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Abstract. The oil and gas sector is the second largest anthropogenic
emitter of methane, which is responsible for at least 25% of current global
warming. To curb methane’s contribution to climate change, emissions
behavior from oil and gas infrastructure must be determined by an auto-
mated monitoring across the globe. This requires, as first step, an efficient
solution to automatically detect and identify these infrastructures. In this
extended study, we focus on automated identification of oil and gas in-
frastructure by using and comparing two types of advanced supervised
object detection algorithms: Region-based Object Detector(YOLO and
FASTER-RCNN) and Transformer-based Object Detector(DETR) with
fine-tuning on our customized high-resolution satellite image database
(Permian Basin U.S). The pre-training effect of each of these algorithms
on detection results is studied and compared with non-pre-trained algo-
rithms. The performed experiments demonstrate the general effectiveness
of pre-trained YOLO v8 model with a Mean Average Precision over 90.
The non-pre-trained model of this last one also over perform compare to
FASTER-RCNN and DETR.

Keywords: Object detection · Remote sensing · Deep Learning · Com-
puter vision · Oil and gas.

1 Introduction

Methane, an exceptionally potent greenhouse gas, has a much higher global
warming potential than carbon dioxide, exacerbating the current climate crisis.
Reducing methane emissions is an effective strategy to significantly slow the pace
of global warming and its associated environmental impacts. The oil and gas in-
dustry (O&G) is a particular contributor to methane emissions, as it is the second
largest anthropogenic source[1]. Methane is unintentionally released at various
stages of the industry’s supply chain. To effectively reduce these emissions in
the O&G sector, a comprehensive understanding of the emissions profiles of in-
dividual operators, specific sites, and associated infrastructure is needed. This
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knowledge would inform the formulation and refinement of regulatory measures
and potential penalties to ensure they are appropriately tailored and thus op-
timally effective. The United Nations Environment Program has launched the

Fig. 1: Example of a detected methane plume associated with infrastructure at
its source. In 3 automatic steps: detection of methane plume, detection of infras-
tructure, association of each plume and infrastructure. Source: @Google Earth

Methane Alert and Response System (MARS) program to link detected methane
plumes to their specific sources. This is intended to provide operators with timely
warning of discovered leaks. However, to enable near-continuous monitoring of
the world’s oil and gas resources, it is essential that this process be supported
by an automated detection and attribution system. Certain methods such as
OGNET[2] and METER-ML[3] use deep neural networks to identify specific
types of oil and gas site. This study focuses on the topic of automated detection
of oil and gas infrastructures a topic that has not been explored in depth in
the existing literature. Sites in the oil and gas industry that contain wells, stor-
age tanks, or compressor infrastructures are considered significant contributors
to fugitive emissions and therefore form the targets we seek to automatically
identify. Existing approaches to oil and gas infrastructure detection typically
do not allow for the simultaneous detection of multiple infrastructures. With
the goal of enabling the automatic detection of compressors, tanks, and well in-
frastructures simultaneously, this paper focuses on supervised object detection
methods, specifically using and comparing the YOLO, FASTER-RCNN, and
DETR algorithms. These algorithms, initially trained on the COCO database,
are fine-tuned using the Oil and Gas (OG) database. The database OG, which
was developed specifically for this study, contains aerial photographs with high
spatial resolution (less than 1 meter). The images in the OG database are ex-
tracted from the Permian Basin, the most substantial oil and gas basin in the
world, located in the states of New Mexico and Texas (US).

In the first part, the state of the art of object detection algorithms will be
presented, along with their applications in the O&G sector. The OG database
and its characteristics will then be detailed. Next, the YOLO and FASTER-
RCNN algorithms and their parameters will be presented. Finally, the results
section details the performance of each pre-trained and non-pre-trained
algorithm.
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2 State of the art

Object recognition algorithms, a subset of computer vision techniques, facilitate
the automatic identification and location of multiple instances of a given class of
objects in images or videos. These algorithms predominantly use either neural
network-based methods or non-neural techniques. The non-neural strategies typ-
ically integrate SIFT [4] or HOG [5] (for feature extraction) with a classification
algorithm such as Support Vector Machines (SVM). Despite their usefulness,
recent studies suggest that neural-based object recognition methods generally
outperform their non-neural counterparts[6].Neural approaches to object recog-
nition can be divided into three categories depending on the degree of supervi-
sion in their learning process: supervised, semi-supervised, and self-supervised
models[7]. In this paper, we will mainly focus on different supervised methods.
Supervised object recognition models require an annotated image database for ef-
fective training. In this context, annotating an image involves identifying objects
of interest by enclosing them in a bounding box and labeling them appropriately.
During training, a supervised object recognition algorithm learns to locate and
subsequently recognize the targeted objects. This complicated process can be
executed over two primaries architectural frameworks[8]:

– Two-stage detector: is based on two main models, firstly Region Proposal
Network (RPN) which is a fully convolutional network used to extract regions
of objects, and secondly an extra model is used to classify and further refine
the localization of each region proposal. RCNN[9] architecture is based on a
selective search algorithm to propose regions of interest and then applies a
CNN to each region to classify it as an object or background.
As this method is particularly slow, the authors proposed Fast-RCNN[10], an
optimized approach to RCNN by sharing computation across all regions pro-
posed in an image. Finally, FASTER-RCNN[11], based on the architecture
of Fast-RCNN, replaces the selective search algorithm with a RPN, which
is trained to directly predict regions of interest. This latest version reduces
computation time and improves the detection accuracy;

– one stage detector: Contrary to one stage detector, one stage detector
don’t need to integrate RPN to generate a region proposal, it can directly
obtain the classification accuracy of the object and its coordinate position.
These algorithms have the advantage of being faster than two-step algo-
rithms. In this category we find YOLO[12] and its different versions[13],
SSD [14] and RetinaNet [15]. Review studies compares the latter 3 methods,
for example [16] for the pill identification task, showing that YOLO v3 offers
the best performance in terms of execution time but the lowest accuracy.
Another study [17] focuses on the comparison of SSD, RetinaNet, YOLO
V4 and FASTER-RCNN for Tethered Balloon detection. It was show that
YOLO v4 achieved the best trade-off between speed and accuracy with a
precision of 90.3%. [18] also concludes that YOLO has better accuracy (in-
creasing with version) via a broad comparison of RCNN and YOLO models
and their variants;
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– Others: There are also object detection methods based on approaches other
than the one-two stage approaches detailed above. For example, DETR[19]
is a transformer based detector with a 3 parts architecture constitute of a
CNN, encoder-decoder transformer and a feed-forward network (FFN).

Object detection O&G applications Remote sensing object detection can be ap-
plied to a variety of problems, various studies [20] [21] [22] [23] summarizes object
recognition algorithms applied to various remote sensing topics. For example,
[24] summarizes the performance of FASTER-RCNN, SSD, and YOLO V3 al-
gorithms for agricultural greenhouse detection based on high-resolution satellite
imagery. [25] proposes automatic detection of earthquake-induced ground fail-
ure effects by using FASTER-RCNN. Others [26][27][28] focus on comparing one
and two-stage object detection algorithms on satellite and aerial images. [29] uses
DETR for object detection with enhanced multi-spectral feature extraction. In
particular, object detection algorithms are also used for problems in the oil and
gas sector. For example, in the work [30] [31] YOLO V4 is used to detect oil
spills with Sentinel-1 SAR images. Some studies are also looking at oil and gas
infrastructure detection:

– Oil Tanks: [32] proposes a recognition algorithm that harnesses deep en-
vironmental features, using the convolutional neural network (CNN) model
and SVM classifier for oil tank recognition. Another study employs FASTER-
RCNN for the same objective;

– Oil Wells: [33] introduces an enhanced version of YOLO v4 for detection us-
ing high-resolution images, similar to [34], where the authors utilize the faster
R-CNN. [35] presents a database, dubbed Northeast Petroleum University-
Oil Well Object Detection Version 1.0 (NEPU-OWOD V1.0), which includes
the geographical locations of oil wells. This database was constructed via the
application and comparison of nine object detection algorithms;

– Pipelines: In the context of pipelines, [36] utilizes a deep learning approach
for object detection in underwater pipeline images, employing various YOLO
configurations;

– Oil & Gas Sites: On a broader scale encompassing entire infrastructures,
[37] employs high-resolution satellite images and YOLO V2 for automatic
recognition of oil industry facilities, with a particular emphasis on well-sites.

In the field of object detection, a significant portion of existing methods
are dedicated to the identification of specific infrastructures. While this focused
approach proves beneficial in studies examining a single infrastructure, it may
not be entirely sufficient when examining methane emissions in the oil and gas
(O&G) sector. This is because such emissions can come from a variety of in-
frastructures. Recognising this multi-faceted challenge, this study broadens its
scope to include three types of infrastructure that are essential to the O&G sec-
tor: Wells, Tanks, and Compressors. This more comprehensive approach provides
a broader perspective and leads to a better understanding of the various sources
of methane emissions in the sector. In addition, three different object detection
algorithms are comparatively analysed in this study: YOLO v8, which follows
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a single-stage detection paradigm; FASTER-RCNN, a two-stage method; and
DETR, an encoder-decoder based detection approach. Each of these algorithms
features a unique recognition strategy, providing a broad understanding of ob-
ject recognition methods in the context of O&G infrastructures. This study also
examines the impact of pre-training these models, in particular, how the pre-
training phase influences detection outcomes and performance is investigated.
The detailed findings from this study are presented and discussed in detail in
this paper to further our understanding of the nuanced role that pre-training
plays in object recognition.

3 An Oil and Gas infrastructure database

Algorithms employed in supervised object recognition necessitate a learning
phase involving substantial interaction with a large repository of images. These
images must be labelled with the target object in order to enable practical train-
ing. In the specific context of identifying wells, tanks, and compressors, this
database must be replete with a variety of aerial photographs in which each
of these objects or infrastructures is unambiguously identifiable. The procure-
ment of such specialized labelled images, due to the lack of public availabil-
ity, demanded the development of a dedicated database specifically designed
for this purpose. In this study, we chose to extract high-resolution satellite

Fig. 2: Example of images and annotated objects from OG database : tank (red),
compressor (purple) and well (blue)source : @Google Earth

images only from the Permian Basin region (over the states of New Mexico
and Texas in the USA), which is the largest O&G basin in the world. 930
Google Earth images of sites with O&G infrastructures were extracted, with
resolutions ranging from 15cm to 1m. Each of these images was then man-
ually annotated by drawing bounding boxes around each well, compressor or
tank present, as shown in Figure 2. Each of these boxes is associated with 1
of our 3 objects (label). In total, out of the 930 images, 1951 objects were an-
notated: Compressor 706 objects, Well 630 objects and Tank 615 objects All
the images are in a 640x640 size format, each featuring between one and mul-
tiple instances of key infrastructure such as wells, tanks, and compressors. An-
other aspect worth mentioning is the special consideration given to wells in our
database. Given the limited resolution of satellite imagery, it is often difficult
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to discern the structural details of wells. Therefore, the recognizable shadows
of wells that are present even at lower resolutions are included in the bound-
ing boxes (as shown in the right column of Figure 2). This database is hosted
on the open-source Roboflow platform and can be accessed via the following
link: https://universe.roboflow.com/thesis-ffaad/og-otgc5/dataset/6.
Following the requirements of a rigorous study design, we have divided our
dataset into different subsets for training, validation, and testing. Of the to-
tal images, 80% (744 images) are used for training, 13% (or 120 images) for
validation, and the remaining 7% (66 images) for testing.

4 Object Detection algorithms presentation

The structural organization of object detection algorithms is usually defined by
three main components:

– Backbone: This refers to a deep learning architecture, usually a convolu-
tional neural network (CNN), that is tasked with the essential function of
feature extraction. Through this process, the backbone identifies and ab-
stracts the salient features from the input data;

– Neck: Serving as an intermediary between the backbone and the head the
neck performs a fusion of the features extracted from the different layers of
the backbone model. This synthesized information forms the basis for the
subsequent predictions performed by the head;

– Head: The head forms the final component of the object recognition model
and is responsible for predicting the classes and bounding box regions. These
predictions form the final output of the object recognition model. In particu-
lar, the head can produce a number of outputs, typically configured to detect
objects of different sizes in an image.

Backbone Pre-training The majority of object recognition models, including but
not limited to YOLO, FASTER-RCNN, and DETR, provide an option for a
pre-trained version of the backbone. This pre-training generally helps to improve
recognition performance. The pre-training of these algorithms is done using ex-
tensive databases of thousands of image categories, ranging from everyday ob-
jects such as airplanes and dogs to more specific objects such as apples and chairs.
Prominent among these databases are ImageNet [38], which contains 200 classes
and about half a million annotated objects, and COCO [39], which contains 80
classes and nearly 1 million annotated objects. In addition, the Pascal database
VOC [40] includes about 20 classes with about 63,000 annotated objects. Most
modern object recognition algorithms are pre-trained on the COCO dataset. A
main advantage of pre-training backbones is the significant reduction in the cus-
tom dataset training phase. Pre-trained backbones that have already learned to
recognize general features and patterns from large databases can transfer this
knowledge to the object recognition task at hand. This not only minimizes train-
ing time, but also enables the use of smaller datasets. Pre-built models also play
a critical role in mitigating the problem of over-fitting, which occurs when the

https://universe.roboflow.com/thesis-ffaad/og-otgc5/dataset/6
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model over-learns from the training data, compromising its ability to generalize
to new data. Considering these factors, the architecture of recognition algorithms
can be classified into three different families: single-stage, two-stage, and other
algorithms. In this study, a representative algorithm from each of these families
is evaluated: YOLO v8, FASTER-RCNN, and DETR.

Fig. 3: YOLO architecture: Convolutional Neural Network (CNN), Fully Con-
nected (FC) layer, Girdded FC layer

4.1 One stage object detector : YOLO

You Only Look Once (YOLO) [12] v8 is one of the most recent versions which
outperforms previous versions in term of precision as illustrated in Figure4.
YOLO v8 architecture is based on the ResNet-50 (CNN) backbone which has

Fig. 4: YOLO Mean Average Precision (mAP) for COCO object detection by ver-
sions and models. source : https: // github. com/ ultralytics/ ultralytics

been pre-trained on the ImageNet dataset. The ResNet-50 backbone is then
fine-tuned on the COCO dataset to learn to detect objects in 80 different cate-
gories. YOLO V8 has a declination of 5 pre-trained models (n,s,m,l,x) trained on
COCO 2017 dataset. These models vary according to the number of parameters

https://github.com/ultralytics/ultralytics
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they hold directly influencing the level of precision, thus, the more parameters a
model has, the better its accuracy (cf Figure 4). The 3 last pre-trained models
(m,l,x) with the highest number of parameters were chosen and fine tuned with
the OG database (image size 640x640), with 100 epochs, 16 batches, learning
rate 0.001.

4.2 Two stage object detector : FASTER-RCNN

Fig. 5: FASTER-RCNN architecture

FASTER-RCNN [11] process in 2 main steps, first it uses use a Region Pro-
posal Network (RPN) to generate regions of interests and secondly it send the
region proposals down the pipeline for object classification and bounding-box
regression.FASTER-RCNN architecture is based on 3 principal components :
the backbone (CNN type varies according to chosen model), the RPN , and the
ROI heads (classification and regression). FASTER RCNN provide 3 backbones
architectures pre-trained on COCO 2017 base (train2017 and val2017) :

– Feature Pyramid Network (FPN): Use a ResNet+FPN backbone with
standard conv and FC heads for mask and box prediction;

– C4: Use a ResNet conv4 backbone with conv5 head which correspond to the
original baseline in the Faster R-CNN paper;

– Dilated-C5 (DC5): Use a ResNet conv5 backbone with dilations in conv5,
and standard conv and FC heads for mask and box prediction, respectively.

We have fine-tuned 2 FPN model with ResNet50 and ResNet101, but also a
DC5 model based on ResNet101. Epochs were fixed to 100, batches to 64 and
learning rate to 0,001.

4.3 Encoder-decoder object detector : DETR

Unlike one-stage and two-stage detectors, DETR [19] is designed as a direct set
prediction problem encompassing a unified architecture. DETR employs a back-
bone (with varying architecture contingent on the selected model), a transformer
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Fig. 6: DETR architecture

encoder-decoder architecture, and a bipartite matching between predicted and
ground-truth objects. By uniting the backbone and transformer, DETR success-
fully simplifies the architecture by eliminating specific components to one and
two-stage approaches such as anchor generation and non-maximum suppression
(NMS). The following pre-trained backbone models are available, all of which
have been pre-trained on the COCO 2017 database:

– R50: Incorporates a backbone that is based on an ImageNet pre-trained
ResNet-50 model.

– R101: Deploys a backbone grounded in an ImageNet pre-trained ResNet-101
model.

– R50-DC5: Increases the feature resolution by employing dilation in the final
stage of the backbone. The backbone in this model is based on ResNet-50.

– R101-DC5: Implements a similar process to R50-DC5 but relies on a back-
bone built on ResNet-101.

Pre-trained model R50, R101 and R101-DC5 were selected for test with epochs
fixed to 100, batches to 2 and learning rate to 0,001.

4.4 Model evaluation

Average precision (AP) is a widely used metric for evaluating the efficiency of
object recognition tasks.

The AP combines the precision and recognition curves into a single scalar
quantity. The AP value ranges from 0 to 1 and tends toward 1 when both
precision and recall are high, while it tends toward zero when either metric is
low over a spectrum of confidence thresholds. AP is computed by calculating
the difference between the current and subsequent recalls and multiplying that
difference by the current precision:

AP =

k=n−1∑
k=0

[Recalls(k)− Recalls(k + 1)]× Precisions(k)

Where k is the number of object and n is the number of threshold. In addition,
the mean average precision (mAP) is often used. It represents the average of AP
calculated over all classes:

mAP =
1

n

k=1∑
k=n

APk
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where APk is the AP of the class k and n the number of classes.

5 Results

5.1 Algorithms and Models performance comparisons

For each algorithms (YOLO v8, FASTER-RCNN, and DETR), 3 models with
different parameters and architectures were selected and compared. For each
models, the output corresponds to the AP by class (Compressor, tank and well)
and the mAP for the general model. The experiments were conducted with
the use of a GPU NVIDIA GeForce RTX 3090 with 24 GO of memory. The
experiments required the use of 3 distinct environments for the 3 algorithms
with the following packages. YOLO V8 : ultralytics (Python 3.8 environment
with PyTorch 1.8). FASTER-RCNN : Detectron2 with torch 1.5 and torchvision
0.6 and DETR with PyTorch 1.7 and torchvision 0.7.

Table 1: Pre-trained Algorithms Average Precision (AP) results in % on OG
database. *The number of parameters is expressed in millions

Average Precision (AP)

Model Parameters* Compressor Tank Well Total

YOLO V8

8m 25.9 99.5 98.8 79.4 92.6
8l 43.7 99.5 88.1 80.3 89.3
8x 68.2 98.8 90.9 73.6 87.8

FASTER-RCNN

R50-FPN 41.7 51.6 51.1 40.5 47.7
R101-FPN 60.6 53.2 57.8 35.4 48.8
R101-DC5 184.5 52.1 47.1 42.9 47.4

DETR

R50 41 94.9 75.1 72.7 80.9
R101 60 100 80.4 77.1 85.8

R101-DC5 60 91.9 69.9 67.9 76.3

The table 1 show that the ensemble of mAP result (Total) of YOLO V8
model over-perform compare to those from FASTER-RCNN. DETR mAP re-
sults for each model are lower than those from YOLO V8 but are not very far.
Surprisingly, YOLO v8 model (8m) with lower number of parameters performs
better than the other with a higher number of parameters (which is the contrary
for the COCO database as illustrated of Figure 4). It appears that for FASTER-
RCNN and DETR models based on a simple Resnet101 architecture present a
higher mAP compare to others and lower results with a DC5 architecture.
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Compressor YOLO v8 and FASTER-RCNN present AP over 90% for compres-
sor recognition, especially the FASTER-RCNN R101 model with has an AP of
100%. YOLO v8 8m and 8l models are also very close this last one with a 99,5%
AP. On average and for compressor, YOLO v8’s 3 models offer an AP of 99.3%
, compared with 95.6% for DETR. On models average, YOLO v8 and FASTER-
RCNN has better AP (with respectively 99,2% and 95,6%) than FASTER-RCNN
(52,3%) for compressor recognition. FASTER-RCNN with lowest AP and mAP,
has also on average the best results for compressor recognition.

Tank The best AP performance is obtained thanks to the YOLO v8 8m model
with a score of 98,8%. On models average, YOLO has an AP of 92,6% against
75,1% for DETR and 52% for FASTER-RCNN. For tank recognition YOLO v8
largely over perform compare to others.

Well The best AP is still maintain by YOLO v8 8m model with a score of
92,6%. However, on models average for well recognition, YOLO v8 AP (89.9%)
get closer to that of the DETR (81%). Indeed lose almost 10% of AP from
compressor to well recognition. Concerning FASTER-RCNN, on models average,
obtain its lower AP (39,6%).

5.2 Algorithms pre-training effect

In general, pre-trained models offer numerous advantages over non-pre-trained
models, including the need for less data (fine-tuning) and an improvement in ac-
curacy. The models selected for this study were trained using the COCO dataset,
which consists of annotated everyday objects. However, the COCO dataset does
not contain any objects from industry that could resemble the objects in the OG
database. This discrepancy raises the question of the extent to which pre-trained
models, originally trained on objects that are significantly different from our
target objects, can still outperform the predictive accuracy of non-pre-trained
models. To investigate this, the algorithms and models discussed previously were
run without the weights from the pre-training phase.

According to the results delineated in Table 2, it is observed that the mean
Average Precision (mAP) for the non-pre-trained YOLO v8 models is marginally
lower than that for the pretrained models. Indeed, the average mAP of the YOLO
v8 models is 89.4%, while that of the non-pre-trained models is 88.6%, indicating
an overall decrease in mAP of 0.8%. While the difference may seem negligible,
this result substantiates the assertion that pre-training YOLO v8 contributes to
enhanced performance.

In compliance with the results delineated in Table 2, we observe that the mean
average precision (mAP) for the non-pre-trained YOLO v8 models is marginally
lower than that of the pre-trained models. In fact, the average mAP of the YOLO
v8 models is 89.4%, while that of the non-pre-trained models is 88.6%, which
represents an overall decrease in mAP of 0.8%. Even though the difference seems
negligible, this result supports the claim that YOLO v8 pre-training contributes
to improved performance.
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Table 2: Non pre-trained algorithms Average Precision (AP) results in % on OG
database. The empty spaces translate the non-convergence of the models and
then the absence of results.

Average Precision (AP)

Model Parameters* Compressor Tank Well Total

YOLO V8

8m 25.9 97.2 90.6 81.4 89.7
8l 43.7 97.7 90.4 78.0 88.7
8x 68.2 98.1 87.2 77.2 87.5

FASTER-RCNN

R50-FPN 41.7 25.4 2.3 7.2 11.6
R101-FPN 60.6 — — — —
R101-DC5 184.5 — — — —

DETR

R50 41 — — — —
R101 60 — — — —

R101-DC5 60 — — — —

In terms of average precision (AP) by class, the results mirror those of the pre-
trained YOLO v8 models; AP remains higher for the compressor class and lower
for the well class. An interesting observation is the comparative analysis between
the non-pre-trained YOLO v8 model and the pre-trained FASTER-RCNN and
DETR models. The non-pre-trained YOLO v8 model outperforms all pre-trained
FASTER-RCNN and DETR models in terms of mAP. This remarkable result
demonstrates the superior efficacy of YOLO v8.

As regards of FASTER-RCNN, the pre-trained R50-FPN model shows sig-
nificantly low AP and mAP. For the other models of FASTER-RCNN and all
DETR models, convergence proved difficult even after increasing the number
of iterations 20-fold and decreasing the learning rate by a factor of 1000. Non-
pretrained models are notorious for their difficulty in achieving convergence,
especially when dealing with smaller databases. The OG database is compar-
atively small, which may explain the observed lack of convergence, especially
when compared to the larger COCO database.

5.3 Applications

To facilitate visual inspection of the previous results, the pre-trained model
with the highest average precision (mAP) was selected for each algorithm and
tested against the Oil and Gas (OG) database test data. Figure 7 illustrates the
recognition performance of each algorithm model when applied to four different
images from the test data.



Enhanced Oil and Gas Infrastructure Mapping 13

Fig. 7: Visual object detection results from pre-trained YOLO V8, FASTER-
RCNN and DETR on 4 test images from OG database (images sources @Google
Earth)

Case A: This scenario showcases a view of three wells that are closely spaced.
YOLO v8 is able to detect and correctly discriminate each well. In contrast,
DETR detects the presence of wells but combines the first two into a single
object. FASTER-RCNN, which has significantly low average precision (AP) for
the well class (as shown in Table 1), is not able to detect a well in this particular
scenario.

Case B: This case represents an unusual circumstance where the appearance
of compressors is underrepresented in the Permian Basin and consequently in
the learning database OG (the most common representation is shown in Case
B). YOLO v8 can only detect one of the five compressors and one of the three
tank units. DETR shows a slight improvement and detects three of the five com-
pressors and all three tank units. Interestingly, FASTER-RCNN shows superior
performance accurately recognizing all infrastructures without error.

Case C: This scenario presents a view of a typical compressor type found
in the Permian Basin. In this specific instance, all algorithms correctly identify
the six compressors and a single tank unit.

Case D: This case showcases a view of two sites each with a well. Unlike Case
A, the image resolution in this case is lower and the wells are more widely spaced.
YOLO v8 and DETR successfully recognize the two wells, while FASTER-RCNN
fails to recognize either.

As highlighted in Case B, the visual representation of compressors in the
Permian Basin is variable. The OG database contains a few cases where com-
pressors are protected by a roof (as shown in the Case B images). To evaluate
the detection capabilities of the algorithms in these particular circumstances,
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tests were extended to three additional images from the test database showing
covered compressors (see Figure 8 results).

Fig. 8: Comparison of pre-trained YOLO v8, FASTER-RCNN and DETR on
a special (less representative) compressor architecture in the Permian Basin
@Google Earth

Case E: This scenario involves two unusual compressors along with a tank
unit. FASTER-RCNN manages to identify all infrastructures, but it also mis-
takenly recognizes an additional compressor. DETR delivers an intriguing result
by identifying a compressor through only a small segment protruding from the
roof, as well as the tank unit. As for YOLO v8, it only manages to recognize the
tank unit.

Case F: This scene provides a view of two unusual compressors and a tank
unit. Both YOLO v8 and DETR fail to recognize the compressors, with DETR
only acknowledging the tank unit. Yet again, FASTER-RCNN successfully iden-
tifies all the infrastructures as expected.

Case G: This scene presents a view of two unusual compressors exclusively.
YOLO v8 is unable to detect either of them, while DETR correctly identifies
one of the two compressors. It also detects an additional one, which does not
correspond to a compressor but rather a small piece of infrastructure. Finally,
FASTER-RCNN is also able to correctly recognize both compressors in this case.
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6 Conclusion

To effectively mitigate methane emissions in the oil and gas (O&G) sector, a
comprehensive emissions profile of each O&G infrastructure is essential which
allows for an in-depth understanding of individual emission trends. This re-
quires, as first step, an efficient solution to automatically detect and identify
these infrastructures, a task that can be well addressed by detection algorithms.
However, these algorithms come in myriad forms, each with a unique architec-
ture and range of performance. While previous studies have compared specific
algorithms for automatically detecting O&G infrastructures, these have typically
focused on a single infrastructure type. In response to this limitation, this study
presents a comparative analysis of three main supervised algorithms-YOLO v8,
FASTER-RCNN, and DETR-for the simultaneous detection of tanks, wells and
compressors. A unique database of various aerial snapshots of O&G infrastruc-
ture in the Permian Basin, USA, was used for the study. The tests performed
showed that YOLO v8 outperformed FASTER-RCNN and DETR in terms of
accuracy, although it was not pre-trained. Interestingly, FASTER-RCNN showed
a superior ability to detect compressor styles that are significantly underrepre-
sented in our database (and in the Permian Basin) on certain occasions.
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