backward bifurcation[END_REF], Popp et al put forth a formal conjecture stating that, for a fixed β, the existence of finite time blowup solutions for arbitrarily large |δ| is not available (we refer to Remark 1.1 for further details). Contrary to this conjecture, our paper establishes a proof for the special case β " 0. More precisely, our result reads.

Theorem 1. Let β " 0, p ą 1 and k P N, k ě 2, then there exist γ 0 such that for all γ P p0, γ 0 q, there exists T pγq such that for all T P p0, T q, there exists initial data u 0 P L 8 pRq such that the corresponding solution to equation (2.1) blows up in finite time T and only at the origin. Moreover, there exists a flow bptq P C 1 p0, T q such that (i) For all t P r0, T q, it holds that

› › › › › pT ´tq 1`iδ p´1 up¨, tq ´fbptq ˜| ¨| pT ´tq 1 2k ¸› › › › › L 8 pRq ≲ pT ´tq γ 2 p1´1 k q as t Ñ T, (1.11) 
where f bptq is defined by

f bptq pyq " ´p ´1 `bptq|y| 2k ¯´1`iδ p´1 .
(1.12)

(ii) There exists b ˚:" b ˚pu 0 , γ, T q ą 0 such that bptq Ñ b ˚as t Ñ T and |bptq ´b˚| ≲ pT ´tq γp1´1 k q , @t P p0, T q, (1.13)

Corollary 2. Under the same hypothesis of Theorem 1, it holds that

› › › › › pT ´tq 1`iδ p´1 up¨, tq ´fb ˚˜| ¨| pT ´tq 1 2k ¸› › › › › L 8 pRq ≲ pT ´tq γ 2 p1´1 k q as t Ñ T, (1.14) 
where b ˚is defined in ii) of Theorem 1.

Remark 1.1 (Comments on the result). Kuznetsov and co-authors in different publications, [START_REF] Kuznetsov | Phase gradient mechanism of self-focusing and collapse in non-linear dispersive travelling waves[END_REF], [START_REF] Kuznetsov | Burst and collapse in traveling-wave convection of a binary fluid[END_REF], [START_REF] Kuznetsov | Optical pulsecollapse in defocusing active medium[END_REF] and ( [START_REF] Popp | The cubic complex Ginzburg-Landau equation for a backward bifurcation[END_REF], section 2, page 87) made a conjecture saying that collapse of the solutions of the CGL equation (2.1) may be suppressed for suitable parameters β and δ. They suggest that the imaginary cubic term (when p " 3, β " b and δ " ´c) in the CGLE provides a stabilization mechanism which can eventually suppress the collapse. For the understanding of this mechanism they write the CGL equation in terms of modulus and phase (upx, tq " Apx, tqe iΦpx,tq and k " B x Φ) in one dimension, then we have

B t A " Ap1 `A2 ´k2 q ´2βkB x A ´βAB x A `B2 x A (1.15) B t k " δB x A 2 ´2βkB x k `βB x ˆB2 x A A ˙`B x ˜Bx `A2 k Ȃ2 ¸(1.16)
Then, for β " 0, δ ąą 1, the last term on the RHS of (1.16) is assumed to be negligibly small compared to the first one. As a result of the phase gradient mechanism (PGM) and due to the formation of sharper gradients of the amplitude the propagation speed will grow steadily during the blow up which results in a narrowing of the pulse and (eventually) a suppression of the blow up.

Thus the PGM provides the comparison of the pulse up to its disappearance.

In Theorem 1, we give a counter example to this conjecture when β " 0 and for all δ P R. Indeed, this conjecture is false if we consider a blow-up solution as in (1.11) with scaling equal to

x pT ´tq 1 2k
.

Indeed, if we introduce the following self-similar variables y "

x pT ´tq Let us now write w " W e iΨ and K " B y Ψ, then we have

B s W " W ˆW p´1 ´1 p ´1 ´I´2 K 2 ˙`I ´2B 2 y A ´y 2k B y A (1.17) B s K " δB y pW p´1 q `I´2 " B y ˆ2KB y W W ˙`B 2 y K ȷ ´By " y 2k K ı . (1.18)
Following the conjecture of physicists, even if K grow, he will not be able to suppress the blow-up because the fourth term in equation (1.17) is coming with Ipsq ´2 " e ´sp1´1 k q which decay to 0 as we approach the blow-up time T .

Remark 1.2. In our paper, we focus on the construction of solutions in the case β " 0, but we believe that the construction of blow-up solution such in (1.11) is possible for the case β " 0, but there is additional difficulty coming from the fact that the linearized operator in that case is not self-adjoint and is not diagonalisable. However, we think that we could have a critical condition for the construction of such profile.

Remark 1.3. (Difficulty and the strategy of the proof )

' To prove a result such in Theorem 1, usually we consider the perturbation as the linearisation of the solution around the profile and then we prove that the perturbation goes to 0 as we approach the blow-up time. In this work we use a tricky linearisation introduced by Bricmont and Kupiainen in [START_REF] Bricmont | Renormalization group and asymptotics of solutions of nonlinear parabolic equations[END_REF]. Indeed, we will introduce the following perturbation,modulo a phase,

upT ´tq ´1 p´1 |f b | ´pp´1q f ´1 b ´pp ´1 `by 2k q.
The study of such linearisation will simplify the computations as you will see in section 5. ' Our construction in this work is inspired by the work of Bricmont and Kupiainen in [START_REF] Bricmont | Renormalization group and asymptotics of solutions of nonlinear parabolic equations[END_REF] and our recent result [START_REF] Duong | Modulation theory for the flat blowup solutions of nonlinear heat equation[END_REF]. But this is far from being a simple adaptation of the construction made in the case of the nonlinear heat equation because of the complex structure of the CGL equation 2.1. Indeed we have a potential term V (see (2.11)) which appear in the linearized equation. We note that the computation of the projection of the potential are much more difficult to handle (see Lemma 5.9 and 5.12). ' The proof of Theorem 1 relies on the understanding of the dynamics of the self-similar version of (2.1) (see (2.3) below) around the profile (2.7). Moreover, we proceed in two steps:

-First, we reduce the question to a finite-dimensional problem: we show that it is enough to control a (2k)-dimensional variable in order to control the solution (which is infinite dimensional) near the profile. -Second, we proceed by contradiction to solve the finite-dimensional problem and conclude using a topological argument.

Structure of the paper:

To be more convenient for readers, we mention here the structure of the paper. In Section 2, we give a formal approach to our problem and setup the main linearized problem around the suitable approximation. Next, we show in Section 3 spectral properties of the linear operators. In particular, Section 4 plays a central role in our paper that reduces our problem to a finite dimensional one and the conclusion to the finite dimensional one. Finally, the conclusion yields the proof of Theorem 1 and Corollary 2 (see Section 4.5). In Section 5, we provide a priori estimates to our solution which plays an important role in our analysis. Finally, in the last Section, we give necessary estimates on the action of semigroups on the negative part of the solution. We hope this make clear the structure of the paper.

Formulation of the problem

In this section, we aim to formulate our main problem. First, we formally explain how the profile in Theorem 1.11 is selected, and we then make the linearized problem around the selected approximation.

Let β " α " 0, then the complex Ginzburg Landau equation (1.1) reads B t u " ∆u `p1 `iδq|u| p´1 u.

(2.1)

Now, we assume that u is a solution to (2.1) on r0, T q for some T ą 0, and k ě 2 is an integer number. We introduce the k-similarity variables as follows wpy, sq " pT ´tq

1`iδ p´1 upx, tq, y " x pT ´tq 1 2k
, s " ´lnpT ´tq.

(2.2)

Thanks to (2.1), w solves the following equation

B s w " I ´2psq∆w ´1 2k y ¨∇w ´1 `iδ p ´1 w `p1 `iδq|w| p´1 w, (2.3) 
where Ipsq is defined by

Ipsq " e s 2 p1´1 k q .

(2.4)

In our paper, we are interested in a formal solution to (2.3) of the form wpy, sq "

8 ÿ j"0 w j pyq I 2j psq " 8 ÿ j"0 w j pyq e sjp1´1 k q
, where w j is assumed to be smooth and globally bounded. Plugging this ansatz into (2.3) and looking at the leading order, we obtain ´1 2k y ¨∇w 0 ´p1 `iδq w 0 p ´1 `p1 `iδq|w 0 | p´1 w 0 " 0. Since we aim to search global solutions w, w 0 must be the same. Up to modulo a phase, there exists b ą 0 such that w 0 pyq " pp ´1 `by 2k q ´1`iδ p´1 for some b ą 0.

(2.5) Thus, (2.5) formally explains how the profile in Theorem 1.11 arises.

Next, we is motivated by [START_REF] Bricmont | Renormalization group and asymptotics of solutions of nonlinear parabolic equations[END_REF], to introduce the linearized problem as follows wpy, sq " e iθpsq f bpsq py, sq `1 `ebpsq py, sqqpy, sq ˘,

the functions f bpsq and e bpsq are given by

f bpsq pyq " ´p ´1 `bpsqy 2k ¯´1`iδ p´1 , (2.7) 
and e bpsq pyq " ´p ´1 `bpsqy 2k ¯´1 .

(2.8)

It is worth noting that the combined influence of the two parameters bpsq and θpsq is crucial to our analysis, as they govern the dynamics of neutral modes in our construction problem. As a matter of fact, our linearized problem is not only focused on linearisation with respect to the variable q, but also extends to determine the flows pθ, bq (so-called modulations). Thanks to (2.3), which allows us to express pq, b, θq as follows:

B s q " L δ,s q `Bpqq `T pqq `N pqq `Ds p∇qq `Rs pqq `V pqq, (

where with the explicitly determinated constants as follows

L δ,s q " I ´2psq∆q ´1 2k y ¨∇q `p1 `iδqℜpqq, , (2.10 
α 1 " ´p1 `iδq2kp2k ´1q b p´1 α 2 " 4p1 `iδqpp `iδqk 2 b 2 pp´1q 2 , α 3 " ´pp `iδq2kp2k ´1q b p´1 α 4 " 4pp `iδqp2p ´1 `iδqk 2 b 2 pp´1q 2 .
(2.14)

Our aim is to construct a triple pq, b, θqpsq, s P r´ln T, `8q where θp¨q, bp¨q P C 1 pr´log T, 8q, Rq are suitably selected such that equation (2.9) has a unique solution qp¨, sq on r´ln T, 8q satisfying

}qpsq} L 8 M " › › › › qpsq 1 `|y| M › › › › L 8 Ñ 0 as s Ñ 8,
where the constant M is defined by

M " 2kp p ´1 . (2.15) 
Choosing such a value for M involves a delicate process. On the one hand, it ensures that that the linearisation (2.6) is effective, providing us with a rigorous approximation. On the other hand, it allows us to effectively control the nonlinearity N , as we showed in (5.33).

Spectral properties of linear operators

In this section, we aim to give some spectral properties of the linear operators appearing in our paper.

First, let us introduce

ρ s " Ipsq ? 4π e ´I2 psqy 2 4 . (3.1) 
Then, we introduce L 2 ρs pR, Cq as the weighted Hilbert space defied by L 2 ρs pR, Cq "

" f P L 2 loc pR, Cq such that ż R |f | 2 ρ s dy ă `8* . (3.2)
For each m P N, we recall h m pzq as the Hermite polynomial of degree m defined by We introduce L 0,s q " I ´2psq∆q ´1 2k y ¨∇q,

h m pzq " r m 2 s ÿ ℓ"0 m! ℓ!pm ´2ℓq! z m´2ℓ . ( 3 
and L s q :" I ´2psq∆q ´1 2k y ¨∇q `q " L 0,s q `q.

(3.8)

We can easily derive the decomposition of the operator L s in Jordan block as follows

L s H m py, sq " # `1 ´m 2k ˘Hm py, sq `mpm ´1qp1 ´1 k qI ´2psqf m´2 if m ě 2,
`1 ´m 2k ˘Hm py, sq if m P t0, 1u.

(3.9)

For some s ě σ, we represent K 0,s,σ and K s,σ as the semigroups associated with the linear operators L 0,s and L s , respectively. As a matter of fact, the semigroups are fundamental solutions to the following

# B s K 0,s,σ " L 0,s K 0,s,σ for all s ą σ, K 0,σ,σ " Id, (3.10) and # 
B s K s,σ " L s K s,σ for all s ą σ, K σ,σ " Id. (3.11)
Thanks to Mehler's formula, the kernels of the semigroups are explicit (initially proved in [START_REF] Bricmont | Universality in blow-up for nonlinear heat equations[END_REF]) and given by K 0,s,σ py, zq " F ´e´s ´σ 2k y ´z¯a nd K sσ py, zq " e s´σ F ´e´s ´σ 2k y ´z¯( 3.12)

where

Fpξq " Lps, σq ? 4π e ´L2 ξ 2 4
with L 2 ps, σq " I 2 σ p1 ´e´ps´σq q and Ipsq " e s 2 p1´1 k q .

(3.13)

In particular, it holds that K 0,s,σ H n p., σq " e ´ps´σqp n 2k q H n p., sq and K s,σ H n p., σq " e ps´σqp1´n 2k q H n p., sq.

Next, we are based on (3.9) to represent the Jordan block for L δ,s . We define

! Ĥm " p1 `iδqH m py, sq, Ȟm " iH m py, sq|m P N ) , (3.15) 
where H m py, sq is defined in (3.5). Thus, it holds that for each

m ě 2 $ & % L δ,s p Ĥm q " ´1 ´m 2k ¯Ĥ m `mpm ´1qp1 ´1 k qI ´2psq Ĥm´2 , L δ,s p Ȟm q " ´m 2k Ȟm `mpm ´1qp1 ´1 k qI ´2psq Ȟm´2 , (3.16) 
and for m P t0, 1u, we have

$ & % L δ,s p Ĥm q " ´1 ´m 2k ¯Ĥ m ,
L δ,s p Ȟm q " ´m 2k Ȟm .

(3.17)

Decomposition of q

In this part, we aim to introduce decomposition of the solution q along time-dependent polynomials tH n , n ě 0u ( also t Ĥn , Ȟn , n ě 0u). Let us expand q by qpy, sq "

ÿ 0ďnďrM s Q n psqH n py, sq `q´p y, sq, (3.18) 
where M defined as in (2.15), and

H n is defined in (3.5), Q n psq P C, q ´satisfy Q n pq, sq " ż qH n ρ s ż H 2 n ρ s . (3.19)
Additionally, we can understand that q ´is the rest part of q which is orthogonal to H n for all n ď rM s i.e. ż q ´py, sqH n py, sqρ s pyqdy " 0 for all n ď rM s.

For more convenience, we define two projectors P `,rM s and P ´,rM s (P `and P ´for short)

(3.20) and P ´,rM s pqq :" q ´P`,rMs .

Thus, by introducing q `" P `,rM s and q ´" P ´,rM s ,

we can express q " q ``q ´. (3.23) Definition 3.1 (δ-decomposition). We define the projectors Q ℜ,δ and Q ℑ,δ on complex numbers by Q ℜ,δ pzq " ℜpzq " ẑ and Q ℑ,δ pzq " ℑpzq ´δℜpzq " ž, (3.24)

for each z P C, then we have a unique decomposition for each z P C that z " ẑp1 `iδq `iž.

Consequently, Lemma 3.2. The projectors Q ℜ,δ and Q ℑ,δ hold true: (i) It is easy to check the following properties: for all λ P R,

z 1 , z 2 P C Q ℜ,δ pz 1 `z2 q " Q ℜ,δ pz 1 q `Qℜ,δ pz 2 q and Q ℑ,δ pz 1 `z2 q " Q ℑ,δ pz 1 q `Qℑ,δ pz 2 q, (3.25) 
and Q ℜ,δ pλz 1 q " λQ ℜ,δ pz 1 q and Q ℑ,δ pλz 1 q " λQ ℑ,δ pz 1 q, (3.26) and Q ℜ,δ pp1 `iδqλq " λ, and Q ℑ,δ piλq " λ.

(3.27)

(ii) Let V pqq defined as in (2.11), then z V pqq " 0 and Ṽ pqq " p1 ´pp ´1qe b q q. (3.28)

Proof. It directly replies on Definition 3.1. We kindly refer readers to check the details.

According to Definition 3.1, we can decompose q `and q ´as follows

q `" ÿ nďrM s Q n H n psq " ÿ nďrM s qn Ĥn psq `q n Ȟn psq, (3.29) 
and q

´" p1 `iδqq ´`i q´, (3.30) where qn , qn P R and q´, q´a re real-valued functions. In particular, these components can be explicitly expressed by qn psq " Pn pqq :" Q ℜ,δ pQ n q, qn psq " Pn,M pqq :" Q ℑ,δ pQ n q.

(3.31) and q´" Q ℜ,δ pq ´q and q´" Q ℑ,δ pq ´q.

(3.32)

Finally, we obtain the unique decomposition as follows qpy, sq " ¨ÿ nďrM s qn psq Ĥn py, sq `q n psq Ȟn py, sq '`p1 `iδqq ´py, sq `iq ´py, sq.

(3.33)

Equivalent norms

In this section, we establish equivalent norms used in our paper. Let us introduce L 8 M defined by L 8 M pRq " tg such that p1 `|y| M q ´1g P L 8 pRqu.

(3.34)

L 8 M is complete with the norm }g} L 8 M " }p1 `|y| M q ´1g} L 8 , (3.35) 
since L 8 is complete with }.} L 8 . In particular, we also introduce }.} s as follows

}q} s " rM s ÿ m"0 |q m | `|q ´|s , (3.36) 
where

|q ´|s " sup y |q ´py, sq| I ´M psq `|y| M . (3.37)
As a matter of fact, we have the following equivalence:

C 1 psq}q} L 8 M ď }q} s ď C 2 psq}q} L 8 M for some C 1 , C 2 P R ˚, (3.38) 
which yields L 8 M is also complete with }.} s .

The proof assuming some technical results

In this section we give the complete proof of Theorem 1. The main idea is to reduce the problem to a finite dimensional problem (2k-dimensional one) which is classical and can be solved by a topological argument. We hope that the explanation of the strategy we give in this section will be more reader friendly. Below, we give the main steps:

' The first step: we construct a shrinking set V A,γ,b 0 ,θ 0 psq including necessary bounds such that the belonging in this set completely implies the result in Theorem 1. ' In the second step: we construct initial data at initial time s 0 for (2.9) which is parameterized by 2k parameters in accordance with the 2k projections q0 , .., q2k´1 of q on Ĥn , n ď 2k.

' In the third step: we impose two orthogonal conditions Q ℜ,δ ˆż qpsq Ĥ2k py, sqρ s dy ˙" Q ℑ,δ ˆż qpsq Ȟ0 py, sqL 2 ρs dy ˙" 0, (

which are responsible for nullifying two projections q2k and q0 of q onto Ĥ2k and Ȟ0 . According to (3.16), the projections involve the zero modes arising as big challenges in the construction. Therefore, the appearance of these modulations is critical to our construction. Additionally, we show the locally unique existence of the solution pq, b, θq to the coupled problem (2.9) & (4.1). ' In the fourth step: By using the spectral approach of the linear operator L δ,s , we reduce the control of pq, b, θqpsq (an infinite dimensional problem) to a 2k-dimensional one involving pq 0 , .., q2k´1 q. ' In the last subsection, we solve the finite dimensional one by using a topological argument and we give the complete conclusion to Theorem 1.

Definition of a shrinking set

In this section, we define a "shrinking set" which control the behavior of the solution by some error bounds. Definition 4.1 (Shrinking set). Let k ě 2, k P N, γ ą 0, b 0 ą 0, θ 0 P R, s ě 1 and A ě 1, we define V A,γ,b 0 ,θ 0 psq as the set of all pq, b, θq, where q P pL 8 M pRq, Rq satisfying the following conditions: (i) The first condition: for all n satisfying 0 ď n ď M , we have

|q n | ď I ´γ psq and |q n | ď I ´γ psq. (4.2) 
(ii) The second condition:

› › › › q´p y, sq I ´M `|y| M › › › › L 8 ď I ´γ psq, › › › › q´p y, sq I ´M `|y| M › › › › L 8 ď AI ´γ psq. (4.3)
where Ipsq defined as in (2.4); qn and qn given as in (3.31); and q´" Q ℜ,δ pq ´q, q´" Q ℑ,δ pq ´q and the negative part q ´defined as in (3.22). (iii) The third condition:

b 0 2 ď b ď 2b 0 , (4.4 
)

|θ 0 | 2 ď |θ| ď 2|θ 0 |. (4.5) 
In below, we show some rough bounds for functions belonging to V A,γ,b 0 ,θ 0 psq for some s ě 1.

Lemma 4.2. Let pq, bq P V A,γ,b 0 ,θ 0 psq arbitrarily given, then the following estimates hold

|q `pyq| ď CI ´γ psq ¨ÿ nďrM s pI ´npsq `|y| n q ', @y P R, (4.6) 
|q ´pyq| ď CAI ´γ psqpI ´M psq `|y| M q, @y P R, (4.7) ˇˇ1 t|y|ě 1 2 u q `pyq ˇˇď CI ´γ psq `I´M psq `|y| M ˘, @y P R, (4.8)

ˇˇ1 t|y|ě 1 2 u qpyq ˇˇď CAI ´γ psq `I´M psq `|y| M ˘, @y P R, (4.9) 
where C ą 0 is a universal constant depending only on the nonlinear power p and k.

Proof. The result immediately follows by the definition of V A,γ,b 0 ,θ 0 psq. We kindly refer the reader to check these estimates.

Preparation of initial data

Let us now prepare initial data to our problem. We consider d " p d0 , .., d2k´1 q P R 2k and we introduce ψp d, y, s 0 q " I ´γ ps 0 q 2k´1 ÿ j"0 dj Ĥj py, s 0 q.

(4.10)

By the orthogonality of t Ĥj , Ȟk u, we can easily check that P2k pψq " 0, and P0 pψq " 0, (4.11) which satisfy (4.1) at s 0 .

In below, we show important properties for initial data defined in (4.10).

Lemma 4.3 (Reparing of initial data). Let d " p di q 0ďiď2k´1 P R 2k satisfying max 0ďiď2k´1 ˇˇd i ˇˇď 2 and b 0 ą 0 arbitrarily given. Then, there exists γ 1 pb 0 q ą 0 such that for all γ P p0, γ 1 q, there exists s 1 pγ, b 0 q ě 1 such that for all s 0 ě s 1 , the following properties are valid with ψp d, y, s 0 q defined in (4.10):

(i) There exits a quadrilateral D s 0 Ă r´2, 2s 2k such that the mapping

Γ : D s 0 Ñ R 2k p d0 , ..., d2k´1 q Þ Ñ p ψ0 , ..., ψ2k´1 q , ( 4.12) 
is linear one to one from D s 0 to Vps 0 q, with Vpsq " " ´I´γ psq,

I ´γ psq ‰ 2k , (4.13) 
where p ψ0 , ..., ψ2k´1 q are the coefficients of initial data ψp d0 , ..., d2k´1 q corresponding to the decomposition (3.33). In addition to that, we have Γ| BDs 0 Ă B Vps 0 q and deg ´Γ| BDs 0 ¯‰ 0. (4.14)

(ii) For all p d0 , ..., d2k´1 q P D s 0 , the following estimates are valid ˇˇψ 0 ˇˇď I ´γ ps 0 q, ...., ˇˇψ 2k´1 ˇˇď I ´γ ps 0 q, ψ2k " .. " ψM " 0 and ψ " 0, ψ ´" 0. (4.15)

Proof.

-The proof of item (i): From (4.10), definition's Ĥn as in (3.5) and (3.31), and by a direct computation we can prove that there exists a square matrix A s 0 satisfying

A " Id `Ã s 0 with Ãs 0 " pã ij q, |ã ij | ď CI ´2ps 0 q, and we have

¨ψ 0 ψ1 . . . ψ2k´1 ‹ ‹ ‹ ' " I ´γ ps 0 qA s 0 ¨d 0 d1 . . . d2k´1 ‹ ‹ ‹ ' , (4.16) 
which immediately concludes item (i).

-The proof of item (ii): From (4.10), ψp d0 , ..., d2k´1 , s 0 q is a polynomial of order 2k ´1, so it follows that ψn " 0, @n P t2k, .., M u, ψn " 0, @n P t0, .., M u and ψ ´" 0.

In addition, since p d0 , ..., d2k´1 q P D s 0 , we apply item (i) to deduce that pψ 0 , ..., ψ 2k´1 q P Vps 0 q and ˇˇψ n ˇˇď I ´δ ps 0 q, @n P t0, ..., 2k ´1u which concludes item (ii) and the proof Lemma 4.3.

Remark 4.4. Note that s 0 " ´lnpT q is the master constant. In almost every argument in this paper it is almost to be sufficiently depending on the choice of all other constants (γ 0 and b 0 ). In addition, we denote C as the universal constant which is independent to b 0 and s 0 . In this part, we prove the local existence of solution to the problem (2.9) & (4.1). The result reads.

Proposition 4.5 (Local existence of the coupled problem (2.9) & (4.1)). Let p d P R 2k satisfying ˇˇd ˇˇď 2, γ ą 0, b 0 ą 0, θ 0 P R and A ě 1. Then, there exits s 2 pγ, b 0 , θ 0 q ě 1, such that for all s 0 ě s 2 , the following holds: if we take initial data pψ, b 0 , θ 0 q with ψ defined as as in (4.10), then there exists s loc ą s 0 such that the coupled problem (2.9) & (4.1) has a unique solution pq, b, θqpsq P V A,γ,b 0 ,θ 0 psq on rs 0 , s loc s.

Proof. First, it is classical that equation (2.3) is locally well-posed in L 8 pRq. So, with initial data pψ, b 0 , θ 0 q and the transformation in (2.6), there exists s1 ą s 0 such that equation (2.3) uniquely exists on rs 0 , s1 s. Now, let us introduce ⃗ µ " pb, θq and define

Fps, ⃗ µq " ¨Qℜ,δ ˆż " wpy, sqpf b e b q ´1e ´iθ ´´p ´1 `by 2k ¯ı H 2k ρ s dy Qℑ,δ ˆż " wpsqpf b e b q ´1e ´iθ ´´p ´1 `by 2k ¯ı H 0 ρ s dy ˙‹ ‹ ' " ˆF1 ps, ⃗ µq F 2 ps, ⃗ µq ˙.
(4.17) By (3.19) and (4.11), we have Fps 0 , ⃗ µ 0 q " 0 where ⃗ µ 0 " pb 0 , θ 0 q.

So, the result will be a direct consequence of the implicit function theorem. Let us recall the Jacobian matrix of F in accordance with the variable ⃗ µ

J ⃗ µ rFsps, ⃗ µq " ˆBb F 1 ps, µq B θ F 1 ps, ⃗ µq B b F 2 ps, ⃗ µq B θ F 2 ps, ⃗ µq ˙, (4.18) 
where

B θ F 1 ps, ⃗ µq " Q ℜ,δ ˆ´i ż wpsqf b e b q ´1e ´iθ H 2k ρ s dy ˙, B b F 1 ps, ⃗ µq " Q ℜ,δ ˆż " p `iδ p ´1 wpsqy 2k pf b q ´1e ´iθ ´y2k ȷ H 2k ρ s dy ˙, B θ F 2 ps, ⃗ µq " Q ℑ,δ ˆ´i ż wpsqpf b e b q ´1e ´iθ H 0 ρ s dy ˙, pa b F 2 ps, ⃗ µq " Q ℑ,δ ˆż p `iδ p ´1 " wpsqy 2k pf b q ´1e ´iθ ´y2k ı H 0 ρ s ˙.
The main goal is to prove Det `J⃗ µ rFsps, ⃗ µq ˘|ps,⃗ µq"ps 0 ,⃗ µ 0 q ‰ 0. ( Therefore, we get

B b F 1 ps 0 , ⃗ µq | ⃗ µ"⃗ µ 0 " 1 p ´1 I ´4k ps 0 q2 4k p2kq! `1 `OpI ´γ ps 0 qq ˘.
-Expansion for B θ F 1 ps 0 , ⃗ µq | ⃗ µ"⃗ µ 0 : Using (4.20) again, we get ´i ż wps 0 qpf b 0 e b 0 q ´1e ´iθ 0 H 2k ρ s dy " ´ib 0 I ´4k ps 0 q2 4k p2kq!.

Thus, it follows that

B θ F 1 ps 0 , ⃗ µq | ⃗ µ"⃗ µ 0 " 0. ( 4.22) 
-Expansion for B b F 2 ps 0 , ⃗ µq | ⃗ µ"⃗ µ 0 : By using (4.21), we obtain

ˇˇB b F 2 ps 0 , ⃗ µq | ⃗ µ"⃗ µ 0 ˇˇď CI ´2k ps 0 q.
-Expansion for B θ F 2 ps 0 , ⃗ µq | ⃗ µ"⃗ µ 0 : By the same way, we get B θ F 2 ps 0 , µ 0 q " p´pp ´1q ´I´γ ps 0 q d0 q ´δI ´γ ps 0 q ´δ d0 `ď 0 ¯`CpbqI ´2k ps 0 q " p1 ´pq `O pI ´γ ps 0 qq .

(4.23)

By combining the previous expansions, we obtain

Det `J⃗ µ rFsps, ⃗ µq ˘|ps,⃗ µq"ps 0 ,⃗ µ 0 q " p1 ´pq2 4k p2kq!I ´4k ps 0 q `1 `OpI ´γ ps 0 qq ˘ " 0, (

provided that s 0 ě s 2,1 . Thus, it is a direct consequence of the implicit function theorem that there exists ⃗ µpsq " pθpsq, bpsqq P C `rs 0 , s loc s, R 2 ˘X C 1 `ps 0 , s loc q, R 2 ˘with s loc P p0, s1 q such that Fps, ⃗ µpsqq " 0, @s P rs 0 , s loc s,

and b 0 2 ă bpsq ď 2b 0 and |θ 0 | 2 ă θpsq ă 2|θ 0 |.
In particular, pq, b, θqpsq P V A,γ,b 0 ,θ 0 psq @s P rs 0 , s loc s, thanks to the continuity of the solution.

Finally, we get the conclusion of the proposition.

Remark 4.6 (Propagating the existence). By the way in the proof of Proposition 4.5 we can prove that if the solution pq, b, θq exists on rs 0 , ss for some s ą s 0 and pq, b, θqpsq P V A,γ,b 0 ,θ 0 psq. Then, there exists ϵ ą 0 such that the solution pq, b, θq to problem (2.9) & (4.1), uniquely exists on rs 0 , s `ϵs. Since we can prove Det `J⃗ µ rFsps, ⃗ µq ˘|ps,⃗ µq"ps, ⃗ μq " p1 ´pq2 4k p2kq!I ´4k psq `1 `OpAI ´γ psqq ˘ " 0, ⃗ μ " pb, θqpsq.

Reduction to a finite dimensional problem

As we defined shrinking set V A,γ,b 0 ,θ 0 psq in Definition 4.1, it is sufficient to prove there exists a unique global solution pq, b, θq on rs 0 , `8q for some s 0 sufficient large that pq, b, θqpsq P V A,γ,b 0 ,θ 0 psq, @s ě s 0 .

In particular, we show in this part that the control of infinite problem is reduced to a finite dimensional one. As an important step to get the conclusion of our result, we first show the following a priori estimates. Proposition 4.7 (A priori estimates). Let b 0 ą 0 and k P N, k ě 2, b 0 ą 0, then there exists γ 3 pk, b 0 q ą 0 such that for all γ P p0, γ 3 q, there exists s 3 pγ, b 0 q such that for all s 0 ě s 3 , the following property holds: Assume pq, b, θq is a solution to problem (2.9) & (4.1) that pq, b, θqpsq P V A,γ,b 0 ,θ 0 psq for all s P rs, s 0 s for some s ě s 0 , and q 2k psq " 0 for all s P rs, s 0 s, then for all s P rτ, ss, with s 0 ď τ ď s, the following properties hold: piq (Smallness of the modulation parameter θpsq). It holds that ˇˇθ 1 psq ˇˇď CA 2 I ´2γ psq, @s P rs 0 , ss.

piiq (Oscillation the modulation flow bpsq). It holds that ˇˇb 1 psq ˇˇď CA 2 I ´2γ psq and 3 4 b 0 ď bpsq ď 5 4 b 0 , @s P rs 0 , ss.

(iii) (ODEs of the finite modes). For all j P t0, ..., rM su, we have ˇˇˇq 1 j psq ´ˆ1 ´j 2k ˙q j psq ˇˇˇď CA 2 I ´2γ psq, @s P rs 0 , ss.

ˇˇˇq 1 j psq `j 2k qj psq ˇˇˇď CI ´2γ psq, @s P rs 0 , ss.

pivq (Control of the infinite-dimensional part q ´): For q ´" p1 `iδqq ´`i q´, we have where p " minpp, 2q.

|q
Proof of Proposition 4.7. This result plays an important role in the proof of Theorem 1. For the reader's convenience, we put the complete proof of Proposition 4.7 in Section 5.

Consequently, we have the following result.

Proposition 4.8 (Reduction to a finite dimensional problem). Let k P N, k ě 2, b 0 , θ 0 ą 0 and A ě 1, then there exists γ 4 pb 0 q such that for all γ P p0, γ 4 q, there exists s 4 pb 0 , γq such that for all s 0 ě s 4 , the following property holds: Assume that pq, b, θq is a solution to problem (2.9) & (4.1) in accordance with initial data pq, b, θqps 0 q " pψpd 0 , ..., d 2k´1 , s 0 q, b 0 , θ 0 q where ψpd 0 , ..., d 2k´1 q, s 0 q defined as in (4.10) with max 0ďiď2k´1 |d i | ď 2; and pq, bqpsq P V A,γ,b 0 ,θ 0 psq for all s P rs 0 , ss for some s ą s 0 that pq, bqpsq P BV A,γ,b 0 ,θ 0 psq, then the following properties are valid: (i) (Reduction to some finite number of modes): Consider q0 , ..., q2k´1 be projections of q corresponding to (3.31) then, we have pq 0 , .., q2k´1 q psq P BVpsq,

where Vpsq " r´I ´γ psq, I ´γ psqs 2k and Ipsq is given by (2.4) . Hence, with j ą 2k, γ ď γ 4,1 and initial data qj ps 0 q " 0 that qj ps 0 q P `´1 2 I ´γ ps 0 q, 1 2 I ´γ ps 0 q ˘, it follows from (4.28) that qj psq P ˆ´1 2 I ´γ psq, 1 2 I ´γ psq ˙, @s P rs 0 , ss, which concludes (4.25). We proceed in a similar fashion to prove (4.26). + For (4.27): Since, the proof for q´i s the same as for q´, we only prove the inequality satisfied by q in (4.27). We divide into two cases that s ´s0 ď s 0 and s ´s0 ě s 0 . According to the first case, we apply item (iii) of Proposition 4.7 by τ " s 0 that |q ´psq| s ď C ´I´p `1 2 γ psq `e´s ´s0 p´1 I ´p`1 2 γ ps 0 q ¯ď 1 2 I ´γ psq, provided that γ ď γ 4,2 and s 0 ě s 4,2 pγq. In the second case, we use item (iii) again with τ " s ´s0 , and we obtain

(ii) (Transverse crossing)

|q ´psq| s ď e ´s0 p´1 I ´γ pτ q `C ´I´p `1 2 γ psq `e´s 0 p´1 I ´p`1 2 γ pτ q ď Cpe ´s0 p´1 I γ psqI ´γ pτ q `I´1 2 γ psqqI ´γ psq ď 1 2 I ´γ psq.
Thus, (4.27) completely follows. Finally, using the definition of V A,γ,b 0 ,θ 0 psq; the fact pq, bqpsq P BV A,γ,b 0 ,θ 0 psq; estimates (4.25), (4.26) and (4.27); and item (ii) of Proposition 4.8, we get the conclusion of item (i).

-Proof of item (ii): As a consequence of item (i), there exist m " 0, ..2k ´1 and ω " ˘1 such that qm psq " ωI ´δ psq. By item (ii) in Proposition 4.7, we see that for δ ą 0 ω q1 m psq ě ´1 ´m 2k ¯ω qm psq ´CI ´2γ psq ě C ´p1 ´m 2k qI ´γ psq ´I´2γ psq ¯ą 0, which concludes the proof of Proposition 4.8.

Conclusion of Theorem 1

In this part we aim to give the complete proof to Theorem 1 by using a topological shooting argument:

The proof of Theorem 1. First, we aim to prove that there exist p d0 , .., d2k´1 q P D s 0 such that problem (2.9) & (4.1) with initial data pψp d0 , ..., d2k´1 , s 0 q, b 0 , θ 0 q and ψp d0 , ..., d2k´1 , s 0 q defined as in (4.10), has a solution pq d0 ,.., d2k´1 , b, θqp¨q defined for all s P rs 0 , 8q such that pq d0 ,.., d2k´1 , b, θqpsq P V A,γ,b 0 ,θ 0 psq for all s ě s 0 . Now, let us start to the proof the existence. Let b 0 ą 0, θ 0 ą 0, γ ě 0 and s 0 such that Lemma 4.3 and Propositions 4.7-4.8 hold, and we denote T " e ´s0 ą 0 (small since s 0 is large enough). We proceed by contradiction, we assume that for all p d0 , ..., d2k´1 q P D s 0 (the set defined in Lemma 4.3) there exists s ˚" s ˚p d0 , .., d2k´1 q ă `8 such that q d0 ,.., d2k´1 psq P V A,γ,b 0 ,θ 0 psq, @s P rs 0 , s ˚s, q d0 ,.., d2k´1 ps ˚q P BV A,γ,b 0 ,θ 0 ps ˚q.

By using item (i) of Proposition 4.8, we get pq 0 , .., q2k´1 qps ˚q P BV ps ˚q and we introduce Φ by Φ :

D s 0 Ñ Br´1, 1s 2k p d0 , .. d2k´1 q Ñ I γ psqpq 0 , .., q2k´1 qps ˚q, which is well defined and satisfies the following properties:

piq Φ is continuous from D s 0 to Br´1, 1s 2k thanks to the continuity in time of q on the one hand, and the continuity of s ˚in p d0 , ..., d2k´1 q on the other hand, which is a direct consequence of the transversality in item (ii) of Proposition 4.8. (ii) It holds that Φ | BDs 0 has nonzero degree. Indeed, for all p d0 , ..., d2k´1 q P BD s 0 , we derive from item (i) of Lemma 4.3 that s ˚p d0 , ..., d2k´1 q " s 0 and deg ´Φ | BDs 0 ¯‰ 0.

From Wazewski's principle in degree theory such a Φ cannot exist. Thus, we can prove that there exists p d0 , ..., d2k´1 q P D s 0 such that the corresponding solution pq, bqpsq P V A,γ,b 0 ,θ 0 psq, @s ě s 0 . and by (iii) of Proposition 4.8, Φ is continuous. In the following we will prove that Φ has nonzero degree, which mean by the degree theory (Wazewski's principle) that for all s P rs 0 , 8q qpsq remains in V A,γ,b 0 ,θ 0 psq, which is a contradiction with the Exit Proposition. Indeed Using Lemma 4.3, and the fact that qp´ln T q " ψ d0 ,.., d2k´1 , we see that when p d0 , .., d2k´1 q is on the boundary of the quadrilateral D T , q0 , .., q2k´1 p´ln T q P Br´I ´2γ psq, I ´2γ psqs 2k and qp´ln T q P V A,γ,b 0 ,θ 0 p´ln T q with strict inequalities for the other components. By Proposition 4.8, qpsq leaves V A,γ,b 0 ,θ 0 at s 0 " ´ln T , hence s ˚" ´ln T . Using (ii) of Proposition 4.8, we get that the restriction of Φ on the boundary of D s 0 is of degree 1, which means by the shooting method that for all s P rs 0 , 8q qpsq remains in V A,γ,b 0 ,θ 0 psq, which is a contradiction. We conclude that there exist p d0 , .., d2k´1 q P D s 0 and pb, θqp¨q P pC 1 p´ln T, `8qq 2 such that for all s ě ´ln T " s 0 , pq d0 ,.., d2k´1 , b, θqpsq P V A,γ,b 0 ,θ 0 psq for all s ě s 0 . In particular, we obtain

› › › › q 1 `|y| M › › › › L 8 ď CI ´γ psq. (4.29)
Now, we use the above existence to conclude the proof of items in Theorem 1.

-The proof of item (i) in Theorem 1: We derive from (2.6), M " 2kp p´1 , and the following estimate

|f b e b | " |f b | p ď Cp1 `|y| ´2kp p´1 q " Cp1 `|y| ´M q
that }wpsq ´fbpsq } L 8 " }f bpsq e b qpsq} L 8 ď CI ´γ psq, with Ipsq " e s 2 p1´1 k q . Now, we still write bptq " bpsq with s " ´lnpT ´tq and, we hope no risk of confusion to arise here, then using (2.2), we get

› › › › › pT ´tq 1`iδ p´1 up¨, tq ´fbptq ˜| ¨| pT ´tq 1 2k ¸› › › › › L 8
ď CpT ´tq γ 2 p1´1 k q , @t P p0, T q, T " e ´s0 , which concludes item (i).

-The proof of item (ii) in Theorem 1: Since pq, bqpsq P V A,γ,,b 0 ,θ 0 psq for all s ě s 0 , we derive from item (i) in Proposition 4.7

|b 1 pτ q| ď Ce ´γτ p1´1 k q (4.30) that the integral ż 8 s 0 b 1 pτ qdτ converges. Let b ˚" bps 0 q `ż 8 s 0 b 1 pτ qdτ , then we have bpsq Ñ b ˚as s Ñ `8.
In particular, we again use (4.30) that |bpsq ´b˚| ď Ce ´sγp1´1 k q .

By using that fact that t " T ´e´s , we obtain |bptq ´b˚| ď CpT ´tq γp1´1 k q , @t P r0, T q, which completely concludes item (ii). Finally, we get the conclusion of Theorem 1.

Additionally, we end this part by completing the proof of Corollary 2.

Proof of Corollary 2. Let us introduce the function F paq " pp ´1 `pabptq `p1 ´aqb ˚q y 2k q ´1`iδ p´1 , where a P r0, 1s. We can easily derive |F 1 paq| ď Cpb 0 q |bptq ´b˚| ď CpT ´tq γp1´1 k q , then, we obtain

|f bptq ´fb ˚| " | ż 1 0 F 1 paqda| ď CpT ´tq γp1´1 k q ,
which concludes the proof of Corollary 2.

Proof. First, we use the orthogonality of tH n , n ě 1u to derive

ż y 2k H n psqρ s dy " $ & % 0 if n ą 2k, }H 2k psq} 2 L 2 ρs `OpI ´2k´2 q if n " 2k, OpI ´2j´2 q if n ă 2k.
( provided that s ě s 1 pA, kq. Thus, (5.4) holds true. Finally, we finish the proof of the lemma.

+ Fourth term: T pqq " ´iθ 1 psqpe ´1 b `qq " ´iθ 1 psqpp ´1 `by 2k `qq.

Lemma 5.4 (Projection of T pqq on Hn and Ĥn . ). For 0 ď n ď rM s, the projection on Hn is given by Pn pT pqqq "

" θ 1 q2k if n " 2k, ´θ1 `p1 `δ2 qq n ´δ qn ˘else.
and the projection on Ȟn is given by Pn pT pqqq " $ & % ´θ1 `pp ´1q `p1 `δ2 qq 0 ˘if n " 0, ´θ1 pb ´δ q2k q if n " 2k, ´θ1 `p1 `δ2 qq n ´δ qn ˘else.

Proof. First, we apply (3.25) and (3.31) express as follows Pn pT pqqq " ´θ1 psq ´P n pipp ´1qq `b Pn piy 2k q `P n piqq ¯,

Pn pT pqqq " ´θ1 psq ´P n pipp ´1qq `b Pn piy 2k q `P n piqq ¯, the first two term are easy to derive. To obtain the projection Pn piqq and Pn piqq we can first write i Ĥn " δ Ĥn ´Ȟ n , i Ȟn " p1 `δ2 q Ĥn ´δ Ȟn .

and it follows then Pn piqq " δ qn ´q n , Pn piqq " p1 `δ2 qq n ´δ qn .

Using the modulation condition (4.1) we get Pn pT q " ´θ1 ´P n pipp ´1qq `b Pn piy 2k q `P n piqq ¯,

" # θ 1 q2k if n " 2k,
´θ1 `p1 `δ2 qq n ´δ qn ˘else.

Pn pT q " ´θ1 `P n pipp ´1qq `b Pn piy 2k q `P n piqq ˘,

" $ ' & ' %
´θ1 `pp ´1q `p1 `δ2 qq 0 ˘if n " 0,

´θ1 pb ´δ q2k q if n " 2k,
´θ1 `p1 `δ2 qq n ´δ qn ˘else. Finally, we finish the proof of the lemma.

+ Fifth term: N pqq " p1 `iδq ´|1 `eb q| p´1 p1 `eb qq ´1 ´2e b ℜq ´p´1 2 e b q ´p´3 2 e b q¯.

Lemma 5.5. Let s ě 1, L ě 1, L P N. Then, the term N " N pqq defined in above, satisfies

sup |y|ă1 ˇˇˇˇˇˇˇˇˇˇN ´L ÿ l"0 ÿ 0 ď j, k ď L 2 ď j `k ď L B j,k pyqq j qk `B j,k pyqq j qk ˇˇˇˇˇˇˇˇˇˇď C `|q| L`1 ˘,
where B l j,k is an even polynomial of degree less or equal to K and the rest Bl j,k satisfies

@|y| ă 1 | Bj,k | ď Cp1 `|y| 2kL q. Moreover @|y| ă 1 |B j,k `B j,k | ď C.
On the other hand, in the region |y| ě 1, we have

|N pqq| ď C |e b q| p , or C|1 `eb q| p
for some constant C and p " minpp, 2q.

Proof. We notice that in the region |y| ď 1 and for s ě C where C is a fixed constant, e b is bounded from above and from below. Using a Taylor expansion in terms of e b q and e b q, we see that N can be written as @s ě 1 and |y| ă 1,

ˇˇˇˇˇˇˇˇˇˇN ´ÿ 0 ď j, m ď K 2 ď j `m ď K c j e j`m b q j qm ˇˇˇˇˇˇˇˇˇˇď C|e b q| K`1 .
Using (3.33) and the fact that

e b py, sq " L ÿ l"0 E l b l y 2kl
we can expand pe b q j`m in terms of y

ˇˇˇˇej`m b ´L ÿ i"0 A i j,m |y| 2ki ˇˇˇˇď C|y| 2kpL`1q , (5.6) 
where A i j,m and Ãi j,m depends on b. By the definition of the set we can easily see that

|A i j,m | | Ãi j,m | ≲ C. If we introduce B j,m " ř L "0 A i j,m |y| 2ki and Bj,m " e j`m b ´řL i"0 A i j,m |y| 2ki
Then we get from the above computation

sup |y|ă1 ˇˇˇˇˇˇˇˇˇˇN ´L ÿ l"0 ÿ 0 ď j, k ď K 2 ď j `k ď K B j,k pyqq j qk `B j,k pyqq j qk ˇˇˇˇˇˇˇˇˇˇď C `|q| K`1 `1˘,
where B l j,k is an even polynomial of degree less or equal to K and the rest Bl j,k satisfies

@|y| ă 1 | Bj,k | ď Cp1 `|y| 2kL q. Moreover @|y| ă 1 |B j,k `B j,k | ď C. Hence the Lemma is proved.
Using Lemma 5.5, we have the following lemma.

Lemma 5.6. There exits s 3 pA, b 0 , θ 0 q ě 1 such that for all s P rs 0 , ss, for some s ą s 0 , and 0 ď n ď rM s, it holds that ˇˇP n pN pqqq ˇˇ`ˇˇP n pN pqqq ˇˇď CA 2 I ´2γ psq.

(5.7)

Proof. It is enough to prove (5.7) for the projection on H n , it implies the same for Pn pN q and Pn pN q. We write

ż H n N ρ s pyqdy " ż |y|ă1 H n N ρ s pyqdy `ż|y|ą1 H n N ρ s pyqdy.
Using Lemma 5.5, we deduce that

ˇˇˇˇˇˇˇˇˇˇż |y|ă1 H n N ρ s pyqN ´ż|y|ă1 H n ρ s pyq L ÿ l"0 ÿ 0 ď j, k ď L 2 ď j `k ď L B j,k pyqq j qk `B j,k pyqq j qk ˇˇˇˇˇˇˇˇˇď C ż |y|ă1 |H n ||e b q| L`1 ρ s .
(5.8) Let us write q j " ¨rMs ÿ l"0 ql Ĥl `q l Ĥl `q´' j , Using the fact that }q} L 8 ď 1 (which holds for large s from the definition of the shrinking set V A,γ,b 0 ,θ 0 psq) , then we have ˇˇq j ´qj `ˇď C `|q ´|j `|q ´|˘. Using the fact that qpsq P V A,γ,b 0 ,θ 0 psq, we have |q ´| `|q ´| ď CAI ´γ pI ´M `|y| M q, we obtain ˇˇq j ´qj `ˇď CAI ´γ pI ´M `|y| M q, and ˇˇq k ´q k `ˇď CAI ´γ pI ´M `|y| M q, thus give us the desired estimation in (5.7) for the second integral in (5.8). Let us focus on the L.H.S of inequality (5.8), we note that H n satisfies for all |y| ă 1, |H n py, sq| ď Cp1 `|y| n q, we have also by the definition of the shrinking set

|e b qpy, sq| L`1 ď CI ´γpL`1q , it follows that ż |y|ă1 |H n ||e b q| L`1 ρ s ď CI ´γpL`1q ż |y|ă1 p1 `|y| n qρ s dy ď CI ´γpL`1q´2n , which gives the good estimation | ş |y|ă1 H n N ρ s | ď CI ´2γ´2n .
To end the proof we estimate ş |y|ą1 H n N ρ s dy. By Lemma 5.5, the definition of V A,γ,b 0 ,θ 0 psq and using Lemma A.2 from [START_REF] Duong | Modulation theory for the flat blowup solutions of nonlinear heat equation[END_REF], we get

ˇˇˇˇż |y|ą1 H n N ρ s ˇˇˇˇď C ˇˇˇˇż |y|ą1 H n p1 `I´p´δ p1 `|y| M p qqρ s ˇˇˇˇď Ce ´I 8 .
Thus end the proof of the Lemma.

+ Sixth term: D s pqq " ´p `iδ p ´1 4kby 2k´1 I ´2psqe b ∇q.

Lemma 5.7. For γ P p0, 1 2 q, there exists s 4 pA, b 0 , θ 0 , γq ě 1 such that for all s P rs 0 , ss for some s ě s 0 , and 0 ď n ď rM s, it holds that | Pn pD s pqqq| ď CI ´2γ psq and | Pn pD s pqqq| ď CI ´2γ psq then by Lemma A. ď CI ´M ´n´2k psq.

we conclude that there exist γ 6 , such that for all 0 ă γ ď γ 6 , we have ˇˇˇˇż |y|ď1 y 2kj pδℜq ´´ℑq ´qH n ρ s dy ˇˇˇˇď CI ´2γ´2n psq .

(

Let us focus on the first integral of equation (5.11), using estimation given by (4.2), we obtain ż |y|ď1 y 2kj pδℜq `´ℑq `qH n ρ s dy " δℜ ˜ż|y|ď1 y 2kj q `Hn ρ s dy ¸´ℑ ˜ż|y|ď1 y 2kj q `Hn ρ s dy ¸.

we will just give the estimate on ż |y|ď1 y 2kj q `ρs H n dy:

ˇˇˇˇż |y|ď1 y 2kj q `Hn ρ s dy ˇˇˇˇ" ˇˇˇˇˇr M s ÿ l"0 Q l ż |y|ď1 y 2kj H l H n ρ s pyqdy ˇˇˇˇ" " 0 if 2kj `l ă n ď CI ´2γ psqI ´2kj´l´n psq ď CI ´2γ´2n psq if 2kj `l ě n (5.14) 
By (5.10), (5.13) and (5.14), we conclude that | Pn pV q| ď CI ´2γ psq.

Estimates of the infinite dimensional parts of the terms in equation (2.9)

Let pq, θ, bq be a solution to the problem (2.9) & (4.1) on rs 0 , ss for some s ą 0. Under the assumption pq, θ, bqpsq P V A,γ,b 0 ,θ 0 psq for s P rs 0 , ss. Then, we aim to provide the following results.

+ First term: P ´pB s qq where P ´p¨q defined as in (3.21).

Lemma 5.10. For all s P rs 0 , ss, we have We aim to proof that |pIq| ď CpI ´M psq `|y| M q, (5.19) it is sufficient to prove

P ´pB s qq " B s q ´´I ´2psq ˆ1 ´1 k ˙rMs ÿ n"rM s´1 pn `1qpn `2q ´q n`2 Ĥn `q n`2 Ȟn ¯, (5.15 
|I 1 | ď CpI ´M psq `|y| M q.
(5.20)

Indeed, for each n ď rM s, we express as follows ˇˇˇˇy 2kpLn`1q Beside that, it also holds true

1 t|y|ě1u ˇˇˇˇy 2kpLn`1q e b H n psq ˇˇˇˇď C |y| 2kp1`Ln´M ´n 2k q e b
|y| M ´n `I´n psq `|y| n ˘ď CpI ´M psq `|y| M q, since 1 `Ln ´M´n 2k P r0, 1s for all n ď rM s. Thus, taking the sum over n to the concerning bounds, we get the conclusion of (5.19).

- (5.18). Finally, the conclusion of the lemma follows.

+ Fourth term Bpqq " b 1 psq p ´1 y 2k p1 `iδ `pp `iδqe b qq.

Lemma 5.13. For all s P rs 0 , ss, it holds that

|P ´pBpqqqpsq| ď CA|b 1 psq|I ´γ psqpI ´M psq `|y| M q.
Consequently,

|Q ℜ,δ pP ´pBpqqqpsqq| `|Q ℑ,δ pP ´pBpqqqpsqq| ď CA|b 1 psq|I ´γ psqpI ´M psq `|y| M q.
Proof. From definition of P ´as in (3.21), it immediately follows that P ´´p1 `iδqy 2k ¯" 0.

So, we obtain P ´´pp `iδqy 2k e b q ¯" P ´ppp `iδqy 2k χe b q `q `P´p pp `iδqy 2k χ c e b q `q `P´p pp `iδqy 2k e b q ´q.

Since q

´" p1 `iδqq ´`i q´a nd the fact that pq, b, θqpsq P V A,γ,b 0 ,θ 0 psq, we can bound as follows

|q ´| ď CAI ´γ psqpI M psq `|y| M q.
Hence, we argue in a similar fashion as in the proof of (5.23) to estimate ˇˇQ n ppp `iδqy 2k e b q ´qH n ˇˇď CI ´γ´2k psqpI ´M `|y| M q, the, using (3.21), we conclude that ˇˇP ´ppp `iδqy 2k e b q ´qˇď CAI ´γ psqpI ´M psq `|y| M q.

(5.26)

Additionally, we use the fact that pq, b, θqpsq P V A,γ,b 0 ,θ 0 psq again that

|χ c q `| ď CI ´γ psq rM s ÿ n"0
pI ´npsq `|y| n q ď CI ´γ psqpI ´M psq `|y| M q, since |y| ě 1 2 .

Similarly (5.23), we have ˇˇQ n py 2k e b χ c q `qH n ˇˇď CI ´γ´2k psqpI ´M psq `|y| M q.

Accordingly (3.21) and the fact }y 2k e b } L 8 ď 1, we conclude that ˇˇP ´ppp `iδqy 2k χ c e b q `qˇď CI ´γ psqpI ´M psq `|y| M q.

(5.27)

Let |y| ď 1 2 and L P N, L ě 1, we deduce from (3.33) and the identity (5.9) that y 2k e b q `" ÿ jďL nďrM s c j pbqy 2kj pq n p H n `q n q H n q `Ỹ "

ÿ jďL nďrM s 2kj`nďrM s c j pbqy 2kj pq n p H n `q n q H n q `ÿ jďL nďrM s 2kj`něrM s`1 c j pbqy 2kj pq n p H n `q n q H n q `Ỹ " Y 1 `Y2 `Ỹ ,
where Ỹ satisfies ˇˇỸ ˇˇď CI ´γ psq|y| pL`1q , for all |y| ď 1.

Since χ " 1 ´χc and P ´pY 1 q " 0, we have then P ´pχY 1 q " P ´pY 1 q ´P´p χ c Y 1 q " ´P´p χ c Y 1 q.

In the same way for (5.27), we obtain

|P ´pχ c Y 1 q| ď CI ´γ psqpI ´M psq `|y| M q,
which yields |P ´pχY 1 q| ď CI ´γ psqpI ´M psq `|y| M q. Now, by changing variable z " yIpsq, we can prove that ˇˇˇˇż where } ¨}L 8 K is similarly defined in (3.35). By applying (5.28), we have |Q n pχY 2 q| ď CI ´γ´prM s`1q´n psq, @n ď rM s, since the indices in Y 2 always satisfy that 2kj `n ď rM s `1. Hence, we arrive at |Q n pχY 2 qH n | ď CI ´γ psqpI ´M psq `|y| M q, @n ď rM s,

In the other hand, we have

|χY 2 | ď CI ´γ psq ¨ÿ jďL nďrM s 2kj`něrM s`1 |y| 2kj `I´n psq `|y| n ˘‹ ‹ ‹ ‹ ‹ ' ď CI ´γ pI ´M psq `|y| M q.
So, we have |P ´pχY 2 q| ď CI ´γ psqpI ´M psq `|y| M q, which concludes ˇˇP ´ppp `iδqy 2k χe b q `qˇď CI ´γ psqpI ´M psq `|y| M q.

(5.29) Thus, (5.24) follows by (5.26), (5.27) and (5.29). Finally, we finish the proof of the lemma.

+ Fifth term T pqq " ´iθ 1 psqpe ´1 b `qq " ´iθ 1 psqpp ´1 `by 2k `qq.

Lemma 5.14. For all s P rs 0 , ss, it holds that P ´pT pqqq " ´iθ 1 psqq ´psq.

Consequently,

Q ℜ,δ pP ´pT pqqqq " ´δ q´´q´a nd Q ℑ,δ pP ´pT pqqqq " δpδ q´`q´q .

Proof. Using the definition of P ´given in (3.21), we have P ´pT pqqq " ´θ1 psqP ´piqq " ´iθ 1 psqq ´" ´iθ 1 psqq ´psq.

In addition to that, we use the definition in (3.24), we have iq ´" i tp1 `iδqq ´`i q´u " p1 `iδq r´δ q´´q´s `iδpδ q´`q´q which yields the complete conclusion of the lemma.

+ Sixth term: N pqq " p1 `iδq ´|1 `eb q| p´1 p1 `eb qq ´1 ´2e b ℜq ´p´1 2 e b q ´p´3 2 e b q¯. We have the following result.

Lemma 5.15. There exists s 12 pAq ě 1 such that for all s 0 ě s 12 , and for all s P rs 0 , ss it holds that |P ´pN pqqpsqq| ď CA maxpp,2q I ´minpp,2qγ psqpI ´M psq `|y| M q.

Proof. Let χ defined as in (5.25), and we decompose N " N pqq as follows N " χN `p1 ´χqN " χN `χc N.

It suffices to verify the following:

|P ´pχ c N qpsq| ď CpA maxpp,2q qI ´minpp,2qγ psq `I´M psq `|y| M ˘, (5.30)

|P ´pχN qpsq| ď CA 2 I ´2γ psq `I´M psq `|y| M ˘, (5.31) 
provided that s ě s 0 with s 0 ě s 12 pA, M q -For (5.30): First, let us prove that |χ c N pqq| ď CA maxp2,pq I ´minp2,pqγ psqpI ´M psq `|y| M q, p ą 1.

(5.32)

The proof of (5.32) is divided into two cases where p ě 2 and p P p1, 2q.

+ Case 1: p ě 2 . By a simple expansion, we estimate

|χ c N pqq| ď Cχ c p|e b q| 2 `|e b q| p q
Since supppχ c q Ă t|y| ě 1 2 u, the estimate in (4.9) implies |χ c e b q| ď CAI ´γ psq|y| M ´2k .

Notice that M " 2kp p´1 , then we get Hence, (5.32) holds true for all p ě 2.

-Case 2 i.e. p P p1, 2q: we observe that

|χ c N pqq| ď Cχ c |e b q| p .
By the same way of (5.33), we deduce that |χ c N pqq| ď CA p I ´pγ psqpI ´M psq `|y| M q.

So, (5.32) also holds true for the case p P p1, 2q. provided that s ě s 12,1 pA, M q. Consequently,

|P ´pχ c N psqq| ď |χ c N psq| `ÿ nďrM s |Q n pχ c N psqq| |H n py, sq|
ď CA maxp2,pq I ´minpp,2q psqpI ´M psq `|y| M q, which concludes (5.30).

-For (5.31). Since supppχq Ă t|y| ď 1u, so it is suffices to consider |y| ď 1 and we have |e b pyqqpy, sq| ď CAI ´γ psq @|y| ď 1.

Therefore, we use a simple Taylor expansion to obtain the following for some

K P N, K ě 1 χN " χ ´NK,1 `NK,2 `Ñ K ¯,
where

N K,1 " ÿ 0ďj,ℓďK 2ďj`ℓďK a K,j,ℓ pe b q j`ℓ q j `q ℓ `, a K,j,ℓ P R, N K,2 " K ÿ j"2 ÿ 0ďℓ 1 `ℓ2 ďj´1 ℓ 1 ě0,ℓ 2 ě0 ÿ ℓ 3 `ℓ4 "j´pℓ 1 `ℓ2 q ℓ 3 ě0,ℓ 4 ě0 d 2,K,j,ℓ 1 ℓ 2 ,ℓ 3 ,ℓ 4 pe b q j q ℓ 1 `q ℓ 2 `qℓ 3 ´q ℓ 4
´, where d 2,K,j,ℓ 1 ℓ 2 ,ℓ 3 ,ℓ 4 P R and ÑK satisfies

|χ ÑK | ď C|χe b q| K`1 ď CA K`1 I ´pK`1qγ psq.
By an analogue to (5.30), it leads to

|P ´pχ Ñ q| ď CI ´2γ psqpI ´M psq `|y| M q,
provided that K ě K 12,2 pA, M q. From (3.29), we have the following decomposition

N K,1 " ÿ 0ď|n|ďK 0ď|m|ďK 2ď|n|`|m|ďK 0ďℓďK c n,m,ℓ,K b ℓ y 2kℓ Π rM s j"1 q n j j qm j j H n j `mj j `NK,1,2 :" N K,1,1 `NK,1,2 , respectively,
where n " pn 1 , ...n rM s q and m " pm 1 , ..., m rM s q, |n| " ř n i and |m| " ř m i . Then N K,1,2 satisfies |χN K,1,2 | ď CA 2 I ´2γ psq|y| 2kpK`1q , povided that s ě s 12,3 pAq.

By the same way to (5.22), we get the following bound

|Q n pχN K,1,2 q| ď CA 2 I ´2γ`n´M ´2kpK`1q psq.
By repeating a similar process as for (5.30), we obtain

|P ´pχN K,1,2 q| ď CA 2 I ´2γ psqpI ´M psq `|y| M q,
provided that K ě K 12,3 pM q(fixied at the end of the proof). For N K,1,1 , we decompose as follows

N K,1,1 " ÿ 0ď|n|ďK 0ď|m|ďK 2ď|n|`|m|ďK 0ďℓďK ř rM s j"1 jpn j `mj q`2kℓďrM s c n,m,ℓ,K b ℓ y 2kℓ Π rM s j"1 q n j j qm j j H n j `mj j `ÿ 0ď|n|ďK 0ď|m|ďK 2ď|n|`|m|ďK 0ďℓďK ř rM s j"1 jpn j `mj q`2kℓěrM s`1 c n,m,ℓ,K b ℓ y 2kℓ Π rM s j"1 q n j j qm j j H n j `mj j " N K,1,1,1 `NK,1,1,2 , respectively.
Since N K,1,1,1 is a polynomial in y of degree less or equal than rM s, it follows that

P ´pχN K,1,1,1 q " ´P pp1 ´χqN K,1,1,1 q " ´P´p χ c N K,1,1,1 q.
In a similar way in (5.30), we have

|P ´pχ c N K,1,1,1 q| ď |χ c N K,1,1,1 | `CA 2 I ´2γ psqe ´Ipsq 16 ÿ nďrM s p1 `|y| n q ď CA 2 I ´2γ psqpI ´M `|y| M q,
provide that s ě s 12,4 pA, M q. Estimate for N K,1,1,2 , we firstly have the fact that

|χN K,1,1,2 | ď CA 2 I ´2γ psq ÿ 0ď|n|ďK 0ď|m|ďK 2ď|n|`|m|ďK 0ďℓďK ř rM s j"1 jpn j `mj q`2kℓěrM s`1
|χpyq||y| 2kℓ ´I´ř rM s j"0 jpn j `mj q psq `|y| ř rM s j"0 jpn j `mj q ď CA 2 I ´2γ psqpI ´M psq `|y| M q, since rM s ÿ j"0 jpn j `mj q `2kℓ ě rM s `1 and |y| ď 1.

Additionally, we have

|Q n pχN K,1,1,2 q| ď CA 2 I ´2γ psq ÿ 0ď|n|ďK 0ď|m|ďK 2ď|n|`|m|ďK 0ďℓďK ř rM s j"1 jpn j `mj q`2kℓěrM s`1 ż R
|y| 2kℓ ´I´ř rM s j"0 jpn j `mj q psq `|y| ř rM s j"0 jpn j `mj q ¯|H n py, sq|ρ s pyqdy ď CA 2 I ´2γ`n´rM s´1 psq,

where the last estimate is obtained by the same technique as in (5.22) and the fact that ř rM s j"0 jpn j mj q `2kℓ ě rM s `1. Consequently,

|P ´pχN K,1,1,2 q| ď |χN K,1,1,2 | `ÿ nďrM s |Q n pχN K,1,1,2 q||H n | ď CA 2 I ´2γ psqpI ´M psq `|y| M q `CA 2 I ´2γ psq ÿ nďrM s I n´rM s´1 psqpI ´npsq `|y| n q ď CA 2 I ´2γ psq `I´M psq `|y| M ˘.
Combining the established estimates, we conclude that

|P ´pχN q| ď |P ´pχN K,1 q`| `|P ´pχN K,2 q| `ˇˇP ´pχ ÑK q ˇď |P ´pχN K,1,1,1 q`| `|P ´pχN K,1,1,2 q`| `|P ´pχN K,1,2 q`| `|P ´pχN K,2 q| `ˇˇP ´pχ ÑK q ˇď CA 2 I ´2γ psqpI ´M psq `|y| M q,
which concludes (5.31). Finally, we get the conclusion of the lemma.

+ Seven term D s pqq " ´p `iδ p ´1 4kby 2k´1 I ´2psqe b ∇q.

Lemma 5.16. For all s P rs 0 , ss, and s, τ P rs 0 , ss, s ą τ , it holds that ˇˇK 0,s,τ pP ´p Dpqqqpτ qq ˇˇs ď Ce ´p p´1 ps´τ q ˆ1 `1 ? s ´τ ˙AI ´1´γ pτ q, ˇˇK s,τ pP ´p z Dpqqqpτ qq ˇˇs ď C

´s´τ p´1 ˆ1 `1 ? s ´τ ˙AI ´1´γ pτ q,
where Dpqq " Q ℑ,δ pD τ pqqq and { D τ pqq " Q ℜ,δ pD τ pqqq with Q ℑ,δ and Q ℜ,δ defined in (3.24).

Proof. First, we observe that the proof of the two estimates are the same. So, it is sufficient to give the proof to the first one. According to the definition of Q ℑ,δ , we can write

K 0,s,τ p D τ pqqq " Q ℑ,δ pK 0,s,τ D τ pqqq .
By the same argument of [9, Lemma 5.13] in combining with Lemma 6.1, we obtain the following estimate |K 0,s,τ pD τ pqqq| s ď CI ´1´γ pτ q ˆ1 `1 ? s ´τ ˙, which yields |Q ℑ,δ pD τ pqqq| s ď CI ´1´γ pτ q ˆ1 `1 ? s ´τ ˙. Thus, the first estimate in the lemma follows. Finally, we conclude the proof of the lemma.

+ Eighth term R s pqq " y 2k´2 I ´2psqe b `α1 `α2 y 2k e b ``α 3 `α4 y 2k e b ˘q˘.

We have the following result.

Lemma 5.17. For all s P rs 0 , ss, it hold that we then have

|P ´pRpqqq| ď CI ´2γ `I´M psq `|y| M ˘.
Proof. The result is quite the same Lemma as 5.13. We kindly refer the reader to check the detail.

Conclusion of the proof of Proposition 4.7.

We consider pq, bqpsq P V A,γ,b 0 ,θ 0 psq, @s P rs 0 , ss. In addition, we let γ ď γ 3 pb 0 q and s 0 ě s 3 pγ, b 0 q such that Lemmas 5.1-5.9 are valid.

-Proof of (i) of Proposition 4.7: First we prove the smallness of the modulation parameter θ given by (i) of Proposition 4.7. We project equation (2.9) on Ȟ0 " iH 0 , using the fact that q0 " 0 and Lemma 5.4 we get B s q0 " 0 " ´θ1 psqppp ´1q `p1 `δ2 qq 0 q `P 0 pT pqqq `P 0 pN pqqq `P 0 pD s p∇qqq `P 0 pR s pqq `V pqqq, then, we obtain by estimations given in Lemmas 5.3, 5.6, 5.7, 5.8 and 5.9

|θ 1 psq| ď CI ´2γ psq.
-Proof of (ii) of Proposition 4.7: We project equation (2.9) on Ĥ2k and take on consideration that q2k " 0 and applying the results in Lemmas 5.1-5.9, we obtain |b 1 psq| ď CI ´2γ psq " Ce ´γp1´1 k qs .

(5.34)

Besides that, we have bps 0 q " b 0 , then we derive

|bpsq ´b0 | ď ż s s 0 |b 1 pτ q|dτ ď C ż s s 0 I ´2γ pτ qdτ,
which implies 3 4 ď bpsq ď 5 4 b 0 , @s P rs 0 , ss, provided that s 0 ě s 3 pγ, b 0 q large enough. Thus, we get the conclusion of item (ii).

-Proof of (iii) of Proposition 4.7: By Lemmas 5.1-5.9, (i) and (ii) of Proposition 4.7, we obtain for all n P t0, ..rM s}, ˇˇB s qn ´´1 ´n 2k ¯q n ˇˇď CI ´2γ psq, @s P rs 0 , ss, ˇˇB s qn `n 2k qn ˇˇď CI ´2γ psq, @s P rs 0 , ss which concludes item (iii) of Proposition 4.7.

-Proof of (iv) of Proposition 4.7 First, we reply on equation (2.9) and the decomposition in (3.31) to obtain the following system " B s q " L s pqq `R1 , B s q " L 0,s q `V q `R2 , where L 0,s and L s respectively defined as in (3.7) and (3.8), and

V " 1 ´pp ´1qe b , R 1 " Q ℜ,δ `b1 psqBpqq `iθ 1 psqT pqq `N pqq `Ds p∇qq `Rs pqq ˘, R 2 " Q ℑ,δ `b1 psqBpqq `iθ 1 psqT pqq `N pqq `Ds p∇qq `Rs pqq ˘.

Applying the infinite projection P ´defined as in (3.21), we get

$ ' & ' %
B s q´p sq " L s q´`P´p R 1 q , B s q´p sq " L 0,s q´`V qṕ P ´pV qq ´V q´q `P´p R 2 q.

In particular, we can write the above system in integral form as follows

$ ' & ' %
q´p sq " K s,σ q´p σq `şs σ K s,τ pP ´pR 1 q pτ qq dτ, q´p sq " K 0,s,σ q´p σq `şs σ K 0,s,τ pV q´p τ qq dτ `şs σ K 0,s,τ pP ´pV qq ´V q´`P´p R 2 q pτ qq dτ. Now, we claim the following Claim 5.18. Let p " minpp, 2q, then it holds that |K s,τ pP ´pR 1 q pτ qq| s ď Ce ´s´τ p´1 I ´p`1 2 γ pτ q, |K 0,s,τ pP ´pV qq ´V q´`P´p R 2 q pτ qq| s ď Ce ´p p´1 ps´τ q I ´γ pτ q,

(5.35)

provided that s 0 ě s 14 pAq.

Proof. As the estimates involving to R 1 and R 2 are the same, we will just give the proof of the estimate involving to R 2 . Indeed, we use (5.18) to obtain |pP ´pV qq ´V q´q pτ q| τ ď CI ´γ pτ q.

Additionally, the infinite projection P ´commutes with Q ℜ,δ and Q ℑ,δ . Hence, we apply a priori estimates established in Lemmas 5.10 -5.17 to obtain |P ´pR 2 q pτ q| τ ď CI ´minpp,2q`1 2 γ pτ q, provided that τ ě σ ě s 0 ě s 14,1 pAq. Thus, we combine with the semigroup estimates in Lemma 6.1 to derive |K 0,s,τ pP ´pR 2 q pτ qq| τ ď Ce ´p p´1 ps´τ q I ´minpp,2q`1 2 γ pτ q provided that γ P `0, which concludes the proof of item (iv) and also finish the proof of Proposition 4.7.

Spectral gap estimates on semigroups

In this section, we provide spectral gap estimates for semigroups L 0,s and L s . More precisely, the results read. Lemma 6.1. Let us consider L 0,s and L s defined as in (3.7) and (3.8), and their semigroup be K 0,τ,σ and K τ,σ , respectively. It holds that |K 0,τ,σ q ´|τ ď Ce ´p p´1 pτ ´σq |q ´|σ , (6.1)

|K τ,σ q ´|τ ď Ce ´1 p´1 pτ ´σq |q ´|σ , τ ě σ, (

where | ¨|σ defined as in (3.37).

Proof. The technique of the proof is based on [START_REF] Bricmont | Renormalization group and asymptotics of solutions of nonlinear parabolic equations[END_REF]. First, we derive from (3.12) that K τ,σ " e τ ´σK 0,τ,σ .

Then, (6.2) is a direct consequence of (6.1). Indeed, let us assume that (6.1) holds. Hence, it follows that |K τ,σ q ´|τ " e τ ´σ |K 0,τ,σ q ´|τ ď Ce τ ´σe ´p p´1 pτ ´σq |q ´|σ , which yields (6.1). Now, it suffices to prove (6.1). Let us define

Θpzq " q ´`zL ´1 σ ˘and Θpzq " K 0,τ,σ q ´pL ´1 τ zq. where e pτ ´σqL pz, z 1 q defined by e pτ ´σqL pz, z 1 q " 1 a 4πp1 ´e´pτ´σq q exp ˜´pze ´τ´σ 2 ´z1 q 2 4p1 ´e´pτ´σq q ¸.

-The case τ ´σ ď 1: From (3.37), we have |Θpzq| ď I ´M pσqp1 `|z| M q|q ´|σ . Now, we apply the classical estimate in [2, Lemma 4, page 555] that we obtain ˇˇΘpzq ˇˇď CI ´M pσqp1 `|z| M q |q ´|σ .

Returning the original variable z " I τ y, we obtain |K 0,τ,σ q ´pyq| ď CI ´M pσqI M pτ qpI ´M pτ q `|y| M q|q ´|σ , which implies |K 0,τ,σ q ´|τ ď CI ´M pσqI M pτ q|q ´|σ ď Ce ´rMs`1 2 pτ ´σq |q ´|σ , since τ ´σ ď 1.

-The case τ ´σ ě 1: We use the following decomposition Θpzq " ż R N pz, z 1 qf pz 1 qdz 1 , (

where N pz, z 1 q " e pz 1 q 2 4 a 4πp1 ´e´pτ´σq q exp ˜´pze ´τ´σ 2 ´z1 q 2 4p1 ´e´pτ´σq q ¸and f pz 1 q " e ´pz 1 q 2 4 Θpzq.

Since pze ´ρ 2 ´z1 q 2 1 ´e´ρ ´pz 1 q 2 " ´z2 `pz ´z1 e ´ρ 2 q 2 1 ´e´ρ , we can write N pz, z 1 q " e z 2 4 a 4πp1 ´e´pτ´σq q exp ˜´pz ´z1 e ´τ´σ 2 q 2 4p1 ´e´pτ´σq q ¸. So, we have 4 e pσ´τ qL pz, z 1 q, for all n ě 0, n P N. which yields that |K 0,τ,σ pq ´qpyq| τ ď Ce ´p p´1 pτ ´σq |q ´|σ . Thus, we get the conclusion of (6.1) for the case τ ´σ ě 1. Finally, we finish the proof of the lemma.

ˇˇB n z 1 N pz, z 1 q ˇˇď Ce

  authors in [2] constructed a solution such that ' or for some k P N, k ě 2, and b ą 0 sup |x´a|ăKpT ´tq 1{2k ˇˇˇp T ´tq 1 p´1 upx, tq ´fb ˆpx ´aq pT ´tq 1{2k ˙ˇˇˇÑ 0, (1.5)

4. 3 .

 3 Local in time solution of problem (2.9) & (4.1)

  n `1q ě M ´n, we estimate1 t|y|ď1u ˇˇˇˇ| y| 2kpLn`1q e bH n psq ˇˇˇˇď Cy M ´npI ´npsq `|y| n q ď CpI ´M psq `|y| M q.

P ´pBpqqq " b 1

 1 psq p ´1 P ´ppp `iδqy 2k e b qq. Accordingly Definition 3.1, it is sufficient to check that ˇˇP ´ppp `iδqy 2k e b qq ˇˇď CAI ´γ psq `I´M psq `|y| M ˘. (5.24) First, let χ P C 8 c pRq satisfying χpxq " 1 for all |x| ď 1 2 and χpxq " 0 for all |x| ě 1. (5.25) Then, we decompose 1 " χ `p1 ´χq " χ `χc and we reply on (3.21) and (3.23) that

|y|ě 1 2 f H n ρ s dy ˇˇˇˇď CpK, nq}f } L 8 N e ´Ipsq 8 with s ě 1

 2881 and for some n P N, and K ą 0.(5.28) 

|χ c e b

  q| p ď C `AI ´γ psqe b pyq|y| M ˘p " C ´I´γ psqpe b pyq|y| 2k q|y| 2k p´1 ¯p (5.33) ď CI ´pγ psq|y| 2kp p´1 ď CI ´pγ psq|y| 2kp p´1 ď CI ´pγ psqpI ´M psq `|y| M q, Similarly, |χ c e b q| 2 ď CA 2 I ´2γ psq|y| 2pM ´2kq χ c ď CA 2 I ´2γ psq|y| 2k p´1 2 χ c ď CA 2 I ´2γ psq|y| 2k p´1 p χ c ď CA 2 I ´2γ psqpI ´M psq `|y| M q since p ě 2.

(6. 3 )F ´e τ ´σ 2k L ´1 τ z ´y1 ¯q´p y 1 qdy 1 "σ z 1 qdz 1 " ż Re

 311ż Using (3.12) again, we obtain Θpzq " K 0,τ,σ pq ´qpL ´1 τ zq " ż R pτ ´σqL pz, z 1 qΘpz 1 qdz 1 ,

´npτ´σq 2 p|z| `|z 1 |q n e pz 1 q 2

 22 

´8 f p´mq pz 1 qdz 1 . 2 2B rM s`1 z 1 N 1 2

 1211 From (6.3), we have ż R pz 1 q m f pz 1 qdz 1 " 0 for all m P t0, ..., 1u and |f pzq| ďI ´M σ p1 `|z| M qe ´pzq |q ´|σ .It is similar to [2, Lemma 6, page 557], we can estimate ˇˇf p´mq pzq ˇˇď Ce´pz 1 q 2 2 I ´M σ p1 `|z|q M ´m, for all m ď rM s `1.(6.6)Now, by using integration by part in (6.4) then combining with estimates (6.5) and (6.6), we obtain| Θpzq| " ˇˇˇż R pz, z 1 qf p´rM s`1qpz 1 qdz 1 ˇˇˇď Ce ´rMs`pτ ´σq I ´M σ p1 `|z| M q|q ´|σ . Since (2.15) and the fact M ď rM s `1, we have then | Θpzq| ď Ce M 2 pτ ´σq I ´M σ p1 `|z| M q |q ´|σ " Ce ´p p´1 pτ ´σq I ´M τ p1 `|z| M q|q ´|σ ,

  ´1 wps 0 qy 2k pf b 0 q ´1e ´iθ 0 ´y2k "

	which yields				
		p `iδ p			1 `iδ p ´1 y 2k `1 `iδ p ´1 y 2k e b 0 Ψ.	(4.21)
	So, we derive from (4.10) that				
	ż	p `iδ p ´1 " wpsqy 2k pf b q ´1e ´iθ ´y2k	ı	H 2k ρ s dy "	1 `iδ p ´1 I ´4k ps 0 q2 4k p2kq! `1 `OpI ´γ ps 0 qq	˘.

.19) -Expansion for B b F 1 ps 0 , ⃗ µq | ⃗ µ"⃗ µ 0 : Thanks to (2.6) and (4.10), it follows that wps 0 qf ´1 b 0 e ´iθ " 1 `eb 0 Ψ, (4.20)

  ´psq| s ď e

		´s´σ p´1 |q ´pσq| σ	`C ´I´p `1 2 γ psq	`e´s ´σ p´1 I	´p`1 2 γ pσq	¯,
	and	|q ´psq| s ď e	´s´σ p´1 |q ´pσq| σ	`C ´I´γ psq	p´1 I ´γ pσq `e´s ´σ	¯,

  There exists m P t0, .., 2k ´1u and ω P t´1, 1u such that ω qm psq " I ´γ psq and ω dq m ds | s"s ą 0. Remark 4.9. In (ii) of Proposition 4.8, we show that the solution qpsq crosses the boundary BV A,γ,b 0 ,θ 0 psq at s with positive speed, in other words, that all points on BV A,γ,b 0 ,θ 0 psq are strict exit points in the sense of [8, Chapter 2]. Proof. Let us start the proof Proposition 4.8 assuming Proposition 4.7. Let us consider δ ď δ 3 and s 0 ě s 3 such that Proposition 4.7 holds.

	-Proof of item (i): From item (i) in Proposition 4.7, it is sufficient to show that for all s P rs 0 , ss
	the following are valid							
			|q j psq| ď	1 2	I ´γ psq, @j P t2k `1, ..., rM su pnote that q 2k " 0q,	(4.25)
			|q j psq| ď	1 2	I ´γ psq, @j P t1, ..., rM su pnote that q0 " 0q,	(4.26)
	and				|q ´psq| s ď	1 2	I ´γ psq, |q ´psq| s ď	1 2	I ´γ psq.	(4.27)
	+ For (4.25): Using item (ii) in Proposition 4.7, we arrive at
	"	qj psq	˘1 2	I ´γ psq ȷ 1	" ˆ1	´j 2k	˙q j psq	˘γ 2 ˆ1 2k ´1 2	˙I´γ psq `OpI ´2γ psqq.	(4.28)

  5.3) Thanks to(3.6),(3.19) and Definition 3.1, the estimates in the lemma immediatly follow by ˇˇˇż y 2k H n psqqρ s dy ˇˇˇď CI ´γ´2n psq, for all n ď rM s. psqH j psqρ s dy `ż y 2k e b q ´Hn ρ s dy" Q n psq}H n } 2 L 2ρs `ż y 2k e b q ´Hn ρ s dy Accordingly Definition 3.1, it follows that |Q n psq| }H n psq} 2 L 2 ρs ď CI ´2n´γ psq. Additionally, we apply (4.7) to estimate ˇˇˇż y 2k e b pyqH n psqq ´ρs dy ˇˇˇď CAI ´γ psq ż |y| 2k pI ´M psq `|y| M qpI ´n `|y| n qρ s pyqdy.

				(5.4)
	To proof (5.4), we are based on (3.18) that we obtain
	ż		ż	
	y 2k e b qH n ρ s dy "	ÿ	Q j pqq	y 2k H
		jďrM s		

n Now, we aim to prove that for all n ď rM s ˇˇˇż |y| 2k pI ´M psq `|y| M qpI ´npsq `|y| n qρ s pyqdy ˇˇˇď CI ´2k´M ´npsq.

(

5

.5) By changing variable z " Ipsqy and ρ s 's definition in (3.1), we get ˇˇˇż |y| 2k pI ´M psq `|y| M qpI ´npsq `|y| n qρ s pyqdy ˇˇˇď CI ´2k´M ´npsq ż |z| 2k p1 `|z|q M `ne ´|z| 2 4 dz, which concludes (5.5). In particular, it also follows ˇˇˇż y 2k e b pyqH n psqq ´ρs dy ˇˇˇď CAI ´γ´2k´2n psq ď CI ´γ´2n psq,

  1 from [DNZ22], we obtain ˇˇˇˇż |y|ě1 y 2kj pδℜq ´ℑqqH n ρ s dy ˇˇˇˇď CI ´γ e ´1 8 Ipsq ď CI ´2γ´2n psq, @s P rs 0 , s ˚s. 2kj pI ´M psq `|y| M qH n ρ s dy (5.12) If we introduce the change of variabe z " yIpsq and ρpzqdz " ρ s pyqdy, we can write ż |y|ď1 y 2kj pI ´M psq `|y| M qH n ρ s dy " I ´M ´n´2kj psq

					(5.10)
	Using (3.33), we write		
	ż	ż		
	y 2kj pδℜq ´ℑqqH n ρ s dy "	y 2kj pδℜq `´ℑq `qH n ρ s dy	`ż|y|ď1	y 2kj pδℜq ´´ℑq ´qH n ρ s dy
	|y|ď1	|y|ď1		
					(5.11)
	Using the bound on q ´given by (4.3), the second integral can be bounded as follows
	ˇˇˇˇż	y 2kj pδℜq ´´ℑq ´qH n ρ s dy	ˇˇˇˇď C	ż
	|y|ď1			
					ż	|z| 2kj p1 `|z| M q|h n pzq|e ´|z| 2 4 dz.
					|z|ďIpsq

|y|ď1 y

  )p1 ´pp ´1qe b qq `psq " Q n pI 1 qH n psq, where I 1 "

											ÿ
												qn p1 ´pp ´1qe b qH n psq
											nďrM s
	For each n ď rM s, we chose L n "	" M ´n 2k	‰ , then we apply (5.9) to derive that
	p1 ´pp ´1qe b qq `psq "	ÿ nďrM s	Ln ÿ j"1	c n,j,b qn psqy 2kj H n psq	`ÿ nďrM s	cn,b	y 2kpLn`1q e b	H n psq,
	which yields										
	pIq "	ÿ nďrM s	cn,b	y 2kpLn`1q e b	H n psq	´ÿ nďrM s	Q n	¨ÿ mďrM s	cm,b	y 2kpLm`1q e b	H m psq 'H n psq
	" I 1	´ÿ nďrM s							ÿ nďrM s	cn,b	y 2kpLn`1q e b	H n psq.

  By the definition of Q n in (3.19), we can bound as follows |Q n pp1 ´pp ´1qe b qq ´q| " CAI ´γ psq ż R y 2k |H n py, sq|pI ´M psq `|y| M qρ s pyqdy. Since |H n | ď CpI ´npsq `|y| n q and by changing variable z " Ipsqy, we estimate the integral as follows |Q n pp1 ´pp ´1qe b qq ´q| " CAI 2n´γ´n´M ´2k psq CI ´γ´2k psq `I´M psq `|y| M ˘. (5.23) Combining (5.19) with (5.23), we conclude |Q ℑ,δ pP ´pV pqqqq ´p1 ´pp ´1qe b qq ´| ď CI ´γ psq `I´M psq `|y| M ˘,

	Consequently, |pQ which concludes	|1 ´pp ´1qe b | " ˇˇˇb y 2k p ´1 `by 2k ż R ď CAI n´M ´γ´2k psq.	ˇˇˇď Cy 2k . |z| 2k |h n pzq|p1 `|z| M qe	´|z| 2 4 dz	(5.21) (5.22)

Estimate for (II): We now notice that n pp1 ´pp ´1qe b qq ´qH n py, sq| ď CI ´γ´2k`n´M `I´n `|y| n ˘ď CI ´γ´2k psq `I´M `|y| M ˘, which yields |pIIq| ď

  Now, we use(5.32) to establish for all n ď rM s |Q n pχ c N pqqpsqq| ď CA maxpp,2q I ´minpp,2qγ psq pI ´M psq `|y| M q|H n py, sq|ρ s pyqdy ď CA maxpp,2q I ´minpp,2qγ psqe |Q n pχ c N psqq| |H n py, sq| ď CA maxpp,2q I ´minpp,2qγ psqe CI ´minpp,2qγ psqpI ´M psq `|y| M q,

	ż			
	|y|ě 1 2			
	´Ipsq 16 ,			
	which yields			
	ÿ	´Ipsq 16	ÿ	p1 `|y| n q
	nďrM s		nďrM s
	ď			

  1 2 ˘and we obtain(5.35). Now, let us give the proof of item (iv) of Proposition 4.7. Taking | ¨|s -norm defined in (3.37) and using Lemma 6.1, we obtain |q ´psq| s ď e since }V } L 8 ď 1. By using Grönwall's lemma, we get |q ´psq| s ď e
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A priori estimates

In this section, we aim to give the complete proof to Proposition 4.7. We divide the section into three parts: ' Subsection 5.1: we project the terms in the equation (2.9) on t Ĥn , Ȟn u for all n P t0, .., rM su and derive a priori estimates for qn and q n . ' Subsection 5.2: we provide the estimation to the infinite parts i.e. P ´(defined in (3.21)) of the terms in equation (2.9). ' Subsection 5.3: we use the established estimates in Parts 1 and 2 and we derive the conclusion of Proposition 4.7.

The finite dimensional part q Ìn

this part we give projection of equation (2.9) on the eigenfunctions of the operator L δ,s . More precisely, we will find the main contribution in the projections Pn,M and Pn,M of the eight terms appearing in equation (2.9): B s q, L δ,s q, V q, Bpqq, T pqq, N pqq, D s p∇qq and R s .

Let A ě 1, b 0 ą 0, θ 0 ą 0, γ P p0, 1 2 q and s 0 ě 1 and we also assume that pq, b, θqpsq P V A,γ,b 0 ,θ 0 psq for all s P rs 0 , ss for some s ą s 0 . Then, the following results hold true.

+ First term: B s q.

Lemma 5.1. For all 0 ď n ď M , we have Pn,M pB s qq " B s qn `p1 ´1 k qpn `1qpn `2qI ´2psq qn`2 , Pn,M pB s qq " B s qn `p1 ´1 k qpn `1qpn `2qI ´2psq qn`2 .

( So, it follows by integration by parts which is quite the same as [9, Lemma 5.5]. We kindly refer the reader to check the details. Finally, we finish the proof of the lemma.

+ Seventh term: R s pqq " I ´2psqy 2k´2 `α1 `α2 y 2k e b ``α 3 `α4 y 2k e b ˘q˘.

Lemma 5.8. For γ P p0, 1 2 q, there exists s 5 pA, b 0 , θ 0 , γq ě 1 such that for all s 0 ě s 5 , s P rs 0 , ss, and n ď rM s | Pn pR s pqqq| ď CI ´2γ psq and | Pn pR s pqqq| ď CI ´2γ psq.

Proof. We refer to the proof of Lemma 5.3.

Eighth term: V pqq " ppp ´1qe b ´1q rp1 `iδqℜq ´qs Lemma 5.9. For γ P p0, 1 2 q, there exists s 6 pA, b 0 , θ 0 , γq ě 1 such that for all s 0 ě s 6 , s P rs 0 , ss, we have Pn pV pqqq " 0 and | Pn pV pqqq| ď CI ´2γ psq.

Proof. First, we reply on the fact that q " p1 `iδqq `iqq V pqq " ´i p1 ´eb pp ´1qq pℑq ´δℜqq " i ppp ´1qe b ´1q q.

Thanks to Definition 3.1, it immediately follows that @n P N, Pn pV q " 0.

We write, for L P N, pn `1qpn `2q ´q n`2 Ĥn `q n`2 Ȟn ¯,

Finally, (5.15) follows and we conclude the proof of the lemma.

+ Second term L δ,s q.

Lemma 5.11. For all s P rs 0 , ss, it holds that

pn `1qpn `2q ´q n`2 Ĥn `q n`2 Ȟn ¯.

(5.16)

Consequently, we have

where L 0,s and L s defined as in (3.7) and (3.8), respectively.

Proof. First, we are based on (3.24) to have Q ℜ,δ pL δ,s q ´q " L s q´a nd Q ℑ,δ pL δ,s q ´q " L 0,s q´.

So, we need only to prove (5.16) which is quite similar to the result in Lemma 5.10. Indeed, by using (3.21), we firstly obtain P ´pL δ,s q ´Lδ,s q ´" ¨rMs ÿ n"0 Finally, the conclusion of (5.16) follow by adding all above related terms, and we finish the proof of the lemma.

+ Third term: V pqq " ppp ´1qe b ´1q pp1 `iδqℜq ´qq.

Lemma 5.12. There exists s 7 pA, b 0 , θ 0 q ě 1 such that for all s 0 ě s 7 , it holds that for all s P rs 0 , ss,