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Abstract. In this paper, we consider the complex Ginzburg Landau equation

Btu “ p1 ` iβq∆u ` p1 ` iδq|u|
p´1u ´ αu where β, δ, α P R.

The study aims to investigate the finite time blowup phenomenon. In particular, for fixed β P R,
the existence of finite time blowup solutions for an arbitrary large |δ| is still unknown. Especially,
Popp et al [24] formally conjectured that there is no blowup (collapse) in such case. In this work,
considered as a breakthrough, we give a counter example to this conjecture. We show the existence
of blowup solutions in one dimension with δ arbitrarily given and β “ 0. The novelty is based
on two main contributions: an investigation of a new blowup scaling (flat blowup regime) and a
suitable modulation.

1. Introduction

In this paper, we are interested in the complex Ginzburg-Landau (CGL) equation
#

ut “ p1 ` iβq∆u` p1 ` iδq|u|p´1u´ αu,

up., 0q “ u0 P L8pRN ,Cq,
(CGL) (1.1)

where β, δ and α are positive real numbers, p ą 1, and upx, tq P C.
Equation (1.1) is named after V. Ginzburg and L. Landau, which has a long history in math-

ematics and physics. In particular, the cubic case, i.e. p “ 3, has been developed to describe
the behavior of a superconductor or a superfluid near its critical temperature, where fluctuations
in the order parameter become large, and the system exhibits complex, nonlinear behavior. In
particular, the (CGL) captures the phenomenon of spontaneous symmetry breaking, in which the
system transitions from a high-symmetry state to a low-symmetry state due to small perturbations.
Additionally, the (CGL) equation also describes a variety of phenomena in physics, such as non-
linear waves, second-order phase transitions, superconductivity, superfluidity, and the evolution of
amplitudes of unstable modes for any process exhibiting a Hopf bifurcation; we refer the reader to
the review by Aranson and Kramer [1] and the references therein for more detail.

The (CGL) equation can be also derived from the Navier-Stokes equations via multiple-scaling
methods in several problems, most notably in convection (e.g. see ref. [22]). However, our intention
here is not to treat it as a model for fluid turbulence but as an example of a nonlinear PDE which
we can use to explore new methods.
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From the PDE point of view, the local Cauchy problem is well posed in a variety of functional
spaces by using the semi-group theory (see [5, 11, 12]). Our framework, the functional space L8pRN q

will be chosen as a convenient way allow us to derive the asymptotic behavior of the blowup. In
particular, we say a solution to (1.1) blowing up in finite time if there exists T P p0,`8q such that

lim
tÑT

}uptq}L8pRN q “ `8. (1.2)

Moreover, a point x0 P RN is said to be a blow-up point of the blowup solution if there is a sequence
tpxj , tjqu, such that xj Ñ x0, tj Ñ T and |upxj , tjq| Ñ 8 as j Ñ 8. The set of all blow-up points
is called the blow-up set.

The study of singularity formation (such as collapse, chaotic or blowup) for equation (1.1) has
been received a lot of attention in many works in the last decays. Typically, we mention to Stew-
artson and Stuart [29] in the description of an unstable plane Poiseuille flow; Hocking, Stewartson,
Stuart and Brown [14] or in the context of binary mixtures in Kolodner and al, [15, 18], where the au-
thors describe an extensive series of experiments on travelling-wave convection in an ethanol/water
mixture, and they observe collapse solution that appear experimentally. We cite also the result of
Turitsyn [30], who gave a harp sufficient criteria for collapse for equation (1.1) in the case of the
subcritical bifurcation.

In this paper, we study the equation (1.1) as a nonlinear Partial Differential Equations (PDEs).
Historically, a huge literature has been made on the blowup for PDEs in general, and on construction
blowup solutions in particular.

Let’s shift our focus to the literature on construction blowup solutions to the (CGL). The question
of the existence of a blow-up solution for equation (2.1) remained open so far. Indeed, classical
methods based on energy-type estimates break down. We cite the result of [6] and [7] which studied
the CGL equation in the case β “ δ. We also point out that (2.1) may have blow-up in the focusing
case, namely βδ ą 0. In [27] and [4], the authors give some evidence for the existence of a radial
solution which blows up in a self-similar way.

Now, let us focus on the special case β “ δ “ 0 which reduces (1.1) to the classical heat equation

Btu “ ∆u` |u|p´1u, and p ą 1. (1.3)

There exists an extensive literature spanning over six decades that one has investigated on blowup
phenomena for (1.3). For a more comprehensive understanding of this field, we recommend referring
to [28] for detailed insights into blowup studies. Regarding a specific reference, we mention to [2]
(also mentioned in [20]) in which the authors constructed blowup solutions to (1.3) and described
their blowup asymptotic via explicit blowup profiles. In particular, in one dimension, given a
blow-up point a, we are able to construct a solution such that

‚ either

sup
|x´a|ďK

?
pT´tq logpT´tq

ˇ

ˇ

ˇ

ˇ

ˇ

pT ´ tq
1

p´1upx, tq ´ fb0

˜

x´ a
a

pT ´ tq| logpT ´ tq|

¸ˇ

ˇ

ˇ

ˇ

ˇ

Ñ 0, (1.4)

the authors in [2] constructed a solution such that
‚ or for some k P N, k ě 2, and b ą 0

sup
|x´a|ăKpT´tq1{2k

ˇ

ˇ

ˇ

ˇ

pT ´ tq
1

p´1upx, tq ´ fb

ˆ

px´ aq

pT ´ tq1{2k

˙ˇ

ˇ

ˇ

ˇ

Ñ 0, (1.5)
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as t Ñ T , for any integer k ą 0, where

fb0pzq “
`

p´ 1 ` b0z
2
˘´ 1

p´1 with b0 “
pp´1q2

4p ,

fbpzq “
`

p´ 1 ` b|z|2k
˘´ 1

p´1 where b ą 0.
(1.6)

If pβ, δq “ p0, 0q, some results are available in the subcritical case by Zaag [31] (β “ 0) and
Masmoudi and Zaag [21] (β “ 0). More precisely, if

p´ δ2 ´ βδpp` 1q ą 0, so-called subcritical, (1.7)

then, the authors construct a solution of equation (1.1), which blows up in finite time T ą 0 only
at the origin such that for all t P r0, T q,

›

›

›

›

›

ψ̄subptqup¨, tq ´

ˆ

p´ 1 `
bsub| ¨ |2

pT ´ tq| logpT ´ tq|

˙´ 1`iδ
p´1

›

›

›

›

›

L8

ď
C

1 `
a

| logpT ´ tq|
, (1.8)

where

ψ̄subptq “ pT ´ tq
1`iδ
p´1 |logpT ´ tq|

´iµ ,

and

bsub “
pp´ 1q2

4pp´ δ2 ´ βδp1 ` pqq
ą 0 and µ “ ´

2bsubβ

pp´ 1q2
p1 ` δ2q. (1.9)

Note that this result was previously obtained formally by Hocking and Stewartson [13] (p “ 3) and
mentioned later in Popp et al [25] (see those references for more blow-up results often approved
numerically, in various regimes of the parameters).

For the critical case i.e. p´ δ2 ´βδpp`1q “ 0, there are also construction of a blow-up solutions
made. We mention to [23] (for the case β “ 0) and [10] (for the case β ‰ 0). More precisely, the
authors constructed blowup solutions to equation (1.1) (see Theorem 2 in [10]) and described the
blowup profile by

›

›

›

›

›

›

ψ̄criptqupx, tq ´

˜

p´ 1 `
bcri|x|2

pT ´ tq| logpT ´ tq|
1
2

¸´ 1`iδ
p´1

›

›

›

›

›

›

L8

ď
C

1 ` | logpT ´ tq|
1
4

,

where

ψ̄criptq “ pT ´ tq
1`iδ
p´1 |logpT ´ tq|

´iµ e´iν
?
T´t,

with the constants ν “ νpβ, pq, µ “ µpβ, pq determined as in [10], and

b2cri “
pp´ 1q4pp` 1q2δ2

16p1 ` δ2qppp2p´ 1q ´ pp´ 2qδ2qppp` 3qδ2 ` pp3p` 1qq
.

As a matter of fact, the works [21], [23], and [10] have encountered unresolved cases, where the
condition

p´ δ2 ´ βδpp` 1q ă 0. (1.10)

remains unknown. Furthermore, the methodology employed in those works appears inapplicable
to address (1.10). Specifically, in [25], Popp et al put forth a formal conjecture stating that, for
a fixed β, the existence of finite time blowup solutions for arbitrarily large |δ| is not available (we
refer to Remark 1.1 for further details). Contrary to this conjecture, our paper establishes a proof
for the special case β “ 0. More precisely, our result reads.
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Theorem 1. Let β “ 0, p ą 1 and k P N, k ě 2, then there exist γ0 such that for all γ P p0, γ0q,

there exists T̃ pγq such that for all T P p0, T̃ q, there exists initial data u0 P L8pRq such that the
corresponding solution to equation (2.1) blows up in finite time T and only at the origin. Moreover,
there exists a flow bptq P C1p0, T q such that
(i) For all t P r0, T q, it holds that

›

›

›

›

›

pT ´ tq
1`iδ
p´1 up¨, tq ´ fbptq

˜

| ¨ |

pT ´ tq
1
2k

¸›

›

›

›

›

L8pRq

≲ pT ´ tq
γ
2

p1´ 1
k

q as t Ñ T, (1.11)

where fbptq is defined by

fbptqpyq “

´

p´ 1 ` bptq|y|2k
¯´ 1`iδ

p´1
. (1.12)

(ii) There exists b˚ :“ b˚pu0, γ, T q ą 0 such that bptq Ñ b˚ as t Ñ T and

|bptq ´ b˚| ≲ pT ´ tqγp1´ 1
k

q,@t P p0, T q, (1.13)

Corollary 2. Under the same hypothesis of Theorem 1, it holds that
›

›

›

›

›

pT ´ tq
1`iδ
p´1 up¨, tq ´ fb˚

˜

| ¨ |

pT ´ tq
1
2k

¸›

›

›

›

›

L8pRq

≲ pT ´ tq
γ
2

p1´ 1
k

q as t Ñ T, (1.14)

where b˚ is defined in ii) of Theorem 1.

Remark 1.1 (Comments on the result). Kuznetsov and co-authors in different publications, [17],
[16], [19] and ([26], section 2, page 87) made a conjecture saying that collapse of the solutions of
the CGL equation (2.1) may be suppressed for suitable parameters β and δ. They suggest that
the imaginary cubic term (when p “ 3, β “ b and δ “ ´c) in the CGLE provides a stabilization
mechanism which can eventually suppress the collapse. For the understanding of this mechanism
they write the CGL equation in terms of modulus and phase (upx, tq “ Apx, tqeiΦpx,tq and k “ BxΦ)
in one dimension, then we have

BtA “ Ap1 `A2 ´ k2q ´ 2βkBxA´ βABxA` B2
xA (1.15)

Btk “ δBxA
2 ´ 2βkBxk ` βBx

ˆ

B2
xA

A

˙

` Bx

˜

Bx
`

A2k
˘

A2

¸

(1.16)

Then, for β “ 0, δ ąą 1, the last term on the RHS of (1.16) is assumed to be negligibly small
compared to the first one. As a result of the phase gradient mechanism (PGM) and due to the
formation of sharper gradients of the amplitude the propagation speed will grow steadily during the
blow up which results in a narrowing of the pulse and (eventually) a suppression of the blow up.
Thus the PGM provides the comparison of the pulse up to its disappearance.
In Theorem 1, we give a counter example to this conjecture when β “ 0 and for all δ P R. Indeed,
this conjecture is false if we consider a blow-up solution as in (1.11) with scaling equal to x

pT´tq
1
2k
.

Indeed, if we introduce the following self-similar variables y “ x

pT´tq
1
2k
, s “ ´ logpT ´ tq, wpy, sq “

pT ´ tq
´ 1`iδ

p´1 upx, tq, then w satisfy (see equation (2.3)):

Bsw “ I´2psq∆w ´
1

2k
y ¨ ∇w ´

1 ` iδ

p´ 1
w ` p1 ` iδq|w|p´1w,with Ipsq “ e´ s

2
p1´ 1

k
qw.
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Let us now write w “ WeiΨ and K “ ByΨ, then we have

BsW “ W

ˆ

W p´1 ´
1

p´ 1
´ I´2K2

˙

` I´2B2
yA´

y

2k
ByA (1.17)

BsK “ δBypW p´1q ` I´2

„

By

ˆ

2KByW

W

˙

` B2
yK

ȷ

´ By

” y

2k
K

ı

. (1.18)

Following the conjecture of physicists, even if K grow, he will not be able to suppress the blow-up

because the fourth term in equation (1.17) is coming with Ipsq´2 “ e´sp1´ 1
k

q which decay to 0 as
we approach the blow-up time T .

Remark 1.2. In our paper, we focus on the construction of solutions in the case β “ 0, but we
believe that the construction of blow-up solution such in (1.11) is possible for the case β “ 0, but
there is additional difficulty coming from the fact that the linearized operator in that case is not
self-adjoint and is not diagonalisable. However, we think that we could have a critical condition for
the construction of such profile.

Remark 1.3. (Difficulty and the strategy of the proof)

‚ To prove a result such in Theorem 1, usually we consider the perturbation as the linearisation
of the solution around the profile and then we prove that the perturbation goes to 0 as we
approach the blow-up time. In this work we use a tricky linearisation introduced by Bricmont
and Kupiainen in [3]. Indeed, we will introduce the following perturbation,modulo a phase,

upT ´ tq
´ 1

p´1 |fb|
´pp´1qf´1

b ´ pp ´ 1 ` by2kq. The study of such linearisation will simplify the
computations as you will see in section 5.

‚ Our construction in this work is inspired by the work of Bricmont and Kupiainen in [3] and
our recent result [9]. But this is far from being a simple adaptation of the construction made in
the case of the nonlinear heat equation because of the complex structure of the CGL equation
2.1. Indeed we have a potential term V (see (2.11)) which appear in the linearized equation.
We note that the computation of the projection of the potential are much more difficult to
handle (see Lemma 5.9 and 5.12).

‚ The proof of Theorem 1 relies on the understanding of the dynamics of the self-similar version
of (2.1) (see (2.3) below) around the profile (2.7). Moreover, we proceed in two steps:
– First, we reduce the question to a finite-dimensional problem: we show that it is enough

to control a (2k)-dimensional variable in order to control the solution (which is infinite
dimensional) near the profile.

– Second, we proceed by contradiction to solve the finite-dimensional problem and conclude
using a topological argument.

Structure of the paper: To be more convenient for readers, we mention here the structure of
the paper. In Section 2, we give a formal approach to our problem and setup the main linearized
problem around the suitable approximation. Next, we show in Section 3 spectral properties of the
linear operators. In particular, Section 4 plays a central role in our paper that reduces our problem
to a finite dimensional one and the conclusion to the finite dimensional one. Finally, the conclusion
yields the proof of Theorem 1 and Corollary 2 (see Section 4.5). In Section 5, we provide a priori
estimates to our solution which plays an important role in our analysis. Finally, in the last Section,
we give necessary estimates on the action of semigroups on the negative part of the solution. We
hope this make clear the structure of the paper.

Acknowledgements: The work of Hatem Zaag is supported by ERC Advanced Grant LFAG/266
“Singularities for waves and fluids”. The work of Duong Giao Ky is supported by a grant from the
Vietnam Academy of Science and Technology under the grant number CTTH00.03/23-24.
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2. Formulation of the problem

In this section, we aim to formulate our main problem. First, we formally explain how the
profile in Theorem 1.11 is selected, and we then make the linearized problem around the selected
approximation.

Let β “ α “ 0, then the complex Ginzburg Landau equation (1.1) reads

Btu “ ∆u` p1 ` iδq|u|p´1u. (2.1)

Now, we assume that u is a solution to (2.1) on r0, T q for some T ą 0, and k ě 2 is an integer
number. We introduce the k-similarity variables as follows

wpy, sq “ pT ´ tq
1`iδ
p´1 upx, tq, y “

x

pT ´ tq
1
2k

, s “ ´ lnpT ´ tq. (2.2)

Thanks to (2.1), w solves the following equation

Bsw “ I´2psq∆w ´
1

2k
y ¨ ∇w ´

1 ` iδ

p´ 1
w ` p1 ` iδq|w|p´1w, (2.3)

where Ipsq is defined by

Ipsq “ e
s
2p1´ 1

k q. (2.4)

In our paper, we are interested in a formal solution to (2.3) of the form

wpy, sq “

8
ÿ

j“0

wjpyq

I2jpsq
“

8
ÿ

j“0

wjpyq

esjp1´ 1
k q
,

where wj is assumed to be smooth and globally bounded. Plugging this ansatz into (2.3) and
looking at the leading order, we obtain

´
1

2k
y ¨ ∇w0 ´ p1 ` iδq

w0

p´ 1
` p1 ` iδq|w0|p´1w0 “ 0.

Since we aim to search global solutions w, w0 must be the same. Up to modulo a phase, there
exists b ą 0 such that

w0pyq “ pp´ 1 ` by2kq
´ 1`iδ

p´1 for some b ą 0. (2.5)

Thus, (2.5) formally explains how the profile in Theorem 1.11 arises.

Next, we is motivated by [3], to introduce the linearized problem as follows

wpy, sq “ eiθpsqfbpsqpy, sq
`

1 ` ebpsqpy, sqqpy, sq
˘

, (2.6)

the functions fbpsq and ebpsq are given by

fbpsqpyq “

´

p´ 1 ` bpsqy2k
¯´ 1`iδ

p´1
, (2.7)

and

ebpsqpyq “

´

p´ 1 ` bpsqy2k
¯´1

. (2.8)

It is worth noting that the combined influence of the two parameters bpsq and θpsq is crucial to our
analysis, as they govern the dynamics of neutral modes in our construction problem. As a matter of
fact, our linearized problem is not only focused on linearisation with respect to the variable q, but
also extends to determine the flows pθ, bq (so-called modulations). Thanks to (2.3), which allows
us to express pq, b, θq as follows:

Bsq “ Lδ,sq `Bpqq ` T pqq `Npqq `Dsp∇qq `Rspqq ` V pqq, (2.9)
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where

Lδ,sq “ I´2psq∆q ´
1

2k
y ¨ ∇q ` p1 ` iδqℜpqq, , (2.10)

V pqq “ ppp´ 1qeb ´ 1q rp1 ` iδqℜq ´ qs , (2.11)

Npqq “ p1 ` iδq

ˆ

|1 ` ebq|p´1p1 ` ebqq ´ 1 ´ 2ebℜq ´
p´ 1

2
ebq ´

p´ 3

2
ebq̄

˙

, (2.12)

and
$

’

’

’

&

’

’

’

%

Bpqq “
b1psq

p´1 y
2k p1 ` iδ ` pp` iδqebqq ,

T pqq “ ´iθ1psq
`

e´1
b ´ q

˘

“ ´iθ1psq
`

p´ 1 ` by2k ´ q
˘

,

Dspqq “ ´Ipsq´2 p`iδ
p´1 4kby

2k´1eb∇q,
Rspqq “ I´2psqy2k´2

`

α1 ` α2y
2keb `

`

α3 ` α4y
2keb

˘

q
˘

,

(2.13)

with the explicitly determinated constants as follows

α1 “ ´p1 ` iδq2kp2k ´ 1q b
p´1 α2 “ 4p1 ` iδqpp` iδqk2 b2

pp´1q2
,

α3 “ ´pp` iδq2kp2k ´ 1q b
p´1 α4 “ 4pp` iδqp2p´ 1 ` iδqk2 b2

pp´1q2
.

(2.14)

Our aim is to construct a triple pq, b, θqpsq, s P r´ lnT,`8q where θp¨q, bp¨q P C1pr´ log T,8q,Rq

are suitably selected such that equation (2.9) has a unique solution qp¨, sq on r´ lnT,8q satisfying

}qpsq}L8
M

“

›

›

›

›

qpsq

1 ` |y|M

›

›

›

›

L8

Ñ 0 as s Ñ 8,

where the constant M is defined by

M “
2kp

p´ 1
. (2.15)

Choosing such a value for M involves a delicate process. On the one hand, it ensures that that the
linearisation (2.6) is effective, providing us with a rigorous approximation. On the other hand, it
allows us to effectively control the nonlinearity N , as we showed in (5.33).

3. Spectral properties of linear operators

In this section, we aim to give some spectral properties of the linear operators appearing in our
paper.

First, let us introduce

ρs “
Ipsq
?
4π
e´

I2psqy2

4 . (3.1)

Then, we introduce L2
ρspR,Cq as the weighted Hilbert space defied by

L2
ρspR,Cq “

"

f P L2
locpR,Cq such that

ż

R
|f |2ρsdy ă `8

*

. (3.2)

For each m P N, we recall hmpzq as the Hermite polynomial of degree m defined by

hmpzq “

rm
2

s
ÿ

ℓ“0

m!

ℓ!pm´ 2ℓq!
zm´2ℓ. (3.3)

By a simple computation, it is easy to check
ż

hnhmρsdy “ 2nn!δnm. (3.4)
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Now, we define the scaled function Hm

Hmpy, sq “ I´mpsqhmpIpsqyq “

rm
2

s
ÿ

ℓ“0

m!

ℓ!pm´ 2ℓq!
p´I´2psqqℓym´2ℓ. (3.5)

Thanks to (3.4), it holds that

pHnp., sq, Hmp., sqqs “

ż

HnpyqHmpyqρspyqdy “ I´2n2nn!δnm. (3.6)

We introduce

L0,sq “ I´2psq∆q ´
1

2k
y ¨ ∇q, (3.7)

and

Lsq :“ I´2psq∆q ´
1

2k
y ¨ ∇q ` q “ L0,sq ` q. (3.8)

We can easily derive the decomposition of the operator Ls in Jordan block as follows

LsHmpy, sq “

#

`

1 ´ m
2k

˘

Hmpy, sq `mpm´ 1qp1 ´ 1
k qI´2psqfm´2 if m ě 2,

`

1 ´ m
2k

˘

Hmpy, sq if m P t0, 1u.
(3.9)

For some s ě σ, we represent K0,s,σ and Ks,σ as the semigroups associated with the linear
operators L0,s and Ls, respectively. As a matter of fact, the semigroups are fundamental solutions
to the following

#

BsK0,s,σ “ L0,sK0,s,σ for all s ą σ,

K0,σ,σ “ Id,
(3.10)

and
#

BsKs,σ “ LsKs,σ for all s ą σ,

Kσ,σ “ Id.
(3.11)

Thanks to Mehler’s formula, the kernels of the semigroups are explicit (initially proved in [2]) and
given by

K0,s,σpy, zq “ F
´

e´ s´σ
2k y ´ z

¯

and Ksσpy, zq “ es´σF
´

e´ s´σ
2k y ´ z

¯

(3.12)

where

Fpξq “
Lps, σq

?
4π

e´
L2ξ2

4 with L2ps, σq “
I2σ

p1 ´ e´ps´σqq
and Ipsq “ e

s
2

p1´ 1
k

q. (3.13)

In particular, it holds that

K0,s,σHnp., σq “ e´ps´σqp n
2k

qHnp., sq and Ks,σHnp., σq “ eps´σqp1´ n
2k

qHnp., sq. (3.14)

Next, we are based on (3.9) to represent the Jordan block for Lδ,s. We define
!

Ĥm “ p1 ` iδqHmpy, sq, Ȟm “ iHmpy, sq|m P N
)

, (3.15)

where Hmpy, sq is defined in (3.5). Thus, it holds that for each m ě 2
$

&

%

Lδ,spĤmq “

´

1 ´
m

2k

¯

Ĥm `mpm´ 1qp1 ´
1

k
qI´2psqĤm´2,

Lδ,spȞmq “ ´ m
2k Ȟm `mpm´ 1qp1 ´ 1

k qI´2psqȞm´2,
(3.16)

and for m P t0, 1u, we have
$

&

%

Lδ,spĤmq “

´

1 ´
m

2k

¯

Ĥm,

Lδ,spȞmq “ ´ m
2k Ȟm.

(3.17)
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3.1. Decomposition of q

In this part, we aim to introduce decomposition of the solution q along time-dependent polyno-
mials tHn, n ě 0u ( also tĤn, Ȟn, n ě 0u). Let us expand q by

qpy, sq “
ÿ

0ďnďrMs

QnpsqHnpy, sq ` q´py, sq, (3.18)

where M defined as in (2.15), and Hn is defined in (3.5), Qnpsq P C, q´ satisfy

Qnpq, sq “

ż

qHnρs
ż

H2
nρs

. (3.19)

Additionally, we can understand that q´ is the rest part of q which is orthogonal to Hn for all
n ď rM s i.e.

ż

q´py, sqHnpy, sqρspyqdy “ 0 for all n ď rM s.

For more convenience, we define two projectors P`,rMs and P´,rMs (P` and P´ for short)

(3.20)

and

P´,rMspqq :“ q ´ P`,rMs. (3.21)

Thus, by introducing

q` “ P`,rMs and q´ “ P´,rMs, (3.22)

we can express

q “ q` ` q´. (3.23)

Definition 3.1 (δ-decomposition). We define the projectors Qℜ,δ and Qℑ,δ on complex numbers
by

Qℜ,δpzq “ ℜpzq “ ẑ and Qℑ,δpzq “ ℑpzq ´ δℜpzq “ ž, (3.24)

for each z P C, then we have a unique decomposition for each z P C that

z “ ẑp1 ` iδq ` iž.

Consequently,

Lemma 3.2. The projectors Qℜ,δ and Qℑ,δ hold true:

(i) It is easy to check the following properties: for all λ P R, z1, z2 P C

Qℜ,δpz1 ` z2q “ Qℜ,δpz1q ` Qℜ,δpz2q and Qℑ,δpz1 ` z2q “ Qℑ,δpz1q ` Qℑ,δpz2q, (3.25)

and

Qℜ,δpλz1q “ λQℜ,δpz1q and Qℑ,δpλz1q “ λQℑ,δpz1q, (3.26)

and

Qℜ,δpp1 ` iδqλq “ λ, and Qℑ,δpiλq “ λ. (3.27)

(ii) Let V pqq defined as in (2.11), then

zV pqq “ 0 and ~V pqq “ p1 ´ pp´ 1qebq q̌. (3.28)

Proof. It directly replies on Definition 3.1. We kindly refer readers to check the details.
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According to Definition 3.1, we can decompose q` and q´ as follows

q` “
ÿ

nďrMs

QnHnpsq “
ÿ

nďrMs

q̂nĤnpsq ` q̌nȞnpsq, (3.29)

and

q´ “ p1 ` iδqq̂´ ` iq̌´, (3.30)

where q̂n, q̌n P R and q̂´, q̌´ are real-valued functions. In particular, these components can be
explicitly expressed by

q̂npsq “ P̂npqq :“ Qℜ,δpQnq, q̌npsq “ P̌n,M pqq :“ Qℑ,δpQnq. (3.31)

and

q̂´ “ Qℜ,δpq´q and q̌´ “ Qℑ,δpq´q. (3.32)

Finally, we obtain the unique decomposition as follows

qpy, sq “

¨

˝

ÿ

nďrMs

q̂npsqĤnpy, sq ` q̌npsqȞnpy, sq

˛

‚` p1 ` iδqq̂´py, sq ` iq̌´py, sq. (3.33)

3.2. Equivalent norms

In this section, we establish equivalent norms used in our paper. Let us introduce L8
M defined by

L8
M pRq “ tg such that p1 ` |y|M q´1g P L8pRqu. (3.34)

L8
M is complete with the norm

}g}L8
M

“ }p1 ` |y|M q´1g}L8 , (3.35)

since L8 is complete with }.}L8 . In particular, we also introduce }.}s as follows

}q}s “

rMs
ÿ

m“0

|qm| ` |q´|s, (3.36)

where

|q´|s “ sup
y

|q´py, sq|

I´M psq ` |y|M
. (3.37)

As a matter of fact, we have the following equivalence:

C1psq}q}L8
M

ď }q}s ď C2psq}q}L8
M

for some C1, C2 P R˚
`, (3.38)

which yields L8
M is also complete with }.}s.

4. The proof assuming some technical results

In this section we give the complete proof of Theorem 1. The main idea is to reduce the problem
to a finite dimensional problem (2k-dimensional one) which is classical and can be solved by a
topological argument. We hope that the explanation of the strategy we give in this section will be
more reader friendly. Below, we give the main steps:

‚ The first step: we construct a shrinking set VA,γ,b0,θ0psq including necessary bounds such that
the belonging in this set completely implies the result in Theorem 1.

‚ In the second step: we construct initial data at initial time s0 for (2.9) which is parameterized

by 2k parameters in accordance with the 2k projections q̂0, .., q̂2k´1 of q on Ĥn, n ď 2k.
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‚ In the third step: we impose two orthogonal conditions

Qℜ,δ

ˆ
ż

qpsqĤ2kpy, sqρsdy

˙

“ Qℑ,δ

ˆ
ż

qpsqȞ0py, sqL2
ρsdy

˙

“ 0, (4.1)

which are responsible for nullifying two projections q̂2k and q̌0 of q onto Ĥ2k and Ȟ0. According
to (3.16), the projections involve the zero modes arising as big challenges in the construction.
Therefore, the appearance of these modulations is critical to our construction. Additionally,
we show the locally unique existence of the solution pq, b, θq to the coupled problem (2.9) &
(4.1).

‚ In the fourth step: By using the spectral approach of the linear operator Lδ,s, we reduce
the control of pq, b, θqpsq (an infinite dimensional problem) to a 2k-dimensional one involving
pq̂0, .., q̂2k´1q.

‚ In the last subsection, we solve the finite dimensional one by using a topological argument
and we give the complete conclusion to Theorem 1.

4.1. Definition of a shrinking set

In this section, we define a “shrinking set” which control the behavior of the solution by some
error bounds.

Definition 4.1 (Shrinking set). Let k ě 2, k P N, γ ą 0, b0 ą 0, θ0 P R, s ě 1 and A ě 1, we define
VA,γ,b0,θ0psq as the set of all pq, b, θq, where q P pL8

M pRq,Rq satisfying the following conditions:

(i) The first condition: for all n satisfying 0 ď n ď M , we have

|q̂n| ď I´γpsq and |q̌n| ď I´γpsq. (4.2)

(ii) The second condition:
›

›

›

›

q̂´py, sq

I´M ` |y|M

›

›

›

›

L8

ď I´γpsq,

›

›

›

›

q̌´py, sq

I´M ` |y|M

›

›

›

›

L8

ď AI´γpsq. (4.3)

where Ipsq defined as in (2.4); q̂n and q̌n given as in (3.31); and q̂´ “ Qℜ,δpq´q,q̌´ “ Qℑ,δpq´q

and the negative part q´ defined as in (3.22).
(iii) The third condition:

b0
2

ď b ď 2b0, (4.4)

|θ0|

2
ď |θ| ď 2|θ0|. (4.5)

In below, we show some rough bounds for functions belonging to VA,γ,b0,θ0psq for some s ě 1.

Lemma 4.2. Let pq, bq P VA,γ,b0,θ0psq arbitrarily given, then the following estimates hold

|q`pyq| ď CI´γpsq

¨

˝

ÿ

nďrMs

pI´npsq ` |y|nq

˛

‚,@y P R, (4.6)

|q´pyq| ď CAI´γpsqpI´M psq ` |y|M q,@y P R, (4.7)
ˇ

ˇ

ˇ
1t|y|ě 1

2
uq`pyq

ˇ

ˇ

ˇ
ď CI´γpsq

`

I´M psq ` |y|M
˘

,@y P R, (4.8)
ˇ

ˇ

ˇ
1t|y|ě 1

2
uqpyq

ˇ

ˇ

ˇ
ď CAI´γpsq

`

I´M psq ` |y|M
˘

,@y P R, (4.9)

where C ą 0 is a universal constant depending only on the nonlinear power p and k.

Proof. The result immediately follows by the definition of VA,γ,b0,θ0psq. We kindly refer the reader
to check these estimates.
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4.2. Preparation of initial data

Let us now prepare initial data to our problem. We consider d̂ “ pd̂0, .., d̂2k´1q P R2k and we
introduce

ψpd̂, y, s0q “ I´γps0q

2k´1
ÿ

j“0

d̂jĤjpy, s0q. (4.10)

By the orthogonality of tĤj , Ȟku, we can easily check that

P̂2kpψq “ 0, and P̌0pψq “ 0, (4.11)

which satisfy (4.1) at s0.
In below, we show important properties for initial data defined in (4.10).

Lemma 4.3 (Reparing of initial data). Let d̂ “ pd̂iq0ďiď2k´1 P R2k satisfying max0ďiď2k´1

ˇ

ˇ

ˇ
d̂i

ˇ

ˇ

ˇ
ď 2

and b0 ą 0 arbitrarily given. Then, there exists γ1pb0q ą 0 such that for all γ P p0, γ1q, there exists

s1pγ, b0q ě 1 such that for all s0 ě s1, the following properties are valid with ψpd̂, y, s0q defined in
(4.10):

(i) There exits a quadrilateral Ds0 Ă r´2, 2s
2k such that the mapping

Γ : Ds0 Ñ R2k

pd̂0, ..., d̂2k´1q ÞÑ pψ̂0, ..., ψ̂2k´1q
, (4.12)

is linear one to one from Ds0 to V̂ps0q, with

V̂psq “
“

´I´γpsq, I´γpsq
‰2k

, (4.13)

where pψ̂0, ..., ψ̂2k´1q are the coefficients of initial data ψpd̂0, ..., d̂2k´1q corresponding to the
decomposition (3.33). In addition to that, we have

Γ|BDs0
Ă BV̂ps0q and deg

´

Γ|BDs0

¯

‰ 0. (4.14)

(ii) For all pd̂0, ..., d̂2k´1q P Ds0, the following estimates are valid
ˇ

ˇ

ˇ
ψ̂0

ˇ

ˇ

ˇ
ď I´γps0q, ....,

ˇ

ˇ

ˇ
ψ̂2k´1

ˇ

ˇ

ˇ
ď I´γps0q, ψ̂2k “ .. “ ψ̂M “ 0 and ψ̌ ” 0, ψ´ ” 0. (4.15)

Proof.
- The proof of item (i): From (4.10), definition’s Ĥn as in (3.5) and (3.31), and by a direct
computation we can prove that there exists a square matrix As0 satisfying

A “ Id` Ãs0 with Ãs0 “ pãijq, |ãij | ď CI´2ps0q,

and we have
¨

˚

˚

˚

˝

ψ̂0

ψ̂1
...

ψ̂2k´1

˛

‹

‹

‹

‚

“ I´γps0qAs0

¨

˚

˚

˚

˝

d̂0
d̂1
...

d̂2k´1

˛

‹

‹

‹

‚

, (4.16)

which immediately concludes item (i).

- The proof of item (ii): From (4.10), ψpd̂0, ..., d̂2k´1, s0q is a polynomial of order 2k ´ 1, so it
follows that

ψ̂n “ 0,@n P t2k, ..,Mu, ψ̌n “ 0,@n P t0, ..,Mu and ψ´ ” 0.

In addition, since pd̂0, ..., d̂2k´1q P Ds0 , we apply item (i) to deduce that pψ0, ..., ψ2k´1q P V̂ps0q and
ˇ

ˇ

ˇ
ψ̂n

ˇ

ˇ

ˇ
ď I´δps0q,@n P t0, ..., 2k ´ 1u



FLAT BLOW-UP SOLUTIONS FOR THE COMPLEX GINZBURG LANDAU EQUATION 13

which concludes item (ii) and the proof Lemma 4.3.

Remark 4.4. Note that s0 “ ´ lnpT q is the master constant. In almost every argument in this
paper it is almost to be sufficiently depending on the choice of all other constants (γ0 and b0). In
addition, we denote C as the universal constant which is independent to b0 and s0.

4.3. Local in time solution of problem (2.9) & (4.1)

In this part, we prove the local existence of solution to the problem (2.9) & (4.1). The result
reads.

Proposition 4.5 (Local existence of the coupled problem (2.9) & (4.1)). Let pd P R2k satisfying
ˇ

ˇ

ˇ
d̂

ˇ

ˇ

ˇ
ď 2, γ ą 0, b0 ą 0, θ0 P R and A ě 1. Then, there exits s2pγ, b0, θ0q ě 1, such that for

all s0 ě s2, the following holds: if we take initial data pψ, b0, θ0q with ψ defined as as in (4.10),
then there exists sloc ą s0 such that the coupled problem (2.9) & (4.1) has a unique solution
pq, b, θqpsq P VA,γ,b0,θ0psq on rs0, slocs.

Proof. First, it is classical that equation (2.3) is locally well-posed in L8pRq. So, with initial data
pψ, b0, θ0q and the transformation in (2.6), there exists s̄1 ą s0 such that equation (2.3) uniquely
exists on rs0, s̄1s. Now, let us introduce µ⃗ “ pb, θq and define

Fps, µ⃗q “

¨

˚

˚

˝

Qℜ,δ

ˆ
ż

”

wpy, sqpfbebq
´1e´iθ ´

´

p´ 1 ` by2k
¯ı

H2kρsdy

˙

Qℑ,δ

ˆ
ż

”

wpsqpfbebq
´1e´iθ ´

´

p´ 1 ` by2k
¯ı

H0ρsdy

˙

˛

‹

‹

‚

“

ˆ

F1ps, µ⃗q

F2ps, µ⃗q

˙

.

(4.17)
By (3.19) and (4.11), we have

Fps0, µ⃗0q “ 0 where µ⃗0 “ pb0, θ0q.

So, the result will be a direct consequence of the implicit function theorem. Let us recall the
Jacobian matrix of F in accordance with the variable µ⃗

Jµ⃗rFsps, µ⃗q “

ˆ

BbF1ps, µq BθF1ps, µ⃗q

BbF2ps, µ⃗q BθF2ps, µ⃗q

˙

, (4.18)

where

BθF1ps, µ⃗q “ Qℜ,δ

ˆ

´i

ż

wpsqfbebq
´1e´iθH2kρsdy

˙

,

BbF1ps, µ⃗q “ Qℜ,δ

ˆ
ż

„

p` iδ

p´ 1
wpsqy2kpfbq

´1e´iθ ´ y2k
ȷ

H2kρsdy

˙

,

BθF2ps, µ⃗q “ Qℑ,δ

ˆ

´i

ż

wpsqpfbebq
´1e´iθH0ρsdy

˙

,

pabF2ps, µ⃗q “ Qℑ,δ

ˆ
ż

p` iδ

p´ 1

”

wpsqy2kpfbq
´1e´iθ ´ y2k

ı

H0ρs

˙

.

The main goal is to prove

Det
`

Jµ⃗rFsps, µ⃗q
˘

|ps,µ⃗q“ps0,µ⃗0q ‰ 0. (4.19)

- Expansion for BbF1ps0, µ⃗q |µ⃗“µ⃗0
: Thanks to (2.6) and (4.10), it follows that

wps0qf´1
b0
e´iθ “ 1 ` eb0Ψ, (4.20)
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which yields

p` iδ

p´ 1
wps0qy2kpfb0q´1e´iθ0 ´ y2k “

1 ` iδ

p´ 1
y2k `

1 ` iδ

p´ 1
y2keb0Ψ. (4.21)

So, we derive from (4.10) that
ż

p` iδ

p´ 1

”

wpsqy2kpfbq
´1e´iθ ´ y2k

ı

H2kρsdy “
1 ` iδ

p´ 1
I´4kps0q24kp2kq!

`

1 `OpI´γps0qq
˘

.

Therefore, we get

BbF1ps0, µ⃗q |µ⃗“µ⃗0
“

1

p´ 1
I´4kps0q24kp2kq!

`

1 `OpI´γps0qq
˘

.

- Expansion for BθF1ps0, µ⃗q |µ⃗“µ⃗0
: Using (4.20) again, we get

´i

ż

wps0qpfb0eb0q´1e´iθ0H2kρsdy “ ´ib0I
´4kps0q24kp2kq!.

Thus, it follows that

BθF1ps0, µ⃗q |µ⃗“µ⃗0
“ 0. (4.22)

- Expansion for BbF2ps0, µ⃗q |µ⃗“µ⃗0
: By using (4.21), we obtain

ˇ

ˇ

ˇ
BbF2ps0, µ⃗q |µ⃗“µ⃗0

ˇ

ˇ

ˇ
ď CI´2kps0q.

- Expansion for BθF2ps0, µ⃗q |µ⃗“µ⃗0
: By the same way, we get

BθF2ps0, µ0q “ p´pp´ 1q ´ I´γps0qd̂0q ´ δI´γps0q

´

δd̂0 ` ď0

¯

` CpbqI´2kps0q

“ p1 ´ pq `O pI´γps0qq .
(4.23)

By combining the previous expansions, we obtain

Det
`

Jµ⃗rFsps, µ⃗q
˘

|ps,µ⃗q“ps0,µ⃗0q “ p1 ´ pq24kp2kq!I´4kps0q
`

1 `OpI´γps0qq
˘

“ 0, (4.24)

provided that s0 ě s2,1. Thus, it is a direct consequence of the implicit function theorem that there
exists µ⃗psq “ pθpsq, bpsqq P C

`

rs0, slocs,R2
˘

X C1
`

ps0, slocq,R2
˘

with sloc P p0, s̄1q such that

Fps, µ⃗psqq ” 0,@s P rs0, slocs,

and

b0
2

ă bpsq ď 2b0 and
|θ0|

2
ă θpsq ă 2|θ0|.

In particular, pq, b, θqpsq P VA,γ,b0,θ0psq @s P rs0, slocs, thanks to the continuity of the solution.
Finally, we get the conclusion of the proposition.

Remark 4.6 (Propagating the existence). By the way in the proof of Proposition 4.5 we can
prove that if the solution pq, b, θq exists on rs0, s̄s for some s̄ ą s0 and pq, b, θqps̄q P VA,γ,b0,θ0ps̄q.
Then, there exists ϵ ą 0 such that the solution pq, b, θq to problem (2.9) & (4.1), uniquely exists on
rs0, s̄` ϵs. Since we can prove

Det
`

Jµ⃗rFsps, µ⃗q
˘

|ps,µ⃗q“ps̄,⃗̄µq “ p1 ´ pq24kp2kq!I´4kps̄q
`

1 `OpAI´γps̄qq
˘

“ 0, ⃗̄µ “ pb, θqps̄q.
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4.4. Reduction to a finite dimensional problem

As we defined shrinking set VA,γ,b0,θ0psq in Definition 4.1, it is sufficient to prove there exists a
unique global solution pq, b, θq on rs0,`8q for some s0 sufficient large that

pq, b, θqpsq P VA,γ,b0,θ0psq,@s ě s0.

In particular, we show in this part that the control of infinite problem is reduced to a finite
dimensional one. As an important step to get the conclusion of our result, we first show the
following a priori estimates.

Proposition 4.7 (A priori estimates). Let b0 ą 0 and k P N, k ě 2, b0 ą 0, then there exists
γ3pk, b0q ą 0 such that for all γ P p0, γ3q, there exists s3pγ, b0q such that for all s0 ě s3, the following
property holds: Assume pq, b, θq is a solution to problem (2.9) & (4.1) that pq, b, θqpsq P VA,γ,b0,θ0psq
for all s P rs̄, s0s for some s̄ ě s0, and q2kpsq “ 0 for all s P rs̄, s0s, then for all s P rτ, s̄s, with
s0 ď τ ď s̄, the following properties hold:

piq (Smallness of the modulation parameter θpsq). It holds that
ˇ

ˇθ1psq
ˇ

ˇ ď CA2I´2γpsq, @s P rs0, s̄s.

piiq (Oscillation the modulation flow bpsq). It holds that
ˇ

ˇb1psq
ˇ

ˇ ď CA2I´2γpsq and
3

4
b0 ď bpsq ď

5

4
b0, @s P rs0, s̄s.

(iii) (ODEs of the finite modes). For all j P t0, ..., rM su, we have
ˇ

ˇ

ˇ

ˇ

q̂1
jpsq ´

ˆ

1 ´
j

2k

˙

q̂jpsq

ˇ

ˇ

ˇ

ˇ

ď CA2I´2γpsq, @s P rs0, s̄s.

ˇ

ˇ

ˇ

ˇ

q̌1
jpsq `

j

2k
q̌jpsq

ˇ

ˇ

ˇ

ˇ

ď CI´2γpsq, @s P rs0, s̄s.

pivq (Control of the infinite-dimensional part q´): For q´ “ p1 ` iδqq̂´ ` iq̌´, we have

|q̂´psq|s ď e
´ s´σ

p´1 |q̂´pσq|σ ` C
´

I´
p̄`1
2

γpsq ` e
´ s´σ

p´1 I´
p̄`1
2

γpσq

¯

,

and

|q̌´psq|s ď e
´ s´σ

p´1 |q̌´pσq|σ ` C
´

I´γpsq ` e
´ s´σ

p´1 I´γpσq

¯

,

where p̄ “ minpp, 2q.

Proof of Proposition 4.7. This result plays an important role in the proof of Theorem 1. For the
reader’s convenience, we put the complete proof of Proposition 4.7 in Section 5.

Consequently, we have the following result.

Proposition 4.8 (Reduction to a finite dimensional problem). Let k P N, k ě 2, b0, θ0 ą 0 and
A ě 1, then there exists γ4pb0q such that for all γ P p0, γ4q, there exists s4pb0, γq such that for all
s0 ě s4, the following property holds: Assume that pq, b, θq is a solution to problem (2.9) & (4.1)
in accordance with initial data pq, b, θqps0q “ pψpd0, ..., d2k´1, s0q, b0, θ0q where ψpd0, ..., d2k´1q, s0q

defined as in (4.10) with max0ďiď2k´1 |di| ď 2; and pq, bqpsq P VA,γ,b0,θ0psq for all s P rs0, s̄s for
some s̄ ą s0 that pq, bqps̄q P BVA,γ,b0,θ0ps̄q, then the following properties are valid:

(i) (Reduction to some finite number of modes): Consider q̂0, ..., q̂2k´1 be projections of q
corresponding to (3.31) then, we have

pq̂0, .., q̂2k´1q ps̄q P BVps̄q,

where Vps̄q “ r´I´γps̄q, I´γps̄qs2k and Ipsq is given by (2.4) .
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(ii) (Transverse crossing) There exists m P t0, .., 2k ´ 1u and ω P t´1, 1u such that

ωq̂mps̄q “ I´γps̄q and ω
dq̂m
ds

|s“s̄ ą 0.

Remark 4.9. In (ii) of Proposition 4.8, we show that the solution qpsq crosses the boundary
BVA,γ,b0,θ0psq at s̄ with positive speed, in other words, that all points on BVA,γ,b0,θ0ps̄q are strict exit
points in the sense of [8, Chapter 2].

Proof. Let us start the proof Proposition 4.8 assuming Proposition 4.7. Let us consider δ ď δ3 and
s0 ě s3 such that Proposition 4.7 holds.

- Proof of item (i): From item (i) in Proposition 4.7, it is sufficient to show that for all s P rs0, s̄s
the following are valid

|q̂jpsq| ď
1

2
I´γpsq,@j P t2k ` 1, ..., rM su pnote that q2k ” 0q, (4.25)

|q̌jpsq| ď
1

2
I´γpsq,@j P t1, ..., rM su pnote that q̌0 ” 0q, (4.26)

and

|q̂´psq|s ď
1

2
I´γpsq, |q̌´psq|s ď

1

2
I´γpsq. (4.27)

+ For (4.25): Using item (ii) in Proposition 4.7, we arrive at
„

q̂jpsq ˘
1

2
I´γpsq

ȷ1

“

ˆ

1 ´
j

2k

˙

q̂jpsq ˘
γ

2

ˆ

1

2k
´

1

2

˙

I´γpsq `OpI´2γpsqq. (4.28)

Hence, with j ą 2k, γ ď γ4,1 and initial data q̂jps0q “ 0 that q̂jps0q P
`

´1
2I

´γps0q, 12I
´γps0q

˘

, it
follows from (4.28) that

q̂jpsq P

ˆ

´
1

2
I´γpsq,

1

2
I´γpsq

˙

,@s P rs0, s̄s,

which concludes (4.25). We proceed in a similar fashion to prove (4.26).
+ For (4.27): Since, the proof for q̂´ is the same as for q̌´, we only prove the inequality satisfied

by q̂ in (4.27). We divide into two cases that s ´ s0 ď s0 and s ´ s0 ě s0. According to the first
case, we apply item (iii) of Proposition 4.7 by τ “ s0 that

|q̂´psq|s ď C
´

I´
p̄`1
2

γpsq ` e
´

s´s0
p´1 I´

p̄`1
2

γps0q

¯

ď
1

2
I´γpsq,

provided that γ ď γ4,2 and s0 ě s4,2pγq. In the second case, we use item (iii) again with τ “ s´ s0,
and we obtain

|q̂´psq|s ď e
´

s0
p´1 I´γpτq ` C

´

I´
p̄`1
2

γpsq ` e
´

s0
p´1 I´

p̄`1
2

γpτq

¯

ď Cpe
´

s0
p´1 IγpsqI´γpτq ` I´ 1

2
γpsqqI´γpsq ď

1

2
I´γpsq.

Thus, (4.27) completely follows. Finally, using the definition of VA,γ,b0,θ0psq; the fact pq, bqps̄q P

BVA,γ,b0,θ0ps̄q; estimates (4.25), (4.26) and (4.27); and item (ii) of Proposition 4.8, we get the
conclusion of item (i).
- Proof of item (ii): As a consequence of item (i), there exist m “ 0, ..2k´ 1 and ω “ ˘1 such that
q̂mps̄q “ ωI´δps̄q. By item (ii) in Proposition 4.7, we see that for δ ą 0

ωq̂1
mps̄q ě

´

1 ´
m

2k

¯

ωq̂mps̄q ´ CI´2γps̄q ě C
´

p1 ´
m

2k
qI´γps̄q ´ I´2γps̄q

¯

ą 0,

which concludes the proof of Proposition 4.8.
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4.5. Conclusion of Theorem 1

In this part we aim to give the complete proof to Theorem 1 by using a topological shooting
argument :

The proof of Theorem 1. First, we aim to prove that there exist pd̂0, .., d̂2k´1q P Ds0 such that

problem (2.9) & (4.1) with initial data pψpd̂0, ..., d̂2k´1, s0q, b0, θ0q and ψpd̂0, ..., d̂2k´1, s0q defined as
in (4.10), has a solution pqd̂0,..,d̂2k´1

, b, θqp¨q defined for all s P rs0,8q such that

pqd̂0,..,d̂2k´1
, b, θqpsq P VA,γ,b0,θ0psq for all s ě s0.

Now, let us start to the proof the existence. Let b0 ą 0, θ0 ą 0, γ ě 0 and s0 such that Lemma
4.3 and Propositions 4.7-4.8 hold, and we denote T “ e´s0 ą 0 (small since s0 is large enough).

We proceed by contradiction, we assume that for all pd̂0, ..., d̂2k´1q P Ds0 (the set defined in Lemma

4.3) there exists s˚ “ s˚pd̂0, .., d̂2k´1q ă `8 such that

qd̂0,..,d̂2k´1
psq P VA,γ,b0,θ0psq, @s P rs0, s˚s,

qd̂0,..,d̂2k´1
ps˚q P BVA,γ,b0,θ0ps˚q.

By using item (i) of Proposition 4.8, we get pq̂0, .., q̂2k´1qps˚q P BV ps˚q and we introduce Φ by

Φ :
Ds0 Ñ Br´1, 1s2k

pd̂0, ..d̂2k´1q Ñ Iγpsqpq̂0, .., q̂2k´1qps˚q,

which is well defined and satisfies the following properties:

piq Φ is continuous from Ds0 to Br´1, 1s2k thanks to the continuity in time of q on the one hand,

and the continuity of s˚ in pd̂0, ..., d̂2k´1q on the other hand, which is a direct consequence of
the transversality in item (ii) of Proposition 4.8.

(ii) It holds that Φ |BDs0
has nonzero degree. Indeed, for all pd̂0, ..., d̂2k´1q P BDs0 , we derive from

item (i) of Lemma 4.3 that s˚pd̂0, ..., d̂2k´1q “ s0 and

deg
´

Φ |BDs0

¯

‰ 0.

From Wazewski’s principle in degree theory such a Φ cannot exist. Thus, we can prove that there
exists pd̂0, ..., d̂2k´1q P Ds0 such that the corresponding solution pq, bqpsq P VA,γ,b0,θ0psq,@s ě s0.

and by (iii) of Proposition 4.8, Φ is continuous.
In the following we will prove that Φ has nonzero degree, which mean by the degree theory
(Wazewski’s principle) that for all s P rs0,8q qpsq remains in VA,γ,b0,θ0psq, which is a contra-
diction with the Exit Proposition.
Indeed Using Lemma 4.3, and the fact that qp´ lnT q “ ψd̂0,..,d̂2k´1

, we see that when pd̂0, .., d̂2k´1q is

on the boundary of the quadrilateral DT , q̂0, .., q̂2k´1p´ lnT q P Br´I´2γpsq, I´2γpsqs2k and qp´ lnT q P

VA,γ,b0,θ0p´ lnT q with strict inequalities for the other components.
By Proposition 4.8, qpsq leaves VA,γ,b0,θ0 at s0 “ ´ lnT , hence s˚ “ ´ lnT .
Using (ii) of Proposition 4.8, we get that the restriction of Φ on the boundary of Ds0 is of degree
1, which means by the shooting method that for all s P rs0,8q qpsq remains in VA,γ,b0,θ0psq, which
is a contradiction.
We conclude that there exist pd̂0, .., d̂2k´1q P Ds0 and pb, θqp¨q P pC1p´ lnT,`8qq2 such that for all
s ě ´ lnT “ s0, pqd̂0,..,d̂2k´1

, b, θqpsq P VA,γ,b0,θ0psq for all s ě s0. In particular, we obtain

›

›

›

›

q

1 ` |y|M

›

›

›

›

L8

ď CI´γpsq. (4.29)
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Now, we use the above existence to conclude the proof of items in Theorem 1.

- The proof of item (i) in Theorem 1: We derive from (2.6), M “
2kp
p´1 , and the following estimate

|fbeb| “ |fb|
p ď Cp1 ` |y|

´
2kp
p´1 q “ Cp1 ` |y|´M q

that

}wpsq ´ fbpsq}L8 “ }fbpsqebqpsq}L8 ď CI´γpsq, with Ipsq “ e
s
2p1´ 1

k q.

Now, we still write bptq “ bpsq with s “ ´ lnpT ´ tq and, we hope no risk of confusion to arise here,
then using (2.2), we get

›

›

›

›

›

pT ´ tq
1`iδ
p´1 up¨, tq ´ fbptq

˜

| ¨ |

pT ´ tq
1
2k

¸›

›

›

›

›

L8

ď CpT ´ tq
γ
2

p1´ 1
k

q,@t P p0, T q, T “ e´s0 ,

which concludes item (i).
- The proof of item (ii) in Theorem 1: Since pq, bqpsq P VA,γ,,b0,θ0psq for all s ě s0, we derive from
item (i) in Proposition 4.7

|b1pτq| ď Ce´γτp1´ 1
k q (4.30)

that the integral
ż 8

s0

b1pτqdτ converges.

Let b˚ “ bps0q `

ż 8

s0

b1pτqdτ , then we have

bpsq Ñ b˚ as s Ñ `8.

In particular, we again use (4.30) that

|bpsq ´ b˚| ď Ce´sγp1´ 1
k q.

By using that fact that t “ T ´ e´s, we obtain

|bptq ´ b˚| ď CpT ´ tqγp1´ 1
k q,@t P r0, T q,

which completely concludes item (ii). Finally, we get the conclusion of Theorem 1.

Additionally, we end this part by completing the proof of Corollary 2.

Proof of Corollary 2. Let us introduce the function F paq “ pp ´ 1 ` pabptq ` p1 ´ aqb˚q y2kq
´ 1`iδ

p´1 ,
where a P r0, 1s. We can easily derive

|F 1paq| ď Cpb0q |bptq ´ b˚| ď CpT ´ tqγp1´ 1
k q,

then, we obtain

|fbptq ´ fb˚ | “ |

ż 1

0
F 1paqda| ď CpT ´ tqγp1´ 1

k q,

which concludes the proof of Corollary 2.
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5. A priori estimates

In this section, we aim to give the complete proof to Proposition 4.7. We divide the section into
three parts:

‚ Subsection 5.1: we project the terms in the equation (2.9) on tĤn, Ȟnu for all n P t0, .., rM su

and derive a priori estimates for q̃n and qn.
‚ Subsection 5.2: we provide the estimation to the infinite parts i.e. P´ (defined in (3.21)) of
the terms in equation (2.9).

‚ Subsection 5.3: we use the established estimates in Parts 1 and 2 and we derive the conclusion
of Proposition 4.7.

5.1. The finite dimensional part q`

In this part we give projection of equation (2.9) on the eigenfunctions of the operator Lδ,s. More

precisely, we will find the main contribution in the projections P̂n,M and P̌n,M of the eight terms
appearing in equation (2.9): Bsq, Lδ,sq, V q, Bpqq, T pqq, Npqq, Dsp∇qq and Rs.

Let A ě 1, b0 ą 0, θ0 ą 0, γ P p0, 12q and s0 ě 1 and we also assume that pq, b, θqpsq P VA,γ,b0,θ0psq
for all s P rs0, s̄s for some s̄ ą s0. Then, the following results hold true.

+ First term: Bsq.

Lemma 5.1. For all 0 ď n ď M , we have

P̂n,M pBsqq “ Bsq̂n ` p1 ´ 1
k qpn` 1qpn` 2qI´2psqq̂n`2,

P̌n,M pBsqq “ Bsq̌n ` p1 ´ 1
k qpn` 1qpn` 2qI´2psqq̌n`2.

(5.1)

Proof. The result follows by Definition 3.1 and the identities in [9, Lema 5.1].

+ Second term: Lδ,sq.

Lemma 5.2. For all 0 ď n ď M , we have

P̂n pLδ,sqq “ p1 ´
n

2k
qq̂n ` p1 ´

1

k
qpn` 1qpn` 2qI´2psqq̂n`2,

P̌n pLδ,sqq “ ´
n

2k
q̌n ` p1 ´

1

k
qpn` 1qpn` 2qI´2psqq̌n`2.

(5.2)

Proof. It follows by Definition 3.1 and [9, Lemma 5.2]

+ Third term Bpqq “
b1psq

p´ 1
y2k p1 ` iδ ` pp` iδqebqq.

Lemma 5.3. There exists s1pAq ě 1, such that for all s ě s1, we have

a) For 0 ď n ď rM s, n “ 2k,
ˇ

ˇ

ˇ
P̂npBpqqq

ˇ

ˇ

ˇ
ď C|b1psq|I´γpsq,

b) For 0 ď n ď rM s,
ˇ

ˇP̌npBpqqq
ˇ

ˇ ď Cb1psqI´γpsq,

c) For n “ 2k,
ˇ

ˇ

ˇ

ˇ

P̂2kpBpqqq ´
1

p´ 1
b1psq

ˇ

ˇ

ˇ

ˇ

ď C|b1psq|I´γpsq.
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Proof. First, we use the orthogonality of tHn, n ě 1u to derive

ż

y2kHnpsqρsdy “

$

&

%

0 if n ą 2k,
}H2kpsq}2L2

ρs
`OpI´2k´2q if n “ 2k,

OpI´2j´2q if n ă 2k.

(5.3)

Thanks to (3.6), (3.19) and Definition 3.1, the estimates in the lemma immediatly follow by
ˇ

ˇ

ˇ

ˇ

ż

y2kHnpsqqρsdy

ˇ

ˇ

ˇ

ˇ

ď CI´γ´2npsq, for all n ď rM s. (5.4)

To proof (5.4), we are based on (3.18) that we obtain
ż

y2kebqHnρsdy “
ÿ

jďrMs

Qjpqq

ż

y2kHnpsqHjpsqρsdy `

ż

y2kebq´Hnρsdy

“ Qnpsq}Hn}2L2
ρs

`

ż

y2kebq´Hnρsdy

Accordingly Definition 3.1, it follows that

|Qnpsq| }Hnpsq}2L2
ρs

ď CI´2n´γpsq.

Additionally, we apply (4.7) to estimate
ˇ

ˇ

ˇ

ˇ

ż

y2kebpyqHnpsqq´ρsdy

ˇ

ˇ

ˇ

ˇ

ď CAI´γpsq

ż

|y|2kpI´M psq ` |y|M qpI´n ` |y|nqρspyqdy.

Now, we aim to prove that for all n ď rM s
ˇ

ˇ

ˇ

ˇ

ż

|y|2kpI´M psq ` |y|M qpI´npsq ` |y|nqρspyqdy

ˇ

ˇ

ˇ

ˇ

ď CI´2k´M´npsq. (5.5)

By changing variable z “ Ipsqy and ρs’s definition in (3.1), we get
ˇ

ˇ

ˇ

ˇ

ż

|y|2kpI´M psq ` |y|M qpI´npsq ` |y|nqρspyqdy

ˇ

ˇ

ˇ

ˇ

ď CI´2k´M´npsq

ż

|z|2kp1 ` |z|qM`ne´
|z|2

4 dz,

which concludes (5.5). In particular, it also follows
ˇ

ˇ

ˇ

ˇ

ż

y2kebpyqHnpsqq´ρsdy

ˇ

ˇ

ˇ

ˇ

ď CAI´γ´2k´2npsq ď CI´γ´2npsq,

provided that s ě s1pA, kq. Thus, (5.4) holds true. Finally, we finish the proof of the lemma.

+ Fourth term: T pqq “ ´iθ1psqpe´1
b ` qq “ ´iθ1psqpp´ 1 ` by2k ` qq.

Lemma 5.4 (Projection of T pqq on H̃n and Ĥn. ). For 0 ď n ď rM s, the projection on H̃n is
given by

P̂npT pqqq “

"

θ1q̌2k if n “ 2k,
´θ1

`

p1 ` δ2qq̂n ´ δq̌n
˘

else.

and the projection on Ȟn is given by

P̌npT pqqq “

$

&

%

´θ1
`

pp´ 1q ` p1 ` δ2qq̂0
˘

if n “ 0,
´θ1 pb´ δq̌2kq if n “ 2k,
´θ1

`

p1 ` δ2qq̂n ´ δq̌n
˘

else.
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Proof. First, we apply (3.25) and (3.31) express as follows

P̂npT pqqq “ ´θ1psq
´

P̂npipp´ 1qq ` bP̂npiy2kq ` P̂npiqq

¯

,

P̌npT pqqq “ ´θ1psq
´

P̌npipp´ 1qq ` bP̌npiy2kq ` P̌npiqq

¯

,

the first two term are easy to derive. To obtain the projection P̌npiqq and P̂npiqq we can first write

iĤn “ δĤn ´ Ȟn,

iȞn “ p1 ` δ2qĤn ´ δȞn.

and it follows then

P̂npiqq “ δq̂n ´ q̌n,

P̌npiqq “ p1 ` δ2qq̂n ´ δq̌n.

Using the modulation condition (4.1) we get

P̂npT q “ ´θ1
´

P̂npipp´ 1qq ` bP̂npiy2kq ` P̂npiqq

¯

,

“

#

θ1q̌2k if n “ 2k,

´θ1
`

p1 ` δ2qq̂n ´ δq̌n
˘

else.

P̌npT q “ ´θ1
`

P̌npipp´ 1qq ` bP̌npiy2kq ` P̌npiqq
˘

,

“

$

’

&

’

%

´θ1
`

pp´ 1q ` p1 ` δ2qq̂0
˘

if n “ 0,

´θ1 pb´ δq̌2kq if n “ 2k,

´θ1
`

p1 ` δ2qq̂n ´ δq̌n
˘

else.

Finally, we finish the proof of the lemma.

+ Fifth term: Npqq “ p1 ` iδq

´

|1 ` ebq|p´1p1 ` ebqq ´ 1 ´ 2ebℜq ´
p´1
2 ebq ´

p´3
2 ebq̄

¯

.

Lemma 5.5. Let s ě 1, L ě 1, L P N. Then, the term N “ Npqq defined in above, satisfies

sup
|y|ă1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

N ´

L
ÿ

l“0

ÿ

0 ď j, k ď L
2 ď j ` k ď L

Bj,kpyqqj q̄k ` B̃j,kpyqqj q̄k

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď C
`

|q|L`1
˘

,

where Bl
j,k is an even polynomial of degree less or equal to K and the rest B̃l

j,k satisfies

@|y| ă 1 |B̃j,k| ď Cp1 ` |y|2kLq.

Moreover

@|y| ă 1 |Bj,k ` B̃j,k| ď C.

On the other hand, in the region |y| ě 1, we have

|Npqq| ď C |ebq|
p̄ , or C|1 ` ebq|p

for some constant C and p̄ “ minpp, 2q.
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Proof. We notice that in the region |y| ď 1 and for s ě C where C is a fixed constant, eb is bounded
from above and from below. Using a Taylor expansion in terms of ebq and ebq̄, we see that N can
be written as

@s ě 1 and |y| ă 1,

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

N ´
ÿ

0 ď j,m ď K
2 ď j `m ď K

cje
j`m
b qj q̄m

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď C|ebq|K`1.

Using (3.33) and the fact that

ebpy, sq “

L
ÿ

l“0

Elb
ly2kl

we can expand pebq
j`m in terms of y

ˇ

ˇ

ˇ

ˇ

ˇ

ej`m
b ´

L
ÿ

i“0

Ai
j,m|y|2ki

ˇ

ˇ

ˇ

ˇ

ˇ

ď C|y|2kpL`1q, (5.6)

where Ai
j,m and Ãi

j,m depends on b. By the definition of the set we can easily see that |Ai
j,m| `

|Ãi
j,m| ≲ C.

If we introduce Bj,m “
řL

“0A
i
j,m|y|2ki and B̃j,m “ ej`m

b ´
řL

i“0A
i
j,m|y|2ki Then we get from the

above computation

sup
|y|ă1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

N ´

L
ÿ

l“0

ÿ

0 ď j, k ď K
2 ď j ` k ď K

Bj,kpyqqj q̄k ` B̃j,kpyqqj q̄k

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď C
`

|q|K`1 ` 1
˘

,

where Bl
j,k is an even polynomial of degree less or equal to K and the rest B̃l

j,k satisfies

@|y| ă 1 |B̃j,k| ď Cp1 ` |y|2kLq.

Moreover

@|y| ă 1 |Bj,k ` B̃j,k| ď C.

Hence the Lemma is proved.

Using Lemma 5.5, we have the following lemma.

Lemma 5.6. There exits s3pA, b0, θ0q ě 1 such that for all s P rs0, s̄s, for some s̄ ą s0, and
0 ď n ď rM s, it holds that

ˇ

ˇ

ˇ
P̂npNpqqq

ˇ

ˇ

ˇ
`

ˇ

ˇP̌npNpqqq
ˇ

ˇ ď CA2I´2γpsq. (5.7)

Proof. It is enough to prove (5.7) for the projection on Hn, it implies the same for P̂npNq and
P̌npNq. We write

ż

HnNρspyqdy “

ż

|y|ă1
HnNρspyqdy `

ż

|y|ą1
HnNρspyqdy.

Using Lemma 5.5, we deduce that
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ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż

|y|ă1
HnNρspyqN ´

ż

|y|ă1
Hnρspyq

L
ÿ

l“0

ÿ

0 ď j, k ď L
2 ď j ` k ď L

Bj,kpyqqj q̄k ` B̃j,kpyqqj q̄k

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď C

ż

|y|ă1
|Hn||ebq|L`1ρs.

(5.8)

Let us write

qj “

¨

˝

rMs
ÿ

l“0

q̂lĤl ` q̌lĤl ` q´

˛

‚

j

,

Using the fact that }q}L8 ď 1 (which holds for large s from the definition of the shrinking set
VA,γ,b0,θ0psq) , then we have

ˇ

ˇ

ˇ
qj ´ qj`

ˇ

ˇ

ˇ
ď C

`

|q´|j ` |q´|
˘

.

Using the fact that qpsq P VA,γ,b0,θ0psq, we have |q̂´| ` |q̌´| ď CAI´γpI´M ` |y|M q, we obtain
ˇ

ˇ

ˇ
qj ´ qj`

ˇ

ˇ

ˇ
ď CAI´γpI´M ` |y|M q,

and
ˇ

ˇ

ˇ
q̄k ´ q̄k`

ˇ

ˇ

ˇ
ď CAI´γpI´M ` |y|M q,

thus give us the desired estimation in (5.7) for the second integral in (5.8).
Let us focus on the L.H.S of inequality (5.8), we note that Hn satisfies for all |y| ă 1, |Hnpy, sq| ď

Cp1 ` |y|nq, we have also by the definition of the shrinking set

|ebqpy, sq|L`1 ď CI´γpL`1q,

it follows that
ż

|y|ă1
|Hn||ebq|L`1ρs ď CI´γpL`1q

ż

|y|ă1
p1 ` |y|nqρsdy ď CI´γpL`1q´2n,

which gives the good estimation |
ş

|y|ă1HnNρs| ď CI´2γ´2n.

To end the proof we estimate
ş

|y|ą1HnNρsdy. By Lemma 5.5, the definition of VA,γ,b0,θ0psq and

using Lemma A.2 from [9], we get
ˇ

ˇ

ˇ

ˇ

ˇ

ż

|y|ą1
HnNρs

ˇ

ˇ

ˇ

ˇ

ˇ

ď C

ˇ

ˇ

ˇ

ˇ

ˇ

ż

|y|ą1
Hnp1 ` I´p´δp1 ` |y|Mpqqρs

ˇ

ˇ

ˇ

ˇ

ˇ

ď Ce´ I
8 .

Thus end the proof of the Lemma.

+ Sixth term: Dspqq “ ´
p` iδ

p´ 1
4kby2k´1I´2psqeb∇q.

Lemma 5.7. For γ P p0, 12q, there exists s4pA, b0, θ0, γq ě 1 such that for all s P rs0, s̄s for some
s̄ ě s0, and 0 ď n ď rM s, it holds that

|P̂npDspqqq| ď CI´2γpsq and |P̌npDspqqq| ď CI´2γpsq
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Proof. By (3.19) and Definition 3.1, it is sufficient to prove

|Qnpqqpsq| ď CI´2γpsq for all s P rs0, s̄s,

provided that s ě s4pA, b0, θ0, γq. Additionally, we reply on (3.36), we only need to verify
ˇ

ˇ

ˇ

ˇ

ż

DspqqHnρsdy

ˇ

ˇ

ˇ

ˇ

ď CI´2γpsq.

By Dspqq’s definition, we can express
ż

DsHnρsdy “ ´
p` iδ

p´ 1
4bkI´2psq

ż

y2k´1eb∇qHnρsdy.

So, it follows by integration by parts which is quite the same as [9, Lemma 5.5]. We kindly refer
the reader to check the details. Finally, we finish the proof of the lemma.

+ Seventh term: Rspqq “ I´2psqy2k´2
`

α1 ` α2y
2keb `

`

α3 ` α4y
2keb

˘

q
˘

.

Lemma 5.8. For γ P p0, 12q, there exists s5pA, b0, θ0, γq ě 1 such that for all s0 ě s5, s P rs0, s̄s,
and n ď rM s

|P̂npRspqqq| ď CI´2γpsq and |P̌npRspqqq| ď CI´2γpsq.

Proof. We refer to the proof of Lemma 5.3.

Eighth term: V pqq “ ppp´ 1qeb ´ 1q rp1 ` iδqℜq ´ qs

Lemma 5.9. For γ P p0, 12q, there exists s6pA, b0, θ0, γq ě 1 such that for all s0 ě s6, s P rs0, s̄s, we
have

P̂npV pqqq “ 0 and |P̌npV pqqq| ď CI´2γpsq.

Proof. First, we reply on the fact that q “ p1 ` iδqq̂ ` iq̌q

V pqq “ ´i p1 ´ ebpp´ 1qq pℑq ´ δℜqq “ i ppp´ 1qeb ´ 1q q̌.

Thanks to Definition 3.1, it immediately follows that

@n P N, P̂npV q “ 0.

We write, for L P N,

ebpy, sq “ pp´ 1q´1

«

L
ÿ

j“0

ˆ

´
b

p´ 1
y2k

˙j

`

ˆ

´
b

p´ 1
y2k

˙L`1

ebpy, sq

ff

, (5.9)

then we deduce that

pp´ 1qeb ´ 1 “ ´by2keb “

L
ÿ

j“1

ˆ

´
b

p´ 1
y2k

˙j

`

ˆ

´
b

p´ 1
y2k

˙L`1

ebpy, sq

Let us first estimate

ż

y2kjpδℜq ´ ℑqqHnρsdy, we write

ż

y2kjpδℜq ´ ℑqqHnρsdy “

ż

|y|ď1
y2kjpδℜq ´ ℑqqHnρsdy `

ż

|y|ě1
y2kjpδℜq ´ ℑqqHnρsdy.

We recall that for all q P VA,γ,b0,θ0 , by Claim 4.2

|V pqq| ď CI´γp1 ` |y|M q,
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then by Lemma A.1 from [DNZ22], we obtain
ˇ

ˇ

ˇ

ˇ

ˇ

ż

|y|ě1
y2kjpδℜq ´ ℑqqHnρsdy

ˇ

ˇ

ˇ

ˇ

ˇ

ď CI´γe´ 1
8
Ipsq ď CI´2γ´2npsq,@s P rs0, s

˚s. (5.10)

Using (3.33), we write
ż

|y|ď1
y2kjpδℜq ´ ℑqqHnρsdy “

ż

|y|ď1
y2kjpδℜq` ´ ℑq`qHnρsdy `

ż

|y|ď1
y2kjpδℜq´ ´ ℑq´qHnρsdy

(5.11)

Using the bound on q´ given by (4.3), the second integral can be bounded as follows
ˇ

ˇ

ˇ

ˇ

ˇ

ż

|y|ď1
y2kjpδℜq´ ´ ℑq´qHnρsdy

ˇ

ˇ

ˇ

ˇ

ˇ

ď C

ż

|y|ď1
y2kjpI´M psq ` |y|M qHnρsdy (5.12)

If we introduce the change of variabe z “ yIpsq and ρpzqdz “ ρspyqdy, we can write
ż

|y|ď1
y2kjpI´M psq ` |y|M qHnρsdy “ I´M´n´2kjpsq

ż

|z|ďIpsq

|z|2kjp1 ` |z|M q|hnpzq|e´
|z|2

4 dz.

ď CI´M´n´2kpsq.

we conclude that there exist γ6, such that for all 0 ă γ ď γ6, we have
ˇ

ˇ

ˇ

ˇ

ˇ

ż

|y|ď1
y2kjpδℜq´ ´ ℑq´qHnρsdy

ˇ

ˇ

ˇ

ˇ

ˇ

ď CI´2γ´2npsq . (5.13)

Let us focus on the first integral of equation (5.11), using estimation given by (4.2), we obtain
ż

|y|ď1
y2kjpδℜq` ´ ℑq`qHnρsdy “ δℜ

˜

ż

|y|ď1
y2kjq`Hnρsdy

¸

´ ℑ

˜

ż

|y|ď1
y2kjq`Hnρsdy

¸

.

we will just give the estimate on

ż

|y|ď1
y2kjq`ρsHndy:

ˇ

ˇ

ˇ

ˇ

ˇ

ż

|y|ď1
y2kjq`Hnρsdy

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

rMs
ÿ

l“0

Ql

ż

|y|ď1
y2kjHlHnρspyqdy

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

"

“ 0 if 2kj ` l ă n
ď CI´2γpsqI´2kj´l´npsq ď CI´2γ´2npsq if 2kj ` l ě n

(5.14)

By (5.10), (5.13) and (5.14), we conclude that

|P̌npV q| ď CI´2γpsq.

5.2. Estimates of the infinite dimensional parts of the terms in equation (2.9)

Let pq, θ, bq be a solution to the problem (2.9) & (4.1) on rs0, s̄s for some s̄ ą 0. Under the
assumption pq, θ, bqpsq P VA,γ,b0,θ0psq for s P rs0, s̄s. Then, we aim to provide the following results.

+ First term: P´ pBsqq where P´p¨q defined as in (3.21).

Lemma 5.10. For all s P rs0, s̄s, we have

P´ pBsqq “ Bsq´ ´ I´2psq

ˆ

1 ´
1

k

˙ rMs
ÿ

n“rMs´1

pn` 1qpn` 2q

´

q̂n`2Ĥn ` q̌n`2Ȟn

¯

, (5.15)
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where Ipsq given as in (2.4). Consequently,

Qℜ,δ pP´pBsqqq “ Bsq̂´ ´ I´2psq

ˆ

1 ´
1

k

˙ rMs
ÿ

n“rMs´1

pn` 1qpn` 2qq̂n`2Hnpsq,

Qℑ,δ pP´pBsqqq “ Bsq̌´ ´ I´2psq

ˆ

1 ´
1

k

˙ rMs
ÿ

n“rMs´1

pn` 1qpn` 2qq̌n`2Hnpsq.

Proof. First, we based on (3.24), (3.15) and (3.32) that it is sufficient to prove (5.15).

From definition (3.21), we can express

P´pBsqq “ Bsq ´

rMs
ÿ

n“0

´

P̂npBsqqĤn ` P̌npBsqqȞn

¯

“ Bsq´ `

rMs
ÿ

n“0

Bs

´

q̂nĤn ` q̌nȞn

¯

´

rMs
ÿ

n“0

´

P̂npBsqqĤn ` P̌npBsqqȞn

¯

.

Using the fact that BsHn ” 0 if n “ 0 or 1, and for all n ě 2

BsHnpy, sq “ npn´ 1q

ˆ

1 ´
1

k

˙

I´2psqfn´2py, sq.

Hence, we deduce from Lemma 5.1 that

P̂n pBsqq “ Bsq̂n ` p1 ´ 1
k qpn` 1qpn` 2qI´2psqq̂n`2,

P̌n pBsqq “ Bsq̌n ` p1 ´ 1
k qpn` 1qpn` 2qI´2psqq̌n`2,

which implies

P´pBsqq “ Bsq´ ´ I´2psq

ˆ

1 ´
1

k

˙ rMs
ÿ

n“rMs´1

pn` 1qpn` 2q

´

q̂n`2Ĥn ` q̌n`2Ȟn

¯

,

Finally, (5.15) follows and we conclude the proof of the lemma.

+ Second term Lδ,sq.

Lemma 5.11. For all s P rs0, s̄s, it holds that

P´ pLδ,sqq “ Lδ,sq´ ´ I´2psq

ˆ

1 ´
1

k

˙ rMs
ÿ

n“rMs´1

pn` 1qpn` 2q

´

q̂n`2Ĥn ` q̌n`2Ȟn

¯

. (5.16)

Consequently, we have

Qℜ,δ pP´pLδ,sqqq “ Lsq̂´ ´ I´2psq

ˆ

1 ´
1

k

˙ rMs
ÿ

n“rMs´1

pn` 1qpn` 2qq̂n`2Hnpsq,

Qℑ,δ pP´pLδ,sqqq “ L0,sq̌´ ´ I´2psq

ˆ

1 ´
1

k

˙ rMs
ÿ

n“rMs´1

pn` 1qpn` 2qq̌n`2Hnpsq,

where L0,s and Ls defined as in (3.7) and (3.8), respectively.
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Proof. First, we are based on (3.24) to have

Qℜ,δ pLδ,sq´q “ Lsq̂´ and Qℑ,δ pLδ,sq´q “ L0,sq̌´.

So, we need only to prove (5.16) which is quite similar to the result in Lemma 5.10. Indeed, by
using (3.21), we firstly obtain

P´pLδ,sq ´ Lδ,sq´ “

¨

˝

rMs
ÿ

n“0

´

P̂npLδ,sqqĤn ´ q̂nLδ,sĤn

¯

`

rMs
ÿ

n“0

`

P̌npLδ,sqqȞn ´ P̌npLδ,sqqȞn

˘

˛

‚.

Combining identities in (3.16) and (3.17) with Lemma 5.2, we conclude

rMs
ÿ

n“0

´

P̂npLδ,sqqĤn ´ q̂nLδ,sĤn

¯

“ ´I´2psq

ˆ

1 ´
1

k

˙ rMs
ÿ

n“rMs´1

pn` 1qpn` 2qq̂n`2Ĥn

rMs
ÿ

n“0

`

P̌npLδ,sqqȞn ´ P̌npLδ,sqqȞn

˘

“ ´I´2psq

ˆ

1 ´
1

k

˙ rMs
ÿ

n“rMs´1

pn` 1qpn` 2q, q̌n`2Ȟn.

Finally, the conclusion of (5.16) follow by adding all above related terms, and we finish the proof
of the lemma.

+ Third term: V pqq “ ppp´ 1qeb ´ 1q pp1 ` iδqℜq ´ qq.

Lemma 5.12. There exists s7pA, b0, θ0q ě 1 such that for all s0 ě s7, it holds that for all s P rs0, s̄s,

Qℜ,δ pP´pV pqqqq “ 0, (5.17)

and

|Qℑ,δ pP´pV pqqqq ´ p1 ´ pp´ 1qebq q̌´| ď CI´γpsq
`

I´M psq ` |y|M
˘

. (5.18)

Proof. First, we immediately conclude (5.17) by item (ii) in Lemma 3.2. It remains to prove (5.18).
Using item (ii) in that Lemma again, we have

V pqq “ p1 ´ pp´ 1qebqiq̌ “ p1 ´ pp´ 1qebqipq̌` ` q̌´q.

Regarding to (3.21), we have

P´pV pqqq ´ p1 ´ pp´ 1qebqiq̌´ “ p1 ´ pp´ 1qebqiq̌` ` p1 ´ pp´ 1qebqiq̌´

´
ÿ

nďrMs

Qnpp1 ´ pp´ 1qebqiq̌`qHn ´
ÿ

nďrMs

Qnpp1 ´ pp´ 1qebqiq̌´qHn

“ p1 ´ pp´ 1qebqiq̌` ´
ÿ

nďrMs

Qnpp1 ´ pp´ 1qebqiq̌`qHn

´
ÿ

nďrMs

Qnpp1 ´ pp´ 1qebqiq̌´qHn “ i rpIq ´ pIIqs ,

where

pIq “ p1 ´ pp´ 1qebqq̌` ´
ÿ

nďrMs

Qnpp1 ´ pp´ 1qebqq̌`qHn,

pIIq “
ÿ

nďrMs

Qnpp1 ´ pp´ 1qebqq̌´qHn.

- Estimate for (I): First, we have
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p1 ´ pp´ 1qebqq̌`psq “
ÿ

nďrMs

q̌np1 ´ pp´ 1qebqHnpsq

For each n ď rM s, we chose Ln “
“

M´n
2k

‰

, then we apply (5.9) to derive that

p1 ´ pp´ 1qebqq̌`psq “
ÿ

nďrMs

Ln
ÿ

j“1

cn,j,bq̌npsqy2kjHnpsq `
ÿ

nďrMs

c̃n,b
y2kpLn`1q

eb
Hnpsq,

which yields

pIq “
ÿ

nďrMs

c̃n,b
y2kpLn`1q

eb
Hnpsq ´

ÿ

nďrMs

Qn

¨

˝

ÿ

mďrMs

c̃m,b
y2kpLm`1q

eb
Hmpsq

˛

‚Hnpsq

“ I1 ´
ÿ

nďrMs

QnpI1qHnpsq, where I1 “
ÿ

nďrMs

c̃n,b
y2kpLn`1q

eb
Hnpsq.

We aim to proof that
|pIq| ď CpI´M psq ` |y|M q, (5.19)

it is sufficient to prove

|I1| ď CpI´M psq ` |y|M q. (5.20)

Indeed, for each n ď rM s, we express as follows
ˇ

ˇ

ˇ

ˇ

ˇ

y2kpLn`1q

eb
Hnpsq

ˇ

ˇ

ˇ

ˇ

ˇ

ď 1t|y|ď1u

ˇ

ˇ

ˇ

ˇ

ˇ

y2kpLn`1q

eb
Hnpsq

ˇ

ˇ

ˇ

ˇ

ˇ

` 1t|y|ě1u

ˇ

ˇ

ˇ

ˇ

ˇ

y2kpLn`1q

eb
Hnpsq

ˇ

ˇ

ˇ

ˇ

ˇ

Since 2kpLn ` 1q ě M ´ n, we estimate

1t|y|ď1u

ˇ

ˇ

ˇ

ˇ

ˇ

|y|2kpLn`1q

eb
Hnpsq

ˇ

ˇ

ˇ

ˇ

ˇ

ď CyM´npI´npsq ` |y|nq ď CpI´M psq ` |y|M q.

Beside that, it also holds true

1t|y|ě1u

ˇ

ˇ

ˇ

ˇ

ˇ

y2kpLn`1q

eb
Hnpsq

ˇ

ˇ

ˇ

ˇ

ˇ

ď C
|y|

2kp1`Ln´M´n
2k q

eb
|y|M´n

`

I´npsq ` |y|n
˘

ď CpI´M psq ` |y|M q,

since 1 ` Ln ´ M´n
2k P r0, 1s for all n ď rM s.

Thus, taking the sum over n to the concerning bounds, we get the conclusion of (5.19).
- Estimate for (II): We now notice that

|1 ´ pp´ 1qeb| “

ˇ

ˇ

ˇ

ˇ

by2k

p´ 1 ` by2k

ˇ

ˇ

ˇ

ˇ

ď Cy2k. (5.21)

By the definition of Qn in (3.19), we can bound as follows

|Qnpp1 ´ pp´ 1qebqq̌´q| “ CAI´γpsq

ż

R
y2k|Hnpy, sq|pI´M psq ` |y|M qρspyqdy.

Since |Hn| ď CpI´npsq ` |y|nq and by changing variable z “ Ipsqy, we estimate the integral as
follows

|Qnpp1 ´ pp´ 1qebqq̌´q| “ CAI2n´γ´n´M´2kpsq

ż

R
|z|2k|hnpzq|p1 ` |z|M qe´

|z|2

4 dz

ď CAIn´M´γ´2kpsq. (5.22)

Consequently,

|pQnpp1 ´ pp´ 1qebqq̌´qHnpy, sq| ď CI´γ´2k`n´M
`

I´n ` |y|n
˘

ď CI´γ´2kpsq
`

I´M ` |y|M
˘

,
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which yields

|pIIq| ď CI´γ´2kpsq
`

I´M psq ` |y|M
˘

. (5.23)

Combining (5.19) with (5.23), we conclude

|Qℑ,δ pP´pV pqqqq ´ p1 ´ pp´ 1qebqq̌´| ď CI´γpsq
`

I´M psq ` |y|M
˘

,

which concludes (5.18). Finally, the conclusion of the lemma follows.

+ Fourth term Bpqq “
b1psq

p´ 1
y2k p1 ` iδ ` pp` iδqebqq.

Lemma 5.13. For all s P rs0, s̄s, it holds that

|P´pBpqqqpsq| ď CA|b1psq|I´γpsqpI´M psq ` |y|M q.

Consequently,

|Qℜ,δ pP´pBpqqqpsqq| ` |Qℑ,δ pP´pBpqqqpsqq| ď CA|b1psq|I´γpsqpI´M psq ` |y|M q.

Proof. From definition of P´ as in (3.21), it immediately follows that

P´

´

p1 ` iδqy2k
¯

” 0.

So, we obtain

P´pBpqqq “
b1psq

p´ 1
P´ppp` iδqy2kebqq.

Accordingly Definition 3.1, it is sufficient to check that
ˇ

ˇ

ˇ
P´ppp` iδqy2kebqq

ˇ

ˇ

ˇ
ď CAI´γpsq

`

I´M psq ` |y|M
˘

. (5.24)

First, let χ P C8
c pRq satisfying

χpxq “ 1 for all |x| ď
1

2
and χpxq “ 0 for all |x| ě 1. (5.25)

Then, we decompose 1 “ χ` p1 ´ χq “ χ` χc and we reply on (3.21) and (3.23) that

P´

´

pp` iδqy2kebq
¯

“ P´ppp` iδqy2kχebq`q ` P´ppp` iδqy2kχcebq`q ` P´ppp` iδqy2kebq´q.

Since q´ “ p1 ` iδqq̂´ ` iq̌´ and the fact that pq, b, θqpsq P VA,γ,b0,θ0psq, we can bound as follows

|q´| ď CAI´γpsqpIM psq ` |y|M q.

Hence, we argue in a similar fashion as in the proof of (5.23) to estimate
ˇ

ˇ

ˇ
Qnppp` iδqy2kebq´qHn

ˇ

ˇ

ˇ
ď CI´γ´2kpsqpI´M ` |y|M q,

the, using (3.21), we conclude that
ˇ

ˇ

ˇ
P´ppp` iδqy2kebq´q

ˇ

ˇ

ˇ
ď CAI´γpsqpI´M psq ` |y|M q. (5.26)

Additionally, we use the fact that pq, b, θqpsq P VA,γ,b0,θ0psq again that

|χcq`| ď CI´γpsq

rMs
ÿ

n“0

pI´npsq ` |y|nq ď CI´γpsqpI´M psq ` |y|M q, since |y| ě
1

2
.

Similarly (5.23), we have
ˇ

ˇ

ˇ
Qnpy2kebχ

cq`qHn

ˇ

ˇ

ˇ
ď CI´γ´2kpsqpI´M psq ` |y|M q.
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Accordingly (3.21) and the fact }y2keb}L8 ď 1, we conclude that
ˇ

ˇ

ˇ
P´ppp` iδqy2kχcebq`q

ˇ

ˇ

ˇ
ď CI´γpsqpI´M psq ` |y|M q. (5.27)

Let |y| ď 1
2 and L P N, L ě 1, we deduce from (3.33) and the identity (5.9) that

y2kebq` “
ÿ

jďL
nďrMs

cjpbqy
2kjpq̂n pHn ` q̌n qHnq ` Ỹ

“
ÿ

jďL
nďrMs

2kj`nďrMs

cjpbqy
2kjpq̂n pHn ` q̌n qHnq `

ÿ

jďL
nďrMs

2kj`něrMs`1

cjpbqy
2kjpq̂n pHn ` q̌n qHnq ` Ỹ

“ Y1 ` Y2 ` Ỹ ,

where Ỹ satisfies
ˇ

ˇ

ˇ
Ỹ

ˇ

ˇ

ˇ
ď CI´γpsq|y|pL`1q, for all |y| ď 1.

Since χ “ 1 ´ χc and P´pY1q “ 0, we have then

P´pχY1q “ P´pY1q ´ P´pχcY1q “ ´P´pχcY1q.

In the same way for (5.27), we obtain

|P´pχcY1q| ď CI´γpsqpI´M psq ` |y|M q,

which yields
|P´pχY1q| ď CI´γpsqpI´M psq ` |y|M q.

Now, by changing variable z “ yIpsq, we can prove that
ˇ

ˇ

ˇ

ˇ

ˇ

ż

|y|ě 1
2

fHnρsdy

ˇ

ˇ

ˇ

ˇ

ˇ

ď CpK,nq}f}L8
N
e´

Ipsq

8 with s ě 1 and for some n P N, and K ą 0. (5.28)

where } ¨ }L8
K

is similarly defined in (3.35). By applying (5.28), we have

|QnpχY2q| ď CI´γ´prMs`1q´npsq,@n ď rM s,

since the indices in Y2 always satisfy that 2kj ` n ď rM s ` 1. Hence, we arrive at

|QnpχY2qHn| ď CI´γpsqpI´M psq ` |y|M q,@n ď rM s,

In the other hand, we have

|χY2| ď CI´γpsq

¨

˚

˚

˚

˚

˚

˝

ÿ

jďL
nďrMs

2kj`něrMs`1

|y|2kj
`

I´npsq ` |y|n
˘

˛

‹

‹

‹

‹

‹

‚

ď CI´γpI´M psq ` |y|M q.

So, we have

|P´pχY2q| ď CI´γpsqpI´M psq ` |y|M q,

which concludes
ˇ

ˇ

ˇ
P´ppp` iδqy2kχebq`q

ˇ

ˇ

ˇ
ď CI´γpsqpI´M psq ` |y|M q. (5.29)

Thus, (5.24) follows by (5.26), (5.27) and (5.29). Finally, we finish the proof of the lemma.

+ Fifth term T pqq “ ´iθ1psqpe´1
b ` qq “ ´iθ1psqpp´ 1 ` by2k ` qq.
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Lemma 5.14. For all s P rs0, s̄s, it holds that

P´pT pqqq “ ´iθ1psqq´psq.

Consequently,

Qℜ,δ pP´pT pqqqq “ ´δq̂´ ´ q̌´ and Qℑ,δ pP´pT pqqqq “ δpδq̂´ ` q̌´q.

Proof. Using the definition of P´ given in (3.21), we have

P´pT pqqq “ ´θ1psqP´piqq “ ´iθ1psqq´ “ ´iθ1psqq´psq.

In addition to that, we use the definition in (3.24), we have

iq´ “ i tp1 ` iδqq̂´ ` iq̌´u “ p1 ` iδq r´δq̂´ ´ q̌´s ` iδpδq̂´ ` q̌´q

which yields the complete conclusion of the lemma.

+ Sixth term: Npqq “ p1 ` iδq

´

|1 ` ebq|p´1p1 ` ebqq ´ 1 ´ 2ebℜq ´
p´1
2 ebq ´

p´3
2 ebq̄

¯

. We

have the following result.

Lemma 5.15. There exists s12pAq ě 1 such that for all s0 ě s12, and for all s P rs0, s̄s it holds
that

|P´ pNpqqpsqq| ď CAmaxpp,2qI´minpp,2qγpsqpI´M psq ` |y|M q.

Proof. Let χ defined as in (5.25), and we decompose N “ Npqq as follows

N “ χN ` p1 ´ χqN “ χN ` χcN.

It suffices to verify the following:

|P´pχcNqpsq| ď CpAmaxpp,2qqI´minpp,2qγpsq
`

I´M psq ` |y|M
˘

, (5.30)

|P´pχNqpsq| ď CA2I´2γpsq
`

I´M psq ` |y|M
˘

, (5.31)

provided that s ě s0 with s0 ě s12pA,Mq

- For (5.30): First, let us prove that

|χcN pqq| ď CAmaxp2,pqI´minp2,pqγpsqpI´M psq ` |y|M q, p ą 1. (5.32)

The proof of (5.32) is divided into two cases where p ě 2 and p P p1, 2q.

+ Case 1: p ě 2 . By a simple expansion, we estimate

|χcN pqq| ď Cχcp|ebq|2 ` |ebq|pq

Since supppχcq Ă t|y| ě 1
2u, the estimate in (4.9) implies

|χcebq| ď CAI´γpsq|y|M´2k.

Notice that M “
2kp
p´1 , then we get

|χcebq|
p

ď C
`

AI´γpsqebpyq|y|M
˘p

“ C
´

I´γpsqpebpyq|y|2kq|y|
2k
p´1

¯p
(5.33)

ď CI´pγpsq|y|
2kp
p´1 ď CI´pγpsq|y|

2kp
p´1 ď CI´pγpsqpI´M psq ` |y|M q,

Similarly,

|χcebq|2 ď CA2I´2γpsq|y|2pM´2kqχc ď CA2I´2γpsq|y|
2k
p´1

2
χc

ď CA2I´2γpsq|y|
2k
p´1

p
χc ď CA2I´2γpsqpI´M psq ` |y|M q since p ě 2.

Hence, (5.32) holds true for all p ě 2.
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- Case 2 i.e. p P p1, 2q: we observe that

|χcN pqq| ď Cχc|ebq|p.

By the same way of (5.33), we deduce that

|χcN pqq| ď CApI´pγpsqpI´M psq ` |y|M q.

So, (5.32) also holds true for the case p P p1, 2q.

Now, we use (5.32) to establish for all n ď rM s

|QnpχcNpqqpsqq| ď CAmaxpp,2qI´minpp,2qγpsq

ż

|y|ě 1
2

pI´M psq ` |y|M q|Hnpy, sq|ρspyqdy

ď CAmaxpp,2qI´minpp,2qγpsqe´
Ipsq

16 ,

which yields
ÿ

nďrMs

|QnpχcNpsqq| |Hnpy, sq| ď CAmaxpp,2qI´minpp,2qγpsqe´
Ipsq

16

ÿ

nďrMs

p1 ` |y|nq

ď CI´minpp,2qγpsqpI´M psq ` |y|M q,

provided that s ě s12,1pA,Mq.
Consequently,

|P´pχcNpsqq| ď |χcNpsq| `
ÿ

nďrMs

|QnpχcNpsqq| |Hnpy, sq|

ď CAmaxp2,pqI´minpp,2qpsqpI´M psq ` |y|M q,

which concludes (5.30).

- For (5.31). Since supppχq Ă t|y| ď 1u, so it is suffices to consider |y| ď 1 and we have

|ebpyqqpy, sq| ď CAI´γpsq @|y| ď 1.

Therefore, we use a simple Taylor expansion to obtain the following for some K P N,K ě 1

χN “ χ
´

NK,1 `NK,2 ` ÑK

¯

,

where

NK,1 “
ÿ

0ďj,ℓďK
2ďj`ℓďK

aK,j,ℓpebq
j`ℓqj`q̄

ℓ
`, aK,j,ℓ P R,

NK,2 “

K
ÿ

j“2

ÿ

0ďℓ1`ℓ2ďj´1
ℓ1ě0,ℓ2ě0

ÿ

ℓ3`ℓ4“j´pℓ1`ℓ2q

ℓ3ě0,ℓ4ě0

d2,K,j,ℓ1ℓ2,ℓ3,ℓ4pebq
jqℓ1` q̄

ℓ2
` q

ℓ3
´ q̄

ℓ4
´ ,

where d2,K,j,ℓ1ℓ2,ℓ3,ℓ4 P R and ÑK satisfies

|χÑK | ď C|χebq|K`1 ď CAK`1I´pK`1qγpsq.

By an analogue to (5.30), it leads to

|P´pχÑq| ď CI´2γpsqpI´M psq ` |y|M q,



FLAT BLOW-UP SOLUTIONS FOR THE COMPLEX GINZBURG LANDAU EQUATION 33

provided that K ě K12,2pA,Mq. From (3.29), we have the following decomposition

NK,1 “
ÿ

0ď|n|ďK
0ď|m|ďK

2ď|n|`|m|ďK
0ďℓďK

cn,m,ℓ,Kb
ℓy2kℓΠ

rMs

j“1q
nj

j q̄
mj

j H
nj`mj

j `NK,1,2

:“ NK,1,1 `NK,1,2, respectively,

where n “ pn1, ...nrMsq and m “ pm1, ...,mrMsq, |n| “
ř

ni and |m| “
ř

mi.
Then NK,1,2 satisfies

|χNK,1,2| ď CA2I´2γpsq|y|2kpK`1q, povided that s ě s12,3pAq.

By the same way to (5.22), we get the following bound

|QnpχNK,1,2q| ď CA2I´2γ`n´M´2kpK`1qpsq.

By repeating a similar process as for (5.30), we obtain

|P´ pχNK,1,2q| ď CA2I´2γpsqpI´M psq ` |y|M q,

provided that K ě K12,3pMq(fixied at the end of the proof).
For NK,1,1, we decompose as follows

NK,1,1 “
ÿ

0ď|n|ďK
0ď|m|ďK

2ď|n|`|m|ďK
0ďℓďK

řrMs

j“1 jpnj`mjq`2kℓďrMs

cn,m,ℓ,Kb
ℓy2kℓΠ

rMs

j“1q
nj

j q̄
mj

j H
nj`mj

j

`
ÿ

0ď|n|ďK
0ď|m|ďK

2ď|n|`|m|ďK
0ďℓďK

řrMs

j“1 jpnj`mjq`2kℓěrMs`1

cn,m,ℓ,Kb
ℓy2kℓΠ

rMs

j“1q
nj

j q̄
mj

j H
nj`mj

j

“ NK,1,1,1 `NK,1,1,2, respectively.

Since NK,1,1,1 is a polynomial in y of degree less or equal than rM s, it follows that

P´pχNK,1,1,1q “ ´P pp1 ´ χqNK,1,1,1q “ ´P´pχcNK,1,1,1q.

In a similar way in (5.30), we have

|P´pχcNK,1,1,1q| ď |χcNK,1,1,1| ` CA2I´2γpsqe´
Ipsq

16

ÿ

nďrMs

p1 ` |y|nq ď CA2I´2γpsqpI´M ` |y|M q,

provide that s ě s12,4pA,Mq.
Estimate for NK,1,1,2, we firstly have the fact that

|χNK,1,1,2| ď CA2I´2γpsq
ÿ

0ď|n|ďK
0ď|m|ďK

2ď|n|`|m|ďK
0ďℓďK

řrMs

j“1 jpnj`mjq`2kℓěrMs`1

|χpyq||y|2kℓ
´

I´
řrMs

j“0 jpnj`mjq
psq ` |y|

řrMs

j“0 jpnj`mjq
¯

ď CA2I´2γpsqpI´M psq ` |y|M q, since

rMs
ÿ

j“0

jpnj `mjq ` 2kℓ ě rM s ` 1 and |y| ď 1.
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Additionally, we have

|QnpχNK,1,1,2q|

ď CA2I´2γpsq
ÿ

0ď|n|ďK
0ď|m|ďK

2ď|n|`|m|ďK
0ďℓďK

řrMs

j“1 jpnj`mjq`2kℓěrMs`1

ż

R
|y|2kℓ

´

I´
řrMs

j“0 jpnj`mjq
psq ` |y|

řrMs

j“0 jpnj`mjq
¯

|Hnpy, sq|ρspyqdy

ď CA2I´2γ`n´rMs´1psq,

where the last estimate is obtained by the same technique as in (5.22) and the fact that
řrMs

j“0 jpnj `

mjq ` 2kℓ ě rM s ` 1.
Consequently,

|P´pχNK,1,1,2q| ď |χNK,1,1,2| `
ÿ

nďrMs

|QnpχNK,1,1,2q||Hn|

ď CA2I´2γpsqpI´M psq ` |y|M q ` CA2I´2γpsq
ÿ

nďrMs

In´rMs´1psqpI´npsq ` |y|nq

ď CA2I´2γpsq
`

I´M psq ` |y|M
˘

.

Combining the established estimates, we conclude that

|P´pχNq| ď |P´pχNK,1q`| ` |P´pχNK,2q| `

ˇ

ˇ

ˇ
P´pχÑKq

ˇ

ˇ

ˇ

ď |P´pχNK,1,1,1q`| ` |P´pχNK,1,1,2q`| ` |P´pχNK,1,2q`| ` |P´pχNK,2q| `

ˇ

ˇ

ˇ
P´pχÑKq

ˇ

ˇ

ˇ

ď CA2I´2γpsqpI´M psq ` |y|M q,

which concludes (5.31). Finally, we get the conclusion of the lemma.

+ Seven term Dspqq “ ´
p` iδ

p´ 1
4kby2k´1I´2psqeb∇q.

Lemma 5.16. For all s P rs0, s̄s, and s, τ P rs0, s̄s, s ą τ , it holds that

ˇ

ˇ

ˇ
K0,s,τ pP´p~Dpqqqpτqq

ˇ

ˇ

ˇ

s
ď Ce

´
p

p´1
ps´τq

ˆ

1 `
1

?
s´ τ

˙

AI´1´γpτq,

ˇ

ˇ

ˇ
Ks,τ pP´pzDpqqqpτqq

ˇ

ˇ

ˇ

s
ď C

´ s´τ
p´1

ˆ

1 `
1

?
s´ τ

˙

AI´1´γpτq,

where ~Dpqq “ Qℑ,δpDτ pqqq and {Dτ pqq “ Qℜ,δpDτ pqqq with Qℑ,δ and Qℜ,δ defined in (3.24).

Proof. First, we observe that the proof of the two estimates are the same. So, it is sufficient to give
the proof to the first one. According to the definition of Qℑ,δ, we can write

K0,s,τ pDτ pqqq “ Qℑ,δ pK0,s,τDτ pqqq .

By the same argument of [9, Lemma 5.13] in combining with Lemma 6.1, we obtain the following
estimate

|K0,s,τ pDτ pqqq|s ď CI´1´γpτq

ˆ

1 `
1

?
s´ τ

˙

,
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which yields

|Qℑ,δpDτ pqqq|s ď CI´1´γpτq

ˆ

1 `
1

?
s´ τ

˙

.

Thus, the first estimate in the lemma follows. Finally, we conclude the proof of the lemma.

+ Eighth term Rspqq “ y2k´2I´2psqeb
`

α1 ` α2y
2keb `

`

α3 ` α4y
2keb

˘

q
˘

. We have the follow-
ing result.

Lemma 5.17. For all s P rs0, s̄s, it hold that we then have

|P´ pRpqqq| ď CI´2γ
`

I´M psq ` |y|M
˘

.

Proof. The result is quite the same Lemma as 5.13. We kindly refer the reader to check the detail.

5.3. Conclusion of the proof of Proposition 4.7.

We consider pq, bqpsq P VA,γ,b0,θ0psq,@s P rs0, s̄s. In addition, we let γ ď γ3pb0q and s0 ě s3pγ, b0q

such that Lemmas 5.1-5.9 are valid.
- Proof of (i) of Proposition 4.7: First we prove the smallness of the modulation parameter θ given

by (i) of Proposition 4.7. We project equation (2.9) on Ȟ0 “ iH0, using the fact that q̌0 “ 0 and
Lemma 5.4 we get

Bsq̌0 “ 0 “ ´θ1psqppp´ 1q ` p1 ` δ2qq̂0q ` P̌0pT pqqq ` P̌0pNpqqq ` P̌0pDsp∇qqq ` P̌0pRspqq ` V pqqq,

then, we obtain by estimations given in Lemmas 5.3, 5.6, 5.7, 5.8 and 5.9

|θ1psq| ď CI´2γpsq.

- Proof of (ii) of Proposition 4.7: We project equation (2.9) on Ĥ2k and take on consideration that
q̂2k ” 0 and applying the results in Lemmas 5.1-5.9, we obtain

|b1psq| ď CI´2γpsq “ Ce´γp1´ 1
k qs. (5.34)

Besides that, we have bps0q “ b0, then we derive

|bpsq ´ b0| ď

ż s

s0

|b1pτq|dτ ď C

ż s

s0

I´2γpτqdτ,

which implies
3

4
ď bpsq ď

5

4
b0,@s P rs0, s̄s,

provided that s0 ě s3pγ, b0q large enough. Thus, we get the conclusion of item (ii).

- Proof of (iii) of Proposition 4.7:
By Lemmas 5.1-5.9, (i) and (ii) of Proposition 4.7, we obtain for all n P t0, ..rM s},

ˇ

ˇ

ˇ
Bsq̂n ´

´

1 ´
n

2k

¯

q̂n

ˇ

ˇ

ˇ
ď CI´2γpsq,@s P rs0, s̄s,

ˇ

ˇ

ˇ
Bsq̌n `

n

2k
q̌n

ˇ

ˇ

ˇ
ď CI´2γpsq,@s P rs0, s̄s

which concludes item (iii) of Proposition 4.7.

- Proof of (iv) of Proposition 4.7 First, we reply on equation (2.9) and the decomposition in
(3.31) to obtain the following system

"

Bsq̂ “ Lspq̂q ` R1,
Bsq̌ “ L0,sq̌ ` V q̌ ` R2,
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where L0,s and Ls respectively defined as in (3.7) and (3.8), and

V “ 1 ´ pp´ 1qeb,

R1 “ Qℜ,δ

`

b1psqBpqq ` iθ1psqT pqq `Npqq ` Dsp∇qq ` Rspqq
˘

,

R2 “ Qℑ,δ

`

b1psqBpqq ` iθ1psqT pqq `Npqq ` Dsp∇qq ` Rspqq
˘

.

Applying the infinite projection P´ defined as in (3.21), we get
$

’

&

’

%

Bsq̂´psq “ Lsq̂´ ` P´ pR1q ,

Bsq̌´psq “ L0,sq̌´ ` V q̌´

` pP´pV q̌q ´ V q̌´q ` P´pR2q.

In particular, we can write the above system in integral form as follows
$

’

&

’

%

q̂´psq “ Ks,σ q̂´pσq `
şs
σ Ks,τ pP´ pR1q pτqq dτ,

q̌´psq “ K0,s,σ q̌´pσq `
şs
σ K0,s,τ pV q̌´pτqq dτ

`
şs
σ K0,s,τ pP´pV q̌q ´ V q̌´ ` P´ pR2q pτqq dτ.

Now, we claim the following

Claim 5.18. Let p̄ “ minpp, 2q, then it holds that

|Ks,τ pP´ pR1q pτqq|s ď Ce
´ s´τ

p´1 I´
p̄`1
2

γpτq,

|K0,s,τ pP´pV q̌q ´ V q̌´ ` P´ pR2q pτqq|s ď Ce
´

p
p´1

ps´τq
I´γpτq,

(5.35)

provided that s0 ě s14pAq.

Proof. As the estimates involving to R1 and R2 are the same, we will just give the proof of the
estimate involving to R2. Indeed, we use (5.18) to obtain

|pP´pV q̌q ´ V q̌´q pτq|τ ď CI´γpτq.

Additionally, the infinite projection P´ commutes with Qℜ,δ and Qℑ,δ. Hence, we apply a priori
estimates established in Lemmas 5.10 - 5.17 to obtain

|P´ pR2q pτq|τ ď CI´
minpp,2q`1

2
γpτq,

provided that τ ě σ ě s0 ě s14,1pAq. Thus, we combine with the semigroup estimates in Lemma
6.1 to derive

|K0,s,τ pP´ pR2q pτqq|τ ď Ce
´

p
p´1

ps´τq
I´

minpp,2q`1
2

γpτq

provided that γ P
`

0, 12
˘

and we obtain (5.35).

Now, let us give the proof of item (iv) of Proposition 4.7. Taking | ¨ |s-norm defined in (3.37)
and using Lemma 6.1, we obtain

|q̂´psq|s ď e
´ s´σ

p´1 |q̂´pσq|σ `

ż s

σ
|Ks,τ pP1pτqq|s dτ

ď e
´ s´σ

p´1 |q̂´pσq|σ `

ż τ

σ
e

´ s´τ
p´1 I´

p̄`1
2

γpτqdτ,

|q̌´psq|s ď e
´

p
p´1

ps´σq
|q̌´pσq|σ `

ż s

σ
}V}L8pRq|q̌pτq|τdτ `

ż s

σ
|Ks,τ pP2pτqq|s dτ

ď e
´

p
p´1

ps´σq
|q̌´pσq|σ `

ż s

σ
|q̌´pτq|τdτ `

ż s

σ
e

´
p

p´1
ps´τq

I´γpτqdτ,
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since }V }L8 ď 1. By using Grönwall’s lemma, we get

|q̂´psq|s ď e
´ s´σ

p´1 |q̂´pσq|σ ` C
´

I´
p̄`1
2 psq ` e

´ s´σ
p´1 I´

p̄`1
2 pσq

¯

,

and

|q̌´psq|s ď e
´ s´σ

p´1 |q̌´pσq|σ ` C
´

I´γpsq ` e
´ s´σ

p´1 I´γpσq

¯

.

which concludes the proof of item (iv) and also finish the proof of Proposition 4.7.

6. Spectral gap estimates on semigroups

In this section, we provide spectral gap estimates for semigroups L0,s and Ls. More precisely,
the results read.

Lemma 6.1. Let us consider L0,s and Ls defined as in (3.7) and (3.8), and their semigroup be
K0,τ,σ and Kτ,σ, respectively. It holds that

|K0,τ,σq´|τ ď Ce
´

p
p´1

pτ´σq
|q´|σ, (6.1)

|Kτ,σq´|τ ď Ce
´ 1

p´1
pτ´σq

|q´|σ , τ ě σ, (6.2)

where | ¨ |σ defined as in (3.37).

Proof. The technique of the proof is based on [3]. First, we derive from (3.12) that

Kτ,σ “ eτ´σK0,τ,σ.

Then, (6.2) is a direct consequence of (6.1). Indeed, let us assume that (6.1) holds. Hence, it
follows that

|Kτ,σq´|τ “ eτ´σ |K0,τ,σq´|τ ď Ceτ´σe
´

p
p´1

pτ´σq
|q´|σ,

which yields (6.1). Now, it suffices to prove (6.1). Let us define

Θpzq “ q´

`

zL´1
σ

˘

and Θ̃pzq “ K0,τ,σq´pL´1
τ zq. (6.3)

Using (3.12) again, we obtain

Θ̃pzq “ K0,τ,σpq´qpL´1
τ zq “

ż

R
F

´

e
τ´σ
2k L´1

τ z ´ y1
¯

q´py1qdy1

“
1

a

4πp1 ´ e´pτ´σqq

ż

R
exp

˜

´
pze´ τ´σ

2 ´ z1q2

4p1 ´ e´pτ´σqq

¸

q´pI´1
σ z1qdz1

“

ż

R
epτ´σqLpz, z1qΘpz1qdz1,

where epτ´σqLpz, z1q defined by

epτ´σqLpz, z1q “
1

a

4πp1 ´ e´pτ´σqq
exp

˜

´
pze´ τ´σ

2 ´ z1q2

4p1 ´ e´pτ´σqq

¸

.

- The case τ ´ σ ď 1: From (3.37), we have

|Θpzq| ď I´M pσqp1 ` |z|M q|q´|σ.

Now, we apply the classical estimate in [2, Lemma 4, page 555] that we obtain
ˇ

ˇ

ˇ
Θ̃pzq

ˇ

ˇ

ˇ
ď CI´M pσqp1 ` |z|M q |q´|σ .

Returning the original variable z “ Iτy, we obtain

|K0,τ,σq´pyq| ď CI´M pσqIM pτqpI´M pτq ` |y|M q|q´|σ,
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which implies

|K0,τ,σq´|τ ď CI´M pσqIM pτq|q´|σ ď Ce´
rMs`1

2
pτ´σq|q´|σ, since τ ´ σ ď 1.

- The case τ ´ σ ě 1: We use the following decomposition

Θ̃pzq “

ż

R
N pz, z1qfpz1qdz1, (6.4)

where

N pz, z1q “
e

pz1q2

4

a

4πp1 ´ e´pτ´σqq
exp

˜

´
pze´ τ´σ

2 ´ z1q2

4p1 ´ e´pτ´σqq

¸

and fpz1q “ e´
pz1q2

4 Θpzq.

Since
pze´

ρ
2 ´ z1q2

1 ´ e´ρ
´ pz1q2 “ ´z2 `

pz ´ z1e´
ρ
2 q2

1 ´ e´ρ
,

we can write

N pz, z1q “
e

z2

4

a

4πp1 ´ e´pτ´σqq
exp

˜

´
pz ´ z1e´ τ´σ

2 q2

4p1 ´ e´pτ´σqq

¸

.

So, we have
ˇ

ˇBn
z1N pz, z1q

ˇ

ˇ ď Ce´
npτ´σq

2 p|z| ` |z1|qne
pz1q2

4 epσ´τqLpz, z1q, for all n ě 0, n P N. (6.5)

Next, let us define

f p´m´1qpzq “

ż z

´8

f p´mqpz1qdz1.

From (6.3), we have
ż

R
pz1qmfpz1qdz1 “ 0 for all m P t0, ..., 1u and |fpzq| ď I´M

σ p1 ` |z|M qe´
pzq2

2 |q´|σ.

It is similar to [2, Lemma 6, page 557], we can estimate
ˇ

ˇ

ˇ
f p´mqpzq

ˇ

ˇ

ˇ
ď Ce´

pz1q2

2 I´M
σ p1 ` |z|qM´m, for all m ď rM s ` 1. (6.6)

Now, by using integration by part in (6.4) then combining with estimates (6.5) and (6.6), we obtain

|Θ̃pzq| “

ˇ

ˇ

ˇ

ˇ

ż

R
B

rMs`1
z1 N pz, z1qf p´rMs`1qpz1qdz1

ˇ

ˇ

ˇ

ˇ

ď Ce´
rMs`1

2
pτ´σqI´M

σ p1 ` |z|M q|q´|σ.

Since (2.15) and the fact M ď rM s ` 1, we have then

|Θ̃pzq| ď Ce
M
2

pτ´σqI´M
σ p1 ` |z|M q |q´|σ “ Ce

´
p

p´1
pτ´σq

I´M
τ p1 ` |z|M q|q´|σ,

which yields that

|K0,τ,σpq´qpyq|τ ď Ce
´

p
p´1

pτ´σq
|q´|σ .

Thus, we get the conclusion of (6.1) for the case τ ´ σ ě 1. Finally, we finish the proof of the
lemma.
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