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A k-power-free morphism is a (k + 1)-power-free morphism for

any integer k ≥ 5

Francis Wlazinski

September 5, 2023

Abstract

For any integer k ≥ 5, we show that a morphism that preserves k-power-free words
also preserves (k + 1)-power-free words.

1 Introduction and preliminaries

The purpose of this article is to answer a question I was asked a few years ago. It will
mainly interest those who asked me about it. But also maybe a few other people.

Let us recall some basic notions of Combinatorics of words.

1.1 Words

An alphabet A is a finite set of symbols called letters. Since an alphabet with one element
is of limited interest to us, we always assume that the cardinality of alphabets is at least
two. A word over A is a finite sequence of letters from A. The empty word ε is the empty
sequence of letters. Equipped with the concatenation operation, the set A∗ of words over
A is a free monoid with ε as neutral element and A as set of generators.

Given a non-empty word u = a1 . . . an, with ai ∈ A for every integer i from 1 to n,
the length of u denoted by |u| is the integer n, that is, the number of letters of u. By
convention, we have |ε| = 0. The mirror image of u, denoted by ũ, is the word an . . . a2a1.

A word u is a factor of a word v if there exist two (possibly empty) words p and s such
that v = pus. We denote by Fcts(v) the set of all factors of v. If u ∈ Fcts(v), we also
say that v contains the word u (as a factor). If p = ε, u is a prefix of v. If s = ε, u is a
suffix of v. If u 6= v, u is a proper factor of v. If u, p, and s are non-empty words, u is an
internal factor of v.

Two words u and v are conjugated if u = t1t2 and v = t2t1 for two (possibly empty) words
t1 and t2.
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Let w be a non-empty word and let i, j be two integers such that 0 ≤ i− 1 ≤ j ≤ |w|. We
denote by w[i..j] the factor of w such that |w[i..j]| = j − i + 1 and w = pw[i..j]s for two
words s and p satisfying |p| = i− 1. Note that, when j = i− 1, we have w[i..j] = ε. When
i = j, we also denote by w[i] the factor w[i..i], which is the ith letter of w. In particular,
w[1] and w[|w|] are respectively the first and the last letter of w.

Powers of a word are defined inductively by u0 = ε, and for every integer n ≥ 1, un =
uun−1. Given an integer k ≥ 2, since the case εk is of little interest, we call a k-power
any word uk with u 6= ε. Given an integer k ≥ 2, a word is k-power-free if it does not
contain any k-power as factor. A primitive word is a word that is not a k-power of another
word whatever the integer k ≥ 2. A (non-empty) k-power vk is called pure if any proper
factor of vk is k-power-free. In particular, we say that vk is a pure k-power of a word w
if vk ∈ Fcts(w) and vk is pure. Repeating the fact that a non-pure k-power contains a
k-power, which is itself pure or not, we obtain that any k-power contains a pure k-power.
Moreover, if vk is a pure k-power then v is primitive but the converse does not hold.

Remark 1.1 A word cannot start with two different pure k-powers.

The following proposition gives the well-known solutions (see [3]) to two elementary equa-
tions on words and will be widely used in the following sections:

Proposition 1.2 Let A be an alphabet and u, v, w three words over A.

1. If vu = uw and v 6= ε, then there exist two words r and s over A, and an integer n
such that u = r(sr)n, v = rs and w = sr.

2. If vu = uv, then there exist a word w over A, and two integers n and p such that
u = wn and v = wp.

We also need a property on words that is an immediate consequence of Proposition 1.2(2).

Lemma 1.3 [1, 2] If a non-empty word v is an internal factor of vv, i.e., if there exist
two non-empty words x and y such that vv = xvy, then there exist a non-empty word t
and two integers i, j ≥ 1 such that x = ti, y = tj, and v = ti+j.

We also use a well-known result on combinatorics on words:

Proposition 1.4 (Fine and Wilf) [3, 4] Let x and y be two words. If a power of x and
a power of y have a common prefix of length at least equal to |x| + |y| − gcd(|x|, |y|) then
x and y are powers of the same word.

As a consequence of Proposition 1.4, we get:

Corollary 1.5 (Keränen) [1] Let x and y be two words. If a power of x and a power of
y have a common factor of length at least equal to |x|+ |y| − gcd(|x|, |y|) then there exist
two words t1 and t2 such that x is a power of t1t2 and y is a power of t2t1 with t1t2 and
t2t1 primitive words. Furthermore, if |x| > |y| then x is not primitive.
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Lemma 1.6 Let k ≥ 3 be an integer. Let v and v be two conjugated words over A.

If vk is a pure k-power over A then the same holds for vk.

Proof.

Let us assume that v = v1v2 and v = v2v1 for two words v1 and v2 over A. And, by
contradiction, let us assume that vk is not a pure k-power, that is, (v2v1)k = vk = t1t

kt2
with t and t1t2 non empty words.

If |t1| > |v2| or if |t2| > |v1| then tk is a proper factor of (v1v2)k−1v1 or of v2(v1v2)k−1,
that is, of vk, i.e., vk is not pure: a contradiction.

If |t1| ≤ |v2| and |t2| ≤ |v1| then tk is a common factor of itself and vk+1 with |vk−1| ≤
|tk| < |vk|. It follows that k−1

k ×|v| ≤ |t| < |v|. Thus |tk| ≥ |t|+ (k−1)2
k ×|v| ≥ |t|+ |v|. By

Lemma 1.5, we get that v is not primitive, i.e., vk is not pure: a final contradiction.

Lemma 1.7 Let k ≥ 3 be an integer, let α and β be two words, and let Y k be a pure
k-power over an alphabet B. For any pure k-power Xk over B and for any integer 0 ≤
` ≤ k − 3, if Xk ∈ Fcts

(
αY k−`−1β

)
and Xk /∈ Fcts

(
αY k−`β

)
, then |X| > (k − `− 2)|Y |.

Proof.

If Xk ∈ Fcts
(
αY k−`−1β

)
, there exist two words γ and δ such that αY k−`−1β = γXkδ.

If |α| ≤ |γ| then Xk ∈ Fcts
(
Y k−`−1β

)
⊂ Fcts

(
αY k−`β

)
: a contradiction with the hy-

potheses. Therefore, we have |α| > |γ|. In a same way, we get that |β| > |δ|. It follows
that Y k−`−1 is an internal factor of Xk.

Having |Y k−`−1| ≥ |X|+ |Y | means that a power of X and a power of Y have a common
factor of length at least |X| + |Y |. By Corollary 1.5, there exist two words X1 and X2

and two integers i and j such that X = (X1X2)i and Y = (X2X1)j with X1X2 and X2X1

primitive words. Since Xk and Y k are pure k-powers, it implies that i = j = 1. We get
that α(X2X1)k−`−1β = γ(X1X2)kδ with |α| > |γ| and |β| > |δ|. But X2X1 is not an
internal factor of (X2X1)2. Thus α ends with X1 and β starts with X2. If follows that
(X1X2)k = Xk ∈ Fcts

(
αY k−`β

)
: a contradiction with the hypotheses.

So, we necessarily have |Y k−`−2| < |X|.

Even if we can work with the previous lemma, in fact, the different situations we will
encounter are similar of the hypotheses of the following corollary. Let us recall that we
denote

∏s
j=1 wj the concatenation of the s words w1, w2, . . . , ws.

Lemma 1.8 Let k ≥ 3 and s ≥ 1 be two integers, let α0, α1, . . . , αs be s + 1 words
over an alphabet B, and let Y k1 , Y k2 , . . . , Y ks be s pure k-powers over B of the same
length k×L. For any pure k-power Xk over B and for any integer 0 ≤ ` ≤ k− 3, if Xk ∈
Fcts

(
α0

∏s
i=1

(
Y k−`−1i αi

))
and Xk /∈ Fcts

(
α0

∏s
i=1

(
Y k−`i αi

))
, then |X| > (k−`−2)×L.

Proof.

This proof is done by induction on s.
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The property is obtain for s = 1 by Lemma 1.7. Let us assume that the property is
satisfied for an integer s.

Let α0, α1, . . . , αs+1 be s+2 words over an alphabet B, and let Y k1 , Y k2 , . . . , Y ks+1 be
s+1 pure k-powers over B of the same length k × L. Let Xk be a pure k-power over

B and let 0 ≤ ` ≤ k − 3 be an integer such that Xk ∈ Fcts
(
α0

∏s+1
i=1

(
Y k−`−1i αi

))
and

Xk /∈ Fcts
(
α0

∏s+1
i=1

(
Y k−`i αi

))
.

There exist two words π and σ such that πXkσ = α0

∏s+1
i=1

(
Y k−`−1i αi

)
.

If |σ| ≥ |αs+1|, then Xk ∈ Fcts
(
α0

∏s
i=1

(
Y k−`−1i αi

)
Y k−`−1s+1

)
.

But Xk /∈ Fcts
(
α0

∏s
i=1

(
Y k−`i αi

)
Y k−`−1s+1

)
(it is a subset of Fcts

(
α0

∏s+1
i=1

(
Y k−`i αi

))
.

Taking αsY
k−`−1
s+1 instead of αs, by induction hypothesis, we get that |X| > (k−`−2)×L.

On the same way, if |π| ≥ |α0|, taking Y k−`−11 α1 for α0 and αi for αi−1 for all integers
2 ≤ i ≤ s+ 1, by induction hypothesis, we get that |X| > (k − `− 2)× L.

Thus |σ| < |αs+1| and |π| < |α0|, that is
∏s
i=1

(
Y k−`−1i αi

)
Ys+1 and, in particular, Y k−`−11

are internal factors of Xk. As we have done in the proof of Lemma 1.7, if |Y k−`−11 | ≥
|X|+ |Y1| by Corollary 1.5 and since Xk and Y k1 are pure k-powers, there exist two words
X1 and X2 such that X = X1X2 and Y1 = X2X1 with X1X2 and X2X1 primitive words.
But X2X1 is not an internal factor of (X2X1)2. Thus α0 ends with X1 and α1 starts with

X2. If follows that (X1X2)k = Xk ∈ Fcts
(
α0Y

k−`
1 α1

)
⊂ Fcts

(
α0

∏s+1
i=1

(
Y k−`i αi

))
: a

contradiction with the hypotheses.

So, we necessarily have |X| > |Y k−`−21 |.

1.2 Morphisms

Let A and B be two alphabets. A morphism f from A∗ to B∗ is a mapping from A∗ to
B∗ such that f(uv) = f(u)f(v) for all words u, v over A. When B has no importance, we
say that f is a morphism on A or that f is defined on A.

Given an integer L, f is L-uniform if |f(a)| = L for every letter a in A. A morphism f
is uniform if it is L-uniform for some integer L ≥ 0. Given a set X of words over A, and
given a morphism f on A, we denote by f(X) the set {f(w) | w ∈ X}.
A morphism f on A is k-power-free if and only if f(w) is k-power-free for every k-power-
free word w over A. For instance, the empty morphism ε (∀a ∈ A, ε(a) = ε) or the identity
endomorphism Id (∀a ∈ A, Id(a) = a) are k-power-free.

We say that a morphism is non-erasing if, for all letters a ∈ A, f(a) 6= ε. The empty
morphism ε is the only morphism that is both erasing and k-power-free. Indeed, for any
non-empty erasing morphism f , there exist two different letters a and b in A (remember
Card(A) ≥ 2) such that f(a) 6= ε, f(b) = ε, and so f(abak−1) contains a k-power.

A morphism on A is called prefix (resp. suffix ) if, for all different letters a and b in A, the
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word f(a) is not a prefix (resp. not a suffix) of f(b). A prefix (resp. suffix) morphism is
non-erasing. A morphism is bifix if it is prefix and suffix.

Given a morphism f on A, the mirror morphism f̃ of f is defined for all words w over

A, by f̃(w) = f̃(w̃). In particular, f̃(a) = f̃(a) for every letter a in A. Note that f is
k-power-free if and only if f̃ is k-power-free.

Proofs of the three following lemmas are left to the reader.

Lemma 1.9 Let f be a bifix morphism on an alphabet A and let u, v, w, and t be four
words over A.
The equality f(u) = f(v)p where p is a prefix of f(w) implies u = vw′ for a prefix w′ of w
such that f(w′) = p.
Symetrically, the equality f(u) = sf(v) where s is suffix of f(t) implies u = t′v for a suffix
t′ of t such that f(t′) = s.

Lemma 1.10 Let f be a prefix morphism on an alphabet A, let u and v be words over A,
and let a and b be letters in A. Furthermore, let p1 (resp. p2) be a prefix of f(a) (resp. of
f(b)). If (p1; p2) 6= (ε; f(b)) and if (p1; p2) 6= (f(a); ε) then the equality f(u)p1 = f(v)p2
implies u = v and p1 = p2.

Lemma 1.11 Let f be a suffix morphism on an alphabet A, let u and v be words over A,
and let a and b be letters in A. Furthermore, let s1 (resp. s2) be a suffix of f(a) (resp. of
f(b)). If (s1; s2) 6= (ε; f(b)) and if (s1; s2) 6= (f(a); ε) then the equality s1f(u) = s2f(v)
implies u = v and s1 = s2.

Definition 1.12 A morphism f from A∗ to B∗ is a ps-morphism (Keränen [1] called f
a ps-code) if and only if the equalities

f(a) = ps, f(b) = ps′ and f(c) = p′s
with a, b, c ∈ A (possibly c = b) and p, s, p′, s′ ∈ B∗ imply b = a or c = a.

Obviously, taking c = b, and s = ε in a first time and p = ε in a second time, we obtain
that a ps-morphism is a bifix morphism.

Lemma 1.13 [1, 2] If f is not a ps-morphism then f is not a k-power-free morphism for
all integers k ≥ 2.

Lemma 1.14 [5]

Let f be a ps-morphism from A∗ to B∗ and let u, v and w be words over A such that
f(u) = δβ, f(v) = αβ, and f(w) = αγ for some non-empty words α, β, γ, and δ over B.
Then it implies that v = v1av2, u = u1bv2, and w = v1cw2 for some words v1, v2, u1, and
w2, and some letters a, b, and c. Moreover, we have either b = a or c = a.

Furthermore, if |δ| < |f(u[1])| then u1 = ε and if |γ| < |f(w[|w|])| then w2 = ε.

Assuming that f(w) = puks for a factor w of a word w and a non-empty word u, and
assuming that w contains a factor w0 such that |f(w0)| = |u|, if f is a ps-morphism,
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Lemma 1.16 states that w necessarily contains a k-power w′k such that f(w′) is a conjugate
of u. We will say that f(w) contains a synchronised k-power uk or that f(w) and uk are
synchronised. More precisely:

Definition 1.15 Let k ≥ 2 be an integer. Let f be a morphism from A∗ to B∗, w be
a word over A, and u be a non-empty word over B such that f(w) contains the k-power
uk. Let w be a shortest factor of w whose image by f contains uk, i.e., f(w) = puks with
|p| < |f(w[1])| and |s| < |f(w[|w|])|.
We say that f(w) and uk are synchronised if there exist three words w0, w1, and w2 such
that |f(w0)| = |u| and w = w1w0w2 with p = ε if w1 = ε, and s = ε if w2 = ε.

Lemma 1.16 [5]

Let k ≥ 2 be an integer. If f is a ps-morphism and if f(w) contains a synchronised k-power
then w contains a k-power.

Remark 1.17 [5]

More precisely, the word w starts or ends with a k-power which image by f is a conjugated
of the synchronised k-power.

Lemma 1.18 [5]

Let k ≥ 4 be an integer.
The image of a pure k-power by a k-power-free morphism is also a pure k-power.

As direct consequences of Lemmas 1.7, 1.8 and 1.18, we get the two following corollaries:

Corollary 1.19 Let k ≥ 4 be an integer and let f be a morphism from A∗ to B∗. Let
α and β be two words over B and let vk be a pure k-power over A. For any pure k-
power tk over A and for any integer 0 ≤ ` ≤ k − 3, if f(t)k ∈ Fcts

(
αf(v)k−`−1β

)
and

f(t)k /∈ Fcts
(
αf(v)k−`β

)
then either f is not k-power free or |f(t)| > (k − `− 2)|f(v)|.

Corollary 1.20 Let k ≥ 4 and s ≥ 1 be two integers and let f be a morphism from A∗

to B∗. Let α0, α1, . . . , αs be s + 1 words over B, and let vk1 , vk2 , . . . , vks be s pure
k-powers such that |f(vi)| = L for all integers 1 ≤ i ≤ s. For any pure k-power tk over A
and for any integer 0 ≤ ` ≤ k − 3, if f(t)k ∈ Fcts

(
α0

∏s
i=1

(
f(vi)

k−`−1αi
))

and f(t)k /∈
Fcts

(
α0

∏s
i=1

(
f(vi)

k−`αi
))

then either f is not k-power free or |f(t)| > (k − `− 2)× L.

2 Reduction of a power

2.1 About k-power-free morphisms

Lemma 2.1 [5] (see Figure 1)
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Let k ≥ 4 be an integer. Let f be a ps-morphism from A∗ to B∗. Let v and T be non-empty
words over A such that vk is a pure k-power. Let us assume that f(T ) = π1f(v)kσ2 with
|π1| < |f(T [1])| and |σ2| < |f(T [|T |])|. Then one of the following holds:

• (P.1) : There exist a pure k-power xk, a word y over A, and a word Z over B such that

(P.1.1) : T = xky, |y| ≤ 1, f(y) = π1σ2, f(x) = π1Z, and f(v) = Zπ1

(P.1.2) : or T = yxk, |y| = 1, f(y) = π1σ2, f(x) = Zσ2, and f(v) = σ2Z.

• (P.2) : There exist a pure k-power xk and a non-empty word y over A such that

(P.2.1) : T = xky with |f(xk−1)| < |π1f(v)|
(P.2.2) : or T = yxk with |f(xk−1)| < |f(v)σ2|.
• (P.3) : f is not k-power-free.

Figure 1: Different cases in Lemma 2.1

Corollary 2.2 [5]

With hypotheses and notations of Lemma 2.1, if f(T ) and f(v)k are synchronised (this is
obviously the case when f is a uniform ps-morphism) then either f is not k-power-free or
T satisfies (P.1).

Remark 2.3 If T and vk are factor of the same word ω and if f(v)k is a shortest k-power
in ω then T can not satisfy (P.2).

Corollary 2.4 [5]

Let k ≥ 4 be an integer. Let f be a ps-morphism from A∗ to B∗. Let vk and tk be two
pure k-powers over A. Let us assume that f(tk) = π1f(v)kσ2 with |π1| < |f(t[1])| and
|σ2| < |f(t[|t|])|. If π1 6= ε or if σ2 6= ε then f is not k-power-free.
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Corollary 2.5 [5]

Let k ≥ 4 be an integer. Let f be a ps-morphism from A∗ to B∗. Let v and T be non-empty
words over A such that vk is a pure k-power. Let us assume that f(T ) = π1f(v)k+1σ2 with
|π1| < |f(T [1])| and |σ2| < |f(T [|T |])|. Then either f is not k-power-free or there exist a
pure k-power xk, a word Y over A, and a word Z over B such that

(P.1.1)′ : T = xk+1Y , |Y | ≤ 1, f(Y ) = π1σ2, f(x) = π1Z, and f(v) = Zπ1

(P.1.2)′ : or T = Y xk+1, |Y | = 1, f(Y ) = π1σ2, f(x) = Zσ2, and f(v) = σ2Z.

Let α, β, and γ be three integers such that γ ≤ α and β ≤ α− γ + 1. We denote vγ(β) the

βth factor of vγ in vα that is vα = vβ−1vγ(β)v
α−γ+1−β . In particular, when γ = 1, v(β) is

the βth successive factor of v in vα.

By Corollary 2.2 and Corollary 2.5, we immediatly get:

Corollary 2.6 Let α and k be two integers such that α ≥ k + 1 ≥ 5. Let f be a ps-
morphism from A∗ to B∗. Let v and T be non-empty words over A such that vk is a pure
k-power. Let us assume that f(T ) = π1f(v)ασ2 with |π1| < |f(T [1])| and |σ2| < |f(T [|T |])|.
For any integer 1 ≤ β ≤ α − k + 1, the word T(β) such that f(T(β)) = π(β),1f(vk(β))σ(β),2
with |π(β),1| < |f(T(β)[1])| and |σ(β),2| < |f(T(β)[|T(β)|])| satisfies (P.1).

2.2 Equations of reduction

Lemma 2.7 [5]

Let α1, α2, β1, β
′
1, β2, γ1, γ2 be words over an alphabet B such that |β1| = |β2| 6= 0, β′1 is a

proper suffix of β1, and 0 ≤ |α2| − |α1| ≤ |β′1|.
Under these hypotheses, the equality α2β2γ2 = α1β

′
1β1γ1 implies α2γ2 = α1β

′
1γ1.

Lemma 2.8 [5]

Let κ ≥ 3 be an integer. Let f be a morphism from A∗ to B∗. Let (wi)i=1..κ+1 and
(xi)i=1..κ be words over A such that |f(xi)| = |f(xj)| 6= 0 for all integers i, j in [1, κ].

We denote by w the word w1x1...wκxκwκ+1.

We assume that there exist words u, p, s, (Xi)i=1..κ, and (Yi)i=1..κ over B such that
f(w1) = pX1, f(wκ+1) = Yκs, and f(wi) = Yi−1Xi for all 2 ≤ i ≤ κ. Moreover, we
assume that, for all integers i in [1, κ], we have u = Xif(xi)Yi. It means that f(w) = puκs.

Let us also assume that there exists an integer q such that, for every integer i in [1, κ],
0 ≤ |Xq| − |Xi| ≤ |X ′′q | where X ′′q is a common suffix of Xq and f(xq). Then the word
w̌ = w1w2...wκwκ+1 satisfies f(w̌) = pǔκs with ǔ = XiYi for every integer i in [1, κ].

In particular, f(w̌) and ǔκ are synchronised only if f(w) and uκ are synchronised.

The situation described in Figure 2 is an example of a case where the hypotheses of
Lemma 2.8 hold.
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Figure 2: Reduction of a power

We say that we have reduced w.

Let us note that p is not necessarily a prefix of f(w1[1]) and s is not necessarily a suffix of
f(wκ[|wκ|]).
Figure 3 deals with Point 3 of Remark 2.9 and Figure 4 deals with Point 4 of Remark 2.9.

Figure 3: Point 3 of Remark 2.9

Remark 2.9 1. Using the mirror image and exchanging |Xq| the maximum of |Xi| by
the maximum |Yq| of |Yi| (i.e., |Xq| is the minimum of |Xi|), the condition ”0 ≤
|Xq|− |Xi| ≤ |X ′′q | where X ′′q is a common suffix of Xq and f(xq)” of Lemma 2.8 can
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Figure 4: Point 4 of Remark 2.9

be replaced by ”0 ≤ |Yq| − |Yi| ≤ |Y ′q | where Y ′q is a common prefix of Yq and f(xq)”.

2. A prefix u1 of u is also a prefix of ǔ if |u1| < |Xq|, and a suffix u2 of u is also a
suffix of ǔ if |u2| < max |Yj |.

3. If, instead of u = Xκf(xκ)Yκ, we only have that Xκf(xκ)Yκ is a prefix of u (see
Figure 3) then f(w̌) = pǔκ−1XκYκs with XκYκ prefix of ǔ.

4. If q 6= 1 and Xq is a suffix of f(xq), i.e., X ′q = ε (see Figure 4), then we do not need
x1 and optionally not w1 in the hypotheses of Lemma 2.8. Conclusion remains true
with u = X1Y1, w′2 = w1w2 or w2, f(w′2) = pX1Y1X2, w = w′2x2w3...wκxκwκ+1,
and w̌ a (not necessarily proper) suffix of w′2w3...wκwκ+1

5. By mirror image of Case 4, we get that, if q 6= κ and Yq is a prefix of f(xq) then we
do not need xκ and optionally not wκ+1 in the hypotheses of Lemma 2.8. Conclusion
remains true with u = XκYκ, w′κ = wκwκ+1 or wκ, f(w′κ) = Yκ−1XκYκs, w =
w1x1w2...wκ−1xκ−1w

′
κ, and w̌ a (not necessarily proper) prefix of w1w2...wκ−1w

′
κ.

6. As a combination of Case 4 and Case 5, we get that, if q 6= 1, q 6= κ, Xq is a suffix
of f(xq), and Yq is a prefix of f(xq) then we do not need neither x1 nor xκ in the
hypotheses of Lemma 2.8. Conclusion remains true with u = X1Y1 = XκYκ, w′2 =
w1w2 or w2, w′κ = wκwκ+1 or wκ, f(w′2) = pX1Y1X2, f(w′κ) = Yκ−1XκYκs, w =
w′2x2w3...wκ−1xκ−1w

′
κ, and w̌ a (not necessarily proper) factor of w′2w3...wκ−1w

′
κ.

For any positive integer `, since |f(xi)| = |f(xj)| is equivalent to |f(x`i)| = |f(x`j)| and

since a prefix (resp. a suffix) of f(xi) is a prefix (resp. a suffix) of f(x`i), we immediately
obtain the following Corollary that will be the central point of proof of Lemma 4.5.

Corollary 2.10 (method of reduction)[5]
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Let κ ≥ 3 and ` ≥ 1 be two integers, let α be an integer in {1, 2} and let β be an integer
in {κ− 1, κ}
Let f be a morphism from A∗ to B∗ and let (wi)i=α..β+1, (xi)i=α..β be words over A such
that |f(xi)| = |f(xj)| 6= 0 for all integers i, j in [α, β].

We denote by w the word wαx
`
α...wβx

`
βwβ+1.

We assume that there exist u, p, s, (Xi)i=α..β and (Yi)i=α..β words over B such that
f(wi) = Yi−1Xi for all integers i in [1 +α;β]. Furthermore, we also assume that f(wα) =
puα−1X1 and f(wβ+1) = Yκu

κ−βs where u = Xif(x`i)Yi(6= ε) for all integers i in [α, β]:
it means that f(w) = puκs.

Finally, we assume that there exists an integer q such that, for any integer i in [α, β],
0 ≤ |Xq| − |Xi| ≤ |X ′′q | where X ′′q is a common suffix of Xq and f(xq), 0 ≤ |Xq| − |Xi| ≤
|f(xq)| when α = 2, or 0 ≤ |Yi| − |Yq| ≤ |f(xq)| when β = κ− 1.

Then, for any integer 0 ≤ φ < `, the word w′ = wαx
φ
α...wβx

φ
βwβ+1 satisfies f(w′) = pu′κs

with u′ = Xif(xφi )Yi for any integer i in [1;κ].

In particular, f(w′) and u′κ are synchronised only if f(w) and uκ are synchronised.

2.3 Situations of reduction

Let k ≥ 4 be an integer. Let f be a morphism from A∗ to B∗ and let ω be a word over
A such that f(ω) = %(χγ)kχς for some words %, χ, γ and ς over B such that χγ 6= ε,
|%| < |f(ω[1])| and |ς| < |f(ω[|ω|])|. We denote U = χγ and S = χs. In particular, when
γ = ε, we get that f(ω) = %Uk+1ς.

For any integer j in [1, k + 1], let ij the smallest integer such that %(χγ)j−1 is a prefix of
f(ω[1..ij ]). And let i′j be the smallest integer such that %(χγ)j−1χ is a prefix of f(ω[1..i′j ]).
In particular, we have i1 = 1, and i′k+1 = |ω| (see Figure 5). By convention, let ik+2 = i′k+1.
Furthermore, there exist words pj , p

′
j , sj and s′j such that, f(ω[ij ]) = pjsj , f(ω[i′j ]) = p′js

′
j ,

p1 = %, sk+2 = ς pj 6= ε if j 6= 1 and s1 6= ε, f(ω[1..ij ]) = %(χγ)j−1sj and f(ω[1..i′j ]) =

%(χγ)j−1χs′j for any integer j in [1, k + 1].

Moreover, we assume that ij < ij+1. In particular, we get that χγ = sjf(ω[ij + 1..ij+1 − 1])pj+1

when 1 ≤ j ≤ k.

Since a factor of ω can appear many times in ω, it is necessary to indicate which exact
factor we are going to work with: if ω[n..m] = z, we denote n = nz and m = mz fixing by
this way the considered occurrence of z in ω. For any positive integer α, if ω[n..m] = zα,
we also denote n = nz and m = mz without specifying α. It is the same notation as the
case α = 1: we will precise only if necessary.

To simplify notations, let us recall that, given two integers 1 ≤ nz ≤ mz ≤ |ω|, the
word ω[nz..mz] = zα define two words we denote zp and zs such that ω = zpz

αzs, with
nz = |zp|+ 1 and mz = |zpzα|. This means that zp = ω[1..nz − 1] and zs = ω[mz + 1..|ω|].
Given two integers 1 ≤ nz ≤ mz ≤ |ω|, we also define a word Dz and three integers λz, dz
and cv (even if cv is not used in this section). Eventually, we will preciseDz,ω, λz,ω, dz,ω and
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Figure 5: Example of a decomposition of f(ω)

cz,ω if a doubt may occur. Briefly, λz is the integer such that f(ω[nz..mz]) = f(zα) starts
in the λthz occurrence of χγ; dz indicates if the first occurrence of f(z) in f(ω[nz..mz])
straddles or not two consecutive occurrences of χγ; cz is the lowest integer such that
(χγ)cz−1χ and f(ω[nz..mz]) overlap and Dz is a prefix of χγ such that f(zpz) ends with
Dz or Dzf(z).

More precisely, if nz = 1 and % 6= ε then λz = 0, dz = 1 and Dz is the word such that
f(z) = %Dz. If nz = 1 and % = ε then λz = 1, dz = 0 and Dz = ε. When nz ≥ 2, let λz
be the integer such that nz ∈ ]iλz

; iλz+1], i.e., |%(χγ)λz−1| ≤ |f(ω[1..nz − 1])| = |f(zp)| <
|%(χγ)λz |. If |f(zpz)| ≤ |%(χγ)λz | then let dz = 0 otherwise let dz = 1. Let Dz be the
word such that f(zpz

dz) = %(χγ)λz−1+dzDz. It means that Dz = sλz
f(ω[iλz

+ 1..nz − 1])
when dz = 0 and sλzf(ω[iλz + 1..nz − 1])f(z) = χγDz when dz = 1. In particular, Dz is a
proper suffix of f(z) when dz = 1. Finally, cz is the lowest integer such that |f(ω[1..mz])| <
|%(χγ)λz+cz−1χ| when mz 6= |ω| and cz = k + 1− λz otherwise.

It is important to remark that, if ω[nz..mz] = zα, the integers nz and mz define zα and z.
But, since we may have several occurrences of zα in ω, we do not have the contrary. In
other words, the equality z = z′ not necessarily implies nz = nz′ or mz = mz′ . In the same
vein, λz, dz, cz and Dz depend on nz and mz but not directly of z. But if no question
exists over the considered factor of ω or if the choice of the considered factor does not
matter, we will write zα instead of ω[nz..mz].

For any integer α ≥ 2 and for any word ω[nz..mz] = zα with nz,mz ∈ [1, |ω|], the word
f(ω[ny..my]) = f(yα) = f(y)α with ny,my ∈ [1, ik+2] is a conjugated shift to the left of
f(ω[nz..mz]) = f(zα) = f(z)α (in f(ω)) if there exist two words t1 6= ε and t2 such that
f(y) = t2t1, f(z) = t1t2 and if we have one of the following conditions:

1. Dz = Dyt2 when dy = dz
2. Dy = Dzt1 when dy = 1 and dz = 0
3. Dyf(y)t2 = χγDz when dy = 0 and dz = 1

12



Let us remark that conditions (2) and (3) imply |Dz| < |t2|. Moreover, taking t2 = ε, let
us also note that f(zα) is a conjugated shift to the left of itself.

We say that f(y)α is a conjugated shift to the right of f(z)α if f(z)α is a conjugated shift
to the left of f(y)α. We simply say that f(y)α is a conjugated shift of f(z)α if it is a
conjugated shift to the left or to the right of f(z)α.

For a general use of conjugated shifts of f(z)α, we will switch the roles of t1 and t2 in
definition and conditions (1) to (3) for a conjugated shift to the right.

Lemma 2.11 For any integer α ≥ 2, if f(x)α is a conjugated shift to the right of f(z)α

and if f(y)α is a conjugated shift to the left of f(z)α then f(y)α is a conjugated shift to
the left of f(x)α.

Proof.

We will only prove Lemma 2.11 when dx = dv = dz. The other cases are left to the reader.

Let t1( 6= ε), t2, t′1 and t′2(6= ε) be the words such that f(y) = t2t1, f(x) = t′2t
′
1 and

f(z) = t1t2 = t′1t
′
2. We have Dz = Dyt2 and Dx = Dzt

′
1. And, since f(x)α is a factor of

f(ω), there exists an integer β such that Dxf(x)α is a prefix of (χγ)βχς.

If |t′1| ≤ |t1|, let T be the word such t1 = t′1T . We get that t′2 = Tt2, Dx = Dyt2t
′
1,

f(y) = (t2t
′
1)T , f(x) = T (t2t

′
1) and t2t

′
1 6= ε: it ends the proof.

If |t′1| > |t1|, let T be the word such t′1 = t1T . We get that t2 = Tt′2, Dx = DyTt
′
2t
′
1 =

DyTf(x). It means that f(x)α is preceded by f(x) in f(ω), i.e., (χγ)βχς starts with
DyTf(x)α+1. We will consider the first occurence of f(x)α in f(x)α+1 denoted by f(x)α

to avoid confusion. We get Dx = DyT , f(y) = T (t′2t1), f(x) = (t′2t1)T and t′2t1 6= ε.

Proofs of Lemmas 2.12 and 2.13 and Corollary 2.14 are left to the reader.

Lemma 2.12 For any integer α ≥ 2, if f(x)α and f(y)α are two conjugated shifts to the
right of f(z)α then f(y)α is a conjugated shift of f(x)α.

Lemma 2.13 For any integer α ≥ 2, if f(x)α and f(y)α are two conjugated shifts to the
left of f(z)α then f(y)α is a conjugated shift of f(x)α.

Corollary 2.14 The relation <, defined on Fcts (f(ω)) by x<y if there exists an integer
α ≥ 2 such that xα is a conjugated shift of yα, is a relation of equivalence.

For any pure k-power ω[nv..mv] = vk of ω, there are k−2 choices for the factor v3 in vk. Let
us recall that we denote v3(β) the βth factor of v3 in vk that is ω[nv..mv] = vβ−1v3(β)v

k−β−2

with 1 ≤ β ≤ k − 2.

We will focus on theses different cubes v3 but without specifying β in this section.

Simplifications will not always be made in the occurrence of χγ where a word f(x3) begins,
i.e., the λx-th. It will happen that we must consider the next occurrence of χγ according
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to the values of dx and dv. In order to specify the selected occurrence of χγ, we define the
sets Lj,v and Rj,v.

For any factor ω[nv..mv] = v3 of a pure k-power vk ∈ Fcts (ω), and for any integer
j ∈ [1; k+1], let Lj,v be the set of the words ω[nx..mx] = x3 such that f(x)k is a conjugated
shift of f(v)k, f(ω[nx..mx]) = f(x)3 is a conjugated shift to the left of f(ω[nv..mv]) = f(v)3

with j = λx if dx = dv = 0 and j = λx + 1 otherwise. In particular, if v ∈ Lj,v and dv = 1
then j = λv + 1.

We also denote Rj,v the set of the words ω[nx..mx] = x3 such that f(x)k is a conjugated
shift of f(v)k, f(ω[nx..mx]) = f(x)3 is a conjugated shift to the right of f(ω[nv..mv]) =
f(v)3 with j = λx + dv × dx (see Figure 6).

f  v (  ) f  v (  )

f  z(  ) f  z(  )f  z(  )

f  y(  )f  y(  )f  y(  )

f  x(  ) f  x(  ) f  x(  )

Dv

in R j,v
3y ,z3

vd  = 1

U

c  = 2v

U

vc  = 3

3x in L j,v

U

f  v (  )Dv f  v (  ) f  v (  )

f  x(  ) f  x(  ) f  x(  )

f  y(  ) f  y(  ) f  y(  )

f  z(  ) f  z(  ) f  z(  )

U

U

c  = 2v

d  = 0v x ,z3 in 3 L j,v y3 in R j,v

U

vc  = 1

Figure 6: Examples of Lj,v and Rj,v depending on dv and cv when k = 3

If ω[nxj
..mxj

] = x3j is a word in Lj,v ∪ Rj,v, we denote t1,j , t2,j the words such that
f(v) = t1,jt2,j and f(xj) = t2,jt1,j .

More specifically, if j0 is an integer such that ω[nv..mv] = v3 ∈ Lj0,v(∪Rj0,v), we may
assume that nxj0

= nv and mxj0
= mv, i.e., xj0 = v. Let us remark that, by this choice,

j0 = λv + dv. But j0 can take other values.

Remark 2.15 If there exist two integers i, j, and a pure k-power xk such that x3 ∈
Li,v ∪Ri,v with dx = dv and Lj,v ∪Rj,v 6= ∅, then Lj,x ∪Rj,x 6= ∅. Indeed, if yk be a word
in Lj,v ∪Rj,v, then, by Corollary 2.14, yk is a conjugated shift of xk.

3 Simplification

In all this section, k ≥ 4 is an integer, f is a morphism from A∗ to B∗ and ω is a word
over A such that f(ω) = %(χγ)kχς for some words %, χ, γ and ς over B such that χγ 6= ε,
|%| < |f(ω[1])| and |ς| < |f(ω[|ω|])|. We denote U = χγ and S = χs.

Let us recall that, for any integer j in [1, k+1], ij is the smallest integer such that %(χγ)j−1

is a prefix of f(ω[1..ij ]) and i′j is the smallest integer such that %(χγ)j−1χ is a prefix of
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f(ω[1..i′j ]). Moreover, f(ω[ij ]) = pjsj and f(ω[i′j ]) = p′js
′
j with f(ω[1..ij ]) = %(χγ)j−1sj

and f(ω[1..i′j ]) = %(χγ)j−1χs′j .

For any pure k-power ω[nv..mv] = vk such that f(v)k is a factor of (χγ)kχ, there are
(at least) k + 2 − cv different occurrences of (χγ)cv−1χ in f(ω). Since, for any integer
j ∈ [1; k + 2 − cv], f(v)k is a factor of pj(χγ)cv−1χs′j+cv−1 = f(ω[ij ..i

′
j+cv−1]), let nj be

the greatest integer and mj be the lowest integer such that ij ≤ nj ≤ mj ≤ i′j+cv−1 and

f(v)k is factor of f(ω[nj ..mj ]). Let us denote v̂j the word ω[nj ..mj ]. In other words, for
any integer j ∈ [1; k+ 2− cv], the word v̂j is the shortest factor of ω[ij ..i

′
j+cv−1] such that

f(v̂j) contains f(v)k. More precisely, f(v̂j) = π1,jf(v)kσ2,j for two words π1,j and σ2,j
such that |π1,j | < |f(ω[nj ])| = |f(v̂j [1])| and |σ2,j | < |f(ω[mj ])| = |f(v̂j [|v̂j |])|.
If j > 1 then π1,j is a suffix of the image of a factor of ω. If j < k + 2− cv then σ2,j is a
prefix of the image of a factor of ω.

Remark 3.1 By Lemma 2.1, either f is not k-power-free or the word v̂j satisfies one of
the following properties:

• (P.1) : There exist a pure k-power xkj,v, a word yj,v over A and a word Zj over B such
that

(P.1.1) : v̂j = (xj,v)
kyj,v, f(yj,v) = π1,jσ2,j, f(xj,v) = π1,jZj and f(v) = Zjπ1,j

(P.1.2) : or v̂j = yj,v(xj,v)
k, f(yj,v) = π1,jσ2,j, f(xj,v) = Zjσ2,j and f(v) = σ2,jZj.

• (P.2) : There exist a pure k-power vkj and a non-empty word yj,v over A such that

(P.2.1) : v̂j = (xj,v)
kyj,v with |f(xj,v

k−1)| < |π1,jf(v)| < |f(xj,v)|+ |f(v)|
(P.2.2) : or v̂j = yj,v(xj,v)

k with |f(xj,v
k−1)| < |f(v)σ2,j | < |f(xj,v)|+ |f(v)|.

It particularly means that, when |χγ| > 2|f(v)|, we have ij < ij+1 for any integer j in
[1, k + 1].

In other words, if v̂j satisfies (P.1.1) then f(xj,v)
k is a conjugated shift to the left of f(v)k.

And, if v̂j satisfies (P.1.2) then f(xj,v)
k is a conjugated shift to the right of f(v)k.

Let us recall that we denote z3(β) the βth factor of z3 in zk.

If β = 1 and v̂j satisfies (P.1.1) then f(vj
3
(β)) = f(vj)

3 is a conjugated shift to the left of

f(v3(β)) = f(v)3. If β = k−2 and v̂j satisfies (P.1.2) then f(vj
3
(β)) = f(vj)

3 is a conjugated

shift to the right of f(v3(β)) = f(v)3. Otherwise f(vj)
3 is both a conjugated shift to the

right and a conjugated shift to the left of f(v)3. For instance, if 2 ≤ β ≤ k − 3 and v̂j
satisfies (P.1.1) then f(vj

3
(β)) is a conjugated shift to the left of f(v3(β)) and a conjugated

shift to the right of f(v3(β−1)).

If v̂j1 and v̂j2 satisfy (P.1.1) (resp. (P.1.2)) then f(vj2 (β))
3 is a conjugated shift (to the

left or to the right) of f(vj1 (β))
3.

Moreover, if v̂j1 satisfies (P.1.1) and v̂j2 satisfies (P.1.2) then f(vj2 (β))
3 is a conjugated

shift of f(vj1 (β+1))
3.

15



We have to match theses possibilities with the ones of the position of a factor f(v)3 of
f(v)k in (χγ)k.

Lemma 3.2 If v̂j1 and v̂j2 satisfy (P.1) then (̂vj1)j2 satisfies (P.1) and, consequently,

||Dxj1 ,v
| − |Dxj2 ,v

|| < |f(v)|.

Proof.

It is a consequence of Corollary 2.14.

Two consecutive (xj,v)
k can overlap but under some conditions, the length of this overlap

is bounded.

Proposition 3.3 Let us assume that f is a k-power morphism and that, for all integers
i ∈ [1, k+2−cv], any power of f(xi,v) and of χγ do not have any common factor of length
greater than |f(xi,v)|+ |χγ|.
For any integer j ∈ [1, k + 1 − cv], if v̂j and v̂j+1 satisfy (P.1) then there exist two
words τ1,j and τ2,j such that w[nj ..mj+1] contains the factors (xj,v)

k−1τ1,j(xj+1,v)
k and

(xj,v)
kτ2,j(xj+1,v)t

k−1.

In particular, when k ≥ 4, the word w[nj ..mj+1] contains (xj,v)
3τ1,j(xj+1,v)

3.

Proof.

Since any power of f(xj,v) (resp. f(xj+1,v) and of χγ do not have any common factor of
length greater than |f(xj,v)|+ |χγ| (resp. |f(xj+1,v)|+ |χγ|), we get that ij < ij+1.

Since v̂j and v̂j+1 satisfy (P.1), let w[n′j ..m
′
j+1] the factor of w[nj ..mj+1] that starts with

(xj,v)
k and ends with (xj+1,v)

k.

If |f(w[n′j ..m
′
j+1])| ≤ (2k − 1)|f(xj,v)| then f(xkj,v) and f(xkj+1,v) have a common factor

of length at least |f(xj,v)| = |f(xj,v)|+ |f(xj+1,v)| − gcd(|f(xj,v)|; |f(xj+1,v)|). By Corol-
lary 1.5 and Lemma 1.18, there exist two words t1 and t2 such that f(xj,v) = t1t2 and
f(xj+1,v) = t2t1 with t1t2 and t2t1 primitive words. It means that f(w[n′j ..m

′
j+1]) is a

common factor of a power of f(xj,v) and χγ. Since ij ≤ nj < ij+1 ≤ nj+1, we get that
|f(w[n′j ..m

′
j+1])| ≥ |χγ|+ |f(xkj+1,v)| − ||Dxj,v | − |Dxj+1,v ||. By Lemma 3.2, it implies that

|f(w[n′j ..m
′
j+1])| ≥ |χγ|+ |f(xk−1j,v )|: a contradiction with the hypotheses.

It follows that |f(w[n′j ..m
′
j+1])| > (2k − 1)|f(xj,v)|.

Let Int.Pwrs(ω) be the set of the k-powers vk of ω such that f(vk) ∈ Fcts
(
(χγ)kχ

)
.

More precisely, Int.Pwrs(ω) is the set of the k-powers of ω[2..|ω| − 1] when % 6= ε and
ς 6= ε, of ω[1..|ω| − 1] when % = ε and ς 6= ε, of ω[2..|ω|] when % 6= ε and ς = ε and of ω
when % = ς = ε. We denote Pure.Int.Pwrs(ω) the set of pure k-powers of Int.Pwrs(ω).

Let `min = min{|f(t)| | tk ∈ Fcts (ω)} and let Min.Pwrs(ω) = {vk ∈ Fcts (ω) /|f(v)| =
`min, i.e., Min.Pwrs(ω) is the set of the k-powers of ω those image have a minimal length.
When f is k-power-free, a k-power in Min.Pwrs(ω) is necessarily a pure k-power.
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In a similar way, let `min int = min{|f(t)| | tk ∈ Int.Pwrs(ω)} and letMin.Int.Pwrs(ω) =
{vk ∈ Int.Pwrs(ω) | |f(v)| = `min int}, i.e., Min.Int.Pwrs(ω) is the set of the k-powers
of Int.Pwrs(ω) those image have a minimal length. As for Min.Pwrs(ω), when f is
k-power-free, a k-power in Min.Int.Pwrs(ω) is necessarily a pure k-power.

Note that `min int 6= `min implies that ω starts or ends with a pure k-power those image
by f is minimal and that Min.Int.Pwrs(ω) 6= Min.Pwrs(ω).

Let Sp1(ω) be the set {vk | vk ∈ Pure.Int.Pwrs(ω) and v̂j satisfies (P.1) for all integers
j ∈ [1; k + 2 − cv]}. Let Sp2(ω) (resp. Sp2.1(ω) and Sp2.2(ω)) be the set {vk | vk ∈
Pure.Int.Pwrs(ω)\Sp1(ω) | there exists an integer j ∈ [1; k+2−cv] such that v̂j satisfies
(P.2) (resp. (P.2.1) and (P.2.2))}.
Let Sp1,min(ω) be the set {vk | vk ∈ Min.Int.Pwrs(ω) and v̂j satisfies (P.1) for all
integers j ∈ [1; k + 2− cv]}. Let Sp2,min(ω) (resp. Sp2.1,min(ω) and Sp2.2,min(ω)) be the
set {vk | vk ∈ Min.Int.Pwrs(ω) \ Sp1(ω) | there exists an integer j ∈ [1; k + 2− cv] such
that v̂j satisfies (P.2) (resp. (P.2.1) and (P.2.2))}.

Remark 3.4 If vk belongs to Sp1(ω) then, for any integer 2 ≤ ` ≤ k − 2, we have
Lj,v(`) 6= ∅ and Rj,v(`) 6= ∅ for any integer j ∈ [1, k + 2− cv].

Remark 3.5 If `min int = `min then Pure.Int.Pwrs(ω) = Sp1(ω).

Remark 3.6 If f is k-power-free and if vk ∈ Sp2.1,min(ω) (resp. Sp2.2,min(ω)), then the
only integer j such that v̂j satisfies (P.2.1) (resp. (P.2.2)) is j = 1 (resp. j = k+ 2− cv).
More precisely, (x1,v)

k (resp. (xk+2−cv,v)
k) is a prefix (resp. a suffix) of ω.

Remark 3.7 Let us note that, by Corollary 2.6, if a (k + 1)-power vk+1 is an internal
factor of ω and if vk(1) and vk(2) are pure k-powers such that vk+1 = vk(1)v = vvk(2) then vk(1)
or vk(2) belongs to Sp1(ω).

4 Almost (k + 1)-power

In all this section, k ≥ 4 is an integer, f is a morphism from A∗ to B∗ and ω is a word
over A such that f(ω) = %(χγ)kχς for some words %, χ, γ and ς over B such that χγ 6= ε,
|%| < |f(ω[1])| and |ς| < |f(ω[|ω|])|. We denote U = χγ and S = χs.

For any integer j in [1, k + 1], ij is the smallest integer such that %(χγ)j−1 is a prefix of
f(ω[1..ij ]) and i′j is the smallest integer such that %(χγ)j−1χ is a prefix of f(ω[1..i′j ]).

Lemma 4.1 For any pure k-power vk of ω, if f is k-power-free and if the words (χγ)
k
χ

and f(v)k have a common factor of length at least |χγ|+ |f(v)| then f(ω) and (χγ)k are
synchronised.

Proof.
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See Step 1 of the proof of Proposition 4.1 in [5].

Let us assume that f is k-power-free and that (χγ)
k
χ and f(v)k have a common factor of

length at least |χγ|+ |f(v)|.
Let v1 and v2 be the words such that ω = v1v

kv2.

Since (χγ)
k
χ is a factor of Uk+1, by Corollary 1.5, there exist two words t1 and t2 and

two integers r and q such that f(v) = (t1t2)r and U = (t2t1)q with t1t2 and t2t1 primitive
words.

If r ≥ 2 then f(vk−1) = (t1t2)(k−1)×r. Since k ≥ 3, we have (k − 1)× r ≥ 2k − 2 ≥ k. It
means that f(vk−1) contains a k-power with vk−1 a k-power-free word by definition of v,
i.e., f is not k-power-free.

From now, we assume that r = 1. If q ≤ k − 2 then vq would be an internal factor of vk

that is of ω with |f(v)q| = |U |: f(ω) and Uk are synchronised.

Thus q ≥ k−1. Since χ is a prefix of U = χγ, let ` be the greatest integer such that (t2t1)`

is a prefix of χ. There exists a prefix T of t2t1 different from t2t1 such that χ = (t2t1)`T .
We have f(ω) = f(v1)(t1t2)kf(v2) = %Ukχς = %(t2t1)q×k+`Tς with q ≥ k − 1.

Let x be the greatest integer such that %(t2t1)x is a prefix of f(v1v) and let y be the greatest
integer such that (t2t1)yTς is a suffix of f(v2v2). There exist four words t′p, t

′′
p 6= ε, t′s 6= ε

and t′′s such that t2t1 = t′pt
′
s = t′′pt

′′
s , f(v1v) = %(t2t1)xt′p, f(v2v2) = t′′s (t2t1)yTς and

f(vk−3) = t′s(t2t1)qk+`−x−y−2t′′p .

If x = 0 then |f(v1v)| = |f(v1)t1t2| = |%t′p| < |%t1t2|, i.e., |f(v1)| < |%| < |f(ω[1])|: it
implies that v1 = ε. So, we get that f(ω) starts with f(v3) = (t1t2)3 and with %(t2t1)3.
Since t2t1 is a primitive word, by Lemma 1.3, (t2t1) is not an internal factor of (t2t1)2. Since
|%| < |t1t2| = |f(v)|, it implies that % = t1 and t′p = t2. Moreover f(ω) = (t1t2)kf(v2) =

t1(t2t1)q×k+`Tς and so t′′s = t1. In the same way, if y = 0 we get ς = t2, t′′s = t1 and
t′p = t2. When x 6= 0 and y 6= 0, since f(v1v) ends with t1t2 and since f(v2v2) starts with
t1t2, if t′p 6= t2 or if t′′s 6= t1 then (t1t2) is an internal factor of (t1t2)2: a contradiction with
Lemma 1.3 and the fact that t1t2 is a primitive word.

Thus t′p = t2 = t′′p , t′s = t1 = t′′s , f(v1v) = %t2f(v)x and f(v2v2) = f(v)yt1Tς. Since f
is bifix, it follows that f(v1v) ends with f(v)x and f(v2v2) starts with f(v)y. So, we get
that vq×k+`−1 = vx+y+k−3 is an internal factor ω with q × k + `− 1 ≥ q. It implies that
vq is an internal factor of ω with |f(v)q| = |U |, i.e., f(ω) and Uk are synchronised.

Remark 4.2 For any pure k-power vk of ω, if f(v)k is an internal factor of (χγ)
k
χ and

if f(ω) and (χγ)k are not synchronised, by Lemma 4.1, then either f is not k-power-free
or |χγ| > |f(v)k−1| > 3|f(v)|.

As a corollary of Lemma 1.7 and of Lemma 3.9 in [5], we get :

Corollary 4.3 Let us assume that f(ω) and (χγ)kχ are not synchronised and that |f(t)| >
|γ|, for all pure k-power tk ∈ Fcts (ω).

Let vk be a k-power in Min.Int.Pwrs(ω).

18



For any integer i, if x3i = ω[nxi
..mxi

] is a word in Li,v ∪Ri,v, we assume that mxi
< nxi+1

.

When one of the four following situations holds either f is not k-power-free or there exists
a word ω′ such that f(ω′) = %′(χ′γ′)kχ′ς ′ for some words %′, ς ′, χ′ and γ′(= γ) over B
satisfying χ′γ′ 6= ε, |%′| < |f(ω′[1])|, |σ′| < |f(ω′[|ω′|])|, and 0 < |χ′γ′| < |χγ|.
We also get that f(ω′) and (χ′γ′)kχ′ are not synchronised.

Furthermore, for all pure k-powers (t′)k ∈ Fcts (ω′), we have |f(t′)| > |γ′|.

1. dv = 1, |Dvf(v)2| < |χ| and Lj,v ∪Rj,v 6= ∅ for any integer j ∈ [2, k + 1].

2. dv = 1, Lj,v ∪ Rj,v 6= ∅ for any integer j ∈ [2, k] and there exists a positive in-
teger φ such that ω[nv..|ω|] starts with vφ+2 and sup

{
2|f(v)|; |Dvf(v)φ|

}
≤ |χ| <

|Dvf(v)φ+1|.
3. dv = 0, |Dvf(v)2| ≤ |χ| and Lj,v ∪Rj,v 6= ∅ for any integer j ∈ [1, k + 1].

4. dv = 0, |Dvf(v)| ≤ |χ| < |Dvf(v)2| and Lj,v ∪Rj,v 6= ∅ for any integer j ∈ [1, k].

Proof of Corollary 4.3 is almost the same than Proof of Lemma 3.9 in [5]. Condition
mxi < nxi+1 prevents possible overlaps between consecutive x3i .

Proof.

See Appendix A for figures of different cases.

Let us first note that, either f is not k-power-free or vk ∈ Pure.Int.Pwrs(ω).

Since f(x2)k is an internal factor of (χγ)
k
χ, by Remark 4.2, either f is not k-power-free

or |χγ| > 3|f(x2)| = 3|f(v)|. And, since |γ| < |f(v)|, we have |χ| > 2|f(v)|.
Case (1): dv = 1, |Dvf(v)2| < |χ| and Lj,v ∪Rj,v 6= ∅ for any integer j ∈ [2, k + 1].

If x3j ∈ Lj,v and dxj
= 1 (including xj0 = v) or if x3j ∈ Rj,v, let Xj be the word Dxj

and

let ej be the integer dxj . If x3j ∈ Lj,v and dxj = 0, let Xj be the suffix of f(xj) such that

Dxjf(xj)
2 = χγXj and let ej = 2. Let q be an integer such that |Xq| = max{|Xj |; j ∈

[2; k + 1]}. For all integers j ∈ [2, k + 1], if dxj
= 0 with x3j ∈ Lj,v, or if dxj

= 1, then, by

definition, we have that Xj is a suffix of f(xj). If dxj
= 0 with x3j ∈ Rj,v then it means

that Dv = Dxj
t2,j . But Dv is a suffix of f(v) = t1,jt2,j . So, it implies that Xj = Dxj

is a
suffix of t1,j and of f(xj) = t2,jt1,j .

In particular, Xq is a suffix of f(xq). It follows that 0 ≤ |Xq| − |Xj | ≤ |Xq| ≤ |f(xq)|
for all integers j ∈ [2, k + 1]. Furthermore, if dxj

= 0 with x3j ∈ Rj,v then λxj
= j, and

λxj
= j − 1 otherwise. It follows that f(ω[1..nxj

− 1])f(x
ej
j ) = %U j−1Xj = %(χγ)j−1Xj .

Since |Xjf(xj)| ≤ 2|f(xj)| = |f(v)2| ≤ |χ|, it follows that Xjf(xj) is a prefix of χ. Hence,
there exists a word Y j such that χ = Xjf(xj)Y j for all integers j ∈ [2, k+1]. Let w2 be the
prefix of ω such that f(w2) = %χγX2, i.e., w2 = ω[1..nx2

− 1]xe22 and let wk+2 be the suffix

of ω such that f(wk+2) = Y k+1ς, i.e., ω = ω[1..nxk+1
− 1]x

1+ek+1

k+1 wk+2. In particular, we

have f(ω[nxj
..nxj+1

− 1])f(x
ej+1

j+1 ) = f(x
1+ej
j )Y jγXj+1 for all integers j ∈ [2, k]. Since f is

bifix, it implies that there exists a word wj such that f(wj) = Y j−1γXj for all integers
j ∈ [3, k + 1].
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In summary, we obtain that ω = w2x2w3x3..wk+1xk+1wk+2, f(ω) = %(χγ)kχς with χγ =
Xjf(xj)Y jγ for all integers j ∈ [2, k] and χγ = Xk+1f(xk+1)Y k+1γ. Moreover, there
exists an integer q ∈ [2, k+ 1] such that 0 ≤ |Xq|− |Xj | ≤ |Xq| ≤ |f(xq)| and Xq is a suffix
of f(xq).

Taking Yk+1 = Y k+1 and Yj = Y jγ for all integers j ∈ [2, k], by Corollary 2.10 (or
Lemma 2.8 and using Remark 2.9 (Points 3 and 4)), in particular the property of synchro-
nised words, we can reduce f(ω). More precisely, let χ′ be the non-empty word XqY q,
i.e., χ′ is the suffix of χ of length |χ| − |f(v)|. And let w2 be the shortest suffix of w2 such
that f(w2) ends with χ′γX2 and let ω′ be the word w2w3..wk+1wk+2.

We obtain that f(ω′) = %′(χ′γ)kχ′ς for a word |%′| < |f(ω′[1])| = |f(w2[1])|. And we
denote γ′ = γ and ς ′ = ς.

Let us recall that, by hypothesis, mxi
< nxi+1

, for all integers i ∈ [2, k]. Briefly, it means
that either wi ends by xi and wi+1 starts with xi, or wi ends by x2i , or wi+1 starts with
x2i . More precisely, let τ2 = ω[1..nx2 − 1], τk+2 = ω[mxk+1

+ 1..|ω|] and, for all integers
i ∈ [3, k + 1], let τi = ω[mxi−1

+ 1..nxi
− 1]. We get that ω = τ2x

3
2τ3x

3
3..τk+1x

3
k+1τk+2

and that ω′ is a suffix of τ2x
2
2τ3x

2
3..τk+1x

2
k+1τk+2, i.e., wi = x

αi−1

i−1 τix
βi
i , with αi + βi = 2

and α1 = βk+2 = 0. In fact, since x1 and xk+2 are not defined, we have w2 = τ2x
β2

2 and
wk+2 = x

αk+1

k+1 τk+2. In particular, for all integers i ∈ [3, k], we have wi−1wiwi+1wi+2 =

x
αi−2

i−2 τi−1x
2
i−1τix

2
i τi+1x

2
i+1τi+2x

βi+2

i+2 .

Let (t′)k be a pure k-power of ω′, i.e., f(t′)k ∈ Fcts (f(w2w3 . . . wk+1wk+2)).

If (t′)k ∈ Fcts (ω) then |f(t′)| > |γ| = |γ′|.
If (t′)k /∈ Fcts (ω) and, for all integers i ∈ [3, k], f(t′)k /∈ Fcts (f(wi−1wiwi+1wi+2)), it
implies that there exists an integer j such that |f(t′)k| > |f(wjwj+1wj+2)| ≥ 2|χ′γ′| −
|f(v)| ≥ 2|χ| − 3|f(v)| > |f(v)| > |γ| = |γ′|.
If (t′)k /∈ Fcts (ω) and f(t′)k ∈ Fcts (f(wi−1wiwi+1wi+2)) for an integer i ∈ [3, k], let us

denote τ ′i−1 = x
αi−2

i−2 τi−1, τ ′i = τi, τ
′
i+1 = τi+1, τ ′i+2 = τi+2x

βi+2

i+2 . Thus, we have f(t′)k ∈
Fcts

(
f(τ ′i−1)

∏3
j=1 f(xi−2+j)

2f(τ ′i−1+j)
)

. Let T be the word f(τ ′i−1)
∏3
j=1 f(xi−2+j)

3f(τ ′i−1+j).

If f(t′)k /∈ Fcts (T ), by Corollary 1.20 with ` = k−3 and s = 3, we get that either f is not
k-power-free or |f(t′)| > |f(xi)| = |f(v)| > |γ| = |γ′|. If f(t′)k ∈ Fcts (T ) ⊂ Fcts (f(ω)),
let T ′ be the shortest factor of T that contains f(t′)k. By Lemma 2.1, either f is not
k-power-free or T ′ = xky or yxk with |f(t′)| ≥ |f(x)| > |γ| = |γ′|.
Case (2): dv = 1, Lj,v∪Rj,v 6= ∅ for any integer j ∈ [2, k] and there exists a positive integer
φ such that ω[nv..|ω|] starts with vφ+2 and sup

{
2|f(v)|; |Dvf(v)φ|

}
≤ |χ| < |Dvf(v)φ+1|.

In this case, χ is an internal factor of f(v)φ+2. More precisely, χ is a prefix of Dvf(v)φ+1.

For every integer j ∈ [2, k], we define Xj and ej as Case (1) and we obtain that Xj is also
a suffix of f(xj).

If x3j ∈ Lj,v with dxj
= 1, then χ is a prefix of the word Dvf(v)φ+1 = Xjt2,j(t1,jt2,j)

φ+1

and so of Xjf(xj)
φ+2. If x3j ∈ Lj,v with dxj = 0, since (χγ)2 is a prefix of χγDvf(v)φ+1 =

χγDv(t1,jt2,j)
φ+1 = Dxj(t2,jt1,j)

φ+2t2,j = χγXjf(xj)
φt2,j , it follows that χ is a prefix of
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Xjf(xj)
φ+1.

In the same way, we show that χ is a prefix of Xjf(xj)
φ+1 when x3j ∈ Rj,v.

Let q be an integer such that |Xq| = max{|Xj |; j ∈ [2; k]}. If x3j ∈ Lj,v with dxj
= 1, or

if x3j ∈ Rj,v with dxj
= 0 then |Xj | ≤ |Xj0 | = |Xv|. Thus, if q 6= j0, either x3j ∈ Lj,v with

dxj = 0, or x3j ∈ Rj,v with dxj = 1. Let δ be the greatest integer such that |Xqf(xq)
δ| ≤

|χ| < |Xqf(xq)
δ+1|.

For every integer j ∈ [2, k], since |Xjf(xj)
δ| ≤ |Xqf(xq)

δ| ≤ |χ|, there exists a word Y j
such that χ = Xjf(xj)

δY j . Since χ is a prefix of Xqf(xq)
φ+2, we obtain χ = Xqf(xq)

δY q
with Y q a prefix of f(xq).

Let w2 be the prefix of ω such that f(w2) = %χγX2, let wk+1 be the suffix of ω such
that f(wk+1) = Y kγχς and, for all integers j ∈ [3, k], let wj be the word such that
f(wj) = Y j−1γXj .

Taking Yj = Y jγ for all integers j ∈ [2, k], by Corollary 2.10 (or Lemma 2.8 and using
Remark 2.9(6)), we can reduce f(ω). More precisely, let χ′ be non-empty the word XqYq.
Accordingly, χ′ is both a prefix and a suffix of χ so χ′ is an internal factor of f(v)φ+1.
Let w2 be the shortest suffix of w2 such that f(w2) ends with χ′γX2. Let wk+1 be the
shortest prefix of wk+1 such that f(wk+1) starts with Y kγχ

′. There exists a word ς ′ such
that f(wk+1) = Y kγχ

′ς ′. Let ω′ be the word w2w3..wkwk+1. If we denote γ′ = γ, we
obtain f(ω′) = %(χ′γ′)kχ′ς ′ where |χ′| = |χ| − |f(xq)| < |χ|.
For any pure k-power (t′)k ∈ Fcts (ω′), as in Case (1), we show that either f is not
k-power-free or |f(t′)| > |γ′|.
Case (3): dv = 0, |Dvf(v)2| ≤ |χ| and Lj,v ∪Rj,v 6= ∅ for any integer j ∈ [1, k + 1].

For every integer j ∈ [1, k + 1], let Xj be the word Dxj
f(xj) if x3j ∈ Lj,v with dxj

= 0

(including xj0 = v), or the word Dxj
if x3j ∈ Lj,v with dxj

= 1, or if x3j ∈ Rj,v.

If x3j ∈ Lj,v, let ej = 1, and if x3j ∈ Rj,v, let ej = 0.

For any word x3j ∈ Rj,v, since |Dvf(v)2| ≤ |χ| ≤ |χγ|, we necessarily have dxj
= 0.

Furthermore, 0 ≤ |Xj0 | − |Xj | = |t2,j | < |f(xj0)| = |f(v)|.
If x3j ∈ Lj,v and dxj

= 0, we have Xv = Dvf(v) = Dxj
t2,jt1,jt2,j = Xjt2,j and so

0 ≤ |Xv| − |Xj | = |t2,j | < |f(v)|. If x3j ∈ Lj,v and dxj
= 1, we have Xjt2,j = Dxj

t2,j =
Dvt1,jt2,j = Xv and so 0 ≤ |Xv| − |Xj | = |t2,j | < |f(v)|.
We have |Xv| = max{|Xj |; j ∈ [1; k + 1]} and f(ω[1..nxj − 1])f(x

ej
j ) = %(χγ)j−1Xj for all

integers j ∈ [1, k + 1].

Since |Xjf(xj)| ≤ |Dvf(v)2| ≤ |χ|, the word Xjf(xj) is a prefix of χ. Thus, there
exist words Y j such that χ = Xjf(xj)Y j for all j in [1, k + 1]. Let w1 be the word

ω[1..nx1 − 1]xe11 and let wk+2 be the word such that ω[nxk+1
..|ω|] = x

1+ek+1

k+1 wk+2. In

particular, we have f(w1) = pX1, f(wk+2) = Y k+1ς and, for every integer j ∈ [1, k],

f(ω[nxj
..nxj+1

− 1])f(x
ej+1

j+1 ) = f(x
1+ej
j )Y jγXj+1. Since f is bifix, it implies that there

exists a word wj such that f(wj) = Y j−1γXj for all integers j ∈ [2, k + 1].
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By Corollary 2.10 (or Lemma 2.8), we can reduce f(ω). More precisely, ω′ = w1w2..wk+1wk+2,
%′ = %, ς ′ = ς, and χ′ = XiY i( 6= ε) for all integers i ∈ [1, k + 1]. We obtain f(ω′) =
%′(χ′γ)kχ′ς ′ with |%′| < |f(ω[1])| = |f(w1[1])| = |f(ω′[1])|, |ς ′| < |f(ω[|ω|])| = |f(ω′[|ω′|])|,
γ′ = γ and |χ′| = |χ| − |f(v)| < |χ|.
For any pure k-power (t′)k ∈ Fcts (ω′), as in Case (1), we show that either f is not
k-power-free or |f(t′)| > |γ′|.
Case (4): dv = 0, |Dvf(v)| ≤ |χ| < |Dvf(v)2| and Lj,v∪Rj,v 6= ∅ for any integer j ∈ [1, k].

Let S2 be the set of integers j such that there exists a word x3j in Rj,v with dxj
= 1 but

no word in Rj,v with dxj
= 0 and no word in Lj,v.

Case 4.1 : S2 = ∅
If x3j ∈ Rj,v (with dxj

= 0), if x3j ∈ Lj,v with dxj
= 1, or if x3j ∈ Lj,v with dxj

= 0 and

|Dxj
f(xj)

2| ≥ |χ| then let Xj be the word Dxj
and let ej = dxj

. If x3j ∈ Lj,v with dxj
= 0

and |Dxj
f(xj)

2| < |χ| then let Xj be the word Dxj
f(xj) and let ej = 1. For all integers

j ∈ [1, k], we have f(ω[1..nxj
− 1])f(x

ej
j ) = %(χγ)j−1Xj .

For all integers j ∈ [1, k], Xjf(xj) is a prefix of χ. Consequently, there exists a word Y j
such that χ = Xjf(xj)Y j . Since |χf(xj)| > |Xjf(xj)

2| ≥ |χ|, we obtain that Xjf(xj)
2 is

a prefix of (χγ)2. It follows that Y j is a prefix of f(xj).

Let q be an integer such that |Xq| = max{|Xj |; j ∈ [1; k]}. In particular, we have |Y q| ≤
|f(xq)| and 0 ≤ |Xq| − |Xj | = |Y j | − |Y q| ≤ |f(xj)| = |f(xq)| for every integer j in [1; k].

Let w1 be the word ω[1..nx1
− 1]xe11 and let wk+1 be the word such that ω[nxk

..|ω|] =
x1+ekk wk+1. We have f(w1) = %X1, f(wk+1) = Y kγχς. We obtain that f(ω[nxj

..nxj+1
− 1])f(x

ej+1

j+1 ) =

f(x
1+ej
j )Y jγXj+1 for all integers j ∈ [1, k− 1]. Since f is bifix, it implies that there exists

a word wj such that f(wj) = Y j−1γXj for all integers j ∈ [2, k].

By Lemma 2.8 and using Remark 2.9(5), we can reduce f(ω).

The non-empty word χ′ = Xk+1Y k+1 is a prefix of χ. Moreover, any suffix of χ of length
at most max{|Y i|} is also a prefix of χ′. Let wk+1 be the shortest prefix of wk+1 such
that f(wk+1) starts with χ′. There exists a word ς ′ such that f(wk+1) = χ′ς ′. We take
ω′ = w1w2 . . . wk+1, γ′ = γ, %′ = %. Hence, f(ω′) = %(χ′γ)kχς starts with %′(χ′γ′)kχ′ς ′.
Moreover, |%′| = |%| < |f(W [1])| = |f(w1[1])| = |f(ω′[1])| and |χ′| < |χ|.
For any pure k-power (t′)k ∈ Fcts (ω′), as in Case (1), we show that either f is not
k-power-free or |f(t′)| > |γ′|.
Case 4.2 : S2 6= ∅
Let j′0 ∈ S2 and let v′ = xj′0 .

If j ∈ S2, let Xj be the word Dxj
and let ej = 1.

If j /∈ S2, we assume that if x3j ∈ Rj,v then dxj
= 0 else we take x3j ∈ Lj,v. If x3j ∈ Rj,v

(with dxj
= 0), or if x3j ∈ Lj,v with dxj

= 0 and |Dxj
f(xj)

2| > |χ| (for instance xj0), let

Xj be the word such that Dxj
f(xj)

2 = χXj and let ej = 2. If x3j ∈ Lj,v with dxj
= 1,

or dxj
= 0 and |Dxj

f(xj)
2| ≤ |χ|, let Xj be the word such that Dxj

f(xj)
3 = χXj and let
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ej = 3. For all integers j ∈ [1, k], we have f(ω[1..nxj
− 1])f(x

ej
j ) = %(χγ)jXj . Especially,

the word Xj is a suffix of f(xj) for every integer j ∈ [1, k].

Let j1 be an integer in S2, i.e., x3j1 ∈ Rj,v and dxj1
= 1. Hence, (χγ)2 starts with Xj1f(x2j1).

By definition, we have χXj0 = Dvf(v)2 = χXj1t2,j . For any word x3j ∈ Lj,v with dxj
= 1,

or with dxj
= 0 and |Dxj

f(xj)
2| ≤ |χ|, always by definitions, we obtain χXj = χXj0t1,j .

It follows that |f(xj1)| = |f(xj)| ≥ |Xj | > |Xj0 | ≥ |Xj1 |. Furthermore, the words f(xj)
and f(xj1) are conjugated. Let τ2,j be the non-empty suffix of Xj (and of f(xj)) such that
Xj = Xj1τ2,j and let τ1,j be the word such that f(xj) = τ1,jτ2,j . Since χXj1 ends with
τ1,j , we obtain f(xj1) = τ2,jτ1,j . Thus, (χγ)2 starts with Xj1(τ2,jτ1,j)

2 = Xjf(xj)τ1,j .
Since f is bifix, it implies that ω[mxj

+ 1..|ω|] also starts with xj . In other words, x3j is
followed by xj in ω.

Let q be an integer such that |Xq| = max{|Xj |; j ∈ [1; k]}. In particular, 0 ≤ |Xq|− |Xj | ≤
|f(xq)|.
Since |χ| > 2|f(v)|, the word Xjf(xj) is a prefix of χ, for all integers j ∈ [1, k]. Conse-
quently, there exists a word Y j such that χ = Xjf(xj)Y j .

Let w2 be the prefix of ω such that f(w2) = %χX1, that is, w2 = ω[1..nx1 − 1]xe11 and let

wk+2 be the suffix of ω such that f(wk+2) = Y k+1S, that is, ω = ω[1..nxk+1
− 1]x

1+ek+1

k+1 wk+2.

Accordingly, for all integers j ∈ [1, k−1], we have f(ω[nxj
..nxj+1

− 1])f(x
ej+1

j+1 ) = f(x
1+ej
j )Y jγXj+1.

Since f is bifix, it implies that there exists a word wj such that f(wj) = Y j−1γXj for all
integers j ∈ [3, k + 1].

By Lemma 2.8 and using Remark 2.9(4), we can reduce f(ω). Reduction is almost the
same that case where dv = 1, |Dvf(v)2| < |χ|, and Lj,v ∪ Rj,v 6= ∅ for every integer
j ∈ [2, k+ 1]. Let us note that χ′ is a suffix of χ and that any prefix of χ of length at most
max{|Xj |} is also a prefix of χ′.

For any pure k-power (t′)k ∈ Fcts (ω′), as in Case (1), we show that either f is not
k-power-free or |f(t′)| > |γ′|.

Proposition 4.4 Let k ≥ 5, let f be a morphism from A∗ to B∗and let ω be a word over
A.

We assume that f(ω) = %(χγ)kχς for some words %, ς, χ and γ such that |%| < |f(ω[1])|,
|ς| < |f(ω[|ω|])|, χγ 6= ε.

If f(ω) and (χγ)kχ are not synchronised and if |γ| < |f(t)|, for all pure k-powers tk ∈
Fcts (ω) then f is not k-power-free.

Proof of Proposition 4.4 is done using iteratively Lemma 4.5. By induction, if f was
not k-power-free, we could find an infinite sequence (ωi, χi, γi)i≥0 of words starting with
(ω0, χ0, γ0) = (ω, χ, γ) such that 0 < |χi+1γi+1| < |χiγi|: this is impossible.

Lemma 4.5 Let k ≥ 5, let f be a morphism from A∗ to B∗and let ω be a word over A.

We assume that f(ω) = %(χγ)kχς for some words %, ς, χ and γ such that |%| < |f(ω[1])|,
|ς| < |f(ω[|ω|])| and χγ 6= ε. We also assume that f(ω) and (χγ)kχ are not synchronised,
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and that |γ| < |f(t)|, for all pure k-powers tk ∈ Fcts (ω).

Then either f is not k-power-free or there exist a word ω̌ such that f(ω̌) = %̌(χ̌γ̌)kχ̌ς̌
for some words %̌, ς̌, χ̌ and γ̌ satisfying |%̌| < |f(ω̌[1])|, |ς̌| < |f(ω̌[|ω̌|])|, χ̌γ̌ 6= ε, and
0 < |χ̌γ̌| < |χγ|. Moreover, f(ω̌) and (χ̌γ̌)kχ̌ are not synchronised, and |γ̌| < |f(ť)| for all
pure k-powers (ť)k ∈ Fcts (ω̌).

Proof.

If f is not k-power-free, in particular, if f is not a ps-morphism then it ends the proof.
Hence, we assume that f is a ps-morphism. In particular, f is injective.

Let us denote U = χγ, U = γχ and S = χς: we get that f(ω) = %UkS.

The words ω necessarily contains a k-power. Indeed, the contrary ends the proof: f would
not be k-power-free.

For any pure k-power vk ∈ Fcts (ω), since f(ω) and (χγ)kχ are not synchronised, by
Lemma 4.1, (χγ)kχ and f(v)k do not have any common factor of length at least |χγ| +
|f(v)|.
Step 1 : ω[2..|ω| − 1] contains a k-power and so a pure-k-power.

The proof is almost the same as the corresponding step in the proof of Proposition 4.1 in
[5].

By contradiction, let us assume that ω[2..|ω| − 1] is k-power-free. It implies that ω starts
or ends with a pure k-power. Let s1 and pk+2 be the words such that f(ω[1]) = %s1 and
f(ω[|ω|]) = pk+2ς, that is, (χγ)kχ = s1f(ω[2..|ω| − 1])pk+2.

If |s1| ≤ |(χγ)k−1χ| then there exists a word Uc such that s1Uc is the prefix of s1f(ω[2..|ω| − 1])pk+2 =
(χγ)kχ of length |s1(χγ)|. Trivially, the word Uc is a conjugate of χγ (and |Uc| = |χγ|).
If |s1|+ |pk+2| ≤ |χ|, we naturally have |s1| ≤ |(χγ)k−1χ|. Moreover |s1|+ |Ukc |+ |pk+2| ≤
|(χγ)kχ|. It means that f(ω[2..|ω| − 1]) starts with Ukc . Since ω[2..|ω| − 1] is a k-power-free
word, it ends the proof, f is not k-power-free.

Let us now study the case where |s1|+ |pk+2| > |χ|.
Let us recall that, since we assume that ω[2..|ω| − 1] is k-power-free, any pure k-power of
ω = ω[1..|ω|] is necessarily a prefix or a suffix of it.

If ω starts with a pure k-power tk, let Wcom be the greatest prefix of s1f(t[2..|t|])f(tk−1)
that is a factor of (χγ)kχ so a common factor of a power of f(t) and a power of χγ. Let
us note that if ω = tk then Wcom = (χγ)kχ otherwise Wcom = s1f(t[2..|t|])f(tk−1).

If |Wcom| ≥ |χγ|+|f(t)|, by Corollary 1.5, there exist two words t1 and t2, and two integers
r and q such that f(t) = (t1t2)r and χγ = (t2t1)q with t1t2 and t2t1 primitive words. Since
tk is a pure k-power, it follows that r = 1. Otherwise, f is not k-power-free. Since f(ω)
and χγ are not synchronised, we have |f(t)| 6= |χγ|, i.e., q ≥ 2. Thus f(ω[2..|ω|]) contains
(t2t1)qk−1 with qk − 1 ≥ k. Either f is not k-power-free or ω[2..|ω|] ends with a k-power.
In this second case, by a length criterion, f(ω[2..|ω| − 1]) necessarily contains (t2t1)qk−1−q

with qk − 1− q ≥ k: f is not k-power-free.

So, we have |Wcom| < |χγ|+|f(t)|. By definition of Wcom, if ω = tk then Wcom = (χγ)kχ =
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s1f(t[2..|t|])f(tk−2)f(t[1..|t| − 1])pk+2 would be a common factor of f(t)k and (χγ)kχ with
|Wcom| ≥ 2|f(t)| and |Wcom| > 2|χγ|. That is |Wcom| > |f(t)| + |χγ| : a contradiction.
It follows that ω 6= tk and |Wcom| = |f(t)| + |s1f(t[2..|t|])f(tk−2)|. Since |γ| < |f(t)| and
|s1| ≤ |f(t)|, we get that |Wcom| > |f(t)|+ |γ|+ 2|s1|. So it implies |s1| < |χ|/2. If ω does
not end with a k-power, we get that ω[2..|ω|] is k-power-free and f(ω[2..|ω|]) contains the
k-power (γχ)k: f is not k-power free.

In the case where ω ends with a k-power (t′)k, we similarly obtain |pk+2| < |χ|/2 and ω
starts with a k-power tk. It follows that |s1|+ |pk+2| < |χ|: a final contradiction.

Step 2: For any pure k-power vk ∈ Fcts (ω[2..|ω| − 1]), |f(vk−2)| < |χ| and the word
f(v)k is an internal factor of (χγ)2χ, i.e., cv = 1, 2 or 3.

For any pure k-power vk ∈ Fcts (ω[2..|ω| − 1]), the word f(v)k is an internal factor of
(χγ)kχ. So, by Lemma 4.1, |f(v)k| < |χγ| + |f(v)|, i.e., |f(v)k−1| < |χγ| < |χ| + |f(v)|.
It follows that |f(v)k−2| < |χ| and |f(v)k| < |χγχ|. That is, f(v)k is an internal factor of
(χγ)2χ. It implies cv = 1, 2 or 3.

Let us recall that, for every integer j ∈ [1; k + 2 − cv], f(v)k is an internal factor of
pj(χγ)cvsj+cv and v̂j is the shortest factor of W [ij ..ij+cv ] such that f(v̂j) contains f(v)k.

Step 3: Case Sp1(ω) 6= ∅
Let vk ∈ Sp1,min(ω), i.e., vk is a pure k-power such that |f(v)| is minimal, and v̂j satisfies
P.1, for all integers j ∈ [1, k + 2 − cv]. See Remark 3.1 for the notations. In particular,
let us recall that there exist a letter yj and a word xj,v such that |f(v)| = |f(xj,v)|, and
v̂j = xkj,vyj or v̂j = yjx

k
j,v.

We are going to see that it implies that either f is not k-power-free or f(ω) can be reduced.
These reductions using Corollary 4.3 create news words ω̌, χ̌ and γ̌ that satisfy all the
necessary conditions.

Let us also recall that we denote by z3(β) the βth factor of z3 in a k-power zk, that is,

zk = zβ−1z3(β)z
k−β−2 with 1 ≤ β ≤ k − 2.

Case 3.1: cv = 3

We have 2|f(v)| ≤ |f(v)k−2| < |χ|. Moreover, since f(v)k and (χγ)kχ do not have
any common factor of length at least |χγ| + |f(v)|, we necessarily have dv = 1 and
|Dvf(vk−2)| < |χγ| < |Dvf(vk−1)|. That is, |Dvf(vφ)| ≤ |χ| < |Dvf(vφ+1)| with φ = k−3
or k − 2.

For every integer j ∈ [1; k − 1], since f(xkj,v)
k and (χγ)kχ do not have any common

factor of length at least |χγ| + |f(xj,v)|, we necessarily have dxj,v = 1. For every integer
j ∈ [1; k− 1], if v̂j satisfies (P.1.1) then (x3j,v)(1) ∈ Lj+1,v(1) and if v̂j satisfies (P.1.2) then

(x3j,v)(1) ∈ Rj+1,v(1) . In other words, we have Lj+1,v(1) ∪ Rj+1,v(1) 6= ∅ with j + 1 ∈ [2; k].
By Proposition 3.3 and Corollary 4.3(2), either f is not k-power-free or we can reduce ω.

Case 3.2: cv 6= 3 and there exists a positive integer β (≤ k − 2) such that dv(β)
= 1

We necessarily have cv = 2 and thus k+2−cv = k. Since f(v)k and (χγ)kχ do not have any
common factor of length at least |χγ|+ |f(v)| and since cv = 2, we have |Dv(β)

f(v(β))2| <
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|χ|.
For every integer j ∈ [1; k], if v̂j satisfies (P.1.1) then (x3j,v)(β) ∈ Lj+1,v(β) and if v̂j
satisfies (P.1.2) then (x3j,v)(β) ∈ Rj+1,v(β) . That is, Lj,v(β) ∪ Rj,v(β) 6= ∅ for every integer
j ∈ [2; k+ 1]. By Corollary 4.3(1), either f is not k-power-free or a reduction can be done.

Case 3.3: cv 6= 3 and, for every positive integer β (≤ k − 2), we have dv(β)
= 0

It means that |Dvf(v)k−2| ≤ |χγ|.
If cv(1)

= 1 then |Dv(1)
f(v(1))

2| ≤ |χ| and Lj,v(1) ∪Rj,v(1) 6= ∅ for every integer j ∈ [1; k+1].
By Corollary 4.3(3), either f is not k-power-free or a reduction can be done.

If cv(1)
= 2, there exists an integer φ ≥ β such that |Dv(φ)

f(v(φ))| ≤ |χ| < |Dv(φ)
f(v(φ))2|

and Lj,v(φ) ∪ Rj,v(φ) 6= ∅ for every integer j ∈ [1; k]. By Corollary 4.3(4), either f is not
k-power-free or a reduction can be done.

Step 4: Case Sp1(ω) = ∅ (and therefore `min int 6= `min)

By Corollary 2.5 and Corollary 2.6 (see also Remark 3.7), it follows that ω does not contain
any (k + 1)-power, otherwise, we would have Sp1(ω) 6= ∅.
Supposing that f is k-power-free, let us recall that, if vk is a k-power of Min.Int.Pwrs(ω)
and then vk is a pure k-power, i.e., vk ∈ Pure.Int.Pwrs(ω). Moreover, we necessarily have
vk ∈ Sp2,min(ω) = Sp2.1,min(ω)∪Sp2.2,min(ω). Let us also recall that if vk ∈ Sp2.1,min(ω)
(resp. Sp2.2,min(ω)), then the only integer j such that v̂j satisfies (P.2.1) (resp. (P.2.2))
is j = 1 (resp. j = k + 2− cv) and xk1,v (resp. xkk+2−cv,v) is a prefix (resp. a suffix) of ω.
Finally, let us recall that, if % = ε (resp. ς = ε), any k-power prefix (resp. suffix) of ω is
an internal factor of ω.

As in Step 3, we are going to see that it implies that either f is not k-power-free or f(ω) can
be reduced. And again, we obtain words ω̌, χ̌ and γ̌ satisfying all the necessary conditions.

Case 4.1: Sp2.2,min(ω) = ∅
We use the notations of Remark 3.1.

Let vk a pure k-power in Sp2.1,min(ω). We have v̂1 = xk1,vy1 with |f(x1,v)
k−1| < |π1,1| +

|f(v)| and v̂j = xkj,vy or v̂j = yjx
k
j,v for all integers 2 ≤ j ≤ k + 2− cv where f(xj,v)

k is a

conjugated shift of f(v)k.

Let ω1 the word such that ω = x1,vω1 and let X1 be the word such that f(x1,v) = π1,1X1.

Case 4.1.1: ω does not end with a pure k-power or ω ends with a pure k-power tk such
that |f(t)| > |γ|+ |X1|.
Let χ1 be the word such that χ = X1χ1 and let γ1 be the word γX1. We have f(ω1) =
(χ1γ1)kχ1ς and |f(v)| > |X1| + (k − 2)|f(x1,v)| > |X1| + (k − 2)|γ| ≥ |γ1|. Since ω1 is
a proper suffix of ω, vk ∈ Min.Int.Pwrs(ω1). Moreover, since f(x1,v)

k−1 and f(v)k are
internal factor of (χγ)kχ and since f(v)k (resp. f(x1,v)

k−1) and (χγ)kχ do not have any
common factor of length at least |χγ|+ |f(v)| (resp. |χγ|+ |f(x1,v)|), we necessarily have
dv,ω = 0 and cv,ω ≤ 2.

Case 4.1.1.1: cv,ω = 1

26



We have Lj,v ∪ Rj,v 6= ∅ for all integers j ∈ [2; k + 1] in f(ω). But, in f(ω1), we get
dv,ω1

= 1, |dv,ω1
f(v)2| < |χ1| and also Lj,v ∪ Rj,v 6= ∅. Any pure k-power prefix of ω1 is

in Pure.Int.Pwrs(ω1). And, for any pure k-power (v′)k in Pure.Int.Pwrs(ω1), we have
|f(v′)| ≥ |f(v)| > |γ1|. If ω1 ends with a not-pure k-power zk, let tk be a pure k-power
factor of zk. Since ω1 is a suffix of ω, either tk is a suffix of ω or tk ∈ Int.Pwrs(ω). In
both cases, we have |f(z)| > |f(t)| > |γ1|.
By Corollary 4.3(1), either f is not k-power-free or a reduction can be done in f(ω1).

Case 4.1.1.2: cv,ω = 2

We have Lj,v ∪Rj,v 6= ∅ for all integers j ∈ [2; k] in f(ω). As previous case, either f is not
k-power-free or a reduction can be done in f(ω1) using Corollary 4.3(2).

Case 4.1.2: ω ends with a pure k-power tk such that |f(t)| ≤ |γ|+ |X1|.
Let ω1 the word such that ω = x1,vω1t[|t|], let X1 be the word such that f(x1,v) = π1,1X1,
let Y1 be the word such that f(t[|t|]) = Y1ς, let χ1 be the word such that χ = X1χ1Y1
and let γ1 be the word Y1γX1. We have f(ω1) = (χ1γ1)kχ1, f(v)k ∈ Min.Pwrs(ω1) =
Min.Int.Pwrs(ω1) and |f(v)| > |X1|+ (k − 2)|f(x1,v)|.
As previously, we necessarily have dv,ω = 0 and cv,ω ≤ 2.

Since k ≥ 5, we have |f(v)| > 2|X1|+ 2|γ| ≥ |X1|+ |f(t)|+ |γ| ≥ |X1|+ |Y1|+ |γ| = |γ1|.
Let us remark that, if cv,ω = 2, we do have |f(v)| > |γ1| when k = 4. Indeed, let T
be the common factor of f(t)k−1Y1 and f(v)k. If |T | ≥ |f(t)| + |f(v)|, by Lemma 1.5,
it implies that f(v) = (t1t2)r and f(t) = (t2t1)q for two positive integers r and q and
two words t1 and t2. If r ≥ 2 or q ≥ 2 then f is not k-power-free. If q = r = 1 then
|f(t)| = |f(v)| > |X1|+ (k− 2)|f(x1,v)| > |X1|+ 2|γ|: a contradiction with the hypothesis
|f(t)| ≤ |γ|+ |X1|. If |T | < |f(t)|+ |f(v)|, then |f(v)| > |Y1|+ (k − 2)|f(t)| > 2|Y1|+ |γ|.
Since |f(v)| > 2|X1|+ |γ|, we get that |f(v)| > |γ1|.
As in Case 4.1.1, either f is not k-power-free or a reduction can be done in f(ω1) using
Corollary 4.3(1) when cv,ω = 1 or Corollary 4.3(2) when cv,ω = 2.

Case 4.2: Sp2.1,min(ω) = ∅
This case is the mirror image of Sp2.2,min(ω) = ∅.
Case 4.3: Sp2.1,min(ω) ∩ Sp2.2,min(ω) 6= ∅
Let vk a pure k-power in Sp2.1,min(ω) ∩ Sp2.2,min(ω).

Since f(v)k (resp. f(x1,v)
k and f(xk+2−cv,v)

k) and (χγ)kχ do not have any common
factor of length at least |χγ| + |f(v)| (resp. |χγ| + |f(x1,v)| and |χγ| + |f(xk+2−cv)|), we
necessarily have dv,ω = 0 and cv,ω = 1.

Let ω1 the word such that ω = x1,vω1xk+1,v, let X1 be the word such that f(x1,v) =
π1,1X1, let Y1 be the word such that f(xk+1,v) = Y1σ2,k+1, let χ1 be the word such that
χ = X1χ1Y1 and let γ1 be the word Y1γX1. We have f(ω1) = (χ1γ1)kχ1 and |f(v)| >
max{|f(xk−11,v )|− |π1,1|; |f(xk−1k+1,v)|− |σ2,k+1|} > max{|X1|+ |f(x1,v)|; |Y1|+ |f(xk+1,v)|}+
(k − 3)|γ| ≥ |X1|+ |Y1|+ |γ| = |γ1|.
Since xk+1

1,v and xk+1
k+1,v are not factor of ω, we get that f(v)k ∈Min.Int.Pwrs(ω1).
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We have Lj,v ∪ Rj,v 6= ∅ for all integers j ∈ [2; k] in f(ω). In f(ω1), we get dv,ω1
= 1,

2|f(v)| < |Dv,ω1
f(v)k−2| < |χ1| < |Dv,ω1

f(v)k−1| and also Lj,v ∪Rj,v 6= ∅. Either f is not
k-power-free or a reduction can be done in f(ω1) using Corollary 4.3(2).

Case 4.4: Sp2.1,min(ω) ∩ Sp2.2,min(ω) = ∅ with Sp2.1,min(ω) 6= ∅ and Sp2.2,min(ω) 6= ∅
Let vk a pure k-power in Sp2.1,min(ω) and let (v′)k a pure k-power in Sp2.2,min(ω). By
definition, we have |f(v)| = |f(v′)|.
Since f(v)k (resp. f(x1,v)

k) and (χγ)kχ do not have any common factor of length at least
|χγ|+ |f(v)| (resp. |χγ|+ |f(x1,v)|), we necessarily have dv,ω = 0 and cv,ω ≤ 2.

If cv,ω = 2, we get that a power of f(v′)k is an internal factor of f(x1,v)
kf(v)k with

|f(v′)k−1| < |χγ|. By Lemma 1.5, it implies that f(v)k and f(v′)k are conjugated words.
Since w does not contain vk+1 and vk /∈ Sp2.1,min(ω), it is impossible. Thus cv,ω = 1.

Let ω1 the word such that ω = x1,vω1xk+1,v′ . Let Y1 be the word such that f(xk+1,v′) =
Y1σ2,k+1 = Y1ς, We define the words X1, χ1 and γ1 as in previous case. We have f(ω1) =
(χ1γ1)kχ1 and f(v)k ∈Min.Int.Pwrs(ω1).

Moreover, |f(v)| > max{|f(xk−11,v )| − |%|; |f(xk−1k+1,v′)| − |ς|} > max{|X1| + |f(x1,v)|; |Y1| +
|f(xk+1,v′)|}+ (k − 3)|γ| ≥ |X1|+ |Y1|+ |γ| = |γ1|.
As in previous cases, either f is not k-power-free or a reduction can be done in f(ω1) using
Corollary 4.3(2).

Corollary 4.6 Let A and B be two alphabets and let k ≥ 5 be an integer. A k-power-free
morphism is a (k + 1)-power-free morphism.

Proof.

Let f be morphism from A∗ to B∗. We assume that f is not (k + 1)-power-free and we
want to show that f is not k-power-free.

The morphism f must be a ps-morphism. Otherwise, f is not k-power-free: it ends the
proof.

Let w be a shortest (k + 1)-power-free word which image by f contains a (k + 1)-power.
That is f(w) = puk+1s for a non-empty word u over B and |w| = n is minimal.

By the criterion of minimal length of w, p is a proper prefix of f(w[1]) and s is a proper
suffix of f(w[|w|]).
If f(w) and uk+1 are synchronised, by Lemma 1.16, w contains a (k+ 1)-power: a contra-
diction with the definition of w.

Taking % = p, ς = s, γ = ε and χ = u, by Proposition 4.4, f is not k-power-free.

Remark 4.7 The results in Proposition 4.4, Lemma 4.5 and in Corollary 4.6 are no
longer true for k = 4 because of the case 4.1.2 of the proof of Lemma 4.5.
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A Figures for Corollary 4.3

Figure 7: Example of a reduction using case 1 of Corollary 4.3 with v3(1) when k = 4

Figure 8: Example of a reduction using case 2 of Corollary 4.3 with v3(1) when k = 4

Figure 9: Example of a reduction using case 3 of Corollary 4.3 with v3(1) when k = 4
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Figure 10: Example of a reduction with v3(1) using case 4 of Corollary 4.3 when k = 4 and

S2 = ∅.
Let us remark that, in this example, a reduction with v3(2) using case 1 of Corollary 4.3 can
also be used.

Figure 11: Example of a reduction with v3(1) using case 4 of Corollary 4.3 when k = 4 and

S2 6= ∅
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Different cases for x3
j in case 1 of Corollary 4.3

Let us recall that dv = 1, |Dvf(v)2| < |χ| and Lj,v ∪Rj,v 6= ∅ for any integer j ∈ [2, k+ 1].
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Different cases for x3
j in case 2 of Corollary 4.3

Let us recall that dv = 1, Lj,v ∪ Rj,v 6= ∅ for any integer j ∈ [2, k] and there exists a
positive integer φ such that ω[nv..|ω|] starts with vφ+2 and sup

{
2|f(v)|; |Dvf(v)φ|

}
≤

|χ| < |Dvf(v)φ+1|.
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Different cases for x3
j in case 3 of Corollary 4.3

Let us recall that dv = 0, |Dvf(v)2| ≤ |χ| and Lj,v ∪Rj,v 6= ∅ for any integer j ∈ [1, k+ 1].
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Different cases for x3
j in case 4 of Corollary 4.3 when S2 = ∅

Let us recall that dv = 0, |Dvf(v)| ≤ |χ| < |Dvf(v)2| and Lj,v ∪ Rj,v 6= ∅ for any integer
j ∈ [1, k].
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Different cases for x3
j in case 4 of Corollary 4.3 when S2 6= ∅

Let us recall that dv = 0, |Dvf(v)| ≤ |χ| < |Dvf(v)2| and Lj,v ∪ Rj,v 6= ∅ for any integer
j ∈ [1, k].
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