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Abstract

Efficiently representing dynamic textures (DTs) is one of significant challenges for video understanding in real imple-

mentations of computer vision applications. It is partly caused by the negative influence of the well-known issues :

noise, changes of environments, illumination, and scaling. To diminish those problems, a new approach for an effi-

cient DT description is introduced in this work by addressing the following prominent concepts. Firstly, high-order

2D/3D Gaussian-gradient filtering kernels are used for filtering a given video to obtain its Gaussian-gradient-filtered

images/volumes. Secondly, taking advantage of the bipolar properties of these images/volumes allows that a competent

model of decomposition is proposed to decompose them into corresponding collections of robust bipolar-filtered outcomes,

which are complementary for DT representation. Finally, a simple variant of Local Binary Patterns (LBPs) is applied

to extract local bipolar Gaussian-gradient features from the complemented collections for constructing discriminative

bipolar-based descriptors. Experimental results in DT recognition on benchmark datasets have remarkably validated

the interest of our proposal.
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1. Introduction

Dynamic textures (DTs) are prevalent repetition of tex-

tural appearances in temporal strings [1]. Efficiently rec-

ognizing them can be one of crucial contributions for real

applications in computer vision, such as human interac-

tion [2, 3], tracking motion objects [4, 5], object and event

detection [6, 7], crowded people [8], background subtrac-

tion [9, 10], etc. Due to the disorientation of DTs in their

motions and the negative influence of well-known issues

(e.g., environmental changes, illumination, noise, etc.) on

DT description, understanding turbulent DTs in effect is

really a significant challenge. To this end, many works
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have been attempted to utilize different techniques in or-

der to address spatio-temporal properties for DT repre-

sentation. Roughly, it can be categorized them into the

following groups of approaches.

Model-based approaches: Motivated by the concept of

Linear Dynamical System (LDS) [1, 11], many efforts have

taken it into account video analysis in order to model dis-

orientational motions of DTs. Chan et al. [12] introduced

an adaptation of LDS’s observation constituent with a

kernel-PCA (Principal Component Analysis) in order to be

able to understand dynamic properties in more complex se-

quences, e.g., those with motions of DTs recorded by mov-

ing camera, etc. In another work, Chan et al. [13] adapted

LDS for concentrating characteristics of movable objects

in videos by using a DT mixture (DTM) model to clus-

ter their similarities for DT description. Also motivated

by LDS’s concept, other efforts have been proposed to
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be compliant with modeling DT features: bag-of-systems

(BoS) [14, 15], bag-of-words (BoW) [16, 17], BoS Tree [18],

etc. Besides, Hidden Markov Model (HMM) have been

taken into account modeling DT motions: spatial-HMM

[19], multivariate-HMM [20]. In regard to the effective-

ness in representing DTs, the model-based methods have

usually obtained moderate results in DT recognition since

they have principally focused on the spatial features of

DTs while the dynamic ones are also influential informa-

tion for DT representation. In case of addressing both of

which, it can be more complicated to bring the modelings

into implementations in practice [14].

Optical-flow-based approaches: Towards capturing DT

features in natural ways, optical-flow-based approaches

have taken advantage of magnitudes and directions of nor-

mal flow for DT description: shaping and tracing the mo-

tion paths of DTs in a video [21], based on the normal

vector field and criteria of sequences [22, 23], the velocity

and acceleration [24], local image distortions and their re-

lation to optical flow [25]. Recently, Nguyen et al. [26, 27]

exploited local spatio-temporal features of motion points

subject to their trajectories extracted from a given se-

quence. In terms of effectiveness in DT representation,

the optical-flow-based approaches have obtained moderate

performance because most of them supposed the bright-

ness constancy and local smoothness in their encodings

as mentioned in [28], while the textural appearances, one

of crucial evidences for DT understanding, have been less

involved in.

Geometry-based approaches: Based on fractal tech-

niques, geometry-based approaches have attempted to im-

prove DT representation by reducing the negative elements

of environmental changes in their video analyses. Dynamic

Fractal Spectrum (DFS) [29] and Multi-Fractal Spectrum

(MFS) [30] exploited the stochastic self-similar properties

and fractal patterns to encode DTs. Since the information

of spatial domain, one of important keys for representing

DTs, has not been exploited in MFS, Ji et al. [31] fixed this

issue in Wavelet-based MFS (WMFS) model, where MFS

is integrated along with wavelet coefficients for describing

DTs in more effect. Recently, Spatio-Temporal Lacunar-

ity Spectrum (STLS) is introduced by Quan et al. [32] in

order to take lacunarity analysis in slices of a video into ac-

count DT description to benefit by local lacunarity-based

features. Baktashmotlagh et al. [33] presented Stationary

Subspace Analysis (SSA) in consideration of video’s sta-

tionary aspects to reduce dimension for DT description.

Experiments in DT classification have validated that most

of geometry-based methods often have good discrimination

on simple datasets, e.g., UCLA [11], while being difficult

to recognize DTs on the more challenging ones, e.g., Dyn-

Tex [34] and DynTex++ [35]. It may be partly due to the

lack of temporal features taken into account their fractal

analyses.

Learning-based approaches: For learning DTs, most of

learning-based approaches are situated into two trends as

follows. The first one is based on deep learning frame-

works, e.g., Convolutional Neural Networks (CNNs), in

order to learn DT features in various directions: DT-CNN

[36] and PCANet-TOP [37] learns DT features on three

orthogonal planes of a given video, Transferred ConvNet

Features (TCoF) [38] learns deep structures in still im-

ages, while D3 [39] uses concepts of “key frames” and

“key segments” for learning static and dynamic proper-

ties of sequences. The second trend is based on dictionary

learning methods to represent DT features: based on an

atom-learned dictionary [40], based on a equiangular ker-

nel [41]. With respect to efficiency of the learning-based

approaches in DT recognition, while the dictionary-based

methods have been at moderate levels in “understanding”

DTs with complex motions, the deep models have signifi-

cant performances. However, to learn enormous parame-

ters, most of them needed complex learning algorithms in

deep architectures of neural networks, e.g., up to ∼61M

parameters for AlexNet and ∼6.8M for GoogleNet learned

in the DT-CNN’s deep model [36], ∼80M for C3D [42],
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∼88M in MSOE-two-Stream [43], etc. In this work, our

proposal is able to obtain competitive performance func-

tioned by an efficient simple framework of shallow analysis.

Local-feature-based approaches: Based on Local Binary

Pattern (LBP) [44] and its derivations for capturing lo-

cal textural features in image description, their benefits

have brought into DT representation. For a given DT

video, Zhao et al. [3] addressed LBP on its three con-

secutive frames and its three orthogonal planes to struc-

ture Volume-LBP (VLBP) and LBP-TOP patterns respec-

tively. Motivated by these fundamental techniques, many

efforts have made in order to deal with the conventional

drawbacks of LBP-based variants for further enhancement

of the discrimination power for DT representation: sensi-

tivity to noise [45, 46, 47, 48], rotation-invariant problems

[49], near-uniform regions [50, 51, 52, 53, 54, 55], etc.

Filter-based approaches: Most of them have mainly

based on the manual and learned filters to reduce the

negative impacts of noise on DT encodings. Arashloo et

al. [56] introduced Multi-scale Binarized Statistical Image

Features extracted by applying filters learned by transfor-

mation of independent component analysis (ICA) to Three

Orthogonal Planes of a given video (MBSIF-TOP). In an-

other work, 3D filters, learned by PCA, ICA, sparse fil-

tering, and k-means clustering, are exploited in [57] to

extracted 3D filtered volumes of a given video for struc-

turing local spatio-temporal features by Completed Local

Binary Pattern (CLBP) operator [58]. Recently, Nguyen

et al. [55, 53] addressed filtering models based on moment

images/volumes in order to point out filtered outcomes of

variance and mean features for further discriminative im-

provement. In the meanwhile, Gaussian-based filterings

were utilized in [46, 47, 48, 59] to mitigate noise problems

before LBP-based variants were taken into account the DT

feature extraction. In terms of effectiveness in DT recog-

nition, the filter-based methods have often achieved good

performances on simple DT motions (e.g., those in UCLA

[11] dataset) rather than those in complicated datasets,

Filtering the input video with Gaussian gradient kernels

Computing magnitudes from 
the obtained Gaussian-

gradient responses

Extracting HoGF-based 
patterns from the 

completed collection

 
Collecting Gaussian-

filtered outcomes

Input 
video

Concatenating the obtained 
histograms to construct final 

HoGF-based descriptors

Decomposing the obtained
Gaussian-gradient responses 

based on their bipolar properties

Structuring complementary 
bipolar-filtered outcomes

Encoding BiFoG-based features 
from the complemented bipolar-

filtered outcomes

Concatenating the obtained 
histograms to construct final 

BiFoG-based descriptors

Figure 1: (Best viewed in color) A comparison of this proposal high-

lighted in blue background in comparison with our previous work

[59], highlighted in dark background for DT representation.

e.g., DynTex [34] and DynTex++ [35].

As mentioned above, a pre-processing of the filters ap-

plied to video analyses for noise reduction has recently

allowed to point out robust filtered outcomes for local-

based DT encodings. It could be stated that addressing

Gaussian-based filterings derived from the original Gaus-

sian kernel for DT representation has made the obtained

descriptors be at moderate levels of performances (re-

ferred to FoSIG [46], V-BIG [47], RUBIG [48]). This

may be due to lack of complementary filtered outcomes

taken into account for their DT encodings. Newly, instead

of using the conventional Gaussian-filtered outcomes, our

prior work [59] introduced Gaussian-gradient-based fea-

tures and their magnitude information in order to con-

struct HoGF-based descriptors, which have very good per-

formances in comparison with state of the art. Different

from those above, taking advantage of the bipolar prop-

erties of Gaussian-gradient-filtered outcomes is proposed

in this work to structure discriminative BiFoG-based de-

scriptors, which nearly have the same ability as that of
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the HoGF-based ones [59] but in about two thirds smaller

dimensions. Therefore, our proposed framework can be

expected as one of appreciated solutions for real imple-

mentations in mobile devices and embedded systems. Fig-

ure 1 shows a comprehensive viewpoint of this proposal

compared to our former work [59].

In general, our framework takes three main stages for

DT representation as follows. Firstly, the high-order par-

tial derivatives of a 2D/3D Gaussian kernel are taken

into account the noise reduction in order to obtain robust

Gaussian-gradient-filtered images/volumes. Secondly, a

decomposing model is introduced to partition those into

semi-bipolar-filtered outcomes, Θ2D/3D, subject to their

bipolar properties. Finally, a simple LBP-based variant

is utilized to extract local Bipolar Features of Gaussian-

gradients (BiFoG) from the complementary components in

Θ2D/3D. Discriminative descriptors BiFoG2D/3D are then

pointed out correspondingly. Experimental results for DT

recognition on benchmark datasets have clearly validated

the interest of our proposal. In short, it can be listed our

prominent contributions as

• Taking advantage of the bipolar properties of

Gaussian-gradient filterings allows to point out more

robust filtered outcomes for DT representation.

• An investigation of bipolar properties in high-orders of

Gaussian-gradient filterings has been made so that the

significant effectiveness of high-order bipolar-based

features is comprehensively evaluated in comparison

with those without decomposition taken into account.

• An efficient framework is presented to analyze and de-

compose the Gaussian-gradient images/volumes into

separable bipolar-filtered features. Shallowly, dis-

criminative BiFoG-based descriptors are constructed

by locating a simple LBP-based operator on the com-

plementary bipolar-filtered outcomes.

• In a small dimension, our BiFoG-based descriptors

can achieve very good performance compared to all

non-deep learning models, while ours results are also

commensurate with those of deep learning methods in

most of circumstances.

2. Related works

2.1. A brief of LBP and its completed model

For representing a 2D gray-scale textural image I, Ojala

et al. [44] introduced a simple encoding method to com-

pute LBP patterns in consideration of gray-level differ-

ences between a center pixel qc ∈ I and its local neighbors

{pi}Pi=1 as

LBPP,R(qc) =

P∑
i=1

g
(
I(pi)− I(qc)

)
× 2i−1 (1)

where I(.) returns the gray-level of a pixel; P is a number

of concerning neighbors sampled by a local-circle region of

center qc and radius R; and the thresholding function g(.)

is defined as: g(x) = 1 if x ≥ 0, and g(x) = 0 otherwise.

Accordingly, a histogram of 2P bins is computed for de-

picting the whole textures of image I. This leads to one of

remarkable barriers for real applications in computer vi-

sion because of the curse of dimension. Hence, in order to

deal with the problem, two following mappings [44] are or-

dinarily addressed for reductions of dimension in practice:

u2 mapping for structuring uniform patterns (LBPu2) with

P (P −1)+3 bins, and riu2 mapping for rotation invariant

uniform patterns (LBPriu2) with only P +2 bins. In addi-

tion, other mappings have been also introduced for further

consideration: TAPA [60] for topological patterns, Local

Binary Count [61] for an alternative of the riu2 ones.

For further enhancement of the discrimination power,

Guo et al. [58] introduced a completed model of LBP

(named CLBP) in consideration of forcefully capturing

more LBP-based characteristics via three complementary

components: CLBPS for the basic local features (i.e., the

typical LBP patterns), CLBPM for the magnitude infor-

mation, and CLBPC for the intensity difference of a center

pixel versus the mean of all in a given image. Experiments
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have shown that the description, which is formed by a 3D-

joint integration of these components (i.e., CLBPS/M/C),

often obtains better performance than others. It could be

referred to [58] for CLBP’s components in more detail of

formulas, samples of computing CLBP patterns, various

combinations of those, and concerned others.

2.2. DT description based on LBP-based variants

To lay the foundation of taking LBP-based variants into

account DT representation, Zhao et al. [3] took advantage

of LBP’s simple and efficient computation to introduce

two kinds of DT features: volume of LBP-based patterns

(VLBP) and LBP based on orthogonal planes of a given

video (LBP-TOP). Therein, VLBP is proposed to describe

a voxel based on its 3P neighbors that are located on the

three consecutive frames. This leads to a crucial barrier

for real applications in computer vision due to a very large

dimension for video description caused by VLBP patterns

with up to 23P+2 bins. To mitigate the burden, LBP-TOP

is introduced to encode a voxel based on its P neighbors

that are placed on each of three orthogonal planes in a

given video. As a result, it takes 3 × 2P bins for DT

representation.

Motivated by the simpleness and effectiveness of VLBP

and LBP-TOP in encoding computation, many efforts

have been made in order for improvement of performance

by handling the conventional shortcomings of LBP-based

variants as well as noise problems in DT representation:

CVLBC [62] - an integration of CLBC [61] and VLBP;

CVLBP [50] - a combination of CLBP [58] and VLBP;

CLSP-TOP [52], CSAP-TOP [53], HLBP [51], MMDP

[55], RUBIG [48], DDTP [27], etc. - dealing with issues of

near uniform regions and sensitivity to noise in DT encod-

ings.

2.3. Gaussian-based filterings

Filter-bank techniques have been exploited to denoise in

texture analysis [63] for early years of 90s. Lately, Nguyen
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Figure 2: Profile of a 1D Gaussian kernel with a standard deviation

σ = 0.7.

et al. [64, 55] introduced robust filters based on moment

images/volumes to reduce noise for a LBP-based encoding

in textural representation. With respect to DT descrip-

tion, several recent efforts [65, 56, 66, 57, 46, 47, 48, 55]

have attempted to address different filter-bank approaches

in order to treat the negative impact of noise issues.

Therein, those [46, 47, 48], which take Gaussian-based fil-

ters into account video analysis, have noticeable effective-

ness in noise reduction for local DT encoding. In general,

a Gaussian filtering kernel is defined as

Gn
σ(γn) =

1

(σ
√

2π)n
exp
(
− λ2

1 + λ2
2 + ...+ λ2

n

2σ2

)
(2)

where γn = {λi}ni=1 is a set of n-dimensional spatial axes

involved with the convolving operation; σ means a pre-

defined standard deviation. The filtered results are in

accordance with Gaussian distribution (see Figure 2 for

the distribution of a 1D Gaussian kernel with a standard

deviation σ = 0.7). Appropriately, the kth-order partial

derivative of Gn
σ(γn) with respect to a spatial domain λi

is formulated as

Gn
σ,∂λki

(γn) =
∂kGn

σ(γn)

∂λki
(3)

in which “∂” denotes a gradient function. Figure 4 shows

the distributions of different partial derivatives of a Gaus-

sian kernel with a standard deviation σ = 0.7.
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Using high-orders of Gaussian-
gradients for filtering the video to 
point out robust filtered outcomes

Building collections of 
complementary bipolar-

filtered outcomes

Decomposing those 
outcomes based on their 

bipolar-filtered properties

Encoding the obtained collections 
with a simple local operator to 
structure proposed descriptors

Figure 3: A general flowchart for encoding a given video V based on

bipolar-filtered features.

3. Proposed method

3.1. An overview of our proposal

As mentioned above, Nguyen et al. [46, 47, 48] have

recently exploited the basic Gaussian-based filterings for

noise reduction, but the obtained Gaussian-filtered out-

comes have not been robust enough for DT representation

yet. This has leaded to the moderate levels of performance

in DT recognition due to lack of complementary filtered

outcomes involved in the local encoding. Newly, a no-

ticeable filtering based on high-order Gaussian gradients

[59] is introduced and stated its efficiency in the denosing

process through extracting the Gaussian-gradient-filtered

features and gradient-based magnitudes for DT represen-

tation. Different from those, in this work, we present an ef-

ficient framework to take advantage of bipolar properties of

the high-order Gaussian gradients to point out more robust

filtered outcomes for the local DT encoding. It has nearly

the same high performance as done in [59], but in a smaller

dimension of output descriptors which are a considerable

solution for mobile applications in practice. Generally,

our proposed framework can be illustrated as in Figure

3. Accordingly, the high-order 2D/3D Gaussian-gradient

filterings are addressed for noise reduction. A decompos-

ing model is proposed to separate the obtained Gaussian-

filtering responses to build collections of complementary

bipolar-filtered outcomes (see Section 3.2). A local encod-

ing framework is then presented to take the bipolar-filtered

outcomes into account DT representation (see Section 3.3).

As a result, it could be constructed robust BiFoG-based

descriptors with very good performances on DT recogni-

tion in comparison with recent approaches. Hereunder, we

express above processes in detail.

3.2. Bipolar features of Gaussian-gradient filterings

It can be deduced from Eq. (3) that there are sev-

eral Gaussian-gradient kernels subject to the number of

directions in γn taken into account a video filtering for

denoising. This allows to point out more filtered out-

comes for DT representation than the original Gaussian

filtering due to Eq. (2). Furthermore, it can be seen

from Figure 4 that the high-order Gaussian-gradient filter-

ings could produce bipolar features allowing to decompose

them into two separable filtered parts: positive and neg-

ative features which are together complementary for DT

representation. In the meanwhile, only positive ones are

responsed by the original Gaussian-based filtering (see Fig-

ure 2). All of those can enhance the discrimination power

thanks to more complementary information extracted from

the obtained bipolar-filtered outcomes in comparison with

other previous efforts [46, 47, 48], where only the non-

Gaussian-gradient kernels were addressed for the filterings

instead of their partial derivatives as done in this work. It

should be noted that the separable bipolar-filtered prop-

erties of Gaussian-gradients are addressed in this work,

instead of taking the whole gradient-filtered features and

their gradient-magnitudes as done in [59] (see Figure 1

for a comprehensive comparison). Hereafter, we detail

the complementary collections of bipolar-filtered outcomes

constructed for DT representation.

Let us consider a 2D (resp. 3D) Gaussian kernel in high-

orders of its partial derivatives addressed for the filtering

with a pre-defined standard deviation σ. According to

the 2D filtering, two kth-order Gaussian-gradient kernels

G2D
σ,xk and G2D

σ,yk are taken into account as a pre-processing

analysis of an image I to produce the following high-order
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Figure 4: Profile of different gradients of a 1D Gaussian kernel with

deviation σ = 0.7. Therein, (a): the profile for the 1st-order, (b): for

the 2nd-order, (c): for the 3rd-order, (d): for the 4th- order.

gradient-filtered images as

Iσ,∂xk = G2D
σ,∂xk(x, y) ∗ I

Iσ,∂yk = G2D
σ,∂yk(x, y) ∗ I

(4)

Figure 5 at line (b) shows some filtered images using

the 1st-order of this 2D filtering with σ = 0.7 to fil-

ter plane-images separated from a given video V. After

that, these filtered images are separably decomposed into

{Ipos
σ,∂xk

, Ineg
σ,∂xk

} for Iσ,∂xk and {Ipos
σ,∂yk

, Ineg
σ,∂yk

} for Iσ,∂yk ,

subject to the positive-negative properties of their pixels

q as

Ipos
σ,∂xk

(q) = Iσ,∂xk(q) so that Iσ,∂xk(q) ≥ 0

Ineg
σ,∂xk

(q) = |Iσ,∂xk(q)| so that Iσ,∂xk(q) < 0

Ipos
σ,∂yk

(q) = Iσ,∂yk(q) so that Iσ,∂yk(q) ≥ 0

Ineg
σ,∂yk

(q) = |Iσ,∂yk(q)| so that Iσ,∂yk(q) < 0

(5)

As a result, a complementary collection of bipolar-filtered

outcomes for image I is structured as

Θ2D
σ,k(I) =

{
Ipos
σ,∂xk

, Ineg
σ,∂xk

, Ipos
σ,∂yk

, Ineg
σ,∂yk

}
(6)

Figure 5 at line (c) shows an instance of bipolar filtered

images decomposed subject to the 1st-order 2D Gaussian-

gradient-filtered images.

In respect of the 3D filtering, a given video V is filtered by

three kth-order Gaussian-gradient kernels G3D
σ,∂xk , G3D

σ,∂yk ,

G3D
σ,∂zk in order to obtain corresponding gradient-filtered

volumes as 
Vσ,∂xk = G3D

σ,∂xk(x, y, z) ∗ V

Vσ,∂yk = G3D
σ,∂yk(x, y, z) ∗ V

Vσ,∂zk = G3D
σ,∂zk(x, y, z) ∗ V

(7)

Figure 6 at line (a) shows several filtered volumes using

the 1st-order of this 3D filtering with σ = 0.7 to filter a

given video V. Similar to the decomposing model of the

2D Gaussian-gradients, these volumes are then separated

subject to the positive-negative properties of their voxels
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Figure 5: A framework for structuring a video V based on the 1st-order 2D Gaussian-gradient filtering with σ = 0.7, and ξ(.) = CLBPriu28,1 (.)

to encode bipolar-filtered images of Θ2D
0.7,1st

(V). Therein, line (a): partition V into collections of plane-images, line (b): the filterings with

2D Gaussian-gradient kernels, line (c): decomposing operations, line (d): encoding bipolar-filtered features for DT representation.

p as

Vpos
σ,∂xk

(p) = Vσ,∂xk(p) so that Vσ,∂xk(p) ≥ 0

Vneg
σ,∂xk

(p) = |Vσ,∂xk(p)| so that Vσ,∂xk(p) < 0

Vpos
σ,∂yk

(p) = Vσ,∂yk(p) so that Vσ,∂yk(p) ≥ 0

Vneg
σ,∂yk

(p) = |Vσ,∂yk(p)| so that Vσ,∂yk(p) < 0

Vpos
σ,∂zk

(p) = Vσ,∂zk(p) so that Vσ,∂zk(p) ≥ 0

Vneg
σ,∂zk

(p) = |Vσ,∂zk(p)| so that Vσ,∂zk(p) < 0

(8)

As a result, a complementary collection of bipolar-filtered

outcomes for video V is formed as

Θ3D
σ,k(V) =

{
Vpos
σ,∂xk

,Vneg
σ,∂xk

,Vpos
σ,∂yk

,Vneg
σ,∂yk

,Vpos
σ,∂zk

,Vneg
σ,∂zk

}
(9)

Figure 6 at line (b) illustrates an instance of a 3D decom-

position of gradient-filtered volumes using the 1st-order 3D

Gaussian-gradient filterings with σ = 0.7.

Hence, it could be pointed out several following bene-

fits of the complementary bipolar-filtered components in

Θ
2D/3D
σ,k to improve the discrimination power for DT rep-

resentation compared to other Gaussian-based ones.

• It is clarified that addressing the high-order Gaussian

gradients allows to produce more robust filtered com-

ponents, while it is not for the conventional Gaussian

kernels as done in the former works [46, 47, 48].

• Instead of exploiting the whole Gaussian-gradient-

filtered features [59], decomposing them into separate

bipolar-filtered ones based on their positive-negative

properties grants more informative discrimination for

DT representation.

• It should be noted that a separation was also intro-

duced in [67] to split Different of Gaussians (DoG)

features subject to a pre-defined meaningless thresh-

old in order to avoid an issue of close-to-zero textural

pixels caused by the responses of the DoG filtering.
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Referred to Figure 4, it can be conducted that the

negative impact of this problem on the DT encoding

is inconsiderable due to the amplification of the high-

order Gaussian-gradient filterings (also proved by ex-

periments in Section 4.4).

• We can identify an important finding from Figure 4

: Gaussian-gradient kernels of even orders have sym-

metric property while that of odd orders are assymet-

ric (semi-symmetric). This suggests that Gaussian-

gradient kernels of odd and even orders are comple-

mentary and then a such combination of odd and even

orders allows to enhance the discrimination power of

the proposed framework.

3.3. DT representation based on Θ
2D/3D
σ,k features

As presented in Section 3.2, the 2D/3D decomposing

models have pointed out sets of bipolar-filtered outcomes

Θ
2D/3D
σ,k , which are complementary together in potentially

boosting the discrimination power. For DT representa-

tion, we proposed hereafter two efficient encoding models

to structure robust descriptors corresponding to which of

Θ
2D/3D
σ,k in high-orders is taken into account.

Proposed BiFoG2D
σ,F descriptor: To be in accordance

with the k-order 2D Gaussian-gradient filtering and its 2D

decomposition, an input video V is split into collections of

plane-images {fXY , fXT , fY T } subject to its three orthog-

onal planes {XY,XT, Y T} (see Figure 5 at line (a)). For

an image I ∈ fXY , its bipolar-filtered outcomes Θ2D
σ,k(I)

are encoded as

Υσ,k(fXY ) =
1

|fXY |
∑
I∈fXY

[
ξ(Ipos

σ,∂xk
), ξ(Ineg

σ,∂xk
),

ξ(Ipos
σ,∂yk

), ξ(Ineg
σ,∂yk

)
] (10)

where |fXY | = card(fXY ) is the cardinality of plane-

image collection fXY ; ξ(.) stands for a simple LBP-based

operator addressed for capturing local features from the

bipolar-filtered images. Figure 5 at line (d) shows an

instance of a local encoding with ξ(.) = CLBPriu2
8,1 (.).

This computation is applied to the rest of the plane-

image collections fXT and fY T to obtain corresponding

histograms Υσ,k(fXT ) and Υσ,k(fY T ) respectively. Con-

sequently, the spatio-temporal Bipolar Features of high-

order 2D Gaussian-gradients (BiFoG2D
σ,F ) are formed for

DT description as

BiFoG2D
σ,F (V) =

⊎
k∈F

[
Υσ,k(fXY ),Υσ,k(fXT ),Υσ,k(fY T )

]
(11)

in which
⊎

stands for a concatenating function of the

achieved histograms; F denotes a set of Gaussian gradients

taken into account a filtering, e.g., F = {1st, 2nd} means

that the first and second partial derivatives of a 2D Gaus-

sian kernel have being concerned with the DT encoding.

Proposed BiFoG3D
σ,F descriptor: As presented in Sec-

tion 3.2, for a given video V, it could be pointed out 6

complementary bipolar-filtered volumes when a k-order 3D

Gaussian-gradient kernel is taken into account the filter-

ing. Those volumes are taken into account local analysis

to construct a robust descriptor as follows. For a bipolar-

filtered volume Vpos
σ,∂xk

∈ Θ3D
σ,k(V), subject to its three or-

thogonal planes {XY,XT, Y T}, Vpos
σ,∂xk

is firstly split into

collections of plane-images {f ′XY , f ′XT , f ′Y T }. In respect of

a collection f ′XY , its histogram is computed and normal-

ized as

ΓVpos
σ,∂xk

(f ′XY ) =
1

|f ′XY |
∑
I∈f ′

XY

ξ(I) (12)

where |f ′XY | = card(f ′XY ) is the cardinality of plane-

image collection f ′XY ; ξ(.) stands for a simple LBP-based

operator addressed for capturing local features from the

bipolar-filtered volume. Similarly, we also have compu-

tations for the plane-images in f ′XT and f ′Y T to obtain

probability distributions ΓVpos
σ,∂xk

(f ′XT ) and ΓVpos
σ,∂xk

(f ′Y T )

respectively. Accordingly, local spatio-temporal features

for representing Vpos
σ,∂xk

could be structured by concatenat-

ing all of those in a natural way as

Ψ(Vpos
σ,∂xk

) =
[
ΓVpos

σ,∂xk
(f ′XY ),ΓVpos

σ,∂xk
(f ′XT ),ΓVpos

σ,∂xk
(f ′Y T )

]
(13)

9



   

Figure 6: A framework for structuring a video V based on the 1st-order 3D Gaussian-gradient filtering with σ = 0.7, and ξ(.) = CLBPriu28,1 (.)

to encode bipolar-filtered volumes of Θ3D
0.7,1st

(V). Therein, line (a): the filterings with 3D Gaussian-gradient kernels, line (b): decomposing

operations, line (c): encoding bipolar-filtered features for DT representation.

The computation of Vpos
σ,∂xk

is then applied to the rest

of the bipolar-filtered volumes in Θ3D
σ,k(V) to figure out

corresponding representations, i.e., Ψ(Vneg
σ,∂xk

), Ψ(Vpos
σ,∂yk

),

Ψ(Vneg
σ,∂yk

), Ψ(Vpos
σ,∂zk

), and Ψ(Vneg
σ,∂zk

). As a result, the

Bipolar Features of high-order 3D Gaussian-gradients

(BiFoG3D
σ,F ) are formed for DT description as

BiFoG3D
σ,F (V) =

⊎
k∈F

[
Ψ(Vpos

σ,∂xk
),Ψ(Vneg

σ,∂xk
),Ψ(Vpos

σ,∂yk
),

Ψ(Vneg
σ,∂yk

),Ψ(Vpos
σ,∂zk

),Ψ(Vneg
σ,∂zk

)
]

(14)

in which
⊎

stands for a concatenating function of the ob-

tained histograms; F denotes a set of Gaussian gradients

taken into account a filtering, e.g., F = {1st, 2nd} means

that the first and second partial derivatives of a 3D Gaus-

sian kernel have being concerned with the DT encoding.

Figure 6 at line (c) shows an instance of the entire encoding

process for video V with specific parameters of F = {1st},

σ = 0.7, and ξ(.) = CLBPriu2
8,1 (.).

Furthermore, in order to thoroughly assess the promi-

nent performance of BiFoG-based features, we also present

two more local non-BiFoG2D/3D descriptors based on the

non-decomposed features, i.e., {Iσ,∂xk , Iσ,∂yk} (see Eq.

(4)) and {Vσ,∂xk ,Vσ,∂yk ,Vσ,∂zk} (see Eq. (7)) without de-

composition involved in the DT encoding. Following to

the construction of BiFoG2D/3D, the non-BiFoG-based de-

scriptors are computed as

non-BiFoG2D
σ,F (V) =

⊎
k∈F

[
Λσ,k(fXY ),Λσ,k(fXT ),Λσ,k(fY T )

]
(15)

where Λ(.) is formulated as the same Eq. (10) but

for encoding the non-decomposed images {Iσ,∂xk , Iσ,∂yk}.

Similarly, non-BiFoG3D
σ,F (V) is formed by using the non-

decomposed volumes {Vσ,∂xk ,Vσ,∂yk ,Vσ,∂zk} as

non-BiFoG3D
σ,F (V) =

⊎
k∈F

[
Ψ(Vσ,∂xk),Ψ(Vσ,∂yk),Ψ(Vσ,∂zk)

]
(16)

It should be noted that the non-BiFoG2D/3D descriptors

are identical to HoGF2D/3D [59], excluding the magnitude

features of Gaussian gradients.

Consequently, based on the structure of our proposed

10



BiFoG2D/3D above, it could be pointed out several fol-

lowing beneficial properties to enhance the discrimination

power compared to other Gaussian-based descriptions.

• Thanks to taking advantage of the separately bipolar-

filtered components Θ
2D/3D
σ,k , BiFoG2D/3D could be

represented by more complementary textural features

to improve the performance, while it is partly not for

the conventional Gaussian-based descriptors: FoSIG

[46], V-BIG [47], RUBIG [48]. This advantage is

also consistent with the non-BiFoG2D/3D ones for a

Gaussian-gradient filtering involved in the encoding.

• Both symmetric and asymmetric features correspond-

ingly extracted from the odd and even orders are also

decomposed and combined, which allows to exploit

more forceful filtered patterns for DT representation.

• Different from descriptors HoGF2D/3D [59] where

non-decomposed Gaussian gradients and their mag-

nitudes were exploited, our BiFoG2D/3D ones are just

based on the separately bipolar-filtered features of

Gaussian gradients. The proposed descriptors have

nearly the same performance of HoGF2D/3D but in

about two thirds smaller dimension (see Section 4.5

for more thorough evaluations).

• Structuring BiFoG2D/3D is presented as an adaptive

encoding model. It means that it is able to apply

different LBP-based operators to the local encoding

phase in consideration of further enhancement.

4. Experiments and evaluations

4.1. Datasets and protocols

In this section, benchmark DT datasets along with pro-

tocols, which are addressed for evaluating performance of

our proposed BiFoG2D/3D descriptors, are explained in de-

tail. After that, Table 1 is drawn out to present the short

of their properties for a quick reference.

UCLA dataset: Saisan et al. [11] introduced UCLA,

a simple dataset with 200 DT sequences. Each of sequence

(a)

water fountain waterfall flower plant boiling

(b)

trees traffic flag fountain sea escalator

Figure 7: Several DT samples of UCLA (a) and DynTex (b).

in UCLA was recorded in dimension of 110× 160× 75 res-

olution to describe turbulent motions of dynamic scenes

such as fountain, boiling water, fire, plant, flower, water-

fall, etc. (see Figure 7 at line (a) for some instances). In

terms of DT recognition, UCLA is frequently composed in

challenging schemes as follows:

• 50-class: 50 categories are composed by taking 4 se-

quences for each from 200 DT videos of UCLA. Leave-

one-out (LOO) and four cross-fold validation (4-fold)

are two main protocols for recognizing DTs on this

scheme [56, 51, 47, 46].

• 9-class and 8-class: 9-class scheme [14, 29] is

composed by 200 DT videos of UCLA and ar-

ranged into 9 groups as ”fountains(20)”, “flow-

ers(12)”, “boiling water(8)”, “sea(12)”, “smoke(4)”,

“water(12)”, “plants(108)”, “waterfall(16)”, and

“fire(8)”. Therein, the numbers in parentheses ex-

press the cardinalities of the corresponding groups.

Due to the dominant cardinality of “plants” with 108

samples, the group is discarded to form a more chal-

lenging scheme, named 8-class [14, 29]. 50%/50% pro-

tocol is often located for evaluating performance in

DT recognition on two these scenarios. It means that

a half of DT samples in each group is randomly picked

out for the training and the rest for testing [35, 51, 46].

The mean of results in 20 trials is reported as a final

rate for each scheme.

DynTex dataset: Péteri et al. [34] introduced Dyn-

Tex, a more challenging dataset than UCLA, with more

than 650 videos which their turbulent motions of DTs were

recorded in various environmental conditions (see Figure
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7 at line (b) for some of instances). Following the experi-

mental settings in [37, 68, 47], a version of DynTex’s videos

in dimension of 352× 288× 250 resolution is usually used

for evaluating performances on DT classification. Accord-

ingly, the LOO protocol is addressed for the evaluations

on the following schemes:

• DynTex35: It is composed by taking 35 DynTex’s se-

quences into account a clipping operation as follows.

each of which is divided into 8 non-overlapping sub-

videos using random partition points on X, Y, and T

axes, but not half of them. For instance, a partition

could be x = 170, y = 130, and t = 100 as addressed

in [3, 56, 51, 53, 46]. Besides, two more sub-videos

are obtained by only addressing the partition subject

to the T axis (i.e., t = 100). In short, there are 10

sub-videos for a splitting process located as a cate-

gory. Consequently, splitting 35 DynTex’s sequences

points out a challenging scheme with 35 categories.

• Alpha: 60 DT videos are picked out from DynTex to

arranged into three categories, named “grass”, “sea”,

and “trees”. Each of which consists of 20 DT videos.

• Beta: It has 10 categories arranged by 162 DynTex’s

videos: “calm water(20)”, “sea(20)”, “smoke(16)”,

“rotation(10)”, “vegetation(20)”, “trees(20)”,

flags(20)”, “fountains(20)”, “escalator(7)”, and “traf-

fic(9)”. Therein, the numbers in parentheses express

the cardinalities of the corresponding categories.

• Gamma: It also has 10 categories arranged by 264

DynTex’s videos: “grass(23)”, “traffic(9)”, “flow-

ers(29)”, “sea(38)”, “naked trees(25)”, “calm wa-

ter(30)”, “flags(31)”, “foliage(35)”, “escalator(7)”,

and “fountains(37)”. Therein, the numbers in paren-

theses express the cardinalities of the corresponding

categories.

DynTex++ dataset: Ghanem et al. [35] took 345 se-

quences from the DynTex collection in order to split and

filter them so that the obtained results only consisted of

major textural motions of DTs. Those were then arranged

(a)

Animal herds Conveyor belt Crowd cheering Faucet water Running train

(b)

Chaotic motion Dominant rigid Geyser Scintillation Turbulance

Figure 8: Some samples of DTDB, (a): Appearance, (b): Dynamics.

into 36 categories, i.e., 3600 sub-videos in total. As the ex-

perimental protocol in [35, 56, 69], 50%/50% protocol is

addressed for evaluating performance in DT recognition.

It means that a half of DT samples in each category is ran-

domly picked out for the training and the rest for testing.

The mean of results in 20 trials is reported as a final rate.

DTDB dataset: Hadji et al. [43] recently introduced

Dynamic Texture DataBase (DTDB), a large scale collec-

tion of DT videos for principally evaluating performances

of proposals in learning DT features based on deep-neural

networks. Its over 10000 DT sequences with a total of

∼3.5M frames was collected from different sources: web-

sites, handled cameras, etc. For DT recognition, two chal-

lenging scenarios of DTDB, Dynamics and Appearance,

were arranged as follows.

• Appearance scheme consists of 45 categories, where

its DT videos were selected from DTDB so that they

mostly focus on features of spatial appearance, i.e.,

independent of dynamics (see Figure 8(a) for some

instances).

• Dynamics scheme consists of 18 categories. Contrary

to Appearance, its DT videos, selected from DTDB,

just include features of dynamics, i.e., independent

of spatial appearance (see Figure 8(b) for some in-

stances).

Following protocol in [43], for each category, 70% of its

samples is randomly picked out training and the rest (30%)

for testing. The final result is then reported by the average

rate of 10 repetitions.
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Table 1: A brief of main properties of DT datasets.

Dataset Sub-dataset #Videos Resolution #Classes Protocol

UCLA

50-class 200 110× 160× 75 50 LOO and 4-fold

9-class 200 110× 160× 75 9 50%/50%

8-class 92 110× 160× 75 8 50%/50%

DynTex

DynTex35 350 different dimensions 10 LOO

Alpha 60 352× 288× 250 3 LOO

Beta 162 352× 288× 250 10 LOO

Gamma 264 352× 288× 250 10 LOO

DynTex++ 3600 50× 50× 50 36 50%/50%

DTDB
Dynamics > 10000 different dimensions 18 70%/30%

Appearance > 9000 different dimensions 45 70%/30%

4.2. Parameters for experimental implementation

For computing bipolar-filtered outcomes Θ
2D/3D
σ,k : To

construct the collections of the complementary bipolar-

filtered outcomes Θ
2D/3D
σ,k , we investigate partial deriva-

tives (G
2D/3D

σ,∂λki
) of a Gaussian filtering kernel in four lev-

els of orders, i.e., F ⊆ {1st, 2nd, 3rd, 4th}. Direction axes

x, y, z ∈ [−3σ, 3σ] are addressed for convolving operations

of the filterings, where standard deviation σ is empirically

conducted as σ ∈ {0.5, 0.7, 1, 1.3, 1.5, 2}.

For structuring BiFoG
2D/3D
σ,F descriptors: In order to

extract local spatio-temporal features from the bipolar-

filtered outcomes Θ
2D/3D
σ,k for our proposed BiFoG-based

descriptors, we simply apply CLBP1 [58], one of the most

popular local operators, to the local encoding with the

3D-joint setting of riu2 mapping and a supporting re-

gion (P,R) = (8, 1). It means ξ = CLBPriu2
8,1 corre-

sponding to Hξ = 2(P + 2)2 bins for representing a pat-

tern, where P denotes a number of neighbors concerned

with the computation. Accordingly, it generally takes

3 × |Θ2D/3D
σ,k | × |F| × Hξ bins for BiFoG

2D/3D
σ,F descrip-

tors, where |Θ2D/3D
σ,k | = card(Θ

2D/3D
σ,k ) denotes the num-

ber of bipolar-filtered images/volumes taken into account

the DT representation; |F| = card(F) denotes the num-

1CLBP [58] operator is utilized in this work for a purpose of unity

in implementing and evaluating the efficiency of the bipolar-filtered

features for DT description. Definitely, it could address other robust

local-based operators for further enhancement in practice, e.g., LDP-

based [70, 55], CLBC [61], LRP [48], LVP-based [71, 27], MRELBP

[72], etc.

ber of k-orders in F involved with a multi-order analysis.

For instance, in single-order analysis, i.e., |F| = 1, the di-

mensions are 3×|Θ2D
σ,k|×|F|×Hξ = 2400 bins for BiFoG2D

σ,F

and 3×|Θ3D
σ,k|× |F|×Hξ = 3600 bins for BiFoG3D

σ,F . Table

2 demonstrates a comprehensive comparison between di-

mension of the proposed BiFoG2D/3D descriptors and that

of other LBP-based ones.

For structuring non-BiFoG
2D/3D
σ,F descriptors: In order

to make an objective evaluation in comparison with our

BiFoG
2D/3D
σ,F descriptors, the identical settings should be

situated for the DT encodings, i.e., the simple LBP-based

variant ξ = CLBPriu2
8,1 . Accordingly, for a single-order

analysis, it takes 6×|F|×Hξ = 1200 bins for non-BiFoG2D
σ,F

and 9× |F| × Hξ = 1800 bins for non-BiFoG3D
σ,F .

For DT classification: we utilize the linear multi-class

SVM classifier implemented by LIBLINEAR [73] in order

to measure performances of our proposed BiFoG-based de-

scriptors. To be simple in the operation, the default pa-

rameters of the classifier are regarded in this work.

4.3. Complexity of our proposed BiFoG
2D/3D
σ,F descriptors

In general, it could be stated that the complexity

of structuring BiFoG
2D/3D
σ,F is the same level as that

of HoGF2D/3D [59], non-BiFoG
2D/3D
σ,F , and other local-

feature-based approaches. Indeed, let us consider QLBP =

O(P × H × W) as the cost of structuring a textual

H × W image based on the basic LBP [44] operator

with P local concerning neighbors. Zhao et al. [3] in-

troduced LBP-TOP for DT representation, in which its

LBP-based features are encoded on the three orthogonal

planes {XY,XT, Y T} of a given video V, i.e., QLBP-TOP ≈

3×T ×QLBP, where T denotes the number of V’s frames.

Since three LBP-based components of CLBP [58] is com-

puted independently (refer to [58] for detail of their for-

mulas), it can be deduced that CLBP’s cost for structur-

ing a textural image is estimated as QCLBP ≈ 3 × QLBP.

As presented in Sections 3.2 and 3.3, it can be seen that

the complexity of our proposed BiFoG
2D/3D
σ,F descriptors
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Table 2: A comparison of LBP-based descriptors’ dimension.

Method #bins P = 8

LBP-TOPu2 [3] 3(P (P − 1) + 3) 177

VLBP [3] 23P+2 -

CVLBP [50] 3× 23P+2 -

HLBP [51] 6× 2P 1536

CLSP-TOPriu2 [52] 6(P + 2)2 600

WLBPC [74] 6× 2P 1536

MEWLSP [69] 6× 2P 1536

CVLBC [62] 2(3P + 3)2 1458

CSAP-TOPriu2[53] 12(P + 2)2 1200

FDTu2 [26] 216P ((P − 1) + 3) 12744

FD-MAPu2
L=2 [26] 216P ((P − 1) + 3)) + 16 12760

HILOP [54] 3P (P (P − 1) + 3) 1416

FoSIG [46] 12(P + 2)2 1200

V-BIG [47] 12(P + 2)2 1200

RUBIG [48] 36(P + 2)2 3600

HoGF2D [59] 36(P + 2)2 3600

HoGF3D [59] 48(P + 2)2 4800

non-BiFoG2D
σ,1st 12(P + 2)2 1200

non-BiFoG3D
σ,1st 18(P + 2)2 1800

Our BiFoG2D
σ,1st 24(P + 2)2 2400

Our BiFoG3D
σ,1st 36(P + 2)2 3600

Note: P denotes the concerned neighbors. “-” means “not

available”. Dimension of all above descriptors is referred

to their basic parameters used for encoding a given video.

relies on three main computing parts: Gaussian-gradient

filtering, decomposing, and local encoding. Hereunder, we

express those in detail.

Complexity of BiFoG2D: Due to the computational in-

dependence of the Gaussian-gradient filtering and decom-

posing processes, it could be deduced from Eq. (10) that

the computational cost to encode {fXY }’s plane-images is

evaluated as

QΥXY ≈ 4× |fXY | × Qξ +QG2D +QS2D (17)

where Qξ is the cost of local encoding function ξ(.); QG2D

is the cost of a 2D Gaussian-gradient filtering (see Equa-

tion 4); and QS2D is the cost of a 2D splitting model

(see Eq. (5)). According to Eq. (11), the complexity

of BiFoG2D could be estimated as

QBiFoG2D = |F| × (QΥXY +QΥXT +QΥY T ) (18)

Due to the linear and separable properties of the Gaussian-

gradient filtering and the splitting processes, as well as

the much smaller value of |F| (e.g., |F| = 2 for two or-

ders of Gaussian gradients), QG2D , QS2D , and |F| can be

disregarded. In addition, max(|fXY |, |fXT |, |fY T |) ≈ T ;

ξ(.) = CLBPriu2
8,1 (.) as located in Section 4.2. Conse-

quently,

QBiFoG2D ≈ QCLBP × T ≈ O(P ×H×W × T ) (19)

Complexity of BiFoG3D: It can be seen from Eq. (12)

that the cost for encoding a collection {f ′XY } of a bipolar-

filtered volume in Θ3D is QΓXY = |f ′XY | × Qξ. Hence,

according to Eq. (13),

QΨ ≈ max(QΓXY ,QΓXT ,QΓY T ) +QG3D +QS3D (20)

where QG3D is the cost of a 3D Gaussian-gradient filter-

ing (see Eq. (7)); and QS3D is the cost of a 3D splitting

model (see Eq. (8)). Based on Eq. (14), the complexity

of BiFoG3D could be estimated as

QBiFoG3D = 6× |F| × QΨ ≈ O(P ×H×W × T ) (21)

This is since QG3D , QS3D , and |F| can be ignored while

max(|f ′XY |, |f ′XT |, |f ′Y T |) ≈ T and ξ(.) = CLBPriu2
8,1 (.) as

located in Section 4.2.

As above analyzed, both our proposed descriptors has

mostly the same computational cost, generally stipulated

for QBiFoG in further evaluations. Similarly, the com-

plexity of non-BiFoG2D/3D is estimated as Qnon-BiFoG ≈

O(P × H × W × T ) due to Eqs. (15) and (16). There-

fore, it can be asserted that our QBiFoG is equiva-

lent to that of local Gaussian-filtering-based descriptors:
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Table 3: Comparison of processing time of encoding a video with

50× 50× 50 dimension in DynTex++ dataset.

Descriptor {σ}/{(σ, σ′)} Derivative {(P,R)} Mapping Runtime

VLBP [3] - - {(4, 1)} - ≈ 0.22s

LBP-TOP [3] - - {(8, 1)} u2 ≈ 0.15s

CLSP-TOP [52] - - {(8, 1)} riu2 ≈ 0.27s

CSAP-TOP [53] - - {(8, 1)} riu2 ≈ 0.50s

FoSIG [46] {(0.5, 6)} - {(8, 1)} riu2 ≈ 0.37s

V-BIG [47] {(0.5, 6)} - {(8, 1)} riu2 ≈ 0.35s

HoGF2D [59] {σ = 1} 1st-order {(8, 1)} riu2 ≈ 0.54s

HoGF3D [59] {σ = 1} 1st-order {(8, 1)} riu2 ≈ 0.70s

non-BiFoG2D {σ = 1} 1st-order {(8, 1)} riu2 ≈ 0.37s

non-BiFoG3D {σ = 1} 1st-order {(8, 1)} riu2 ≈ 0.55s

Our BiFoG2D {σ = 1} 1st-order {(8, 1)} riu2 ≈ 0.69s

Our BiFoG3D {σ = 1} 1st-order {(8, 1)} riu2 ≈ 0.91s

Note: “-” means “not available”. Most of runtime results are referred to the imple-

mentation of Nguyen et al. [59]. It should be noted that all these implementations use

raw MATLAB codes in single-threading, which are run on a 64-bit Linux desktop of

CPU Core i7 3.4GHz 16G RAM.

non-BiFoG2D/3D, HoGF2D/3D [59], V-BIG [47], FoSIG

[46], RUBIG [48], as well as that of other LBP-based ones:

CVLBC [62], CSAP-TOP [53], CVLBP [50], VLBP [3],

etc. (refer to these works for computations in detail). In

the meantime, our abilities on DT recognition are nearly

the same order as those of HoGF2D/3D but in smaller di-

mension, while being significantly better than those of the

others. (see Sections 4.4, 4.5, and 4.6 for comprehensive

evaluations). In regard to encoding time, Table 3 shows

ours in comparison with that of other approaches.

4.4. Contribution of separately bipolar-filtered features

As mentioned in Section 3.2, the decomposing model

have decomposed the Gaussian-gradient filtered compo-

nents into the crucial collections Θ
2D/3D
σ,k of separably

bipolar-filtered outcomes. It could be verified that the

accompaniment of their positive-negative filtered features

allows to forcefully boost the discrimination power in DT

representation. Indeed, Table 4 shows significant contri-

butions of each kind of these features. Especially, the per-

formance of DT recognition on the challenging schemes

Gamma and DynTex++ is boosted up to about 3.5% on

average when integrating all complementary elements of

Table 4: Recognition rate (%) of each 1st-order filtered component

in Θ3D
1.0,1st

and its contribution for performance of BiFoG3D
1.0,1st

.

UCLA DynTex Dyn++

Component 50-LOO 50-4fold Alpha Beta Gamma

Vpos1.0,∂x1 99.00 99.00 95.00 92.59 91.67 91.91

Vneg1.0,∂x1 100 100 95.00 91.36 92.42 91.63

Vpos1.0,∂y1 100 100 95.00 90.74 88.64 91.53

Vneg1.0,∂y1 100 100 96.67 91.98 91.29 90.52

Vpos1.0,∂z1 94.00 95.00 98.33 95.06 89.77 93.02

Vneg1.0,∂z1 95.50 97.50 100 94.44 90.91 93.08

BiFoG3D
1.0,1st 100 100 100 95.68 95.83 97.38

Note: 50-LOO and 50-4fold mean results on 50-class breakdown using leave-one-out

and four cross-fold validation. Dyn++ is shortened for DynTex++.

Θ3D
1.0,1st . In addition, the higher orders are taken into ac-

count the Gaussian-gradient filterings, the more filtered

components are pointed out to be fed into the decompos-

ing model for producing bipolar-filtered outcomes, i.e., the

more positive-negative properties are allocated to enrich

discriminative information of appearance and motion clues

for DT description.

4.5. Performing assessments of BiFoG-based descriptors

We comprehensively discuss the noteworthy effective-

ness of the high-order BiFoG-based features compared

to the non-BiFoG-based ones as well as other Gaussian-

gradient-magnitude-based features, i.e., HoGF2D/3D [59].

In general, experiments for DT recognition on benchmark

datasets have validated that the BiFoG’s spatio-temporal

patterns are in better discrimination than non-BiFoG’s.

It has proved the benefits of bipolar-filtered features in

dealing with the well-known issues of DT representation.

As deliberated in Sections 3.3 and 4.4, it could be stated

the following significant points relied on the experimental

results:

• The higher level of standard deviation σ is taken into

account the filterings, the less effectiveness in denos-

ing has been responded. This also leads to a negative

influence on the bipolar-filtered features partly due

to the weaker appearance features caused by the am-

plifications of σ. Indeed, we have empirically pointed
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Figure 9: (Best viewed in color) A sharp reduction of BiFoG
2D/3D
σ,F ’s

performances when an increase of σ is from 0.5 to 2.

out that rates of DT classification on DynTex++ have

decreased by from 1% to 3% corresponding to an in-

creasing of σ from 0.5 to 2 (see Figure 9). Hence, in

the remains of evaluations, we just report the results

of BiFoG
2D/3D
σ,F implemented by σ ∈ {0.5, 0.7, 1} as

presented in Tables 6 and 7.

• It could be clarified that some single-scales of high-

orders obtain good results with just a small dimension

of 3600 bins, e.g., BiFoG3D
0.7,1st and BiFoG3D

1.0,2nd (see

Table 6), but the betters come from the combinations

of 2-scale orders (see Table 7). Therein, those of odd-

even orders achieve the higher and more stable rates

thanks to taking advantage of both symmetric and

asymmetric patterns extracted from the odd and even

bipolar-filtered outcomes respectively.

• The experimental results have validated that address-

ing the bipolar-filtered features obtains the better per-

formances than the original Gaussian-gradient ones,

i.e., the non-BiFoG-based characteristics. Figure 10

shows the higher rates of single-scale BiFoG
2D/3D
σ,F

descriptors in DT recognition compared to those of

non-BiFoG
2D/3D
σ,F in pairs of the filtering orders. This

substantiates the interest of our proposal of the de-

composing model involved in the DT encoding. In

addition, it should be noted that despite being little

inferior to the single-scale non-BiFoG-based descrip-

Table 5: Comparison of encoding parameters of our BiFoG2D/3D and

HoGF2D/3D [59], which are recommended for real implementations

and comparison with existing methods.

Filtering Descriptor {σi} {(P,R)} Single-order Multi-order #Bins

G2D
σ,∂λki

HoGF2D[59] {1.0} {(8, 1), (8, 2)} - {2nd, 3rd} 7200

BiFoG2D {1.0} {(8, 1)} - {1st, 2nd} 4800

BiFoG2D {1.0} {(8, 1)} - {1st, 4th} 4800

G3D
σ,∂λki

HoGF3D[59] {1.0} {(8, 1), (8, 2)} - {3rd, 4th} 9600

BiFoG3D {1.0} {(8, 1)} 1st-order - 3600

BiFoG3D {1.0} {(8, 1)} - {1st, 2nd} 7200

BiFoG3D {1.0} {(8, 1)} - {1st, 4th} 7200

Note: “-” means “not available”.

tors in some circumstances, BiFoG2D/3D in 2-scale

orders have significant rates compared to the 2-scale

orders of non-BiFoG2D/3D (see Figure 11 for an in-

stance of DT recognition on Gamma, the challenging

DynTex’s scheme). It has proved that integrating of

high-orders is crucial in booting the discrimination of

bipolar-filtered features.

• In regard to comparison with performances of

HoGF2D/3D [59], ours have nearly the same levels

(see Tables 8 and 9) but in two thirds smaller dimen-

sion (see Table 5). Particularly, in DT recognition

on Gamma and DynTex++, our BiFoG3D
1.0,{1st,4th} re-

spectively obtains 97.73% and 97.94%, better than

HoGF3D with rates of 97.53% and 97.63% (see Table

9). Hence, the BiFoG-based features could be consid-

ered as one of potential solutions to deploy for func-

tions in mobile devices and embedded systems. It

should be recalled that the non-BiFoG-based features

(see Section 3.3) could be regarded as the correspond-

ing HoGF-based ones without the magnitude proper-

ties which are computed from different filtered com-

ponents in the same level of Gaussian gradients. It

means that the high performance of HoGF2D/3D [59]

is partly thanks to the crucial contribution of these

magnitudes. It may further enhance the discrimina-

tion power for real applications when combining the

magnitude features with the BiFoG-based ones.

Briefly, based on above comprehensive assessments, we
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Figure 10: (Best viewed in color) The better performances of BiFoG
2D/3D
σ,F compared to non-BiFoG

2D/3D
σ,F ’s in classifying DTs on DynTex++.
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Figure 11: Performances on Gamma of BiFoG
2D/3D
σ,F in single and

2-scale orders of Gaussian-gradient filterings with σ = 1 compared

to those of non-BiFoG
2D/3D
σ,F .

recommend that the settings in Table 5 should be ad-

dressed for implementing applications in practice as well

as for comparing to existing methods. Accordingly, the

single-scale BiFoG3D
1.0,1st descriptor can be considered to

meet demands of small dimension, while those based on the

2-scale orders are for strict requirements of high precision

on challenging datasets. Hereinafter, the performances of

our BiFoG
2D/3D
σ,F descriptors are thoroughly discussed in

comparison with state of the art. Therein, if their set-

tings are not mentioned explicitly, the default parameters

in Table 5 are referred to.

4.6. Comprehensive comparison to state of the art

In general, it can be observed from Tables 8 and 9 that

performances of our proposed BiFoG-based descriptors in

the smaller dimension are nearly the same as those of the

HoGF-based [59] ones. These results are significantly bet-

ter than all non-deep-learning methods. In the meantime,

ours are also better than deep-learning-based approaches

on UCLA while being close to those on DynTex, Dyn-

Tex++, and DTDB. This is definitely thanks to the lever-

age contribution of the separably bipolar-based features.

Hereinafter, we discuss in detail evaluations of those on

each benchmark dataset.

4.6.1. Recognition on UCLA

It can be observed from Tables 6 and 7 that our BiFoG-

based descriptors obtain substantial rates on UCLA’s

schemes compared to state of the art, including the deep-

learning methods, i.e., DT-CNN [36] and PCANet-TOP

[37]. Therein, those based on the decomposition of 3D

Gaussian-gradient-filtered outcomes (refer to Eq. (8))

achieve better performance in more stability. In terms of

settings for comprehensive comparison, our BiFoG2D/3D

descriptors achieve the best rates of 100% on both 50-
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Table 6: Classification rates (%) on DT benchmark datasets of BiFoG2D/3D descriptors.

Dataset UCLA DynTex DynTex++

50-LOO 50-4fold 9-class 8-class DynTex35 Alpha Beta Gamma

Order {σi} Θ2D
σ,k Θ3D

σ,k Θ2D
σ,k Θ3D

σ,k Θ2D
σ,k Θ3D

σ,k Θ2D
σ,k Θ3D

σ,k Θ2D
σ,k Θ3D

σ,k Θ2D
σ,k Θ3D

σ,k Θ2D
σ,k Θ3D

σ,k Θ2D
σ,k Θ3D

σ,k Θ2D
σ,k Θ3D

σ,k

1st

{0.5} 100 100 100 100 97.80 98.65 98.80 98.15 98.00 97.71 95.00 95.00 95.68 95.06 92.42 94.70 96.83 97.66

{0.7} 100 100 100 100 98.65 99.60 98.26 97.17 99.14 99.14 98.33 98.33 94.44 95.06 93.94 95.08 96.87 97.62

{1.0} 100 100 100 100 98.85 99.10 98.70 98.80 99.14 98.86 100 100 96.30 95.68 93.18 95.83 96.53 97.38

2nd

{0.5} 100 100 100 100 98.45 98.85 98.26 98.37 98.29 98.86 98.33 98.33 91.98 91.98 91.67 92.05 95.70 96.49

{0.7} 100 100 100 100 99.55 98.95 97.07 98.48 96.29 98.00 98.33 98.33 93.21 95.68 93.56 95.08 96.31 96.86

{1.0} 100 100 100 100 99.85 99.50 99.24 98.26 99.14 98.86 98.33 98.33 93.83 95.68 93.94 95.45 95.91 96.54

3rd

{0.5} 100 100 100 100 98.45 97.85 97.39 99.35 98.29 98.86 96.67 96.67 93.21 96.30 93.94 93.18 96.96 97.02

{0.7} 99.50 100 99.50 100 98.95 98.00 97.39 97.07 96.86 98.00 98.33 98.33 91.98 93.83 92.80 93.56 95.21 96.49

{1.0} 100 100 100 100 99.50 99.55 97.93 99.13 98.00 98.57 96.67 96.67 92.59 95.06 93.18 95.83 95.31 96.11

4th

{0.5} 100 100 100 100 97.70 98.70 97.17 97.07 98.00 98.29 95.00 96.67 93.21 92.59 89.39 91.67 95.93 96.01

{0.7} 97.50 100 98.00 100 98.25 99.45 97.50 99.35 98.00 98.86 98.33 96.67 91.36 93.21 92.42 91.67 95.44 96.28

{1.0} 100 100 100 100 99.15 99.75 99.35 99.57 98.57 99.14 98.33 98.33 93.21 91.98 91.67 93.94 96.08 96.44

Note: Columns Θ
2D/3D
σ,k indicate that BiFoG2D/3D are encoded using the bipolar-filtered outcomes Θ

2D/3D
σ,k correspondingly. 50-LOO and 50-4fold denote results on 50-class breakdown using

leave-one-out and four cross-fold validation.

Table 7: Classification rates (%) on DT benchmark datasets of 2-scale BiFoG2D/3D descriptors.

Dataset UCLA DynTex DynTex++

50-LOO 50-4fold 9-class 8-class DynTex35 Alpha Beta Gamma

Multi-order {σi} Θ2D
σ,k Θ3D

σ,k Θ2D
σ,k Θ3D

σ,k Θ2D
σ,k Θ3D

σ,k Θ2D
σ,k Θ3D

σ,k Θ2D
σ,k Θ3D

σ,k Θ2D
σ,k Θ3D

σ,k Θ2D
σ,k Θ3D

σ,k Θ2D
σ,k Θ3D

σ,k Θ2D
σ,k Θ3D

σ,k

{1st, 2nd}

{0.5} 100 100 100 100 98.95 98.90 98.26 97.39 98.57 98.86 96.67 96.67 94.44 96.30 94.32 95.45 97.38 97.62

{0.7} 100 100 100 100 99.55 99.20 98.59 97.39 98.57 98.86 98.33 98.33 94.44 95.06 95.45 95.08 97.67 97.49

{1.0} 100 100 100 100 99.30 99.30 99.13 99.13 99.71 99.43 98.33 98.33 95.06 96.91 95.08 97.35 97.56 97.68

{1st, 3rd}

{0.5} 100 100 100 100 97.40 98.90 98.91 97.28 98.00 98.86 96.67 96.67 94.44 95.68 93.94 95.08 97.43 97.57

{0.7} 100 100 100 100 98.85 98.75 99.13 97.93 97.43 98.57 98.33 98.83 92.59 95.06 94.32 95.08 97.23 97.56

{1.0} 100 100 100 100 98.20 99.10 98.91 98.37 99.14 99.43 100 100 93.21 95.68 95.45 96.97 96.83 97.37

{1st, 4th}

{0.5} 100 100 100 100 97.30 98.00 97.39 97.93 98.57 98.86 95.00 96.67 94.44 95.06 92.80 93.56 97.05 97.71

{0.7} 99.50 100 99.50 100 99.30 98.80 97.83 98.26 99.14 98.86 98.33 96.67 93.21 96.30 93.94 95.45 97.38 97.67

{1.0} 100 100 100 100 99.15 99.55 98.80 99.35 99.14 99.14 98.33 98.33 95.68 95.68 95.45 97.73 97.29 97.94

{2nd, 3rd}

{0.5} 100 100 100 100 98.95 99.20 98.26 97.28 98.29 99.71 96.67 96.67 95.68 96.91 93.94 93.94 97.31 97.46

{0.7} 100 100 100 100 99.40 99.10 97.39 97.39 97.43 98.29 98.33 98.33 92.59 95.06 93.18 95.08 96.22 97.22

{1.0} 100 100 100 100 99.35 98.50 98.37 98.70 99.43 99.43 98.33 98.33 93.21 95.06 94.70 95.08 96.37 97.17

{2nd, 4th}

{0.5} 100 100 100 100 98.05 98.70 98.91 97.61 98.29 98.57 93.33 96.67 91.97 91.98 91.67 92.05 96.44 97.05

{0.7} 99.50 100 99.50 100 99.35 98.15 99.13 97.50 98.00 98.29 98.33 98.33 92.59 95.68 92.05 92.80 96.67 97.09

{1.0} 100 100 100 100 98.85 99.15 98.26 98.48 98.86 99.14 98.33 98.33 94.44 96.30 94.32 96.21 96.76 97.03

{3rd, 4th}

{0.5} 100 100 100 100 98.45 98.80 97.72 98.04 98.29 99.71 96.67 96.67 94.44 95.68 93.56 93.56 97.09 97.48

{0.7} 99.00 100 99.00 100 99.75 98.70 98.26 98.48 98.00 98.00 98.33 98.33 92.59 93.83 92.80 92.80 96.07 97.04

{1.0} 100 100 100 100 99.80 99.60 98.80 99.24 98.00 99.43 96.67 98.33 91.98 95.68 93.56 96.21 96.44 97.49

Note: Columns Θ
2D/3D
σ,k indicate that BiFoG2D/3D are encoded using the bipolar-filtered outcomes Θ

2D/3D
σ,k correspondingly. 50-LOO and 50-4fold denote results on 50-class breakdown using leave-one-

out and four cross-fold validation.

LOO and 50-4fold schemes of UCLA, while also perform-

ing well on 9-class and 8-class scenarios. More specifically,

BiFoG3D
1.0,{1st,4th} obtains 99.55% on 9-class and 99.35% 8-

class, not reach to the top due to the confused recognition

as pointed out in Figures 12 and 13 respectively. According

to that, BiFoG3D
1.0,{1st,4th} has mainly confused in mutu-

ally recognizing DTs in videos of “Fountains”, “Flowers”,

and “Fire” on both 9-class and 8-class. In addition, it

is worth noting that several local-feature-based methods

such as CVLBC (99.2%, 99.02%) [62], FD-MAP (99.35%,

99.57%) [26], and DNGP (99.6%, 99.4%) [28] also have the

same levels in comparison with ours but they are not on
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Table 8: Comparison of recognition rates (%) on UCLA.

Group Encoding method 50-LOO 50-4fold 9-class 8-class

A

FDT [26] 98.50 99.00 97.70 99.35

FD-MAP [26] 99.50 99.00 99.35 99.57

DDTP [27] 99.00 99.50 98.75 98.04

B
AR-LDS [11] 89.90N - - -

Chaotic vector [16] - - 85.10N 85.00N

C

3D-OTF [30] - 87.10 97.23 99.50

DFS [75] - 100 97.50 99.20

STLS [32] - 99.50 97.40 99.50

D

MBSIF-TOP [56] 99.50N - - -

DNGP [28] - - 99.60 99.40

B3DF SMC [57] 99.50N 99.50N 98.85N 98.15N

E

VLBP [3] - 89.50N 96.30N 91.96N

LBP-TOP [3] - 94.50N 96.00N 93.67N

CVLBP [50] - 93.00N 96.90N 95.65N

HLBP [51] 95.00N 95.00N 98.35N 97.50N

CLSP-TOP [52] 99.00N 99.00N 98.60N 97.72N

MEWLSP [69] 96.50N 96.50N 98.55N 98.04N

WLBPC [74] - 96.50N 97.17N 97.61N

CVLBC [62] 98.50N 99.00N 99.20N 99.02N

CSAP-TOP [53] 99.50 99.50 96.80 95.98

FoSIG [46] 99.50 100 98.95 98.59

V-BIG [47] 99.50 99.50 97.95 97.50

HILOP [54] 99.50 99.50 97.80 96.30

MMDPD M/C [55] 100 100 98.70 98.70

MEMDPD M/C [55] 100 100 98.90 98.70

RUBIG [48] 100 100 99.20 99.13

HoGF2D [59] 100 100 99.20 98.91

HoGF3D [59] 100 100 99.25 99.57

Our BiFoG2D
1.0,{1st,2nd} 100 100 99.30 99.13

Our BiFoG2D
1.0,{1st,4th} 100 100 99.15 98.80

Our BiFoG3D
1.0,1st 100 100 99.10 98.80

Our BiFoG3D
1.0,{1st,2nd} 100 100 99.30 99.13

Our BiFoG3D
1.0,{1st,4th} 100 100 99.55 99.35

F

DL-PEGASOS [35] - 97.50 95.60 -

PI-LBP+super hist [45] - 100N 98.20N -

Orthogonal Tensor DL [40] - 99.80 98.20 99.50

PCANet-TOP [37] 99.50* - - -

DT-CNN-AlexNet [36] - 99.50* 98.05* 98.48*

DT-CNN-GoogleNet [36] - 99.50* 98.35* 99.02*

Note: “-” means “not available”. Superscript “*” indicates results using deep learning

algorithms. “N” is rate with 1-NN classifier. 50-LOO and 50-4fold are results on 50-

class breakdown using leave-one-out and four cross-fold validation respectively. Group

A is optical-flow-based methods, B: model-based, C: geometry-based, D: filter-based, E:

local-feature-based, F: learning-based.

50-LOO and 50-4fold of UCLA (see Table 8), as well as

not on DynTex and DynTex++ (see Table 9). Therein,
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Figure 12: Confusion matrix (%) of BiFoG3D
1.0,{1st,4th} on 9-class.
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Figure 13: Confusion matrix (%) of BiFoG3D
1.0,{1st,4th} on 8-class.

CVLBC and DNGP have been deficient in the crucial val-

idations on the challenging schemes of DynTex, i.e., Alpha,

Beta, and Gamma. In the meanwhile, the non-Gaussian-

gradient-based methods such as V-BIG [47], FoSIG [46],

and RUBIG [48] only perform well in understanding sim-

ple motions on UCLA but not on DynTex and DynTex++

with more complex turbulence of DTs (see Table 9).
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Table 9: Comparison of rates (%) on DynTex and DynTex++.

Group Encoding method Dyn35 Alpha Beta Gamma Dyn++

A

FDT [26] 98.86 98.33 93.21 91.67 95.31

FD-MAP [26] 98.86 98.33 92.59 91.67 95.69

DDTP [27] 99.71 96.67 93.83 91.29 95.09

C

3D-OTF [30] 96.70 83.61 73.22 72.53 89.17

DFS [75] 97.16 85.24 76.93 74.82 91.70

2D+T [68] - 85.00 67.00 63.00 -

STLS [32] 98.20 89.40 80.80 79.80 94.50

D

MBSIF-TOP [56] 98.61N 90.00N 90.70N 91.30N 97.12N

DNGP [28] - - - - 93.80

B3DF SMC [57] 99.71N 95.00N 90.12N 90.91N 95.58N

E

VLBP [3] 81.14N - - - 94.98N

LBP-TOP [3] 92.45N 98.33 88.89 84.85N 94.05N

DDLBP with MJMI [76] - - - - 95.80

CVLBP [50] 85.14N - - - -

HLBP [51] 98.57N - - - 96.28N

CLSP-TOP [52] 98.29N 95.00N 91.98N 91.29N 95.50N

MEWLSP [69] 99.71N - - - 98.48N

WLBPC [74] - - - - 95.01N

CVLBC [62] 98.86N - - - 91.31N

CSAP-TOP [53] 100 96.67 92.59 90.53 -

FoSIG [46] 99.14 96.67 92.59 92.42 95.99

V-BIG [47] 99.43 100 95.06 94.32 96.65

HILOP [54] 99.71 96.67 91.36 92.05 96.21

MMDPD M/C [55] 99.43 98.33 96.91 92.05 95.86

MEMDPD M/C [55] 99.71 96.67 96.91 93.94 96.03

RUBIG [48] 98.86 100 95.68 93.56 97.08

HoGF2D [59] 99.71 100 97.53 96.59 97.19

HoGF3D [59] 99.43 98.33 98.15 97.53 97.63

Our BiFoG2D
1.0,{1st,2nd} 99.71 98.33 95.06 95.08 97.56

Our BiFoG2D
1.0,{1st,4th} 99.14 98.33 95.68 95.45 97.29

Our BiFoG3D
1.0,1st 98.86 100 95.68 95.83 97.38

Our BiFoG3D
1.0,{1st,2nd} 99.43 98.33 96.91 97.35 97.68

Our BiFoG3D
1.0,{1st,4th} 99.14 98.33 95.68 97.73 97.94

F

DL-PEGASOS [35] - - - - 63.70

PCA-cLBP/PI/PD-LBP [45] - - - - 92.40

Orthogonal Tensor DL [40] - 87.80 76.70 74.80 94.70

Equiangular Kernel DL [41] - 88.80 77.40 75.60 93.40

SOE-Net [77] - 96.70 95.70 92.20 94.40

st-TCoF [38] - 100* 100* 98.11* -

PCANet-TOP [37] - 96.67* 90.74* 89.39* -

D3 [39] - 100* 100* 98.11* -

DT-CNN-AlexNet [36] - 100* 99.38* 99.62* 98.18*

DT-CNN-GoogleNet [36] - 100* 100* 99.62* 98.58*

Note: “-” is “not available”. Superscript “*” are results using deep learning algorithms. “N” is rate

with 1-NN classifier. Dyn35 and Dyn++ stand for DynTex35 and DynTex++ sub-datasets. Group

A denotes optical-flow-based methods, C: geometry-based, D: filter-based, E: local-feature-based, F:

learning-based.

4.6.2. Recognition on DynTex

It can be seen from Table 9 that our proposal is one

of the best compared to all non-deep-learning methods.

Specifically, the proposed BiFoG2D/3D descriptors have

nearly the same performance as HoGF2D/3D’s [59] but in

the smaller dimension. Also, it should be emphasized that

our BiFoG3D
1.0,{1st,4th} obtains 97.73% on Gamma, a little

better than HoGF3D’s (97.53%) (see Table 9). Further-

more, ours is also from over 1% to 4% higher enhance-

ment on the challenging schemes (i.e., Beta and Gamma)

than those of MDP-based [55] and RUBIG [48], which are

very recently the potent approaches based on local features

for DT representation. Due to the very similarity of DT

motions in two categories as highlighted in red in Figure

14, BiFoG2D
1.0,{1st,2nd} obtains 99.71% on DynTex35, a little

lower than CSAP-TOP [53] but in much smaller dimen-

sion (4800 bins) compared to CSAP-TOP’s (13200 bins).

Moreover, CSAP-TOP is not better than ours on the rest

scenarios of DynTex (i.e., Alpha, Beta, and Gamma), as

well as on UCLA (see Table 8). In terms of comparison

with deep-learning methods, our highest rates of 100%,

96.91%, and 97.73% on Alpha, Beta, and Gamma respec-

tively are very close to those of the deep-learning tech-

niques: DT-CNN [36], st-TCoF [38], and D3 [39] (see Ta-

ble 9). It should be pointed out that those have usually

used complex algorithms to learn tremendous parameters,

while we just address shallow analyses for DT representa-

tion. For further consideration of improvement, we detail

the confusions of the BiFoG-based descriptors in DT recog-

nition on challenging schemes Beta and Gamma. Accord-

ingly, BiFoG3D
1.0,{1st,2nd} has mainly confused “Rotation”

with the others (see Figure 15), while BiFoG3D
1.0,{1st,4th}

is more miscellaneous, confused “Escalator” with “Flags”

and “Grass”, “Calm water” with “Sea” and “Fountains”

(see Figure 16).

4.6.3. Recognition on DynTex++

Our BiFoG-based descriptors have also very good per-

formance on this scheme, with over 97% for BiFoG3D

in 2-scale of high-orders (see Table 7). Particularly,

BiFoG3D
1.0,{1st,4th} achieves rate of 97.94% because of the

challenge of DynTex++’s categories impressed in Figure
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Figure 14: (Best viewed in color) Rates of BiFoG3D
1.0,{1st,2nd} on

specific categories of DynTex35.
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Figure 15: Confusion matrix of BiFoG3D
1.0,{1st,2nd} on Beta.

17. This result is mostly the best compared to that of

all existing methods, except MEWLSP’s [69] (98.48%)

and DT-CNN’s [36] (98.18% for AlexNet and 98.58% for

GoogleNet) (see Table 9). It should be noted that the

execution of MEWLSP is lower than ours on UCLA (see

Table 8), as well as it has not been verified on the challeng-

ing schemes of DynTex, i.e., Alpha, Beta, Gamma. In the

meanwhile, DT-CNN is about 0.2∼0.6% better than ours

but it learned an enormous number of parameters using

deep-learning frameworks on each particular dataset.

Data counts, RR = 258/264 = 97.7273%
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Figure 16: Confusion matrix of BiFoG3D
1.0,{1st,4th} on Gamma.
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Figure 17: (Best viewed in color) Specific recognition results of

BiFoG3D
1.0,{1st,4th} on DynTex++’s categories. The challenging ones

for the proposed descriptor are in red rates.

4.6.4. Recognition on DTDB

Due to the large scale of DTDB [43] dataset, we just

implement the best settings of 2-scale high-orders, as dis-

cussed on Section 4.5, in order to evaluate the ability of

our BiFoG-based descriptors, i.e., the partial derivatives of

high-orders
{
{1st, 2nd}, {1st, 4th}

}
and the standard devi-

ation σ = 1. It should be noted that the HoGF-based

descriptors [59] have not been verified on this large scale

dataset. For thoroughly evaluating the effectiveness of

the bipolar-filtered features compared to the Gaussian-

gradient-filtered ones, we also implement the HoGF-based

descriptors [59] using their best settings: 2-scale analy-

sis of local neighborhoods {(P,R)} = {(8, 1), (8, 2)}, the
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standard deviation σ = 1, the 2-scale orders {2nd, 3rd} for

HoGF2D and {3rd, 4th} for HoGF3D (refer to [59] for more

detail). Furthermore, the typical LBP-based methods (i.e.,

LBP-TOP [3] and CLBP [58]) are also addressed for a pur-

pose of comparison. Table 10 shows results of those imple-

mentations for DT recognition on two challenging DTDB’s

subsets: Dynamics and Appearance.

It can be seen from Table 10 that our BiFoG-based de-

scriptors have very good performance on both DTDB’s

schemes. Indeed, rates of BiFoG2D are about 11% and

9% better than LBP-TOP’s [3] and CLBP’s [58] respec-

tively, while BiFoG3D’s are over 2% higher than those of

BiFoG2D. It means that addressing CLBP on the high-

order bipolar-filtered outcomes Θ2D/3D has pointed out

local spatio-temporal features with much more discrimi-

nation power than doing it on the raw DT sequences. Fur-

thermore, it should be emphasized that with two thirds

smaller dimension, our BiFoG2D/3D descriptors have no-

ticeably better performances of DT recognition on both

the challenging DTDB’s schemes, e.g., BiFoG2D
1.0,{1st,4th}

with 4800 bins obtains rates of (69.74%, 69.64%) on

schemes (Dynamics, Appearance) respectively compared

to (69.38%, 69.56%) of HoGF2D [59] with 7200 bins, while

BiFoG3D
1.0,{1st,4th} with 7200 bins obtains (71.73%,71.60%),

also about 0.6% higher than (71.08%, 71.03%) of HoGF3D

[59] with 9600 bins. Those above have consolidated the

interest of our proposal.

In respect of comparison to the learning-based meth-

ods, our BiFoG-based descriptors are comparable to those

methods. Particularly, on Appearance scheme, BiFoG3D

with rates of over 71% are about 7% better than that of

Flow Stream [78] (just 64.80%), while being very close

to that of MSOE Stream [65] (72.20%). On Dynamics

scheme, ours is nearly the same level as that of Flow

Stream [78]. Also, it should be emphasized that SOE-

Net [77] mostly obtains the highest rates on DTDB but

it is not on DynTex and DynTex++. Actually, it can be

verified from Table 9 that the performance of SOE-Net is

Table 10: Comparison of rates (%) on two challenging schemes of

the large scale DTDB dataset.

Group Encoding method {(P,R)} Dynamics Appearance

E

LBP-TOPu2 [3] {(8, 1)} 48.52 47.32

CLBPriu2
S/M/C [58] {(8, 1)} 60.45 60.73

HoGF2D [59] {(8, 1), (8, 2)} 69.38 69.56

HoGF3D [59] {(8, 1), (8, 2)} 71.08 71.03

Our BiFoG2D
1.0,{1st,2nd} {(8, 1)} 69.66 69.08

Our BiFoG2D
1.0,{1st,4th} {(8, 1)} 69.74 69.64

Our BiFoG3D
1.0,{1st,2nd} {(8, 1)} 71.57 71.33

Our BiFoG3D
1.0,{1st,4th} {(8, 1)} 71.73 71.60

F

MSOE Stream [65] - 80.10 72.20

SOE-Net [77] - 86.80 79.00

C3D [42] - 74.90* 75.50*

RGB Stream [78] - 76.40* 76.10*

Flow Stream [78] - 72.60* 64.80*

MSOE-two-Stream [43] - 84.00* 80.00*

Note: “-” means “not available”. Superscript “*” expresses results using deep

learning algorithms. Group E denotes local-feature-based methods, while F:

learning-based. The results of above learning-based methods are referred to

[43], while those of LBP-TOP [3], CLBP [58], and HoGF2D/3D [59] are re-

ported by our implementations. “S/M/C” denotes a 3D-jointed histogram of

CLBP’s components.

the same ours on Beta but about 4∼5% inferior to our

BiFoG3D’s on Gamma and DynTex++.

4.7. Global discussions

As thoroughly evaluated in Sections 4.3, 4.4, 4.5, and

4.6, it could be asserted that addressing the bipolar-filtered

features of Gaussian-gradient filterings for DT representa-

tion is an considerable solution for implementation in prac-

tice. Beside those evaluations, it can be made more fol-

lowing statements in order to consolidate the effectiveness

of the BiFoG-based descriptors in further experiments:

• It can be observed from Tables 6 and 7 that

the bipolar-filtered features extracted from the 3D

Gaussian-gradient filterings are more discriminative

to boost the performance than those decomposed from

the 2D ones thanks to a joint consideration of shape

and motion cues in the first ones. Therefore, the pro-

posed 3D decomposition should be recommended for

real applications.
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Table 11: Rates (%) of the BiFoG-based descriptors in multi-analyses

of high-orders F and standard deviations σ.

BiFoG-based descriptor #Bins Beta Gamma DynTex++

(a)

BiFoG2D
1.0,{1st,2nd,3nd} 7200 93.21 94.70 96.99

BiFoG2D
1.0,{1st,2nd,3nd,4th} 9600 94.44 94.32 97.36

BiFoG3D
1.0,{1st,2nd,3nd} 10800 95.68 96.59 97.73

BiFoG3D
1.0,{1st,2nd,3nd,4th} 14400 96.91 96.97 97.48

(b)

BiFoG2D
{0.5,1.0},{1st} 4800 95.06 93.56 97.32

BiFoG2D
{0.5,0.7,1.0},{1st} 7200 94.44 93.94 97.21

BiFoG3D
{0.5,1.0},{1st} 7200 95.68 96.97 97.82

BiFoG3D
{0.5,0.7,1.0},{1st} 10800 96.30 96.21 97.64

(c)

BiFoG2D
{0.5,1.0},{1st,2nd} 9600 95.68 95.08 97.83

BiFoG2D
{0.5,0.7,1.0},{1st,2nd} 14400 95.68 95.08 97.80

BiFoG3D
{0.5,1.0},{1st,2nd} 14400 97.53 96.21 98.11

BiFoG3D
{0.5,0.7,1.0},{1st,2nd} 21600 96.30 95.83 98.16

• The experimental results have also indicated that the

BiFoG-based descriptors have performed well in com-

parison with the non-BiFoG ones. In further context,

the bipolar-filtered features can be combined with the

informative magnitudes of the concerning Gaussian-

gradient-filtered outcomes in order to improve the dis-

crimination power.

• Addressing multi-scales of more than two high-orders

F as well as of more than one standard deviation

σ seems not to enhance the performance while the

dimension increases dramatically. Indeed, Table 11

(a) shows that the rates of BiFoG2D/3D are not im-

proved when multi-scales of three and four scales of

high-orders are taken into account. It is the same

for multi-scales of standard deviations (see Table 11

(b)). In the meanwhile, combinations of multi-scales

of both high-orders and standard deviations obtain

little higher rates on Beta (97.53%) and DynTex++

(98.16%) but in much larger dimension (see Table 11

(c)). Therefore, those should not be recommended for

real applications.

In current community of computer vision, methods

based on deep-learning networks are one of major streams.

In spite of achieving good performances in learning DT fea-

tures for recognition issues (see Tables 8, 9, and 10), they

have usually taken a large cost to learn millions of param-

eters by implementing complicated learning algorithms in

deeply multi-layer frameworks, e.g., ∼61M for AlexNet

and ∼6.8M for GoogleNet for DT-CNN [36], ∼80M for

C3D [42], and ∼88M for MSOE-two-Stream [43]. Cer-

tainly, it is one of decisive obstructions so that they can

be applied to real implementations for embedded sensor

systems as well as mobile devices, those which are in strict

requirements of tightly computing resources for their exe-

cutions.

Our proposal in this work could partly deal with that

barrier by using a shallow architecture of video analysis in

low computational complexity. Indeed, it just exploits a

simple operator to structure local bipolar-based patterns

from the filtered outcomes extracted by the Gaussian-

gradient filterings. In small dimension, our proposed

BiFoG-based descriptors are one of the best among the

local-feature-based approaches while the BiFoG’s perfor-

mances are also close to those of the deep-learning ones.

Tables 8, 9, and 10 show the significant rates of our 2-

order BiFoG
2D/3D

1.0,{1st,2nd} and BiFoG
2D/3D

1.0,{1st,4th} with only

4800 bins for the 2D ones and 7200 bins for the 3D. Sub-

stantially, those can be considered as some of appreciated

solutions for mobile applications. In addition, instead of

addressing CLBP [58], other local potent operators can be

investigated for a purpose of further improvements such as

CLBC [61], MRELBP [72], LVP-based [71, 27], LRP [48],

LDP-based [70, 55], etc.

5. Conclusions

In this paper, the bipolar properties of 2D/3D Gaussian-

gradient filterings have been introduced for DT rep-

resentation. Accordingly, the decomposing model has

been proposed to split the Gaussian-gradient-filtered im-

ages/volumes (i.e., Ipos
σ,∂λki

/Vσ,∂λki ) into bipolar-filtered out-

comes Θ
2D/3D
σ,k , which have been proved the robustness to
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noise. An efficient simple framework has been then pre-

sented to take advantage of the bipolar-filtered features,

extracted from these complementary outcomes, in order to

construct discriminative descriptors BiFoG
2D/3D
σ,F . The ex-

periments in DT recognition have verified that the perfor-

mances of BiFoG
2D/3D
σ,F are very good in comparison with

those of state of the art. For perspectives, it could be con-

sidered to decompose filtered components Iσ,∂λki /Vσ,∂λki
into more sub-outcomes in consideration of the influence

of the close-to-zero pixels/voxels [67]. Encoding these ob-

tained filtered elements may capture more robust bipolar-

filtered features for DT representation. However, the in-

crease of their final dimension should be treated for real

implementations. In addition, instead of using CLBP [58],

it can apply other LBP-based variants to the encoding

phase in order for further improvement of performance.
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Median robust extended local binary pattern for texture classi-

fication, IEEE Trans. IP 25 (3) (2016) 1368–1381.

[73] R. Fan, K. Chang, C. Hsieh, X. Wang, C. Lin, LIBLINEAR: A

library for large linear classification, JMLR 9 (2008) 1871–1874.

[74] D. Tiwari, V. Tyagi, Improved weber’s law based local bi-

nary pattern for dynamic texture recognition, Multimedia Tools

Appl. 76 (5) (2017) 6623–6640.

[75] Y. Xu, Y. Quan, Z. Zhang, H. Ling, H. Ji, Classifying dynamic

textures via spatiotemporal fractal analysis, Pattern Recogni-

tion 48 (10) (2015) 3239–3248.

[76] J. Ren, X. Jiang, J. Yuan, G. Wang, Optimizing LBP structure

for visual recognition using binary quadratic programming, SPL

21 (11) (2014) 1346–1350.

[77] I. Hadji, R. P. Wildes, A spatiotemporal oriented energy net-

work for dynamic texture recognition, in: ICCV, 2017, pp.

3085–3093.

[78] K. Simonyan, A. Zisserman, Two-stream convolutional net-

works for action recognition in videos, in: NIPS, 2014, pp. 568–

576.

26


	Introduction
	Related works
	A brief of LBP and its completed model
	DT description based on LBP-based variants
	Gaussian-based filterings

	Proposed method
	An overview of our proposal
	Bipolar features of Gaussian-gradient filterings
	DT representation based on ,k2D/3D features

	Experiments and evaluations
	Datasets and protocols
	Parameters for experimental implementation
	Complexity of our proposed BiFoG2D/3D,F descriptors
	Contribution of separately bipolar-filtered features
	Performing assessments of BiFoG-based descriptors
	Comprehensive comparison to state of the art
	Recognition on UCLA
	Recognition on DynTex
	Recognition on DynTex++
	Recognition on DTDB

	Global discussions

	Conclusions

