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ABSTRACT In this work, we study the ability to use hand gestures for human-machine interaction from
wrist-worn sensors. Towards this goal, we design a wrist-worn prototype to capture RGB video stream
of hand gestures. Then we built a new wrist-worn gesture dataset (named WiGes) with various subjects
in interaction with home appliances in different environments. To the best of our knowledge, this is the
first benchmark released for studying hand gestures from a wrist-worn camera. We then evaluate various
CNN models for vision-based recognition. Furthermore, we deeply analyze the models that produce the best
trade-off between accuracy, memory requirement, and computational cost. We point out that among studied
architectures, MoviNet produces the highest accuracy. Then, we introduce a new MoviNet-based two-stream
architecture that takes both RGB and optical flow into account. Our proposed architecture increases the Top-
1 accuracy by 1.36% and 3.67% according to two evaluation protocols. Our dataset, baselines, and proposed
model analysis give instructive recommendations for human-machine interaction using hand-held devices.

INDEX TERMS Convolutional neural network, hand gesture recognition, human-machine interaction,

wearable sensors.

I. INTRODUCTION

The use of hand gestures provides an attractive alternative
to cumbersome interface devices in human-computer inter-
action (HCI). In the literature, the number of studies on
this topic has significantly increased in recent years due to
their wide range of applications [1], [2], [3], [4] in virtual
reality, games, and healthcare. In such applications, gestures
are acquired by sensors and then automatically inferred and
mapped to a finite set of predefined control commands. Com-
mon sensors used for this task are ambient cameras or wear-
able Inertial Measurement Units (IMUs). Ambient cameras
give rich information including the human body, human hand
in action, and background. The trajectory of hands observed
by an ambient camera provides the main characteristic to

The associate editor coordinating the review of this manuscript and

approving it for publication was Shovan Barma

distinguish between gestures. However, static camera-based
systems are limited by the camera field of view. If we want
to control home appliances in a large space, it may require
a large number of installed cameras to cover the whole
area [5], [6]. Regarding wearable motion sensors, thanks to
their mobility and low cost, they can overcome the above
issues of ambient cameras [7], [8]. Nevertheless, motion data
are very sensitive to noise and lack the capability of explana-
tion. Using wearable cameras is an alternative solution. Some
works proposed using a camera mounted on the head or the
chest of the subject [9], [10]. We argue that such mounting
positions are not comfortable for daily use.

This paper proposes a solution for hand gesture recognition
using a wrist-worn camera. First, we design a smart-watch-
like prototype with an integrated camera. Such a mounting
position is more suitable and comfortable for users to wear
than head or chest mounting. Some similar wrist-worn

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

53262 For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 11, 2023


https://orcid.org/0000-0002-2635-6449
https://orcid.org/0000-0001-6323-6959
https://orcid.org/0000-0001-5466-0539
https://orcid.org/0000-0002-6553-6135
https://orcid.org/0000-0003-3133-3361
https://orcid.org/0000-0001-9541-3905
https://orcid.org/0000-0003-2880-4417
https://orcid.org/0000-0003-0973-0889
https://orcid.org/0000-0002-5646-8505
https://orcid.org/0000-0002-7354-1524
https://orcid.org/0000-0001-8822-7362

H.-Q. Nguyen et al.: Hand Gesture Recognition From Wrist-Worn Camera for Human—Machine Interaction

IEEE Access

designs have been introduced in [11], [12], and [13]. How-
ever, they usually convey a number of limitations, i.e., types
and mounting positions of sensors being inconsistent, activi-
ties being collected in different contexts (daily life activities
or finger taps only), or not publically available datasets. With
the designed prototype, we collect a set of dynamic gestures.
Concerning hand gesture recognition methodology, we inves-
tigate and produce baseline results with some state-of-the-
art CNN models. We finally propose a novel two-stream
MoviNet architecture that processes RGB and optical flow
simultaneously to improve the overall accuracy. In summary,
the main contributions of this paper are as follows:

1 We design a system that consists of a wrist-worn device
connected to an embedded computer for capturing visual
data of human hand gestures. This system can be utilized
in various practical applications, such as human-machine
interaction or healthcare.
We collect and publish a new dataset of twelve dynamic
hand gestures using the wrist-worn device with 50 sub-
jects in the context of home-appliance control. To the best
of our knowledge, this is the first dataset of hand gestures
captured by a wrist-worn camera publicly available to the
research community.
We investigate various CNN architectures and their per-
formance in terms of accuracy, memory footprint, and
computational time. They serve as baseline approaches
for further improvements as well as for finding suitable
architectures for the deployment of practical applications.
iv. We propose a two-stream MoviNet architecture that takes
both RGB and optical flow into account. It improves the
Top-1 accuracy by 1.36% (from 94.87% to 96.23%) and
3.67% (from 94.81% to 98.48%) compared to single RGB
stream MoviNet according to two evaluation protocols on
our collected dataset.
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Figure 1 illustrates the main components of our proposed
framework. It contains six parts: designing the wearable
device for collecting data, designing the hand gesture set
for human-machine interaction, conducting data collection
and annotation, implementing and evaluating the baseline
methods as well as proposing a new method, analyzing and
selecting the best model to be deployed on edge device for
application of human-machine interaction.

The remaining sections of this paper are organized as
follows: Section II briefly reviews related works on existing
wearable devices, gesture datasets, and hand gesture recogni-
tion methods. The new prototype of the wrist-worn device
and the collected dataset are presented in Section III. The
proposed framework for dynamic hand gestures recognition
is described in Sections IV. Section V reports experimental
results on our dataset using some baseline CNNs. Finally, fur-
ther discussions and conclusions are presented in Section VI.

Il. RELATED WORKS

Human action and dynamic hand gesture recognition, in par-
ticular, have been highly active research topics recently.
A myriad of methods has been proposed to tackle this
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task [14], [15]. The methods differ in the type of sensors
employed to capture hand gestures (e.g., RGB, RGB-D,
Gyro/IMU/Cap), as well as the recognition algorithms used
to deal with video sequences [13], skeletal sequences [16],
or time-series data [17]. Generally, any human action recog-
nition method could be repurposed for hand gesture recogni-
tion. In the following, to condense the paper, we review the
works directly relevant to ours.

A. EXISTING WEARABLE DEVICES, DATASETS, AND
APPLICATIONS

The number of wrist-worn prototypes, as well as the number
of egocentric datasets of hand gestures compared to those
captured by ambient cameras, are still very limited. The
type, the characteristics, and the mounting position of each
integrated sensor vary from prototype to prototype. The activ-
ities are dependent on applications. Table 1 summarizes the
attributes of existing datasets of hand gestures collected by
wrist-worn devices and their availability.

In [18], Maekawa et al. designed a wrist-worn device inte-
grating a camera, a microphone, an accelerometer, and a com-
pass. Their objective was to collect data using heterogeneous
sensors for object-based action recognition. The dataset con-
tains 15 daily life activities with a duration from 0.67 to
3.65 minutes. Unfortunately, the dataset is not available for
evaluation. Ohnishi et al. proposed a network to capture and
recognize activities of daily living using a wrist-mounted and
a head-mounted camera [13]. The wrist-mounted camera also
gazes at the hand, allowing to facilitate the observation of
the hand when interacting with objects. Twenty-three ADL
classes were collected and annotated using both cameras.
Yeo et al. [19] introduced a prototype of a wearable camera
with a view of the opisthenar (back of the hand) area. The
device used a single infrared camera (Leap Motion device)
with an active infrared light source for easy removal of
the background. They collected ten static hand postures and
five individual finger tapping actions for dynamic gestures.
In [20], [21], and [11], the authors deployed an RGB camera
worn on the backside of user’s right to capture hand gestures
for human-machine interaction application. In [21], only
static hand postures were collected. Chen et al. introduced
another work [11] which collected dynamic hand gestures
for human-robot interaction applications. Ten gestures were
collected by a wrist-worn camera from 15 subjects. In [22],
Wau et al. designed a wrist-worn camera to capture the fingers
for hand pose estimation task. Ten static gestures of ASL dig-
its and six dynamic gestures of finger tapping were collected
with this device.

B. HAND GESTURE RECOGNITION FROM WRIST-WORN
CAMERAS

The number of works on hand gesture recognition from
wrist-worn devices, especially wrist-worn cameras, is finger
countable. Basically, most researchers tried to demonstrate
the possibility to recognize gestures from a wrist-worn cam-
era with existing techniques without considering practical
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aspects of deployment on edge or low-resource devices.
Maekawa et al. [ 18] converted RGB images to HSV (Hue Sat-
uration Value) color space, then utilized K-means clustering
to group pixels into K classes and ranked them in terms of
information gain. Then a histogram of color was computed
from top-m candidate colors as a feature vector for each
sequence of frames of one gesture. Finally, a combination of
Adaboost with HMM (Hidden Markov Model) was deployed
to recognize gestures collected from wrist-worn cameras.
Chen et al. [21] first cropped the hand region and converted
the image into Lab color space. Then Lazy Snapping algo-
rithm is adopted for segmentation of the hand that served
for temporal hand segmentation. For gesture recognition,
they extracted SURF (Speeded up robust features) features
and tracked them during the time. Finally, the dynamic time
warping (DTW) algorithm was deployed for the classification
of gestures. In [13], the authors extracted features from each
video frame using a VGG-16 model. Then, a weighted Vector
of Locally Aggregated Descriptors (VLAD) was applied for
Video Pooling on Convolutional Neural Network (CNN)
descriptors. The authors also combined deep features with
hand-crafted features (i.e., improved Dense Trajectory - iDT)
to enhance the classification performance of Support Vector
Machine (SVM). Wu et al. proposed a CNN model, namely
DorsalNet, that takes RGB and motion history as inputs to
generate 3D hand pose [22]. DorsalNet consists of 3 parts:
the pre-processing stage with the encoder-decoder network
for hand masking and the motion image computation; the
two-stream Long-Short Term Memory (LSTM) CNN with
Kalman filter as feature extractor; and the hand simulator
which reconstructs the finger angles. For gesture recognition,
they appended a Multilayer Perceptron (MLP) just after the
DorsalNet.

Ill. PROTOTYPE DESIGN AND DATA COLLECTION

A. PROTOTYPE DESIGN

We use an ordinary low-cost wide-angle RGB camera. The
camera model is IMX219-160, which gives the highest res-
olution of 3280 x 2464 at 15 fps, and a side field of view
of 160°. At 1280 x 720 resolution, the acquisition rate may
reach 90 fps. A device that integrates the camera is worn
on the backside of user’s wrist. As a result, the camera will
capture images from the back of the hand. The camera is
connected to an embedded computer (Jetson Nano) to transfer
data through a CSI port. To accommodate greater flexibility
for the subject, we developed a compact pack to put the
embedded computer inside and power the computer for up
to four hours using a 5v 10000mA battery. The solution for
wireless connection between the sensors and the embedded
computer is under consideration. Figure 2 illustrates the final
design of our prototype.

B. DATASET COLLECTION AND ANNOTATION

1) DESIGN OF HAND GESTURE SET

As mentioned in the related works section, there are some
existing works on human hand gesture recognition using
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wearable sensors. However, each work has designed and built
a proper dataset for a specific purpose, which makes it impos-
sible to generalize or re-use them in different applications.
Moreover, most of them are not publicly available. Our work
aims to develop a system for controlling home appliances
(e.g., fans, air conditioners, television) through hand gestures
captured by wrist-worn devices. As a consequence, a new set
of hand gestures is designed. The main required characteristic
for any new gesture set in human-machine interaction is that
they have to be intuitive, distinguishable, easy to memorize,
and performed by users.

After a careful design process, a set of twelve dynamic
hand gestures named from G; to Gp» has been designed.
The trajectory of each hand gesture is shown in Figure 3.
Each hand gesture can be mapped to one command to control
in-home appliances, such as turning on/off the light switch
or increasing/decreasing the temperature of air-conditioners.
Intuitively, according to the subjects participated in data col-
lection, these gestures are easy to perform and memorize. The
shapes of gesture trajectories are distinctive in appearance.
We will validate their discriminance by experiments in later
sections.

We recruited 12 individuals aged between 23 to 50 years
to conduct a survey and evaluate our gesture set. Based on
the easy-to-implement criteria, 50% of the participants found
the gestures to be very easy to implement, 25% found them
easy, and 25% found them normal. Regarding memorability,
8.3% of participants could memorize the gestures after the
first time, 50% could do so after the second time, and 41.73%
after the third time. The majority of participants consent to the
use of hand gestures for controlling home appliances.

2) DATA COLLECTION AND ANNOTATION
To ease data collection by a large number of subjects in
different places, we have produced four identical kits, each
of which includes a wrist-worn camera, a Jetson Nano, and a
power supply. In all data acquisition sessions, image data was
captured at 30fps with a resolution of 1280 x 720 pixels.
We invite 50 volunteers (33 men and 17 women, aged
from 10 to 65 years old) to perform twelve designed gestures
while standing or sitting in different environments, such as
at offices, lab rooms, or at home. In each collection session,
volunteers are informed consent to provide data for research
purposes and explained how to wear the device and imple-
ment the gestures correctly. Each subject performs in his
natural manner 12 gestures; each gesture is repeated from 2 to
12 times. All visual frames from the camera are stored in the
memory of the embedded device. Furthermore, each gesture’s
starting and ending times are marked during data acquisition
via a keypad or a remote control device to facilitate the
labeling process. Therefore, all gesture instances can be auto-
matically segmented. In total, we conducted 50 sessions of
collection for 50 subjects to obtain a dataset of 5408 samples.
We obtain a multimodal dataset of 5408 gesture samples.
Figure 4 shows an example of gesture G3. The top part
of the figure shows some frames extracted from a sequence
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FIGURE 1. Schema of our proposed study.

FIGURE 2. lllustration of our designed prototype.
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FIGURE 3. lllustration of 12 hand gestures designed in our work.

captured by a third-person view camera that observes the
subject in action. The bottom part of the figure shows the
corresponding frames extracted from the wrist-worn camera.
We denote extraction time above each frame. Figure 5 shows
the mean and deviation of gesture lengths. We can observe
that the length of instances of the same gesture class may vary
depending on the way that volunteers perform the gesture.
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However, most gesture instances have a length in the range
of 60 and 80 frames.

Depending on the subjects, hand pose can be changed
or not during gesture implementation. We ask the subjects
to respect the pre-defined trajectories of gestures, but they
can relax their hand posture in their natural manner. This
naturalness represents the first challenge of our dataset. The
second challenge comes from characteristics of gestures cap-
tured by a wrist-worn camera as the camera moves according
to hand movement. It is noticed that while a third-person
view camera can observe the whole human in action and can
easily identify the trajectory of the hand (in case of occlusion
free), the wrist-worn camera focuses only on a small part
of the hand pose. As a result, when a subject implements a
dynamic hand gesture, his/her hand’s position and orienta-
tion are static relative to the camera while the background
will change. The last challenge of our dataset is the poor
quality of images due to the use of the low-cost camera.
We compare our dataset with some relevant existing ones in
Table 1. Our dataset is significant in terms of the number
of subjects, number of gesture instances, diversity of back-
ground environments, number of modalities, and accessibility
for the research community. The dataset and our pre-trained
models are available at https://www.mica.edu.vn/perso/Tran-
Thi-Thanh-Hai/MuWiGes.html.

3) EVALUATION PROTOCOL

The collected dataset is divided distinctly into training and
testing sets based on two evaluation protocols we defined for
the comparison of recognition algorithms, i.e., cross-subject
evaluation and cross-scene-subject evaluation:

o Cross-subject evaluation: This evaluation protocol
aims to evaluate the robustness of investigated models
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FIGURE 4. An example of gesture G3: 8 frames uniformly extracted from the original sequence from the third person view are shown in the top row
while the eight corresponding frames captured by the prototype are in the bottom row.
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FIGURE 5. Distribution of video lengths (i.e., number of frames) in each
gesture class of the dataset.

agnostic to the subjects. Data from 35 subjects are used
for training, and the remaining 15 subjects are used for
testing. Accordingly, the training set has 3636 video
clips (i.e., gesture instances), while the test set contains
1772 instances of 12 gestures.

o Cross-scene-subject evaluation: This evaluation pro-
tocol is double strict in the sense that the investigated
models are tested on videos of subjects and scenes both
unseen during the training process. We also select data
from 35 subjects performing the gestures in various
scenes for training and 15 remaining subjects in other
scenes for testing. Accordingly, the training set has
3633 video clips (i.e., gesture instances), while the test
set contains 1775 instances of 12 gestures.

IV. BENCHMARK EVALUATION AND PROPOSED
METHOD

A. GENERAL EVALUATION FRAMEWORK

In this work, we propose a framework for investigation and
evaluation of various CNN models for gesture recognition
from video data. We first deploy some existing baseline
models from video understanding task, then we propose a
new architecture that takes both RGB and optical flow to
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improve over the baselines. Our framework for hand gesture
recognition consists of two main phases:

1) Training phase: We pre-process video data and feed
them into various CNN models for training. Our objec-
tive is to find out the best CNN model for the given task
in terms of accuracy, memory requirement, and GFLOPs
so that it can be best suited for deployment on edge
devices.

2) Testing phase: Given a new video, we uniformly re-
sample it to produce a fixed 16-frame clip, pre-process
then input it into the trained models for inference. It out-
puts the label of a recognized gesture.

Figure 6 shows the main steps of our framework. In the
following, we will detail each step.

B. DATA PRE-PROCESSING

1) RESAMPLING DATA

The implementation of gestures varies from gesture to gesture
and from subject to subject. Consequently, the length of
videos is highly diverse as analyzed in the previous section.
To deal with the variation in video length, we adopt a tech-
nique introduced in [23]. In the training phase, each input
video is divided into K segments (K = 16 in our experiments).
From each segment, we randomly select one frame. Finally,
we get a K-frame clip as input of CNN models for each
video sample. Due to the random frame selection, we may
produce one different clip from the same gesture instance in
each training batch. This technique can be considered as data
augmentation in the training phase. However, in the testing
phase, for a fair comparison of CNN models, we utilize one
fixed clip extracted from each video by uniformly taking K
frames to remove the effect of randomness.

2) OPTICAL FLOW

Optical flow is the pattern of apparent motion of image
objects between two consecutive frames caused by the move-
ment of objects or of the camera. It is a 2D vector field
in which each vector is a displacement vector representing
the movement of points from the first frame to the second
frame. For action recognition, optical flow has been used

VOLUME 11, 2023
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TABLE 1. Comparison with existing dynamic gesture datasets captured from wrist camera (na. stands for not available).

Dataset Instances | Activities #Classes | #Subjects | Scenes Modalities Availability
Maekawa et al. 2010 [18] | na. ADL 15 10 Home-like, Lab. | RGB, Acc., Sound | No
Ohnishi et al. 2016 [13] 628 ADL 23 20 na. RGB Yes!
Jiang et al. 2017 [20] na. Air gesture 3 10 na. sEMG & IMU No
Chen et al. 2018 [11] 1350 HCI 10 15 Room, Outdoor RGB No
Yeo et al. 2019 [19] na. Finger Tapping | 5 10 na. IR Yes?
Wau et al. 2020 [22] na. Finger Tapping | 5 6 Indoor, Outdoor | RGB No?
WiGes (our dataset) 5408 HCI 12 50 Home/Office RGB Yes
Training phase
frame sequence n frames
~ 4 22

Video stream

' Random Temporal
Segment Sampling

CNN model B
P> CNN models

learning

frame sequence

Testing phase

n frames l

Uniform Sampling |

mﬁ Gesture
label

Inference
(PC / Jetson)

FIGURE 6. The proposed framework for hand gesture recognition.

as a robust feature for action representation. It sometimes
produces higher performance than RGB stream as it focuses
on characterizing transitions of objects in the scene. In this
paper, we compute the dense optical flow using the Gunnar-
Farneback algorithm [24]. Figure 7 illustrates two consecu-
tive RGB images and their corresponding dense optical flow.

C. BASELINES FOR HAND GESTURE RECOGNITION

In the following, we will briefly describe state-of-the-art 2D
architecture ResNet and some 3D known architectures such
as C3D, R(2+1)D, R3D, MobileNet, MoviNet, and Efficient-
Net. We then finally describe in detail our proposed two-
stream model.

1) C3D

The C3D model (3D deep convolution neural network) was
first introduced in [25]. This model has shown to be very
efficient for action recognition tasks and widely utilized as a
baseline. The C3D network contains eight convolutional, five
max-pooling, and two fully connected layers. The number of
filters of convolution layers from Convl to Conv5 is 64, 128,
256, 512, and 512 respectively. All 3D convolution kernels
are of size (3 x 3 x 3) with stride (1 x 1 x 1). The C3D
takes input as an image sequence (normally a 16-frame clip)
and computes the 3D convolution on each 3D cube.

2) R3D
R3D or 3D ResNet [26] is an extension of the famous residual
network ResNet [27]. R3D is developed by applying convo-
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lution with 3D kernels based on ResNet network architecture.
Similar to ResNet, R3D also has many variants such as
ResNet18 (R3D-18), ResNet34 (R3D-34), Resnet50 (R3D-
50). These networks varies in term of number of convolution
layers in each elementary block, consequently increasing the
network size. Similar to the C3D model, R3D allows one to
take a sequence of images and return a feature vector for that
sequence before passing through a classifier.

3) R2+1)D

The R2plus1D (ResNets (241)D deep neural network) model
was introduced in [28] and has shown relatively good per-
formance for extracting features for action recognition task.
Being almost similar to R3D, the only difference is that
R(2+1)D decomposes the spatial and temporal model into
two separate steps. It involves replacing 3D convolutional
filters of size (txdxd) by a (241)D block consisting of a
2D spatial convolution filter of size (1 xdxd) and a temporal
convolution filter of size (tx1x1).

4) MobileNet3D

MobileNet3D introduced in [29] is an efficient model for
mobile and embedded vision applications. The MobileNet
model is based on depth-separable convolutions. The depth-
wise separable convolution splits it into two layers, a sep-
arate layer for filtering and a separate layer for combining.
This greatly reduces computation time and model size, mak-
ing it possible to build lightweight deep neural networks.
MobileNet3D has 28 layers with the condition that the depth-
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FIGURE 7. lllustration of two consecutive frames and the computed optical flow.

wise and pointwise convolutions in each MobileNet block are
counted as separate layers.

5) EfficientNet3D

While C3D and R3D, R(2+1)D are heavy models, Effi-
cientNet3D has been introduced in [30] as an additional
resource-efficient architecture to be deployed on mobile
devices. It has been shown that proportional feature extraction
for video analysis gives relatively good results. The network
takes input images with dimensions of N x C x T x H x W,
where N and C are the batch size and channels, respectively,
H and W are the height and width of the frames, T is the
duration of video of the dataset. Each video is sampled to
32 frames, both of which are resized to 224 x 224.

6) MoviNets

Mobile Video Networks (MoViNets), which are recent works
of Kondratyuk et al. [31], belong to a family of computation-
and memory-efficient 3D CNNs to cope with streaming
video. It includes six sub-models (i.e., MoviNet a0, al,..a5)
and one assembled model (a6) of a4 and a5 that build on
image-based MobileNet [32] search space while also includ-
ing the expansion parameters of X3D. It has demonstrated
outstanding performance in terms of processing time and
accuracy in a recently developed 3D-CNN. The three first
models (MoViNets a0, al, and a2) are lightweight versions
that can be used on mobile devices such as wrist-worn
devices, hence satisfying the need in our work. Kondratyuk et
al. proposed three progressive steps to design efficient video
models: i) Build a search space (MoViNet Search Space)
on MobileNetV3 and scale it to find the best architectures
according to image resolution and FPS values, ranging from
a0 (the smallest model) to a5 (the largest one); ii) Introduce
Stream Buffer for MoviNets as a mechanism to cache feature
activations on the boundaries of sub-clips, allowing the tem-
poral receptive field to cover the whole video and requiring
no recomputation; and iii) Create Temporal Ensembles of
streaming MoViNet to recover loss of accuracy from stream
buffer.

7) OUR PROPOSED TWO-STREAM MoviNet

In this work, we propose to combine the RGB stream with the
optical flow stream to boost the recognition rate. The combi-
nation of RGB and optical flow has shown to be more efficient
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FIGURE 8. The proposed vision-based framework for hand gesture
recognition.

than single-stream because optical flow captures better the
motion information while RGB extracts the appearance fea-
tures of the scene [6], [33], [34]. The work in [33] proposed a
two-stream network for video-based action recognition where
the spatial stream works with a still frame while the optical
stream works with a stack of optical flow. Both streams utilize
a 2D CNN. The authors in [34] and [6] input RGB and optical
streams into two 3D CNNs. In this work, as we explored
that MoviNet outperforms all other models, we then propose
to use MoviNet as the building block for the two-stream
framework.

We aggregate information from two CNN streams in a
simple average-of-logits late fusion method. This means we
compute the average of two probability score vectors output
by two streams, and the gesture label will be decided by the
argmax of the final vector. Without deep modifications, any
pair of deep models can be easily plugged into this frame-
work. In this study, we use the best models, MoviNet-a2* and
MoviNet-a0 for each evaluation protocol, Cross-subject, and
Cross-scene-subject, respectively (see in the experimental
section). We use a * symbol to distinguish model MoviNet-
a2 with input using a 224 x 224 image from the one with an
input resolution of 172 x 172. The framework is depicted in
Figure 8.

8) IMPLEMENTATION AND TRAINING DETAILS

In our experiments, we run the Movinet family with the
Tensorflow environment and the others with the Pytorch
environment. The Movinet-a0 is also implemented on both
these environments, and the obtained results are equivalent.
For the Pytorch environment, we use version 1.10 with
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Cuda 11.3. The training of all models is implemented with
30 epochs, CrossEntropyLoss loss function, and SGD opti-
mizer with momentum = 0.9. The learning rate is initialized
at 0.0003. The a0, a2, and a5 variants of the MoviNet model
are deployed on the Tensorflow version 2.7 environment
using their official pre-trained models. This training process
uses the RMSProp algorithm to learn the network parame-
ters. We employed a data-parallel strategy with 4 GeForce
GTX 1080 Ti GPUs to speed up training. The learning rate is
set as 0.01 and changed using a cosine decay schedule during
the training process. We experienced that these models also
reach a stable state after around 30 epochs.

V. EXPERIMENTS

A. COMPLEXITY COMPARISON OF EXPERIMENTED
MODELS

In this section, we elaborate on our findings conducted for
different network architectures on our testing dataset. Var-
ious experiments have been carried out with various vari-
ations of hyperparameters, such as the number of sam-
pling frames, temporal sampling strategies, learning rate,
input resolution, and input transformation, to optimize our
proposed two-stream frameworks. The reported results in
this work are of models with the best hyperparameters
for conducting experiments regarding system efficiency
(i.e., suitable for low-performance devices and processing
time, etc.).

e C3D and R3D are common architectures for action
recognition problems but are not suitable for real-time
and mobile applications due to their high complex-
ity. They require the most memory as their num-
ber of parameters is very high (63.37M for C3D
and 46.2M for R3D-50). They also have the highest
GFLOPs (77.3 for C3D and 80.1 for R3D-50). Efficient-
Net3D, MobileNet3D and two lightweight implemen-
tations of R3D and R(2+1)D with only 18 layers are
resource-efficient architectures. R3D-18 and R(24-1)D-
18 have similar total parameters (33.2M vs 31.3M),
which reduce nearly half of the memory requirement
compared to the conventional version R3D-50 or C3D
while keeping the same GFLOPS. EfficientNet3D and
MobileNet3D are lightweight models with only 4.72M
and 2.4M of parameters with GFLOPs of 0.06 and 1.1,
respectively. The family of three various MoviNet-based
architectures: MoviNet-a0, MoviNet-a2, and MoviNet-
a5 sorted in the complexity order. MoviNet-a0 has only
1.9M of total parameters with GFLOPs of 1.8; MoviNet-
a2 requires double the number of parameters (4M)) and
triple GFLOPs (4.9). The most complicated MoviNet-a5
requires 17.5M and GFLOPs of 23.9, which is still much
lower than R3D-18 or R(2+1)D-18.

o The last model (our proposed model) takes two streams
of RGB and optical flow to two MoviNets. As a result,
the number of parameters and GFLOPs double those of
the original MoviNet.
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B. RECOGNITION RESULTS

1) CROSS-SUBIJECT EVALUATION PROTOCOL

Table 2 shows the results according to the first evaluation
protocol. Two complex CNN models such as C3D or R3D-
50 fail to provide accordingly higher accuracy than some
lightweight models. C3D achieved Top-1 accuracy of 70.88%
which is lower than that of R3D-50 (88.54%) by 17.66%.
This significant improvement is raised by the residual block
in R3D compared to the conventional convolutional layers in
C3D.

Resource-efficient 3D models such as EfficientNet3D
and MobileNet3D achieved relatively low accuracy (52.94%
and 67.42% respectively). The Top-1 accuracy by R3D-
18 (76.85%), the lightweight version of R3D with 18 lay-
ers, reduces dramatically by 11.69% compared to R3D-50
(88.54%). However, R(2+41)D-18 increases impressive Top-
1 accuracy of 90.46% compared to his 3D version R3D-18
(76.85%) by 13.46%. It is even slightly better than R3D-
50 by 1.92%. It could be explained by the fact that the
decomposition of 3D convolution into two separate convolu-
tions (2D spatial convolution and 1D temporal convolution)
is advantageous, as indicated in [28].

All experimented MoviNet models output very high
accuracy ranging from 92.44% (MoviNet-a0) to 94.81%
(MoviNet-a2*), exceeding all CNN models mentioned above.
The best model is MoviNet-a2* with the input resolution
of 224 x 224, which achieves Top-1 accuracy of 94.81% -
1.53% higher than its variant with the resolution of 172 x
172. This can be explained by the fact that the bigger input
size would better capture the hand and background movement
than the small size. The more complex MoviNet-a5 model
fails to achieve better results than MoviNet-a2 and MoviNet-
a2* on this dataset as it uses only input with the resolution of
172 x 172 in our experiments due to its memory requirement
as well as our system’s capacity. In general, all MoviNet
models get perfect Top-5 accuracy at above 99%.

2) CROSS-SCENE-SUBJECT EVALUATION PROTOCOL

To evaluate the robustness of models to environmental
change, we conduct the second experiment according to
the second splitting data. Table 3 shows the performance
of the studied models where the subjects and the environ-
ment in the testing set are unacquainted with the training
set. We observe that the MoviNet-a0 achieved the highest
Top-1 accuracy (94.87%). It gradually decreases with the
later models MoviNet-a2 (89.41%), MoviNet-a2* (92.73%),
and MoviNet-a5 (90.06%). The worst model is MobiNet3D
(59.90%).

Comparing to the first evaluation protocol (Figure 9),
performance (Top-1 accuracy) of almost models reduces
from 2.08% (MoviNet-a2*) to 15.08% (C3D). However, the
two models get higher Top-1 accuracy (EfficientNet3D by
15.73% and MoviNet-a0 by 2.43%). In general, we found that
MoviNet is quite robust to subjects and scenes.
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TABLE 2. Cross-subject evaluation: Comparison of experimental results of experimented CNN models for hand gesture recognition.

Model Modality Pre-trained Top-1 Acc (%) | Top-5 Acc (%) | Frame Resolution | Params | GFLOPs
C3D RGB Kinetics 700 70.88 96.33 112x112 63.37TM 71.3
R3D-50 RGB Kinetics 700 88.54 99.21 224x224 46.2M 80.1
EfficientNet3D-b0 RGB Kinetics 600 52.94 89.79 224x224 4.72M 0.06
MobileNet3D_v2_1.0x RGB Kinetics 600 67.42 96.26 112x112 2.4M 1.1
R3D-18 RGB Kinetics 700 76.85 95.35 224x224 33.2M 65.9
R(2+1)D-18 RGB Kinetics 400 90.46 99.32 112x112 31.3M 81.4
MoviNet-a0 RGB Kinetics 600 92.44 99.38 172x172 1L.9M 1.8
MoviNet-a2 RGB Kinetics 600 93.28 99.66 172x172 4M 49
MoviNet-a2* RGB Kinetics 600 94.81 99.66 224x224 4M 49
MoviNet-a5 RGB Kinetics 600 92.78 99.55 172x172 17.5M 239
MoviNet-a2* OF Kinetics 600 95.59 99.43 224x224 4M 49
Two-stream MoviNet-a2* (Ours) | RGB+OF | Kinetics 600 98.48 99.83 224x224 sM 9.8

TABLE 3. Cross-scene-subject evaluation: Comparison of experimental results of experimented CNN models for hand gesture recognition.

Model Modality Pre-trained Top-1 Acc (%) | Top-5 Acc (%) | Frame Resolution | Params | GFLOPs
C3D RGB Kinetics 700 64.08 94.74 112x112 63.37M 77.3
R3D-50 RGB Kinetics 700 81.05 97.23 224x224 46.2M 80.1
EfficientNet3D-b0 RGB Kinetics 600 68.67 95.14 224x224 4.72M 0.06
MobileNet3D_v2_1.0x RGB Kinetics 600 59.90 94.51 112x112 2.4M 1.1
R3D-18 RGB Kinetics 700 73.30 95.31 224x224 332M 65.9
R(2+1)D-18 RGB Kinetics 400 83.04 98.08 112x112 31.3M 81.4
MoviNet-a0 RGB Kinetics 600 94.87 98.82 172x172 1.9M 1.8
MoviNet-a2 RGB Kinetics 600 89.41 98.93 172x172 4M 49
MoviNet-a2* RGB Kinetics 600 92.73 98.65 224x224 M 4.9
MoviNet-a5 RGB Kinetics 600 90.06 97.52 172x172 17.5M 239
MoviNet-a0 OF Kinetics 600 91.27 99.04 172x172 1.9M 1.8
Two-stream MoviNet-a0 (Ours) | RGB+OF | Kinetics 600 96.23 99.38 172x172 3.8M 3.6

TABLE 4. Comparison of experimental results of experimented CNN models on EgoGesture dataset.

‘ Model [ Modality | Pre-trained [ Top-1 Acc (%) [ Top-5 Acc (%) | Frame Resolution | Frames | Params [ GFLOPs |
C3D softmax [9] RGB - 85.1 - - 16 - -
C3D fc6 [9] RGB - 86.4 - - 16 - -
C3D+LSTM+RSTTM [9] RGB - 89.3 - - 16 - -
ResNeXt-101 [35] RGB Jester 90.94 - 112x112 16 8OM 16
C3D [35] RGB Jester 86.88 - 112x112 16 63.37M 71.3
MoviNet-a0 RGB Kinetics 600 90.26 97.11 172x172 16 1.9M 1.8
MoviNet-a0 OF Kinetics 600 80.63 94.92 172x172 16 1.9M 1.8
MoviNet-a2* RGB Kinetics 600 88.57 97.17 224x224 16 4M 49
MoviNet-a2* OF Kinetics 600 83.24 95.26 224x224 16 4M 4.9
Two-stream MoviNet-a0 (Ours) RGB+OF | Kinetics 600 91.22 97.47 172x172 16 3.8M 3.6
Two-stream MoviNet-a2* (Ours) | RGB+OF | Kinetics 600 89.97 97.69 224x224 16 8M 9.8
ResNeXt-101 [35] RGB Jester 93.75 - 112x112 32 8OM 16
C3D [35] RGB Jester 90.57 - 112x112 32 63.37M 71.3
MoviNet-a0 RGB Kinetics 600 91.66 97.71 172x172 32 1.9M 1.8
MoviNet-a0 OF Kinetics 600 83.81 95.5 172x172 32 1.OM 1.8
MoviNet-a2* RGB Kinetics 600 86.92 96.89 224x224 32 iM 4.9
MoviNet-a2* OF Kinetics 600 71.93 92.93 224x224 32 4M 49
Two-stream MoviNet-a0 (Ours) RGB+OF | Kinetics 600 92.14 97.93 172x172 32 3.8M 3.6
Two-stream MoviNet-a2* (Ours) | RGB+OF | Kinetics 600 88.03 97.43 224x224 32 sM 9.8

Optical flow shows its great advantage when there are
continual movements between consecutive frames. We take
the best model on RGB (i.e., MoviNet-a2*) to train on optical
flow data, the Top-1 accuracy is 95.59% which is 0.78%
higher than MoviNet-a2* on RGB stream (94.81%).

3) EVALUATION OF OUR PROPOSED MODEL

We combine the two streams, RGB and optical flow by late
fusion; each stream utilizes a MoviNet-a2*. With the first
evaluation protocol, the highest Top-1 accuracy is obtained
(98.48%), which is 2.89% and 3.67% higher than MoviNet-
a2* on single optical flow and single RGB stream, respec-
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tively (Table 2). This proves that our two-stream method is
capable of exploring both temporal movement and appear-
ance change well across time.

With the second evaluation protocol, MoviNet-a0 per-
formed worse on the optical flow stream with only 91.27%
of Top-1 accuracy compared to the RGB stream with 94.87%
of Top-1 accuracy. However, when we combine RGB and
optical flow streams, the Top-1 accuracy improved to 96.23%,
which is 1.36% higher than MoviNet-a0 with RGB and 3.5%
higher vs. MoviNet-a0 with optical flow stream (Table 3).

Figure 9 compares the Top-1 accuracy of different mod-
els on RGB or derived RGB with two evaluation protocols.
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FIGURE 10. Comparison of the performance of vision-based models for
each gesture in the cross-subject evaluation protocol.

In most cases, the Top-1 accuracy obtained by models is
reduced from 2.08% to 7.52% in the cross-scene-subject
evaluation protocol than in the cross-subject evaluation pro-
tocol. It shows that background change has an impact on the
recognition rate. However, in both protocols, our proposed
two-stream model achieved the highest Top-1 accuracy of
98.48% and 96.23%.

Figure 10 and Figure 11 show the Top-1 accuracy of each
gesture class using RGB, optical flow, or combined RGB and
optical flow using MoviNet-a2* for the first evaluation proto-
col and using MoviNet-a0 for the second evaluation protocol.
We found that the combination improves the accuracy for
many gesture classes.

Figure 12 depicts an example of misclassification. It can
be seen that the mistaken G (the two middle rows) and the
proper Gg (the last two rows) share the same trend of g,
(angular velocity along the z-axis). This example shows that
our wrist-worn prototype could achieve better performance
by combining both images from camera and motion data.

4) EVALUATION OF THE PROPOSED TWO-STREAM MoviNet
ON EgoGesture DATASET

To confirm the efficiency of our proposed two-stream
MoviNet, we conduct experiments on another benchmark
Egogesture [9]. The Egogesture dataset was collected by
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FIGURE 11. Comparison of the performance of vision-based models for
each gesture in the cross-scene-subject evaluation protocol.

an egocentric camera Intel RealSense SR300 that provides
both RGB and depth modalities with a resolution of 640 x
480 with a frame rate of 30 fps in four indoor and two
outdoor scenes. 50 distinct subjects were invited to perform
83 classes of gestures. Totally, 24,161 video gesture sam-
ples and 2,953,224 frames are collected in RGB and depth
modality, respectively. We follow the same data-splitting
strategy for training and testing our framework as in the
original paper. Specifically, we trained MoviNet family mod-
els with both training and validation sets (i.e., a total of
1450 videos, of which 1239 videos belong to the training
set and 411 belong to the validation set) and test the model
with the testing set (i.e., 431 videos). To speed up the training
process, the labeled actions in each RGB video are split into
smaller clips but keep their original video’s parameters such
as resolution, frame rate, and so on. These clips are then
converted to the corresponding OF clips for OF branch of our
proposed framework.

We conduct two types of experiments where the frames
per clip are 16 and 32 respectively. Table 4 shows the exper-
imental results on the Egogesture dataset. We compare our
performance with existing results using C3D and ResNeXt-
101 reported in [35]. It is noticed that on 16-frame clip config-
uration, our models achieved the highest performance (Top-1
accuracy of 91.22%) whereas the number of parameters and
GLOPS is significantly reduced, even with the use of RGB
and Optical Flow. The two-stream model helps to increase
Top-1 accuracy from 90.26% (MoviNet-a0) to 91.22% or
88.57% (MoviNet-a2*) to 89.97% in case of traditional RGB
modality. When testing with 32-frame clips, the performance
of our two-stream MoviNet-a0 and MoviNet-a2* have shown
improvement over the previous experiment with 16 frames,
and remains still very high (Top-1 accuracy of 92.14% and
88.03% respectively). It is not much higher than the case
of 16-frame clips due to the low memory capacity of our
training server. We have to set the batch size quite small
(i.e., 4 and 2 with Movinet-a0 and Movinet-a2*, respectively)
while ResNeXt-101 in [35] utilized batch size of 8. However,
the difference in accuracy (e.g., Top-1 accuracy) between
the baseline (ResNeXt-101) and our proposal is little while
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FIGURE 12. An example of a misclassification of the model MoviNet-a2* of the same subject. The first two rows are captured images of a typical
gesture G; and its corresponding gyroscope data. The following two rows are data of another instance of G, which is confused with gesture Gg,
and the last two rows are collected data of the proper gesture Gg.

ensuring the necessary conditions to be deployable on edge
devices (i.e., 93% on ResNeXt-101 compared to 92.14% on
our two-stream Movinet-a0). We believe that these results
could be improved further with proper settings. In summary,
we confirm that our proposed model attains higher accuracy
than other existing models. The two-stream settings also
improved the accuracy of the single models of both modalities
(OF and RGB).

5) DISCUSSIONS
Although most of the studied methods achieved promising
results, our current method has some following limitations:

o The current method is only executed with segmented
videos. In a practical application where the frames come
continuously, it requires a temporal segmentation of
gestures, which in turn is a more challenging task. In our
previous work [36], we proposed a method to deal with
continuous recognition on other datasets using other
methods of recognition. We may apply the same idea
to this problem but with an adaptation for dealing with
continuous gesture recognition.

e The combined methods of OF with RGB are more
time-consuming than using a single stream which may
cause some issues when deploying it on an embedded
device. In the future, we will optimize the architecture,
(e.g. using quantization techniques) to reduce the mem-
ory footprint and computational requirement.

o The computation of OF step still relies on traditional
methods. Currently, there are several techniques to com-
pute OF using deep neural networks. We may exploit
them in an end-to-end system.

o The recognition modules are currently executed on a
separate server. We are going to deploy them on a Jetson
Xavier computer for practical application of human-
machine interaction.

VI. CONCLUSION

In this paper, we designed a sensory smart-watch-like device
and introduced a new benchmark for hand gesture recognition
from a wrist-worn camera. The dataset is challenging because
it covers many real-world issues (different in-home and office
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environments, large intra-class variability of gestures, large
extra-class similarity, and a high number of participants).
It could be considered the first dataset for training and
evaluating deep learning models. We also evaluated differ-
ent vision-based CNN models for hand gesture recognition,
including the most conventional 3D models such as C3D
and R3D, as well as lightweight models (R3D-18, R(2+1)D-
18), resource-efficient models such as MobileNet3D, Effi-
cientNet3D, and MoviNets. Our experiment shows that the
MoviNet variant gets high accuracy. Our proposed method
that combines optical flow with RGB in a two-stream
MoviNet improved the Top-1 accuracy from 1.36% to 3.37%.
Consequently, this approach could be applied to enhance the
efficiency of different SOTA works in video action classi-
fication fields. This finding can help the designers toward
practical deployment of the most suitable model on edge
devices. In the future, we will develop an application and
evaluate it with subjects in different lighting, environments.
We also study methods to detect quickly the gestures before
calling the recognizer.

In addition, in this work, as we want to focus on the
methodology to analyze actions based on hand moving from
these wrist-watch-like devices, our model could easily adapt
to any device with such a configuration. However, the compo-
nents make the device look bulkier and ““fragile”. To deploy
our device effectively in practice, we consider improving the
design to comfort the wearer better and suit actual implemen-
tation.
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