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A simple construction of the Anderson operator via its
quadratic form in dimensions two and three

Antoine MOUZARD and El Maati OUHABAZ

Abstract

We provide a simple construction of the Anderson operator in dimensions two and three. This
is done through its quadratic form. We rely on an exponential transform instead of the regularity
structures or paracontrolled calculus which are usually used for the construction of the operator.
The knowledge of the form is robust enough to deduce important properties such as positivity and
irreducibility of the corresponding semigroup. The latter property gives existence of a spectral gap.

Keywords – Anderson form; singular stochastic operator; Schrödinger operator; renormalization,
positivity, spectral gap

Introduction

Over the last decade, the study of singular stochastic PDEs has grown to an important field with
the introduction of regularity structures by Hairer [12] and paracontrolled calculus by Gubinelli,
Imkeller and Perkowski [10]. The theory first aimed at the resolution of parabolic equations such
as the Parabolic Anderson Model (PAM) equation or the Kardar–Parisi–Zhang (KPZ) equation, it
then led to the construction of the Anderson Hamiltonian

H = −∆ + ξ

with ξ the spatial white noise, see [1, 11, 15, 6, 18] in dimension 2 and 3, on a finite box with
periodic or Dirichlet boundary conditions or even compact Riemaniann manifolds.

In this note we provide a simple construction of this operator via its quadratic form without
using regularity structures or paracontrolled calculus. We rely on an exponential transform first
used by Hairer and Labbé [13] for the continuum parabolic Anderson model on R2 and then used
in different context, see for example [7, 24, 14, 3, 5]. In particular, this was already used by
Matsuda and van Zuijlen [16] to construct the Anderson form in the full subcritical regime using
also regularity structures. See also [17, 19] for other singular stochastic operators.

The Anderson Hamiltonian is the Schrödinger operator H = −∆ + ξ with ξ the space white
noise which is a random distribution of negative Hölder regularity −d2 − κ for any κ > 0. In one
dimension, it is the derivative of the Brownian motion and the associated form

a(u, v) =

∫ 1

0

∇u(x) · ∇v(x)dx+

∫ 1

0

u(x)v(x)ξ(dx)

was constructed by Fukushima and Nakao [9] with domain the usual Sobolev space H1. The idea
is that one can multiply two distributions if the sum of their regularity is positive, hence uvξ is
well-defined as a distribution for u, v ∈ H1 since ξ ∈ C− 1

2−κ. In two dimensions, ξ ∈ C−1−κ and this
construction is not possible anymore. Following the recent progress in singular stochastic PDEs,
the operator can be constructed with a random domain D2

ξ depending on the noise ξ such that
H : D2

ξ ⊂ L2 → L2 is an unbounded closed operator. Taking u ∈ L2 and assuming that Hu is an
element of L2, one obtains the relation

∆u = uξ −Hu

which induces an expansion of u with respect to the noise using regularity structures or paracon-
trolled calculus. In particular, [11] and [18] also identify a form domain, that is a random subspace
D1
ξ ⊂ L2 such that

∀u ∈ D1
ξ , |〈Hu, u〉| <∞.
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We emphasize in the notation that the domains are random and consist of random functions depend-
ing on the noise. In each case, the operator is a singular stochastic operator and a renormalization
procedure is involved in its construction. For a regularization of the noise ξε, the operator is
constructed as a limit in the resolvent sense, that is

H = lim
ε→0

(
−∆ + ξε − cε

)
with a constant cε which explodes when ε→ 0. It is related to the definition of the product ∆−1ξ ·ξ
and the divergence of the Green function of the Laplacian. In two dimensions one has cε ∼ log(ε)
while cε ∼ ε−1 in three dimensions. In one dimension, this product is well-defined and one can take
cε = 0 which is coherent with [9] and D1

ξ = H1 does not depend on the noise. However the domain
of the operator is random and this method was recently used by Dumaz and Labbé to provide a
precise study of the operator, see [8] and references therein. The Anderson form also appears as
the energy for dispersive PDEs such as the nonlinear Schrödinger equation

i∂tu = ∆u+ uξ + |u|2u

and was used to obtain solutions, see for example [7, 11, 18, 24, 20, 5] and references therein. In
particular, uniform bounds in energy is the crucial property of such singular stochastic PDEs where
one does not have the regularizing properties of the parabolic equation. In this context, one has
to work with random initial data depending on the noise and the conservation of energy makes the
form domain of the Anderson operator a natural space to get a global solution.

In this work, we consider a new variable u = eXv for a suitable random field X. In this case,
we have

∆u = eX∆v + 2eX∇X · ∇v + eX(|∇X|2 + ∆X)v

and if X is a solution to ∆X = ξ, the Anderson operator is formaly given by

Hu = −eX∆v − 2eX∇X · ∇v − eX |∇X|2v.

In two dimensions, we have
ξ ∈ C−1−κ =⇒ ∇X ∈ C−κ,

hence the square |∇X|2 is singular and has to be defined with a renormalization procedure as a
Wick product |∇X|2� ∈ C−2κ. In this case, v ∈ H1 is regular enough for the associated form
to make sense and one can construct the Anderson form with domain D(a) = eXH1. In three
dimensions, we have

ξ ∈ C− 3
2−κ =⇒ ∇X ∈ C− 1

2−κ

and the Wick product |∇X|2� ∈ C−1−2κ is too rough to be multiplied by v ∈ H1. One can apply
the same method and construct the Anderson form with domain eX+YH1 with a suitable second
random field Y .

This exponential transform allows us to construct a symmetric form a whose associated operator
H is the Anderson Hamiltonian. The domain of H is given by

D(H) =
{
u ∈ L2(Td) ; ∃v ∈ L2(Td),∀ϕ ∈ D(a), a(u, ϕ) = 〈v, ϕ〉

}
.

For a better description of this domain a more involved theory such as regularity structures or
paracontrolled calculus seems to be necessary. Nevertheless, the knowledge of H through its form
is enough to deduce that H is self-adjoint, it has a discrete spectrum and an L2 orthonormal
basis given by eigenfunctions. In addition, relying on a criterion from [21], we prove that the
associated semigroup is irreducible. In particular, this implies the existence of a spectral gap
λ1 < λ2 with a positive ground state Ψ ∈ D(H). This result was already proved in [4] by relying
on a quantitative estimate for the linear Parabolic Anderson Model equation. Our work provides
a pedestrian approach to this result even in three dimensions which usually relies on involved
computations with expansion of order 5 using regularity structures or paracontrolled calculus.

In order to keep the ideas and tools simple we restrict ourselves to the case of the torus Td
for d ∈ {2, 3} (endowed with the Lebesgue measure dx). Our construction works on any compact
manifold without boundary. Following the tools used in [18] we could also allow the manifold to
have a smooth boundary and the operator is then subject to Dirichlet boundary conditions. The
approach using the exponential transform can not be used to construct the explicit domain of the
operator, the use of regularity structure or paracontrolled calculus seems inevitable.

In Section 1, we provide several bounds on stochastic functions and distributions that we need
to construct the form. In particular, this is where the renormalization of the singular products is
done. In Sections 2 and 3, we respectively construct the Anderson form in two and three dimensions
using the first and second order exponential transform. In Section 4, we prove irreducibility and
existence of a spectral gap.
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1 – Stochastic bounds and renormalization

On the torus Td, the white noise is given formally by

ξ(x) =
∑
k∈Zd

ξke
ik·x

with (ξk)k∈Zd a family of independent and identically distributed random variables of centered
standard complex Gaussian with ξ−k = ξk. This gives a centered real Gaussian field with covariance
function

E
[
ξ(x)ξ(y)

]
= δ0(x− y),

that is a random distribution (〈ξ, ϕ〉)ϕ∈L2(Td) such that

E
[
〈ξ, ϕ〉〈ξ, ψ〉

]
= 〈ϕ,ψ〉L2(Td)

which indeed gives the Fourier coefficient (ξk)k∈Zd . Its first construction is due to Paley and
Zygmund [22, 23] and is actually the first random distribution ever considered. A natural and
convenient setting is given by the Besov space Bαp,q which can be defined using the Littlewood-
Paley decomposition, see for example [2]. This decomposition can be stated as follows

u =
∑
n≥0

∆nu

with ∆nu =
(
F−11|·|'2nF

)
u, that is the projection of u in frequencies on an annulus of size 2n.

It is defined by (
∆nu

)
(x) := 2d(n−1)

∫
Rd
χ
(
2n−1(x− y)

)
u(y)dy

with χ ∈ S(Rd) and supp χ̂ ⊂ { 12 ≤ |z| ≤ 2} for n ≥ 1 and(
∆0u

)
(x) :=

∫
Rd
χ0(x− y)u(y)dy

with χ0 ∈ S(Rd) and supp χ̂0 ⊂ {|z| ≤ 1}. We also denoteK = χ̂ such that ∆nu =
(
F−1K(2n·)F

)
u.

Then the Besov space Bαp,q are distributions such that

‖u‖Bαp,q :=
( ∑

n≥0

2αpn‖∆nu‖pLq(Td)
) 1
p

<∞.

The particular case p = q = 2 corresponds to the Sobolev space Bα2,2 = Hα and for p = q = ∞
with α ∈ R+\N, one gets the usual Hölder spaces Bα∞,∞ = Cα. One also has the continuous Besov
embedding

Bαp1,q1 ↪→ B
α−d( 1

p1
− 1
p2

)
p2,q2

for p1 ≤ p2, q1 ≤ q2 and α ∈ R. While one can a priori only multiply a distribution by a smooth
function, one has the following product rule in the case of Besov spaces which corresponds to Young
condition.

Proposition 1.1. For α, β ∈ R such that α + β > 0 and p, q, r ∈ [1,∞] such that 1
r = 1

p + 1
q , there

exists a constant C > 0 such that

‖uv‖Bα∧βr,r
≤ C‖u‖Bαp,p‖v‖Bβq,q .

The following proposition gives a similar result at the level of the duality bracket.

Proposition 1.2. For α ∈ R and p, p′, q, q′ ∈ [1,∞] such that 1 = 1
p + 1

p′ = 1
q + 1

q′ , there exists a
constant C > 0 such that

|〈u, v〉| ≤ C‖u‖Bαp,q‖v‖B−α
p′,q′

.

For later use, we introduce a new random field X defined by

X(x) = −
∑

k∈Zd\{0}

1

|k|2
ξke

ik·x.

It satisfies the equation
∆X = ξ − ξ0.

The following proposition gives Hölder regularity of ξ and X.
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Proposition 1.3. For any κ > 0, one has almost surely

ξ ∈ C− d2−κ(Td) and X ∈ C2− d2−κ(Td).

Proof : Since the noise is Gaussian, we have

E
[
〈ξ, ϕ〉p

]
≤ (p− 1)

p
2E
[
〈ξ, ϕ〉2

] p
2

for any test function ϕ. This is usually referred to as Gaussian hypercontractivity. In order to use
this, we estimate the Besov norm Bγp,p for p large and use the embedding

Bγp,p(Td) ↪→ B
γ− dp
∞,∞(Td).

We have

E
[
‖∆nξ‖pLp(Td)

]
=

∫
Td

E
[
〈ξ, χn(x− ·)〉p

]
dx

≤ (p− 1)
p
2

∫
Td

E
[
〈ξ, χn(x− ·)〉2

] p
2 dx

≤ (p− 1)
p
2 ‖χn‖pL2(Td)|T

d|

with χn(·) = 2dnχ(2n·) and using that ξ is an isometry from L2(Td) to L2(Ω). We have

‖χn‖2L2(Td) = 22dn‖χ(2n·)‖2L2(Td) = 2dn‖χ‖2L2(Td)

hence
E
[
‖∆nξ‖pLp(Td)

]
≤ (p− 1)

p
2 2pn

d
2 ‖χ‖p

L2(Td)|T
d|.

This gives
E
[
‖ξ‖
B
− d

2
p,p

]
<∞,

and hence ξ ∈ C−
d
2−

d
p (Td) for any p ≥ 1 which completes the proof for the regularity of ξ while the

regularity of X follows from a standard regularity estimate.

�

In two dimensions, one has X ∈ C1−κ hence ∇X ∈ C−κ and the square |∇X|2 is ill-defined since
−2κ < 0. Consider a regularization of the noise ξε = ξ ∗ ρε with ρε a mollifier. Then ξε converges
to ξ as ε goes to 0 in C−1−κ and one can consider Xε the solution to

∆Xε = ξε − 〈ξε, 1〉

which converges to X in C1−κ as ε goes to 0. Since the square |∇X|2 is ill-defined, the quantity
|∇Xε|2 diverges and this is described by the Wick square as proved in the following proposition.

Proposition 1.4. There exists a distribution |∇X|2� ∈ C−2κ(T2) such that

|∇X|2� = lim
ε→0

(
|∇Xε|2 − E

[
|∇Xε|2

])
in C−2κ(T2) in probability. Moreover, one has

E
[
|∇Xε|2

]
∼
ε→0

1

(2π)2
log(ε).

Proof : Since ξε = ξ ∗ ρε, we have

Xε(x) = −
∑

k∈Z2\{0}

ρ̂ε(k)

|k|2
ξke

ikx

thus
|∇Xε(x)|2 =

∑
k,k′∈Z2\{0}

ρ̂ε(k)ρ̂ε(k′)
k · k′

|k|2|k′|2
ξkξk′e

i(k−k′)·x.
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Using E
[
ξkξk′

]
= δ0(k − k′), we have

E
[
|∇Xε(x)|2

]
= −

∑
k∈Z2\{0}

|ρ̂ε(k)|2

|k|
∼
ε→0

1

(2π)2
log(ε)

which gives the second part of the statement. For n ≥ 1, we have

∆n

(
|∇Xε(x)|2 − E

[
|∇Xε(x)|2

])
=
∑
k 6=k′

Kn(k − k′)ρ̂ε(k)ρ̂ε(k′)
k · k′

|k|2|k′|2
ξkξk′e

i(k−k′)·x

with Kn(·) = K(2−n·) and so
∣∣∣∆n

(
|∇Xε(x)|2 − E

[
|∇Xε(x)|2

])∣∣∣2 is given by

∑
k1 6=k′1
k2 6=k′2

Kn(k1 − k′1)Kn(k2 − k′2)ρ̂ε(k1)ρ̂ε(k′1)ρ̂ε(k2)ρ̂ε(k
′
2)

k1 · k′1
|k1|2|k′1|2

k2 · k′2
|k2|2|k′2|2

ξk1ξk′1ξk2ξk′2

×ei(k1−k
′
1)·xe−i(k2−k

′
2)·x

and we have

E
[
ξk1ξk′1ξk2ξk′2

]
= E

[
ξk1ξk′1

]
E
[
ξk2ξk′2

]
+ E

[
ξk1ξk2

]
E
[
ξk′1ξk′2

]
+ E

[
ξk1ξk′2

]
E
[
ξk′1ξk2

]
= δ0(k1 − k′1)δ0(k2 − k′2) + δ0(k1 + k2)δ0(k′1 + k′2) + δ0(k1 − k′2)δ0(k′1 − k2)

for any k1, k′1, k2, k′2 ∈ Z2. The term k1 = k′1 and k2 = k′2 corresponds to E
[
|∇Xε(x)|2

]
hence the

restriction of the sum. It follows that

E
∣∣∣∆n

(
|∇Xε(x)|2 − E

[
|∇Xε(x)|2

])∣∣∣2 = 2
∑
k1,k2

|Kn(k1 − k2)|2 |ρ̂ε(k1)|2|ρ̂ε(k2)|2

|k1|2|k2|2

= 2
∑
k1,k2

∣∣K(2−n(k1 − k2)
)∣∣2 |ρ̂ε(k1)|2|ρ̂ε(k2)|2

|k1|2|k2|2

= 2
∑
k

|K(2−nk)|2
∑

k1−k2=k

|ρ̂ε(k1)|2|ρ̂ε(k2)|2

|k1|2|k2|2

= 2
∑
k

|K(2−nk)|2
∑
k2

|ρ̂ε(k + k2)|2|ρ̂ε(k2)|2

|k + k2|2|k2|2

≤ C22n2−(2−2κ)n
∑
k2

|ρε(k2)|2

|k2|2+2κ

for any κ > 0 and a constant C > 0 using the support of K. The Gaussian hypercontractivity
yields

E
∣∣∣∆n

(
|∇Xε(x)|2 − E

[
|∇Xε(x)|2

])∣∣∣p ≤ (p− 1)p
(
E
∣∣∣∆n

(
|∇Xε(x)|2 − E

[
|∇Xε(x)|2

])∣∣∣2) p2
≤ C2κnp.

Thus, |∇Xε(x)|2 −E
[
|∇Xε(x)|2 is bounded in B−κp,p for any κ > 0 and p ≥ 1. Using the embedding

B−κp,p ↪→ C
−κ− dp and a similar bound, one proves that

(
|∇Xε(x)|2 − E

[
|∇Xε(x)|2

)
ε>0

is a Cauchy
family in C−κ for any κ > 0 which completes the proof.

�

We define the two dimensional enhanced noise

Ξ =
(
ξ, |∇X|2�

)
which belongs to

X κ(T2) = C−1−κ(T2)× C−2κ(T2)

for any κ > 0. We also have that

Ξε =
(
ξε, |∇Xε|2 − (2π)−2 log(ε)

)
converges to Ξ in X κ(T2) for any κ > 0. In three dimensions, one has X ∈ C 1

2−κ hence this term is
even more singular with −1− 2κ < 0. The analog of the previous renormalization is the following
proposition with a larger divergence. Its proof follows the same path as the previous one.
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Proposition 1.5. There exist a distribution |∇X|2� ∈ C−1−2κ(T3) such that

|∇X|2� = lim
ε→0

(
|∇Xε|2 − E

[
|∇Xε|2

])
in C−1−2κ(T3) in probability. Moreover, one has

E
[
|∇Xε|2

]
∼
ε→0
− 1

(2π)2
1

ε
.

Since the noise is more irregular, |∇X|2� is too rough to make sense of its bracket with H1

hence we will also need Y the solution to

∆Y = |∇X|2� − 〈|∇X|2�, 1〉

which belongs to C−2κ(T3). Its square is also singular and can be defined as a Wick product, as
well as the product ∇X · ∇Y .

Proposition 1.6. There exists a distribution |∇Y |2� ∈ C−4κ(T3) such that

|∇Y |2� = lim
ε→0

(
|∇Yε|2 − E

[
|∇Yε|2

])
in C−4κ(T3) in probability. Moreover, one has

E
[
|∇Yε|2

]
∼
ε→0

1

(2π)2
log(ε).

There also exists a distribution ∇X � ∇Y ∈ C− 1
2−3κ(T3) such that

∇X � ∇Y = lim
ε→0

(
∇Xε · ∇Yε

)
.

We define the three dimensional enhanced noise

Ξ =
(
ξ, |∇X|2�, |∇Y |2�,∇X � ∇Y

)
which belongs to

X κ(T3) = C− 3
2−κ(T3)× C−1−2κ(T3)× C−4κ(T3)× C− 1

2−3κ

for any κ > 0. We also have that

Ξε =
(
ξε, |∇Xε|2 − (2π)−2ε−1, |∇Yε|2 − (2π)−2 log(ε),∇Xε · ∇Yε

)
converges to Ξ in X κ(T3) for any κ > 0.

2 – Construction in two dimensions

It is tempting to define the form of the Anderson operator by

a(u1, u2) =

∫
T2

∇u1(x) · ∇u2(x)dx+

∫
T2

u1(x)u2(x)ξ(dx)

for any u1, u2 ∈ C∞(T2). However, this is not a natural object since this form is not closable as
shown by the recent progress on singular stochastic operators, which can be guessed from the fact
that for u ∈ H1 the form domain of ∆, the product uξ is ill-defined. For ξε = ξ ∗ρε a regularization
of the noise, consider the regularized form

aε(u1, u2) =

∫
T2

∇u1(x) · ∇u2(x)dx+

∫
T2

u1(x)u2(x)
(
ξε(x)− cε

)
dx

with cε the logarithmic diverging constant defined in the previous section. For any fixed ε > 0, aε
is a closed symmetric form with domain H1 and we construct a form a such that aε converges to a
as ε goes to 0. With X the random field constructed in the previous section, we consider the new
variable u = eXv and define

Hu := −eX∆v − 2eX∇X · ∇v − eX |∇X|2�v + ξ0e
Xv

6



for v ∈ C∞. Since X ∈ C1−κ and |∇X|2� ∈ C−2κ, Hu is well-defined as a distribution. The
associated form is given by

a(u1, u2) = 〈Hu1, u2〉
= 〈HeXv1, eXv2〉
= −〈∆v1, v2e2X〉 − 2〈∇X · ∇v1, v2e2X〉 − 〈|∇X|2�v1, v2e2X〉+ ξ0〈v1, v2e2X〉

=

∫
T2

∇v1(x) · ∇v2(x)e2X(x)dx− 〈|∇X|2�v1, v2e2X〉+ ξ0

∫
T2

v1(x)v2(x)e2X(x)dx

which is well-defined for v1, v2 ∈ H1 since∣∣〈|∇X|2�e2X , v1v2〉∣∣ ≤ ‖|∇X|2�e2X‖C−κ‖v1v2‖Bκ1,1
≤ ‖|∇X|2�‖C−κ‖e2X‖C2κ‖v1‖H2κ‖v2‖H2κ

≤ ‖|∇X|2�‖C−κ‖e2X‖C1−κ‖v1‖H1‖v2‖H1

for κ > 0 small enough using Proposition 1.2 and Proposition 1.1.

Definition 2.1. The Anderson form is defined by

a(u1, u2) := 〈∇v1,∇v2〉L2(T2,e2Xdx) −
〈
|∇X|2�, v1v2e2X

〉
+ ξ0〈v1, v2〉L2(T2,e2Xdx)

where vi = e−Xui with domain D(a) := eXH1 equipped with the norm

‖u‖2a := ‖u‖2L2 + ‖e−Xu‖2H1 .

Since eX ∈ C1−κ for any κ > 0, the domain D(a) is dense in H1−κ thus in L2. The following
proposition states that this densely defined form is continuous and bounded from below.

Proposition 2.2. There exists a random constant C > 0 such that

|a(u1, u2)| ≤ C‖u1‖a‖u2‖a

for u1, u2 ∈ D(a). The form a is quasi-coercive, i.e., there exists random constants δ, C ′ > 0 such
that

a(u, u) + C ′‖u‖2L2 ≥ δ‖u‖2a
for all u = eXv ∈ D(a).

Proof : The continuity follows directly from∣∣〈|∇X|2�e2X , v1v2〉∣∣ ≤ ‖|∇X|2�‖C−κ‖e2X‖C1−κ‖v1‖H1‖v2‖H1 .

Now we prove the second statement. Set u = eXv with v ∈ H1. We have for any κ > 0

a(u, u)− ξ0
∫
T2

|v(x)|2e2X(x)dx

=

∫
T2

|∇v(x)|2(x)e2X(x)dx− 〈|∇X|2�v, ve2X〉

≥ e−‖X‖L∞
∫
T2

|∇v(x)|2(x)dx− ‖|∇X|2�‖C−κ‖e2X‖C2κ‖v‖2H2κ .

For small κ > 0 we use the standard interpolation inequality, which is valid for every ε > 0,

‖v‖H2κ ≤ ε‖v‖H1 + cε‖v‖L2

for some cε > 0. We choose ε small enough and insert this inequality in the previous estimates to
obtain the statement.

�

As a consequence of the previous proposition one obtains that the norms ‖ · ‖D(a) and ‖e−X · ‖H1

are equivalent.
We now prove that the form is closed.

Proposition 2.3. The form a is closed, that is (D(a), ‖ · ‖a) is a complete space.
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Proof : Let (un)n≥0 ⊂ D(a) be a Cauchy sequence. Then (e−Xun)n≥0 is a Cauchy sequence in
H1 thus converges to a limit v ∈ H1 while (un)n≥0 is a Cauchy sequence in L2 thus converges to
u ∈ L2. We have

‖u− eXv‖L2 ≤ ‖u− un‖L2 + ‖un − eXv‖L2

≤ ‖u− un‖L2 + ‖eX‖L∞‖e−Xun − v‖L2

hence u = eXv ∈ D(a) and this completes the proof.

�

Finally, we prove that a is the limit in some sense of the renormalized form aε.

Proposition 2.4. For any κ > 0, there exists a constant C > 0 such that∣∣a(u1, u2)− aε(u
ε
1, u

ε
2)
∣∣ ≤ C‖Ξ− Ξε‖Xκ(T2)‖v1‖H1‖v2‖H1

with uεi = eXεvi for ε ≥ 0.

Proof : Let v1, v2 ∈ H1 and consider uεi = eXεvi for ε ≥ 0, i.e., uεi ∈ H1 the form domain of aε for
any ε > 0 while ui ∈ eXH1 for ε = 0. We have

aε(u
ε
1, u

ε
2) = 〈∇v1,∇v2〉L2(T2,e2Xdx) −

〈
|∇Xε|2 − cε, v1v2e2Xε

〉
+ 〈ξε, 1〉〈v1, v2〉L2(T2,e2Xεdx)

and hence∣∣a(u1, u2)− aε(u
ε
1, u

ε
2)
∣∣ ≤ ∣∣〈|∇Xε|2 − cε − |∇X|2�, v1v2〉

∣∣+
∣∣〈〈ξε, 1〉eXε − ξ0eX , v1v2〉∣∣

≤ C‖Ξ− Ξε‖Xκ‖v1‖H1‖v2‖H1

for any κ > 0 and the proof is complete.

�

3 – Construction in three dimensions

In three dimensions, the expression

〈∇v1,∇v2〉L2(T3,e2Xdx) −
〈
|∇X|2�, v1v2e2X

〉
+ ξ0〈v1, v2e2X〉

does not make sense anymore for v1, v2 ∈ H1 since |∇X|2� belongs to C−1−κ for any κ > 0. In this
case, one makes the change of variable u = eX+Y v with Y the solution to

∆Y = |∇X|2� −
〈
|∇X|2�, 1

〉
which belongs to C1−κ. We have

Hu = −eX+Y ∆v − 2eX+Y (∇X +∇Y ) · ∇v −
(
|∇Y |2� + 2∇X � ∇Y − 〈|∇X|2�, 1〉 − ξ0

)
eX+Y v

hence

a(u1, u2) = 〈Hu1, u2〉
= 〈HeX+Y v1, e

X+Y v2〉
= −〈∆v1, v2e2X+2Y 〉 − 2〈∇(X + Y ) · ∇v1, v2e2X+2Y 〉 − 〈|∇Y |2�, v1v2e2X+2Y 〉
− 2〈∇X � ∇Y, v1v2e2X+2Y 〉+ 〈|∇X|2�, 1〉+ ξ0, v1v2e

2X+2Y 〉

=

∫
T3

∇v1(x) · ∇v2(x)e2X(x)+2Y (x)dx− 〈|∇Y |2� + 2∇X � ∇Y, v1v2e2X+2Y 〉

+
(
〈|∇X|2�, 1〉+ ξ0

) ∫
T3

v1(x)v2(x)e2X(x)+2Y (x)dx

which is well-defined for v1, v2 ∈ H1 since |∇Y |2� ∈ C−κ and ∇X � ∇Y ∈ C− 1
2−κ for any κ > 0.
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Definition 3.1. The Anderson form is defined by

a(u1, u2) := 〈∇v1,∇v2〉L2(T3,e2X+2Y dx) − 〈|∇Y |2� + 2∇X � ∇Y, v1v2e2X+2Y 〉
+ (〈|∇X|2�, 1〉+ ξ0)〈v1, v2〉L2(T3,e2X+2Y dx)

where vi = e−Xui with domain D(a) := eX+YH1 equipped with the norm

‖u‖2a := ‖u‖2L2 + ‖e−(X+Y )u‖2H1 .

Since eX+Y ∈ C 1
2−κ for any κ > 0, the domain D(a) is dense H 1

2−κ thus in L2. The following
proposition states that this densely defined form is continuous and bounded from below. The proofs
are obtained following the same path as in two dimensions.

Proposition 3.2. There exists a random constant C > 0 such that

|a(u1, u2)| ≤ C‖u1‖a‖u2‖a

for u1, u2 ∈ D(a). There exists random constants δ, C ′ > 0 such that

a(u, u) + C ′‖u‖2L2 ≥ δ‖u‖2a

for all u = eX+Y v ∈ D(a).

Again, as in the two dimension case the form is closed.

Proposition 3.3. The form a is closed, that is (D(a), ‖ · ‖a) is a complete space.

Finally, a is also the limit in some sense of the renormalized form aε.

Proposition 3.4. For any κ > 0, there exists a constant C > 0 such that∣∣a(u1, u2)− aε(u
ε
1, u

ε
2)
∣∣ ≤ C‖Ξ− Ξε‖Xκ(T3)‖v1‖H1‖v2‖H1

with uεi = eXε+Yεvi for ε ≥ 0.

4 – Positivity and spectral gap

The construction of the form a is the same in two and three dimensions. It is densely defined,
symmetric bounded from below, continuous and closed. Its associated operator H has domain

D(H) =
{
u ∈ L2(Td) ; ∃v ∈ L2(Td),∀ϕ ∈ D(a), a(u, ϕ) = 〈v, ϕ〉

}
.

The operator H is self-adjoint, densely defined and bounded from below. Since D(a) is imbedded
into a Sobolev space of positive regularity, it is compactly imbedded in L2(Td). Therefore, H has
discrete spectrum

λ1 ≤ λ2 ≤ . . .

and there exists an orthonormal basis of L2(Td) which is given by eigenfunctions ofH. An important
information is the existence of a spectral gap with a positive ground state. This is already known
(see for example [4]) and it is a key to prove two-sided Gaussian bounds for the corresponding heat
kernel of H. By the classical Krein-Rutman theorem, the general idea to get a spectral gap with a
positive ground state is to prove that the semigroup e−tH is positive and irreducible. This means
that for any non-negative (and nontrivial) f ∈ L2(Td), we have at any time t > 0, e−tHf > 0
a.e. on Td. The irreducibility is sometimes called strict positivity or positivity improving. Unlike
[4] which relies on quantitative study of the linear Parabolic Anderson Model equation and an
approximation argument, we can obtain positivity and irreducibility readily from the form. These
two properties are indeed characterized in terms of the form. See Theorems 2.6 and 2.10 in [21].
Thus, we provide a pedestrian approach to the existence of a spectral gap even in three dimensions
which usually relies on involved computations with expansion of order 5 using regularity structures
or paracontrolled calculus.

Theorem 4.1. The semigroup e−tH is irreducible. In particular, the first eigenvalue is simple, that
is λ1 < λ2 and there exists a positive ground state Ψ ∈ D(H).
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Proof : Both positivity and irreducibility are not changed under multiplication by eX or eX+Y and
so we use the form a constructed in the previous sections.

Let u ∈ D(a) and v ∈ H1 such that u = eXv if d = 2 and u = eX+Y v if d = 3. Then
clearly, u+ = eXv+ (or eX+Y v+) and u− = eXv− (or eX+Y v−). Since v+, v− ∈ H1, we have
u+, u− ∈ D(a). In addition, it is obviously seen from the definition of the Anderson form that
a(u+, u−) = 0. By [21], Theorem 2.6 we conclude that (e−tH)t≥0 is a positive semigroup.

Now we prove irreducibility. We apply Theorem 2.10 from [21]. Since H is a local operator, it
is enough to prove that if D ⊂ Td is such that

∀u ∈ D(a), 1Du ∈ D(a),

then either |D| = 0 or |Td\D| = 0. Clearly, 1Du = eX1Dv if d = 2 and 1Du = eX+Y 1Dv if d = 3.
This implies

∀v ∈ H1, 1Dv ∈ H1.

Theorem 2.10 from [21] applied to the Laplacian (whose form domain is H1) gives that |D| = 0 or
|Td\D| = 0. This proves irreducibility.

The rest of the theorem is classical and it is a direct consequence of the Krein-Rutman theorem.

�
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