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Towards Benchmarking Human-Aware Social Robot Navigation:
A New Perspective and Metrics

Phani Teja Singamaneni1, Anthony Favier1,2 and Rachid Alami1,2

Abstract— Human-aware robot navigation planning enables
robots to traverse human-occupied spaces socially. However,
evaluating and benchmarking the ‘human awareness’ of such
navigation schemes is challenging. With the growing necessity
and research interest in the field, there is a need to define
metrics to quantify and benchmark such qualities. In this
regard, this paper proposes a set of metrics by looking at the
problem from a new perspective. These proposals are made by
inspecting the robot’s navigation from the viewpoint of a human
experiencing it and then defining proxies for the perceived
human feelings. Analyses of some commonly occurring human-
robot navigation scenarios using these metrics show their
capability in benchmarking and differentiating human-aware
robot navigation from standard robot navigation.

I. INTRODUCTION

Benchmarking the performance of a Human-Aware robot
Navigation (HAN) (also called social robot navigation) plan-
ner is one of the open questions in the field. Although
there are a number of metrics to evaluate the navigational
performance of a robot [1], assessing the human-aware aspect
remains challenging. The changing customs and societal
rules could be partly attributed to the lack of standardisation.
The existing approaches measuring the human’s discom-
fort [1] are highly dependent upon Hall’s Proxemics [2]
theory, and it has been shown that the proxemic distances
could change or be violated [3], [4] depending on place
and context. In intricate scenarios like the robot crossing a
narrow corridor or taking an elevator, the robot has to intrude
into the personal space of humans. Given the circumstances,
the human might not feel uncomfortable or even allow it to
happen, but the proxemics might say otherwise. Therefore,
it is necessary to study new ways to benchmark HAN and
devise metrics that apply to a large set of human-robot
navigation scenarios.

Navigation in the presence of humans requires an under-
standing of the dynamics of the situation at hand. As humans
are social beings that perceive the environment and make
choices, the robot’s actions can affect these decisions and
inflict different kinds of feelings. Hence, the robot should
be more aware of how its actions can influence human
partners and adjust its behaviour based on the reactions.
For example, depending on how the velocity [5], [6] and
the implicit gestures [7], [8], [9] are handled, the robot’s
behaviour could be more confusing or welcoming to the
humans. Although such studies are used while modelling
a HAN system, they are seldom used for evaluation. Taking
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these into consideration, we propose metrics that could act as
proxies for different emotions experienced by humans when
they interact with the robot in a navigational setting. The
major contributions of this paper are twofold: 1) a new set
of metrics are proposed for benchmarking HAN, and 2) a
detailed analysis showing the application of these metrics to
effectively benchmark the ‘human awareness’ of a system.
This analysis is purely metric and is performed in simulation.

Before moving on to new metrics, we briefly present
some of the commonly used ones in section II. Following
this, we present the proposed metrics and their mathematical
formulation in section III. In section IV, the ability of the
proposed metrics for benchmarking HAN is put to test in
different human-robot navigation scenarios using a human-
aware planner and a standard planner. Finally, we present the
discussion and conclusions in section V.

II. EXISTING EVALUATION METHODS

Based on the classification proposed by Gao et al. [1], all
the existing evaluation metrics can be broadly divided into
four categories namely, navigation, naturalness, discomfort
and sociability. The navigation metrics are used to test the
robustness, stability and reliability of a planner. They include
path length, path efficiency, relative throughput [10], time
to reach the goal, rate of success, number of collisions,
etc. A minimum expectation from a HAN planner is good
performance even in the absence of humans and these metrics
could be used to benchmark the performance. Many works
in HAN include such evaluations [11], [12], [13] along with
the other evaluation strategies.

Naturalness metrics are applied to measure the smoothness
of the robot’s trajectory and its similarity in comparison to
a human trajectory in the same setting. The similarity in
trajectory is quantified using metrics that measure the path
deviation like Average Displacement Error (ADE) [14], Final
Displacement Error (FDE) [15] and their variations. These
are generally employed to assess the performance of human
prediction algorithms that are used in HAN and seldom for
measuring the robot’s performance. However, the smoothness
measures like cumulative heading changes [12] or the path
irregularity [16], velocity and acceleration profiles, and the
topological complexity [10], [17] are used to assess the
robot’s performance around humans. The smoothness metrics
and the topological complexity index [18] are sometimes
used to measure the legibility [19] of the robot’s motion.
Legibility comes with expressiveness, and it is necessary
to define some metrics for measuring navigation intention
expressiveness.



HAN is essentially a human-robot interaction in the
context of robot navigation. Therefore, it is required to
measure and quantify human-robot navigation interactions to
benchmark the human awareness of the system. Discomfort
metrics aim to do it by assessing such interaction and telling
how well a system is performing. However, as mentioned
previously, most of the existing metrics are distance based
and largely rely on the proxemics theory [2]. The intrusions
into personal and intimate spaces are usually taken as a
measure of discomfort, and many works [20], [21] count
the number of these intrusions to quantify the performance
of a system. Some works define their own performance
metrics [22], [23] based on proxemic rules.

Similar to individual humans, a group of humans also
have various interactions zones like o-space, p-space and
r-space [23], [24], and their shape depends on the f-
formation [25] maintained by the members of the group.
In such settings, the intrusion into p-space and r-space are
considered as violations and HAN systems try to minimise
these intrusions. Sometimes, the human-object interactions
are also considered [11], [22] while measuring these in-
trusions. An alternative to the number of intrusions is to
measure the time spent in the areas associated with the
human’s personal zone or the group’s interaction zone [26].
The minimum distance from the human is another metric
that is widely used for benchmarking HAN. One of the
very useful metrics combining the velocity and distance is
called Time-to-Collision (TTC) [27], and it represents how
the robot’s motion is relative to the human’s motion. One of
the metrics proposed in this paper is based on TTC which is
detailed in the subsequent sections.

Human interactions and their psychological impressions
and states cannot be quantified using just numbers. It re-
quires some well-designed studies and questionnaires, and
experimental evaluations on a real system or through videos.
HAN does the same to evaluate the psychological safety
(discomfort and stress) and the sociability of the system
under study. The perceived psychological safety is commonly
measured using questionnaires [28]. Some of the established
questionnaires in social robotics like Godspeed [29] already
include perceived safety and emotional states and the Robotic
Social Attributes Scale (RoSAS) measures several psycho-
logical factors based on the Godspeed questionnaire. The
social intelligence of a robot, sometimes called sociability,
is not very easy to quantify. A robot’s motion may be
perfectly natural, satisfies all the comfort-based metrics and
can still be perceived as not completely social. In several
intricate scenarios, the robot might not reach the high-level
expectations of a human and fail to convey its intention.
Barchard et al. [30] proposed Perceived Social Intelligence
(PSI) scales to evaluate around 20 aspects of the social
intelligence of a robot. This was used in some of the
recent works [31], [32] to evaluate the HAN systems. Some
works [33] have employed custom questions apart from these
scales to study sociability.

Unlike sociability, the human awareness of a robot could
be quantified to some extent and discomfort measures try to

measure it. The metrics proposed in this paper can be seen as
discomfort metrics as they act as proxies for different emo-
tional responses that are closely related to human comfort.

III. PROPOSED DISCOMFORT METRICS

One of the recent studies by Joosse et al. [4] revealed
that people are more lenient when a robot intrudes on their
personal space than a human. Further, they showed that
these intrusions could be mitigated by conveying the robot’s
intention to the humans. The velocity around the humans
also plays a crucial role, as mentioned earlier [5], [6], [28].
These studies and observations lay the basis for our metrics
based on velocity and distance, called the Danger Metrics.
The second set of metrics is based on the human’s visibility
and recognition of the robot when it appears unexpectedly
or when it is trying to approach a human for an interaction.
These are called the Surprise Metrics. We introduce each
of these metrics and provide their mathematical formulation
in this section.

A. Danger Metrics

Depending on the velocities of humans and the robot,
we define two metrics (or costs) that act as proxies for
the emotions in danger. Fig. 1 shows two scenarios where
the human and robot can approach each other, or the robot
can pass by the human. In these situations, if the robot is
moving head-on towards the human, there is a possibility of
collision, and it also makes the human uncomfortable [28],
[5]. To measure such cases, we define our first danger metric
called costfear, which tries to measure the perceived feeling
of fear of collision with the robot. It was also shown that
humans prefer the robot to modulate its velocity [6] while
crossing and prefer lower speeds [28], [5] in close vicinity.
Therefore, if something or someone passes at a very high
speed in close vicinity, it could cause distress and panic.
The second danger metric, costpanic, is defined to measure
such perceived feelings of panic.

Mathematical Formulation: Suppose the circumscribed
circle of the human has a radius of rh and that of the robot
has a radius of rr. The human and the robot collide when
the distance between their centres is less than or equal to
the sum of these radii, rh + rr = R. If we assume the robot
is a point and expand the radius of the human to R, the
same conditions apply. This setting is shown in Fig. 2 along
with the velocities of the human,

−→
Vh and the robot,

−→
Vr. The

relative velocity of the robot with respect to the human is
given by

−−→
Vrel =

−→
Vr −

−→
Vh and depending on where it falls

(a) (b)

(a) (b)

Fig. 1: Situations where Danger Metrics are important. (a) The
human and the robot approach or cross each other. (b) The robot is
behind the human and is about to overtake or pass by the human.
In both situations, the human can be either static or moving, but
the robot is always moving.



(see Fig. 2), we define the two metrics for danger. If it falls
within the collision zone (cone formed by dotted lines), then
there is a danger of collision, and we define the costfear in
this setting. If it falls outside the collision zone, the danger
of collision no longer exists, but the robot may pass by the
human, and so here, we define the costpanic. Let the vector
from the robot’s position to the human’s position be

−→
Prh and

θ be the angle between
−−→
Vrel and

−→
Prh. While defining these

costs, we use the effective distance between the human and
the robot, drheff

and the perpendicular component of
−→
Prh

along
−−→
Vrel, d⊥.

(a) (b)

(a) (b)

Robot

Human

Human
Robot

Fig. 2: Different vectors and the possible danger costs. If
−−→
Vrel falls

within the zone indicated by the dotted lines, there is costfear and
if it falls outside this zone, we have the costpanic. Only one of the−−→
Vrel (blue or red) could exist at a time.

1) Cost of fear: The first metric for danger, costfear, is
defined as the inverse of TTC and when 0 < TTC < ∞ , it
is calculated as,

costfear =
1

TTC
=

∥
−−→
Vrel∥
drheff

∋ P.V > 0 and drheff
> 0

(1)

where P.V =
−→
Prh ·

−−→
Vrel, · is the dot product and ∥∥ is the

magnitude of a vector. Note that costfear is only defined
when the

−−→
Vrel falls within the collision zone. When the−−→

Vrel falls outside the collision zone, the costfear = 0 and
as drheff

decreases or ∥
−−→
Vrel∥ increases, costfear increases.

This cost should be maintained as low as possible to decrease
the influence of the robot on humans. So, the HAN planners
can be designed to have a certain threshold for this cost
beyond which some mitigating actions are required.

2) Cost of panic: The second metric that we propose
is valid when

−−→
Vrel is outside the collision zone. In such a

setting, the robot may cross or pass by the human, and we
define the costpanic as,

costpanic =
∥
−−→
Vrel∥

d⊥ −R
|sin(θ)|

∋ P.V > 0 and d⊥ > R

(2)

The costpanic increases as the robot approaches the hu-
man. Specifically, the cost increases as the perpendicular
distance of the robot from the human decreases or the relative

velocity increases. It also increases as θ increases, indicating
that the robot is getting closer to the human. As this cost is
trying to capture the panic caused when the robot passes by
a human, a HAN system should try to minimise this cost
whenever the robot is trying to overtake or cross a human.

B. Surprise Metrics

Human environments are highly dynamic, and humans
rely on their senses to navigate and adapt to changing
conditions. However, if there is not enough time and space
to identify and react to such changes, it could be dangerous
and might surprise or shock humans. Therefore, if something
or someone appears suddenly and passes by closely, the
human might not feel comfortable. Especially when a robot
is entering the field of view (FoV) of the human from
the back, it should use socially appropriate paths [34] and
maintain a larger distance. To reduce the excess work and
make humans more comfortable, the robot should enter the
FoV at a lower angle and not be within the peripheral vision.
Fig. 3 illustrates two scenarios where the robot can surprise
the human. The depiction on the left shows a robot trying to
enter the human’s FoV, and the one on the right shows the
sudden appearance of a robot in front of the human without
having any knowledge about the whereabouts of the human.

(a) (b)

(a) (b)

Fig. 3: Scenarios where a robot can surprise the human. (a) The
robot needs to go from the back to the front to initiate the interaction
or move forward. (b) The robot and human suddenly face each other
without any prior knowledge about the other. The human can be
static or dynamic in both these settings.

Encompassing all these, we define three metrics to quan-
tify the surprise perceived by humans because of the actions
of the robot. These metrics try to measure the feeling of
surprise or shock occurring from different dimensions, unlike
the danger metrics, which try to measure different emotions.
The first cost, costvisibility , measures the surprise based on
the distance and angle, while the next two, costshock and
costreact, measure it in terms of time. The idea behind
costvisibility is to measure how well a HAN system adapts to
the FoV of humans to reduce the surprise. The second set of
metrics, costshock and costreact, measures the performance
of HAN planners in handling the sudden emergence of
occluded humans. Specifically, costshock tries to measure
the shock that can occur when something happens before
it can be recognised, while costreact tries to check if there
is enough time to take mitigating actions when surprised.

Mathematical Formulation: Considering a similar formu-
lation as above, the robot is represented as a point, and the



circumscribed radius of the human is taken as R = rh + rr.
The vector from the human’s position to the robot’s position
is represented by

−→
Prh, and the unit vector in the direction of

orientation of the human is given by ûh. The angle between

Human
Robot

Fig. 4: Robot’s appearance within the FoV of the robot. θ is the
angle between the unit vector of human’s direction, ûh and vector−−→
Phr . θFoV/2 is the half angle of a human’s field of view and dhreff

is the effective distance between the human and the robot.

−→
Prh and ûh is represented by θ and the half angle of human’s
FoV by θFoV/2. The effective distance between the human
and the robot is given by dhreff

. When the robot enters the
FoV of the human (green area in the Fig. 4), we estimate
the surprise metrics using dhreff

, θ and some studies based
on human perception.

1) Cost of visibility: As mentioned above, it is better
to maintain a larger distance, dhreff

, when entering the
FoV of a human and hence this cost should discourage
close appearances. Further, it should increase as θ increases,
indicating that more human effort is needed to look at
the robot (head motion). Therefore, costvisibility is directly
proportional to the angle and inversely proportional to the
distance and can be calculated as below,

costvisibility = α

(
θ

dhreff

)
(3)

where α is a constant which can be taken as α =
dproxemics

θFoV/2

and dproxemics is the defined proxemics-based distance that
does not intrude the personal space (> 0.45m). The lesser
the cost of visibility, the better the behaviour of the robot.
Thus, the cost should be maintained under a threshold by the
HAN system while planning the robot’s motion.

2) Costs of shock and react: When a human sees some-
thing, it takes a few milliseconds before it is registered by the
brain. After the recognition, it takes more time to generate a
response. The average recognition time for a human is around
trecognise = 150 milliseconds [35], [36] and the average time
to react for visual stimuli is between treact = 400 − 600
milliseconds [37], [38]. If something appears very close to
a human before it can be recognised, it could result in a
shock. Even after recognition, if there is not enough time
to respond, it could be dangerous and causes distress apart
from the surprise. Hence, it is necessary for a robot to be
more aware of its surroundings to avoid the occurrence of
dangerous situations.

The costs (costshock and costreact) are defined based on
the recognition and reaction times and the robot’s distance
from a human when it enters his/her FoV. They follow similar
formulations as before with some differences. We first define
a linearly increasing function called the ‘seen ratio’ (SR) as
given below,

SR =

{
t

treact
, if 0 < t < treact

1, if t ≥ treact
(4)

SR starts at zero the moment the robot enters the human’s
FoV, and as time, t, passes, this ratio slowly increases until
it reaches one. When the value of SR is one, it means that
the robot has been seen and identified by the human with
enough time to react, if needed. Hence, we can say that the
SR becomes one at around t = treact = 600 milliseconds
and continues to stay at one until the robot moves out of
FoV of the human. The costs are now defined as follows,

costshock = max

(
dproxemics

dhreff

(1− γSR), 0

)
(5)

costreact =
dproxemics

dhreff

(1− SR) (6)

where γ = treact

trecognise
. Both costshock and costreact are

high if the effective distance, dhreff
, is low when the robot

enters the FoV of the human. costshock lasts only for a short
period, and if the robot comes very close to a human during
this period, the human can be marked as surprised with a
corresponding cost. As costreact measures how the robot’s
appearance affects the human, high cost means the HAN
system has done a poor job in handling sudden appearances,
and it needs to be improved.

C. Relevance of Metrics

The metrics can be calculated and used for evaluation in
different ways depending on the scenario. One can study
the evolution of the costs with time and see how the system
responds to changing conditions. Another way is to study the
maximum or minimum values over the course of a run or
interaction. In this kind of evaluation, the relevant locations
of occurrence of such costs give more information about the
performance. For the costs proposed in this paper, a relevant
location for the calculation of cost is required for it to be
completely valid. The costfear is valid as long as the human
is in the FoV of the robot, but the costpanic is plausible only
when the robot crosses the human or when it is at the shortest
distance from the human during the run. For the surprise
metrics, the location and the time when the robot first enters
the FoV of the human are crucial. Hence, studying the first
values of these costs could reveal more relevant information
than their progression. Finally, for all the metrics (danger and
surprise) proposed, it is ideal to set a threshold for acceptable
behaviour, and these can be obtained based on real-world
demonstrations and studies. However, even without such
studies, we can perform a comparative analysis between



human-aware and non-human-aware planning systems using
these costs. In the next section, we compare and analyse a
standard and a human-aware navigation planner using the
metrics calculated at relevant times and locations

IV. EXPERIMENTAL ANALYSIS

Four different human-robot interaction scenarios in navi-
gation are designed to test the ability of the proposed metrics
in differentiating human-aware navigation from standard
dynamic obstacle avoidance. We present a detailed analysis
of each scenario to show how these metrics could be used
to benchmark HAN. In all the experiments, dproxemics =
1.6m, θFoV = 120◦ and rh = 0.3m. The interactions are
simulated in the MORSE simulator, and the human agent is
controlled using InHuS [39]. The robot is controlled using
two different systems, CoHAN, a cooperative human-aware
navigation planner [40], [41] and Simple Move Base (SMB),
where humans are introduced as dynamic obstacles into the
standard ROS navigation stack. It neither uses human motion
prediction nor social norms while navigating. Hence, we
expect our metrics to clearly differentiate SMB and CoHAN.

In all the figures used for the analysis, the multi-coloured
paths show the progression of time from start (blue) to the
end (red) of the run. The triangles with thin and thick borders
are robot and human, respectively. The speed plots show
the robot’s velocity in red and that of the human in blue.
These plots also show the relevant positions and values of
the calculated metrics (F (fear), P (panic), V (visibility),
S (shock) and R (react)) in one run of each case. Five such
runs are performed for each scenario using SMB and CoHAN
and the means of the costs are tabulated.

A. Scenario 1: Cross

In this setting, the robot and the human face each other
at the start and cross paths as they move towards their goals
at the other end. The averaged costs over 5 runs are shown
in Table. I and Fig. 5 shows the paths and speed profiles
for one of the runs. In this scenario, the robot is already
in the FoV of the human as it starts moving. So, all the
surprise metrics will be zero, and only the danger metrics
are relevant here. Comparing the values of costfear and
costpanic from Table I and Fig. 5, the costs corresponding
to CoHAN are significantly lower than costs for SMB. As
CoHAN is a human-aware planner, it tries to provide more
way for the human by moving away as shown in Fig. 5 (b)
and slows down as it passes by the human. These behaviours
result in low costfear and costpanic. On the other hand,
SMB does not modulate its velocity much and takes only a
small deviation to avoid the collision, as shown in Fig. 5 (a).
The slight decrease in human speed and the path change
can be seen in Fig. 5 (a). These behaviours may not be
acceptable, and it is reflected by the high values in costfear

Costs fear panic visibility shock react
CoHAN 0.33 1.38 0.0 0.0 0.0

SMB 2.98 15.92 0.0 0.0 0.0

TABLE I: Averaged costs over 5 runs for cross scene
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(a) SMB: Cross (b) CoHAN: Cross

Fig. 5: Cross scenario: (a) In the case of SMB, the robot moves
close to the human, and the human path is slightly modified. As
they cross each other, there is a slight decrease in the velocity of
the human. (b) The robot running CoHAN moves away showing
the intention and also keeping its distance from the human as it
crosses. The human path is almost a straight line, and the velocity
remains constant.

and costpanic. Also, note that the times of the relevant costs
are separated by large time in CoHAN and by a very small
time in the case of SMB. This shows that CoHAN follows
a well-planned trajectory while SMB does a last-minute
collision avoidance.

B. Scenario 2: Overtake

This scenario starts with the robot behind the human.
During the run, the robot starts following a slow-moving
human and finally overtakes the human to reach its goal as
shown in Fig. 6. In this situation, a HAN system should
have small values for all of the proposed metrics as the
robot should pass by the human without colliding and not
surprise the human as it overtakes him/her. Table II shows the
mean values of the metrics calculated at relevant locations.
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Fig. 6: Overtake scenario: (a) The human and the robot move
parallelly until the very end without much change in their velocity
profiles. (b) The robot with CoHAN takes a larger deviation as it
plans to enter the FoV of the human.

Costs fear panic visibility shock react
CoHAN 0.32 0.40 1.34 1.00 1.21

SMB 0.47 0.94 4.72 2.75 3.34

TABLE II: Averaged costs over 5 runs for overtake scenario.

From the values in the table and the figure, it is evident that
CoHAN performs significantly better than SMB. Specifically,



costshock, costreact and costvisibility are high for SMB,
indicating that the robot might have entered the human’s
FoV suddenly and at a closer distance which is not ideal. It
can be seen from Fig 6 (a) that the robot was very close as
it overtook the human. The robot using CoHAN modifies its
trajectory to accommodate the human and enters the human’s
FoV in a better manner, as seen in Fig. 6 (b) resulting in
lower surprise metrics.

In this setting, the robot and the human have some perpen-
dicular offset distance, unlike in the previous case, and they
move almost parallelly for the most part (see Fig. 6). This is
the reason for comparable values of costfear and costpanic
in SMB and in CoHAN. However, CoHAN maintains a larger
distance as well as modulates the robot’s velocity while
passing by the human and this helps it to lower its costs
of danger.

C. Scenario 3: Approach

This is a fairly simple setting with a static human. The
robot has to approach and face the human for interaction.
The robot starts somewhere behind the human and enters
the FoV before aligning itself to face the human. The mean
costs for the five runs are shown in Table III and as expected,
a human-aware planner, CoHAN, has lower values for all the
metrics. The value of costfear is similar for CoHAN and
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Fig. 7: Approach scenario: (a) The robot moves straight towards
the goal and slightly deviates to avoid a collision with the human.
(b) The robot tries to move by the wall until it enters the FoV of
the human. When the robot turns itself to face the human, CoHAN
tries to keep the robot’s velocity low.

Costs fear panic visibility shock react
CoHAN 0.26 0.67 1.69 1.28 1.56

SMB 0.28 1.51 3.75 2.71 3.29

TABLE III: Averaged costs over 5 runs for approach scenario.

SMB, but the costpanic for SMB is almost double both in
Table III and Fig. 7. By observing the paths and the velocity
profiles of the robot in Fig. 7, we can see that the robot
using CoHAN moves closer to the wall and maintains its
distance from the human until it enters the FoV. All the

surprise metrics, therefore, remain low for the human-aware
system than a standard navigation system. The speed profile
in Fig. 7 (b) shows that the CoHAN moves the robot with a
little lower velocity than SMB while aligning itself in front
of the human.

D. Scenario 4: Appear

When a robot navigates in an environment, there could be
several occluded regions from where a human might emerge.
In this scenario, we put the planners to a test in the crossing
scenario, where the human is initially occluded and becomes
visible just before the cross. The human follows an L-shaped
path as shown in Fig. 8. It is one of the most difficult cases
to handle for a HAN system, as it has to prevent harm
and shock to the human on top of avoiding the robot from
freezing. As CoHAN already address such cases [41], it is
expected to perform better in this case. From Table IV, we
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(a) SMB: Appear (b) CoHAN: Appear
Fig. 8: Appear scenario: (a) The speed of the human drastically
changes and the human even halts momentarily giving way for
the robot (red circle on the path). The robot moves with almost a
constant speed except for a little oscillation to avoid a collision. (b)
The robot moves away from the corner and takes a deviated path
in the anticipation of a human. The robot slows down as it sees a
real human.

Costs fear panic visibility shock react
CoHAN 1.75 3.16 0.49 0.69 0.81

SMB 30.85 0.0 0.73 1.21 1.48

TABLE IV: Averaged costs over 5 runs for appear scenario

can see that CoHAN performed better in terms of all the
costs except costpanic. The reason for this can be obtained
by looking at Fig. 8. In the case of SMB, costpanic is not
even calculated as the human lies in the collision zone all the
time during the interaction. The very high value of costfear
clearly indicates that this system is performing really badly
in the case of occluded humans. Further, the human has to
slow down and wait for the robot to pass before continuing



the navigation as seen from the speed profile and the path
of the human in Fig. 8 (a). By observing the region inside
the red circle, one can see the discontinuity in the colour
spectrum compared to the robot’s path, indicating a halt (or
oscillation) in human motion. CoHAN, however, handles this
case by moving away from the corner anticipating a human
and this results in a lesser possibility of collision and the
feeling of fear (costfear). Although CoHAN performs better
compared to SMB, the numerical values of both costpanic
and costfear are higher compared to all the previous cases.
As the robot was modulating only its path to handle a sudden
emergence, the velocity remains high, resulting in higher
costs. This shows that CoHAN’s performance needs to be
improved in this context. Therefore, we can say that the
proposed metrics can not only differentiate a HAN planner
from a standard robot navigation planner but also can be
used to benchmark HAN planners and help them improve
their performance.

As the angle at which the robot enters the FoV of the
human is low, both SMB and CoHAN have comparable
values for costvisibility. The other surprise metrics, costshock
and costreact clearly indicate that the human might be more
surprised by the robot using SMB than the one with CoHAN.
From the speed and path profiles in Fig. 8, we can also say
that the human is disturbed less by CoHAN compared to
SMB.

V. DISCUSSION AND CONCLUSIONS

With the growing research and scope for social robots
in human environments, human-aware robot navigation is
gaining more attention. Therefore, good metrics are required
to evaluate HAN efficiently and benchmark the performance
of the planners. Although, there are existing benchmarks like
SocNavBench [27] and SEAN [42], the metrics used for the
evaluation are largely related to navigation performance and
proxemic violations. We believe that the metrics proposed
in this paper from the perspective of a human experiencing
the robot’s navigation could improve the evaluation and
benchmarking of HAN. It also provides us with a new
direction from which new metrics can be designed. We think
that the idea and the metrics are a good addition to the field.

Although the proposed metrics can benchmark HAN
planners and differentiate them, they are not sufficient to
completely assess a situation. During our analysis, we used
the paths and the velocity profiles along with the metrics to
provide a complete picture of what was happening. Hence,
the proposed metrics should be used in conjunction with
existing metrics to evaluate a situation better. One can also
combine one or more of these costs to formulate a better
metric. For example, the costshock can be combined with
costpanic or costfear to check how admissible or undesirable
the robot’s behaviour is in a situation.

While designing the metrics, we have used the existing
user studies on human-robot interaction and human percep-
tion. User studies play a great role in advancing the field of
HAN and as a part of our immediate future work, we plan
to evaluate the validity of these metrics as the proxies for

emotions through a detailed user study. Further, we also plan
to identify acceptable thresholds for the proposed metrics
through this study to benchmark the navigation behaviours
better.

Summarising, we have proposed some new metrics that
measure the human-perceived value of danger and surprise
as the robot navigates around them. We provided a de-
tailed mathematical formulation of these metrics and talked
about their relevance in different human-robot navigation
scenarios. Finally, these metrics were used to benchmark
the performance of a human-aware planner in comparison
with a standard navigation planner that can avoid dynamic
obstacles. The results demonstrated the capability of the
proposed metrics in benchmarking a HAN system.
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APPENDIX

The extended mathematical formulation of TTC, costpanic
and costvisibility in terms of the variables shown in Fig. 2
and Fig. 4 are given below.
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