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ABSTRACT
Federated Learning (FL) has emerged in edge computing to ad-
dress privacy concerns in mobile networks. It allows the mobile
devices to collaboratively train a model while keeping training
data where they were generated. However, in practice, it suffers
from several issues such as (i) robustness, due to a single point
of failure, (ii) latency, as it requires a significant amount of com-
munication resources, and (iii) convergence, due to system and
statistical heterogeneity. To cope with these issues, Hierarchical FL
(HFL) has been proposed as a promising alternative. HFL adds the
edge servers as an intermediate layer for sub-model aggregation,
several iterations will be performed before the global aggregation
at the cloud server takes place, thus making the overall process
more efficient, especially with non-independent and identically
distributed (non-IID) data. Moreover, using traditional Artificial
Neural Networks (ANNs) with HFL consumes a significant amount
of energy, further hindering the application of decentralized FL on
energy-constrained mobile devices.

Therefore, this paper presents HFedSNN: an energy-efficient
and fast-convergence model by incorporating Spike Neural Net-
works (SNNs) within HFL. SNN is a generation of neural networks,
which promises tremendous energy and computation efficiency im-
provements. Taking advantage of HFL and SNN, numerical results
demonstrate that HFedSNN outperforms FL with SNN (FedSNN) in
terms of accuracy and communication overhead by 4.48% and 26×,
respectively. Furthermore, HFedSNN significantly reduces energy
consumption by 4.3× compared to FL with ANN (FedANN).

CCS CONCEPTS
•Computer science→ SpikingNeural Networks; •Distributed
System→ Hierarchical Federated Learning; • Networks→Mobile
networks.
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1 INTRODUCTION
To address the limitations associated with centralized learning and
local training, Federated Learning (FL) has emerged as a compelling
alternative learning paradigm, primarily because of its ability to
preserve privacy. FL empowers edge devices to learn collabora-
tively, ensuring that sensitive private data remain secure and are
not shared with external entities. The growing demand for mobile
networks presents a challenge for cloud FL in terms of privacy, se-
curity, latency, and bandwidth. In particular, although it implicitly
offers a certain degree of privacy because sensitive data are not ex-
posed, some limitations exist, such as the problem of heterogeneous
environments, including hardware and statistical heterogeneity. For
instance, the diversity of data generated in mobile networks leads to
non-independent and identically distributed (non-IID) data, mean-
ing that the data across each client vary in size and distribution.
This can potentially cause divergence in the FL model and in turn,
decrease its performance. This problem is amplified further as the
number of clients increases. In contrast, FL assumes that the server
residing in the cloud is an FL server formodel aggregation. However,
communication between mobile devices and cloud servers may be
frequently unavailable, expensive, and slow. This has motivated
researchers to take advantage of both edge and cloud servers and
propose a new paradigm called Hierarchical Federated Learning
(HFL) [7].

Although the performance of HFL reduces the impact of non-
IID data on the model performance, its training process occurs
on limited computing and low-energy devices. This makes the
participation of such constrained devices in the FL process almost
impossible. To solve this issue spiking neural networks (SNNs) have
recently become very popular as an energy-efficient alternative for
artificial intelligence tasks. SNNs are also known as event-driven
spiking networks and form a new generation of neural networks [8].
The intrinsic operational characteristics of SNNs make them power
efficient. Unlike Artificial Neural Networks (ANNs), SNNs replace
the multiplicative operations of inputs and weights with simpler
addition operations. This fundamental difference leads to a reduc-
tion in the power consumption of SNN-based models, offering a
more energy-efficient alternative to traditional ANNs [13]. There-
fore, SNNs are suitable for training many machine learning tasks
in mobile networks with HFL.

In this paper, we propose a novel HFL framework that incor-
porates SNNs, called HFedSNN. This approach leverages a client-
edge-cloud architecture wherein each mobile device (client) in-
dependently trains its SNN model on locally private data. To the
best of our knowledge, this is one of the first studies that explore
SNN-based models within an HFL context.
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1.1 Contributions
In this paper, we present the following contributions:
• We propose an HFL framework to train energy-efficient
SNNs on mobile devices in a privacy-preserving way. The
SNNs are suitable and practical for HFL in green cloud/edge
systems owing to their advantages of low power consump-
tion and event-driven information processing.
• We conduct extensive experiments to show the energy effi-
ciency and classification performance of HFedSNN with IID
and non-IID data on a real dataset by comparing it with
baseline schemes. The numerical results demonstrate the
advantages of the proposed model, particularly with non-IID
data, energy efficiency, and communication cost.
• We analyze the effect of several important hyper-parameters
for HFL and SNNs on classification performance.

The rest of the paper is organized as follows. Section 2 summa-
rizes the work related to this paper. Section 3 presents essential
background information and our HFedSNN approach. Experimental
settings and results are presented in Section 4. Finally, the conclu-
sion is given in Section 5.

2 RELATEDWORK
SNNs have recently emerged as a new generation of low-energy
deep neural networks thanks to their binary and event-driven pro-
cessing nature. The potential of SNNs has been explored in various
domains including human activity recognition [6] and object detec-
tion [4]. For example, Li et al. [6] proposed SNNs for human activity
recognition for the first time. The experimental results demon-
strated that SNNs not only exceeded ANNs in terms of accuracy
but also reduced energy consumption by up to 94%. Yan et al. [13]
used SNNs to classify Electrocardiogram (ECG) beats in energy-
constrained wearable devices. However, despite the performance of
the proposed model, the authors used ANN-SNN conversion where
the convolutional neural network (CNN) model was first trained,
and the resulting weights were transferred to SNNs with the same
network structure. However, this conversion process leads to an
increase in the overall energy consumption of the model.

These approaches typically require a central entity to process
data collected from all users. Therefore, operators face difficulties
in collecting large amounts of data, especially if end users are not
willing to share their sensitive data. Consequently, FL has been used
as an alternative solution to privacy concerns. Several research ef-
forts have been devoted to the use of FL with SNN. In this context,
Skatchkovsky et al. [10] proposed an FL-based learning model for
networks on an SNN device called FL-SNN. The experimental results
show a flexible trade-off between communication cost and accuracy.
However, only two clients were used during the training. Similarly,
Xie et al. [12] presented an efficient FL with an SNN for traffic sign
recognition in networked vehicles. The simulation results showed
that federated SNN outperformed traditional federated convolu-
tional neural networks in terms of accuracy and energy efficiency.
In contrast to previous studies, which were limited to extracting
computation and energy efficiency with the spiking model, the
Venkatesha et al. [11] studied the scalability and robustness of SNN
with FL. The results showed that federated SNN outperformed fed-
erated ANN when the data were distributed across a large number

of clients and provided up to 4.3× energy efficiency. However, using
the cloud as an FL server cannot satisfy delay-sensitive applica-
tions, and the model performance is heavily influenced by non-IID
data distributions [7]. To avoid total reliance on cloud servers, the
authors of Yang et al. [14] proposed a decentralized Federated SNN
model without using a fixed central coordinator, called LFNL. The
results also showed a significant reduction in energy consumption
compared with the federated ANN. Although the proposed model
eliminates the need for a central server, it is still expensive in terms
of communication overhead.

Discussion: While the integration of SNNs with FL can signif-
icantly reduce energy consumption, it is important to note that
both peer-to-peer FL and classical FL are limited by the speed of
convergence. This leads to high consumption of computational
resources by end devices along with communication overhead by
the corresponding approaches. Considering these factors, our focus
is on combining SNNs with HFL. This approach not only offers
the advantages of efficient distributed learning with non-IID data
but also ensures a reduction in communication costs and energy
consumption, thus making it an efficient and promising solution.

3 THE HFedSNN PROPOSAL
As background, we first present the two main concepts that have
been used in our proposal, HFL, and SNN, followed by the method-
ology and the architectural design of our model.

3.1 Concepts
3.1.1 Hierarchical Federated Learning (HFL). In contrast to tradi-
tional FL, HFL employs several aggregations of local models taking
place at the edge. This is followed by sending the edge aggregated
sub-models to the cloud for global aggregation. For the aggregation,
the FederatedAveraging (FedAvg) algorithm [9] has been used.

𝑤𝑡+1 =
𝑃∑︁
𝑘=1

𝐷𝑘

𝐷
𝑤𝑘𝑡+1 (1)

where the 𝐾 clients are indexed by 𝑘 ,𝑤 is the model parameter
at communication round 𝑡 + 1, 𝐷 is the total amount of the data in
all the participants 𝑃 (𝑃<𝐾), and 𝐷𝑘 is the training data available
to client 𝑘 .

Using the edge devices as intermediate servers not only helps
to improve the model performance but also enables efficient com-
munication, enhances the robustness and flexibility of large-scale
networks, as well as reduces the latency to meet delay-sensitive
application requirements.

3.1.2 Spiking Neural Networks (SNNs). SNNs are a biologically
inspired neural network, in which the neurons process spike sig-
nals over time, rather than real numbers (Figure 1). The sparsity
of the synaptic spiking inputs and its event-driven nature offer
significant energy reduction compared to conventional artificial
neural networks (ANNs). In particular, the energy consumed by
the SNN-based model during learning and inference is essentially
proportional to the number of spikes processed and communicated
by the neurons. The spikes are emitted when the membrane poten-
tial exceeds the pre-defined threshold. For example, as illustrated
in Figure 1, with the Leaky Integrate-and-Fire (LIF) neural model
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Figure 1: The structure of ANN and SNN. The ANN takes input and rectifies it if is less than 0 and passes it otherwise. The SNN
takes spikes as input and fires as spikes only if the membrane potential exceeds the threshold 𝑉𝑡ℎ .

(used in our work) the neuron accumulates the input spikes (𝑠1, 𝑠2,
..., 𝑠𝑚), called membrane potential and generates a spike output
whenever

∑
𝑊𝑠 exceeds the firing threshold 𝑉𝑡ℎ . The accumulated

spike value will continue to increase each time the neuron fires
and gradually decay toward a resting value when the neuron is not
firing due to a leak factor. After the neuron fires, the membrane
potential is lowered by the amount of the threshold. This process
is repeated for 𝑇 timesteps.

For a single post-synaptic neuron 𝑖 , the potential membrane can
be represented as follows:

𝑢𝑡𝑖 = 𝜆𝑢
𝑡−1
𝑖 +

∑︁
𝑤𝑖 𝑗𝑜

𝑡
𝑗 (2)

where 𝑗 represents the pre-synaptic neuron, 𝜆 is the leak factor, 𝑜 𝑗
the binary spike activation, and𝑤𝑖 𝑗 the weight of the connection
between the neurons 𝑗 and 𝑖 .

Unlike conventional ANNs, the information in SNNs (i.e., the
training data) needs to be encoded as a set of spike sequences
with time steps using either a rate-based method, temporal coding,
or direct coding (for more details of encoding techniques see [2]).
Furthermore, since SNNs involve non-differentiable functions, the
widely-used gradient-based backpropagation cannot be used di-
rectly to train it. To address this issue, several training techniques
have been proposed, that can broadly be categorized into three
types: (i) Spike-Timing Dependent Plasticity (STDP), (ii) Conver-
sion (ANN-SNN), and (iii) Surrogate Gradient Descent (SGD). With
STDP, if a pre-synaptic neuron fires just before a post-synaptic
neuron, the weight between those two neurons is increased. Alter-
natively, if a pre-synaptic neuron fires just after a post-synaptic
neuron, the weight between those two neurons is decreased. With
ANN-SNN conversion, the researchers used normalization methods
to transfer ReLU activation to integrate and fire spiking activity.
Finally, SGD is a continuous and differentiable approximation of the
non-differentiable spike function. This training technique enables
SNNs to be trained from scratch with lower latency and reasonable
classification accuracy.

3.2 Methodology & Architecture
To achieve better learning efficiency of SNNs in this study, we pro-
pose HFedSNN, which combines the strengths of HFL and SNN-based
models. Our HFedSNN is designed to optimize the learning process,
particularly with non-IID data, ensuring low communication over-
head and energy consumption. Figure 2 and Algorithm 1 present the

architecture and main procedure of HFedSNN. Our framework con-
sists of three layers and its learning process includes the following
key steps.

(1) Distributed local training and updates: Once the subset of the
clients (e.g., mobile devices) that participate in the learning
process is selected, the cloud server sends an initial SNNs
model (VGG9 in SNNs version) to them to trigger the dis-
tributed training (Global model download). Then, after some
local iterations, each client sends its local model updates to
the corresponding edge server for sub-global model aggre-
gation (Local model upload).

(2) Sub-global model aggregation and upload: Upon receiving all
the updates from the participants, the edge servers perform
the sub-global model aggregation and transfer it back (Edge
model downloading) to their assigned devices to update their
local models accordingly. Then, after a specific number of
sub-global rounds, the edge servers send their sub-global
models (Edge model uploading) to the cloud server.

(3) Globalmodel aggregation: After receiving the sub-globalmod-
els, a combined global model is created by averaging the
parameters of the edge models. Finally, the global model
parameters are transmitted along the hierarchy downwards
to the mobile devices.

This process is iterated until the desired accuracy is achieved.
In alignment with the methodology of [11], we encode the data
prior to initiating the training process. This involves transforming
pixel values into spike trains of certain timesteps using the Poisson
rate coding. Similarly, for gradient-based training within our SNNs
model, we utilize Batch Normalization Through Time (BNTT) [5].

4 EXPERIMENTS AND RESULTS
In this section, we first present our experiment settings, and then the
corresponding results along with their analysis. We use Python as a
programming language and PyTorch to construct our model. Some
basic code was adopted from the studies by Venkatesha et al. [11].
It is important to highlight that our objective is to primarily use
HFedSNN for a comparison study with the FedSNNmodel, as detailed
in [11]. We do not aim to achieve optimal accuracy with this model
in this paper, but rather to understand its performance in relation
to FedSNN.
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(a) HFL framework within mobile networks (b) Communication process

Figure 2: The network architecture and communication process of our HFedSNN model.

4.1 Simulation Settings
Benchmarks:We compare our proposed model with three baseline
approaches for performance evaluation in terms of accuracy, energy
consumption, and communication cost. The first one is FedSNN
proposed by Venkatesha et al. [11], which is a cloud-based FL using
the SNNs model. We also choose an FL-based ANNmodel (FedANN )
and an HFL-based ANN (HFedANN ) as the baselines, which train
the VGG9 model in the ANNs version.
Models and Datasets: The experiments have been conducted over
a model (i.e., VGG9 in SNNs version) and the CIFAR-10 dataset.
VGG9 consists of 7 convolutional layers and two fully connected
layers. CIFAR-10 is a real dataset including 50,000 images for train-
ing and 10,000 for testing and has ten different types of objects.
We choose the same model and dataset to compare with the base-
line [11].
Simulation Parameters: In alignment with the methodology
of [11], in all simulations, we use BNTT as a surrogate gradient-
based backpropagation approach and we encode the pixel values
into spike trains of length 𝑇 using rate coding. Furthermore, we
use 8 rounds as sub-global rounds and 5 rounds as global rounds
(𝑅𝑔) so in total, we run 40 communication rounds (on two levels).
We select these values for a fair comparison with FedSNN [11] be-
cause it used 40 communication rounds; we also use similar values
for the total number of clients 𝐾 , participants 𝑃 , timesteps 𝑇 , and
local epoch on each client. To further evaluate the performance of
our model, we conduct experiments on several numbers of clients
𝐾 ∈ {100, 150, 200}, participants 𝑃 ∈ {10, 15, 20}, and timesteps
𝑇 ∈ {20, 25, 30} in each communication round to study their impact
on the performance. Also, to analyze the impact of non-IID data
on the performance of our model, we vary the 𝛼 parameter of the
Dirichlet distribution. Table 1 summarizes the HFedSNN parameters
and their selected settings in our simulations.

Table 1: Selected parameters

Spiking Neural Network
Library PyTorch
model VGG9
Timesteps 25
Threshold 1
Hierarchical Federated Learn-
ing
FL server 1
Edge devices 3
Total clients 100
Participants 10%
Edge rounds (clients-edge devices) 8
Global round (edge-devices-FL
server)

5

Local epoch (client) 5
𝛼 0.5

4.2 Classification performance
Figure 3 shows the classification accuracy of our model against
FedSNN [11] and FedANN for IID and non-IID data. Our model
demonstrated superior accuracy compared with FedSNN, partic-
ularly in the non-IID data scenario. This enhanced performance
was achievedwith significantly fewer global communication rounds
(Figure 4), requiring only five global rounds, as opposed to the 40
global rounds necessary for FedSNN, that is, an 8-fold improvement.
This is mainly due to the use of edge devices for sub-model aggre-
gation with SNNs. The intermediate layer not only accelerates the
convergence of the global model but also mitigates the impact of
non-IID data with only local communication costs.

4.3 Impact of data distribution
In the context of mobile networks, data are often distributed un-
evenly and differently among devices for various reasons such as
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Algorithm 1: Learning procedure of HFedSNN: 𝑅𝑔 is the
total number of global rounds, 𝑟 is the fraction of selected
participants in each round. Edge servers𝐶 are indexed by 𝑐
and 𝐾𝑐 is the client associated with the edge server 𝑐 . On
the client, 𝐷𝑘 is the dataset available to client 𝑘 , 𝐸 is the
number of local epochs, and 𝜂 is the learning rate. 𝑇 is the
total timestep, and 𝑉𝑡ℎ represents the firing threshold. 𝐵 is
the local batch size.

1: /* Edge and Cloud servers side */
2: procedure HFLSNN
3: Initialise𝑤0 globally
4: for each global round 𝑔 ∈ [1, 𝑅𝑔] do
5: for each edge server 𝑐 ∈ 𝐶 do in parallel
6: Initialise𝑤𝑐,𝑔,0 ←− 𝑤𝑔
7: for each local round 𝑡 ∈ [1, 𝑅𝑐 ] do
8: 𝑤𝑐,𝑔,𝑡+1 ←− FedSNN(𝑤𝑐,𝑔,𝑡 , 𝐾𝑐 )
9: end for
10: end for
11: 𝑤𝑔+1 ←− 𝐹𝑒𝑑𝐴𝑣𝑔(𝑤𝑐,𝑔,𝑅𝑐 )
12: end for
13: end procedure

14: procedure FedSNN(𝑤𝑡 , 𝐾𝑐 )
15: 𝑃𝑐 = 𝑟 ×|𝐾𝑐 |
16: for each client 𝑘 ∈ 𝑃𝑐 do in parallel
17: 𝑤𝑘

𝑡+1 ←− ClientUpdate(𝑘 ,𝑤𝑡 , 𝑇 , 𝑉𝑡ℎ)
18: end for
19: 𝑤𝑡+1 ←− 𝐹𝑒𝑑𝐴𝑣𝑔(𝑤𝑘𝑡+1)
20: end procedure

21: /* Client side */
22: procedure ClientUpdate(𝑘 ,𝑤 , 𝑇 , 𝑉𝑡ℎ)
23: 𝛽 ←− (Split 𝐷𝑘 into batch of size 𝐵)
24: for each batch 𝑏 ∈ 𝛽 do
25: for each epoch 𝑡 ∈ [1, 𝐸] do
26: Update𝑤 using SNN(𝑏,𝑤 , 𝑉𝑡ℎ , 𝜂)
27: end for
28: end for
29: return Δ𝑤 = 𝑤 −𝑤0
30: end procedure
31: procedure SNN(𝑏,𝑤 , 𝑉𝑡ℎ , 𝜂)
32: Initialise neuron potentials 𝑉𝑖 = 0 for all neurons 𝑖
33: for each timestep 𝑡 ∈ [1,𝑇 ] do
34: Compute input current 𝐼 = 𝑤𝑇 · 𝑏
35: Update neuron potentials 𝑉𝑖 based on 𝐼𝑖
36: If 𝑉𝑖 > 𝑉𝑡ℎ for any neuron 𝑖 , emit spike and reset 𝑉𝑖
37: Update weights𝑤 based on emitted spikes and learning

rule, with learning rate 𝜂
38: end for
39: end procedure

user behavior and device characteristics. In this subsection, we
examine the impact of non-IID data on the performance of our
model. With IID settings, each client holds 𝐷

𝐾
training samples.

The model was trained with 100 clients and 10 participants, with

Figure 3: The classification performance (accuracy) of our
model (with 5 global rounds) against FedSNN [11] and
FedANN models with 40 global rounds, on IID and non-IID
data with 100 clients and 10 clients participating.

Figure 4: Model convergence with non-IID data settings

each client holding 500 samples. For non-IID settings, we study the
parameter 𝛼 of the Dirichlet distribution [15], where 𝛼 → ∞, all
clients have an IID data distribution, and with 𝛼 → 0 each client
holds samples from only one randomly chosen class. As shown in
Figure 5, non-IID data decreased the performance of both HFedSNN
and FedSNN. However, our model exhibited superior performance
when dealing with non-IID data (a lower level indicates a higher
degree of non-IID data). In particular, when 𝛼 = 2 the accuracy of
our model is 0.6% better than that of FedSNN, whereas 𝛼 = 0.5 the
accuracy of our model is 4.48% better than that of FedSNN. This
was attributed to the intermediate edge layer used in the model.

4.4 Energy consumption analysis
Energy consumption can be estimated based on the number of
floating point operations (FLOPs) of ANNs or SNNs, which is ap-
proximately equivalent to the number of multiply-and-accumulate
(MAC) operations. To evaluate the energy consumption of HFedSNN,
we used the metric described in [3] and the formulas proposed
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Figure 5: Classification accuracy under different non-IID
levels.

in [12]:
𝐸𝐴𝑁𝑁 = 𝐹𝐿𝑂𝑃𝑠 (𝑙) × (𝐸𝑀𝑢𝑙𝑡 + 𝐸𝐴𝑑𝑑 ) (3)

𝐸𝑆𝑁𝑁 = 𝐹𝐿𝑂𝑃𝑠 (𝑙) × 𝑅𝑠 (𝑙) ×𝑇 × 𝐸𝐴𝐶 (4)
where 𝐸𝑀𝑢𝑙𝑡 and 𝐸𝐴𝑑𝑑 represent the estimated energy of MAC
operations. 𝐸𝐴𝐶 represents the estimated energy of accumulated
operation (AC). 𝑅𝑠 (𝑙) is the spike rate of the 𝑙 − 𝑡ℎ layer. Given
the number of spikes 𝑛𝑠

𝑙
sent by the neurons in 𝑙 − 𝑡ℎ layer within

timesteps𝑇 and the number of neurons 𝑁𝑙 in the 𝑙 − 𝑡ℎ layer, 𝑅𝑠 (𝑙)
can be defined as:

𝑅𝑠 (𝑙) =
𝑛𝑠
𝑙

𝑁𝑙
(5)

Referring to equations 3 and 4, we obtain the total energy esti-
mate for the VGG9-based SNNs model as approximately 53.24𝜇J.
In contrast, the VGG9-based ANN model required approximately
227.99𝜇J, making the SNNs model 4.3× more energy-efficient. The
main reason for this significant improvement is the binary propa-
gation process in SNNs, which performs accumulation (AC) opera-
tions, thereby reducing energy consumption. Optimizing energy
consumption can lead to energy-efficient mobile networks that
ensure better network availability and performance as well as con-
tribute to more sustainable digital infrastructures.

4.5 Communication overhead
Because communication overhead is a crucial criterion in mo-
bile networks, we compared this factor in our model against the
HFedANN, FedSNN, and FedANN models. In particular, we used the
formulas proposed by Aouedi et al. [1] where the communication
cost of these models is calculated as follows:

𝐶 = 𝑃 × 𝑅𝑔 × (2 × 𝑠𝑖𝑧𝑒 (𝐻 )) (6)

where 𝑃 is the number of participants in each communication round,
𝑅𝑔 is the total number of global rounds, and 𝑠𝑖𝑧𝑒 (𝐻 ) is the size of the
model located on the client and exchanged between the edge servers
and cloud server in each communication round. We measured the
size of the model of VGG9 in the SNN/ANN version as the size of
the saved PyTorch model state_dict file.

Figure 6 presents the communication efficiency of HFedSNN com-
pared with the existing models presented in Figure 6. It shows
the total communication cost of the entire training process for
each model using the required communication rounds. The results
demonstrate that HFedSNN significantly reduces communication
resources by 99×, 26×, and 3.7× compared to FedANN, FedSNN, and
HFedANN, respectively. This implies that integrating SNNs into HFL
is a cost-effective strategy and, in turn, can improve the quality of
services (QoS) provided to users and provide low-latency services.

Figure 6: Comparison in terms of communication overhead
(Lower implies better).

4.6 Impact of HFL parameters
In this subsection, we study the impact of some HFL parameters
on the overall accuracy of the model. In the following, we consider
the number of clients and edge servers.

Number of total/participant clients. In this subsection, we investi-
gate the effect of varying the total number of clients, denoted by 𝐾
on the classification performance of HFedSNN. While maintaining a
constant fraction of participating clients, we adjust 𝐾 , which alters
the total number of participating clients. This analysis aims to un-
derstand how the model’s performance scales with an increase in
both the total and participating clients.

As shown in Table 2, it is clear that an increase in the total number
of clients adversely affects the performance of both HFedSNN and
FedSNN [11] in both the IID and non-IID data settings. Even though
the performance of FedSNN is better than ours in IID settings, our
model provides superior results in non-IID settings, even when the
number of clients is large, which is the objective of using HFL.

Number of Edge Servers. Edge servers are important in HFL and
can lead to significant improvements in system performance, scala-
bility, privacy, and fault tolerance. As shown in Figure 7, increasing
the number of edge servers in the intermediate layer can enhance
the classification performance of our model in both the non-IID
and IID data settings. This is because by increasing the number of
edge servers, each server will be responsible for a smaller group of
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Table 2: Classification accuracy with different numbers of
clients (𝐾) and participants (𝑃 ).

Clients (K/P)
IID Non-IID

FedSNN [11] HFedSNN FedSNN [11] HFedSNN

100/10 59.42 57.68 49.12 53.60
150/15 59.86 53.29 50.51 53.61
200/20 59.26 51.70 50.15 51.43

clients, thus reducing the impact of non-IID data and potentially
improving the classification accuracy of the global model. However,
it should be noted that a large number of edge servers increases the
complexity of the system and leads to higher infrastructure costs.
Therefore, determining the trade-off between classification accu-
racy and complexity of systems is an important research direction.

Figure 7: Classification accuracy of HFedSNN with different
numbers of edge servers

4.7 Impact of SNNs hyperparameters
In this subsection, we study the impact of some SNNs hyperparame-
ters on the overall accuracy of the model. We consider the timestep
and leakage rate parameters.

Timestep. As illustrated in Figure 8, there is a direct relationship
between the increase in the timestep and the improvement in ac-
curacy. This is because a larger number of spikes provides a more
comprehensive representation of the data. However, increasing
the timestep also leads to a proportional increase in the time re-
quired for the SNNs to converge, thereby affecting the latency of
the system.

Leakage rate. The leakage factor denoted as 𝜆 ∈ [0, 1] corresponds
to the leakage of the membrane potential 𝑢. In particular, it repre-
sents the rate at which the neuron decays over time when it is not
firing or receiving any input. Thus, the leaky factor can also deter-
mine how long a neuron can remember the past data. As shown
in Figure 9, the leakage rate can significantly affect SNNs learning
process and the performance of SNNs. For example, a large leakage
rate implies that the membrane potential of the neurons decays
quickly (Equation 2) and, in turn, reduces spike production unless

Figure 8: Performance comparison with different timesteps

it receives frequent input. Similarly, a small leakage rate implies
that the neurons are too active; hence, the final model is prone to
overfitting. Through experimental verification, we observed that
𝜆 = 0.5 was the optimal setting for HFedSNN.

Figure 9: Classification performance with different leak rates

4.8 Experiments on the second dataset
We also tested our model against FedSNN using both non-IID and
IID data settings on the MNIST dataset, which is an open and
well-known dataset. The simulation results, shown in Figure 10,
indicate the superior performance of our model over FedSNN under
both scenarios. Furthermore, our model achieved an accuracy of
over 75% and 99% under non-IID and IID conditions, respectively.
These results demonstrate that integrating HFL and SNN can no-
tably enhance the model’s performance in terms of classification
accuracy, convergence speed, communication cost, and most im-
portantly, energy consumption. Furthermore, our model exhibits
robust performance under both non-IID and IID settings, suggest-
ing its scalability. Thus, the results demonstrate that the proposed
model can be a viable solution for mobile networks with respect to
their specific requirements and constraints.
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(a) (b)

Figure 10: Classification accuracy (a) non-IID and (b) IID settings of data distribution with MNIST dataset

5 CONCLUSION
In this study, we have proposed and analyzed a hierarchical feder-
ated spiking neural network (HFedSNN) model, which uses SNNs for
the local training of mobile devices. Unlike conventional Federated
Learning (FL) approaches, our model integrates an edge layer for
intermediate aggregation prior to global aggregation on the cloud
server. We have evaluated the proposed classification capabilities
of HFedSNN under both IID and non-IID data settings against sev-
eral baseline approaches while varying different parameters. In
addition, we have investigated the performance of our model by
varying several parameters including the number of clients, time
steps, and non-IID levels. Experimental results using real-world
datasets have shown that the introduction of an intermediate edge
layer can improve the performance of the final model under non-IID
data conditions and reduce communication costs. Furthermore, the
numerical results of the SNNs revealed that the proposed HFedSNN
model achieved significant reductions in energy consumption.

In the future, we plan to incorporate clustering algorithms, such
as Hierarchical Clustering into our HFedSNNmodel. This integration
aims to further improve model performance, especially with non-
IID data settings. By organizing data into clusters based on their
similarities, we can potentially mitigate the challenges associated
with non-IID data and obtain a more accurate and efficient model.
Moreover, we plan to personalize global models to better work for
individual clients.
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