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A k-power-free morphism is a (k 4 1)-power-free morphism for
any integer k > 5

Francis Wlazinski

September 5, 2023

Abstract

For any integer £ > 5, we show that a morphism that preserves k-power-free words
also preserves (k + 1)-power-free words.

1 Introduction and preliminaries

The purpose of this article is to answer a question I was asked a few years ago. It will
mainly interest those who asked me about it. But also maybe a few other people.

Let us recall some basic notions of Combinatorics of words.

1.1 Words

An alphabet A is a finite set of symbols called letters. Since an alphabet with one element
is of limited interest to us, we always assume that the cardinality of alphabets is at least
two. A word over A is a finite sequence of letters from A. The empty word € is the empty
sequence of letters. Equipped with the concatenation operation, the set A* of words over
A is a free monoid with ¢ as neutral element and A as set of generators.

Given a non-empty word u = aj...a,, with a; € A for every integer i from 1 to n,
the length of u denoted by |u| is the integer n, that is, the number of letters of u. By
convention, we have |¢| = 0. The mirror image of u, denoted by @, is the word ay, . . . aza;.

A word w is a factor of a word v if there exist two (possibly empty) words p and s such
that v = pus. We denote by Fcts(v) the set of all factors of v. If w € Fets(v), we also
say that v contains the word u (as a factor). If p =€, uis a prefix of v. If s =¢, uis a
suffiz of v. If u # v, u is a proper factor of v. If u, p, and s are non-empty words, u is an
internal factor of v.

Two words u and v are conjugated if u = t1ty and v = tot; for two (possibly empty) words
tl and t2.



Let w be a non-empty word and let 7, j be two integers such that 0 <i—1 < j < |w|. We
denote by wli..j] the factor of w such that |w[i..j]| = j — i+ 1 and w = pwli..j]s for two
words s and p satisfying |p| = ¢ — 1. Note that, when j =i — 1, we have w[i..j] = ¢. When
i = j, we also denote by w[i] the factor w[i..i], which is the i*! letter of w. In particular,
w[l] and w(|w|] are respectively the first and the last letter of w.

Powers of a word are defined inductively by u’ = ¢, and for every integer n > 1, u" =
wu"~'. Given an integer k > 2, since the case ¢ is of little interest, we call a k-power
any word u* with u # ¢. Given an integer k > 2, a word is k-power-free if it does not
contain any k-power as factor. A primitive word is a word that is not a k-power of another
word whatever the integer £ > 2. A (non-empty) k-power v* is called pure if any proper
factor of v* is k-power-free. In particular, we say that v* is a pure k-power of a word w
if v* € Fcts(w) and v¥ is pure. Repeating the fact that a non-pure k-power contains a
k-power, which is itself pure or not, we obtain that any k-power contains a pure k-power.
Moreover, if v* is a pure k-power then v is primitive but the converse does not hold.

Remark 1.1 A word cannot start with two different pure k-powers.

The following proposition gives the well-known solutions (see [3]) to two elementary equa-
tions on words and will be widely used in the following sections:

Proposition 1.2 Let A be an alphabet and u,v,w three words over A.

1. If vu = uw and v # €, then there exist two words r and s over A, and an integer n
such that w = r(sr)™, v =rs and w = sr.

2. If vu = wv, then there exist a word w over A, and two integers n and p such that
u=w" and v =wP.

We also need a property on words that is an immediate consequence of Proposition 1.2(2).

Lemma 1.3 [1, 2] If a non-empty word v is an internal factor of vv, i.e., if there exist
two non-empty words x and y such that vv = xvy, then there exist a non-empty word t
and two integers i,7 > 1 such that x =t', y = ¢/, and v = t*1J.,

‘We also use a well-known result on combinatorics on words:

Proposition 1.4 (Fine and Wilf) [3, 4] Let x and y be two words. If a power of x and
a power of y have a common prefiz of length at least equal to |z| + |y| — ged(|z], |y|) then
x and y are powers of the same word.

As a consequence of Proposition 1.4, we get:

Corollary 1.5 (Kerédnen) [1] Let  and y be two words. If a power of x and a power of
y have a common factor of length at least equal to |x| + |y| — ged(|z|, ly|) then there exist
two words t1 and to such that x is a power of t1ts and y is a power of tat1 with t1ts and
toth primitive words. Furthermore, if |x| > |y| then x is not primitive.



Lemma 1.6 Let k > 3 be an integer. Let v and U be two conjugated words over A.

If v* is a pure k-power over A then the same holds for T".

Proof.

Let us assume that v = vive and T = v9vy for two words v; and vy over A. And, by
contradiction, let us assume that o* is not a pure k-power, that is, (1)21)1)7~C =7F = t1tht,
with ¢ and ¢;t2 non empty words.

)kfl )kfl

If [t1] > |va| or if |ta] > |v1| then t* is a proper factor of (vyvg

that is, of v*, i.e., v* is not pure: a contradiction.

If [t1] < |vg| and |ta] < |vi| then t* is a common factor of itself and v¥*! with [vF~1| <
2

|tF] < |v¥]. Tt follows that 2L x [o] < [¢| < [v]. Thus [t5] > [¢|+ #22 x o] > |t + |v]. By

Lemma 1.5, we get that v is not primitive, i.e., v is not pure: a final contradiction. 0O

vy or of va(vyve ,

Lemma 1.7 Let k > 3 be an integer, let o and B be two words, and let Y* be a pure
k-power over an alphabet B. For any pure k-power X* over B and for any integer 0 <
(< k-3, if X* € Fets (aY**713) and X" ¢ Fcts (aY*~“B), then |X| > (k—(—2)|Y].

Proof.
If X* € Fcts (ozYk_Z_lﬁ)7 there exist two words v and § such that aY =415 = v X*§.

If |a] < |y| then X* € Fcts (Y**718) C Fets (aY**8): a contradiction with the hy-
potheses. Therefore, we have |a| > |y]. In a same way, we get that |5| > [d]. It follows
that Y*~#~1 is an internal factor of X*.

Having |[Y*~*71| > |X| 4 |Y| means that a power of X and a power of Y have a common
factor of length at least |X| + |Y|. By Corollary 1.5, there exist two words X; and X»
and two integers 7 and j such that X = (X;X3)" and Y = (X5X)’ with X; X, and X5X;
primitive words. Since X* and Y* are pure k-powers, it implies that i = j = 1. We get
that a(XoX1)F 718 = v(X1X2)*6 with |a] > |y| and |8] > |§]. But X»X; is not an
internal factor of (X2X;)?. Thus « ends with X; and 8 starts with Xy. If follows that
(X1X2)% = X* € Fets (aY*~“B): a contradiction with the hypotheses.

So, we necessarily have [Y* 72| < |X|.

Even if we can work with the previous lemma, in fact, the different situations we will
encounter are similar of the hypotheses of the following corollary. Let us recall that we

denote H;Zl w; the concatenation of the s words w1, wo, ..., ws.
Lemma 1.8 Let £k > 3 and s > 1 be two integers, let ag, ay, ..., ag be s + 1 words
over an alphabet B, and let YF, Y, ..., YF be s pure k-powers over B of the same

length k x L. For any pure k-power X* over B and for any integer 0 < £ < k—3, if X* €
Fets (ao [[5_, (Y 'aw)) and X* ¢ Fets (a0 15—, (Y ‘ai)), then |X| > (k—£—2)x L.

Proof.

This proof is done by induction on s.



The property is obtain for s = 1 by Lemma 1.7. Let us assume that the property is
satisfied for an integer s.

Let ag, a1, ..., asy be s+2 words over an alphabet B, and let Y}, Y, ..., YS’fH be
s+1 pure k-powers over B of the same length k x L. Let X* be a pure k-power over
B and let 0 < £ < k — 3 be an integer such that X* e Fets (ao HS+1 (Yfﬁé*lai)) and

Xk ¢ Fets (ao [ (v ))
There exist two words 7 and o such that 7X*o = HSH (Yl’C oy, )

If |o| > |as41], then X* € Fets (ao [T}, (Y.k lay) Ys’fHé .

K2

But X* ¢ Fets (oo [[5_; (Y ‘a;) YES™Y) (it is a subset of Fets (ao [ (v Z))
Taking aSYSZIZ ! instead of a, by induction hypothesis, we get that | X| > (k—¢—2) x L.

On the same way, if |7| > |agl, taking Y"“"1a; for ap and a; for a;_; for all integers
2 <4 < s+ 1, by induction hypothesis, we get that |X| > (k — ¢ —2) x L.

Thus |o| < |as41] and |7] < |, that is [[;_; (V*“ ;) Yst1 and, in particular, Y~
are internal factors of X*. As we have done in the proof of Lemma 1.7, if [Y}~*71 >
| X |+ |Y1| by Corollary 1.5 and since X* and Y;* are pure k-powers, there exist two words
X1 and X5 such that X = X; X5 and Y7 = X5 X7 with X; X5 and X5 X primitive words.
But XX is not an internal factor of (X2 X;)?. Thus ag ends with X; and «; starts with
X,. If follows that (X;X32)¥ = X* € Fets (aoYlk*Zal) C Fets (ao HS+1 (Y-kfeai)): a

K2

contradiction with the hypotheses.

So, we necessarily have | X| > [Y}~72|.

1.2 Morphisms

Let A and B be two alphabets. A morphism f from A* to B* is a mapping from A* to
B* such that f(uv) = f(u)f(v) for all words u,v over A. When B has no importance, we
say that f is a morphism on A or that f is defined on A.

Given an integer L, f is L-uniform if |f(a)| = L for every letter a in A. A morphism f
is uniform if it is L-uniform for some integer L > 0. Given a set X of words over A, and
given a morphism f on A, we denote by f(X) the set {f(w) | w € X}.

A morphism f on A is k-power-free if and only if f(w) is k-power-free for every k-power-
free word w over A. For instance, the empty morphism € (Va € A, e(a) = €) or the identity
endomorphism Id (Va € A, Id(a) = a) are k-power-free.

We say that a morphism is non-erasing if, for all letters a € A, f(a) # €. The empty
morphism e is the only morphism that is both erasing and k-power-free. Indeed, for any
non-empty erasing morphism f, there exist two different letters a and b in A (remember
Card(A) > 2) such that f(a) # ¢, f(b) = ¢, and so f(aba*~1) contains a k-power.

A morphism on A is called prefiz (resp. suffiz) if, for all different letters a and b in A, the



word f(a) is not a prefix (resp. not a suffix) of f(b). A prefix (resp. suffix) morphism is
non-erasing. A morphism is bifix if it is prefix and suffix.

Given a morphism f on A, the mirror morphism f of f is defined for all words w over
A, by f(w) = f(@). In particular, f(a) = f(a) for every letter a in A. Note that f is
k-power-free if and only if f is k-power-free.

Proofs of the three following lemmas are left to the reader.

Lemma 1.9 Let f be a bifix morphism on an alphabet A and let u, v, w, and t be four
words over A.

The equality f(u) = f(v)p where p is a prefiz of f(w) implies u = vw' for a prefiz w' of w
such that f(w') = p.

Symetrically, the equality f(u) = sf(v) where s is suffix of f(t) implies u = t'v for a suffix
t' of t such that f(t') = s.

Lemma 1.10 Let f be a prefix morphism on an alphabet A, let u and v be words over A,
and let a and b be letters in A. Furthermore, let p1 (resp. pa) be a prefix of f(a) (resp. of

f))- If (pr;p2) # (&5 (b)) and if (p1;p2) # (f(a);€) then the equality f(u)py = f(v)pa

implies u = v and p1 = pa.

Lemma 1.11 Let f be a suffix morphism on an alphabet A, let uw and v be words over A,
and let a and b be letters in A. Furthermore, let s1 (resp. s3) be a suffix of f(a) (resp. of

f))- If (s1382) # (&5 (b)) and if (s1582) # (f(a);€) then the equality s1f(u) = saf(v)

implies u = v and s1 = Sa.

Definition 1.12 A morphism [ from A* to B* is a ps-morphism (Keranen [1] called f
a ps-code) if and only if the equalities

fla) =ps, f(b) = ps' and f(c) =p's
with a,b,c € A (possibly c=1b) and p, s, p', s € B* imply b=a or ¢ = a.

Obviously, taking ¢ = b, and s = ¢ in a first time and p = ¢ in a second time, we obtain
that a ps-morphism is a bifix morphism.

Lemma 1.13 [1, 2] If f is not a ps-morphism then f is not a k-power-free morphism for
all integers k > 2.

Lemma 1.14 [5]

Let f be a ps-morphism from A* to B* and let u, v and w be words over A such that
flw) =48, f(v) =ap, and f(w) = avy for some non-empty words «, B, v, and § over B.
Then it implies that v = viave, u = u1bvy, and w = vicws for some words vy, vo, U1, and
wao, and some letters a, b, and c. Moreover, we have either b =a or ¢ = a.

Furthermore, if |0] < |f(u[l])| then uy =€ and if |v| < |f(w[|w]])| then wq = €.

Assuming that f(w) = puFs for a factor w of a word w and a non-empty word u, and
assuming that w contains a factor wg such that |f(wg)| = |ul, if f is a ps-morphism,



Lemma 1.16 states that w necessarily contains a k-power w’* such that f(w’) is a conjugate
of u. We will say that f(w) contains a synchronised k-power u* or that f(w) and u* are
synchronised. More precisely:

Definition 1.15 Let k > 2 be an integer. Let f be a morphism from A* to B*, w be
a word over A, and u be a non-empty word over B such that f(w) contains the k-power
uF. Let w be a shortest factor of w whose image by f contains u¥, i.e., f(w) = pu®s with

pl < |f(@[1])] and |s| < |f(w[[w]])-
We say that f(w) and u* are synchronised if there exist three words wy, wy, and wy such
that | f(wo)| = |u| and W = wywows withp =¢ if wy =¢, and s =€ if wg = €.

Lemma 1.16 [5]

Let k > 2 be an integer. If f is a ps-morphism and if f(w) contains a synchronised k-power
then w contains a k-power.

Remark 1.17 [5]

More precisely, the word w starts or ends with a k-power which image by f is a conjugated
of the synchronised k-power.

Lemma 1.18 [5]

Let k > 4 be an integer.
The image of a pure k-power by a k-power-free morphism is also a pure k-power.

As direct consequences of Lemmas 1.7, 1.8 and 1.18, we get the two following corollaries:

Corollary 1.19 Let k > 4 be an integer and let f be a morphism from A* to B*. Let
a and B be two words over B and let v* be a pure k-power over A. For any pure k-
power t¥ over A and for any integer 0 < £ < k — 3, if f(t)* € Fets (af(v)k%’lﬁ) and
f()F ¢ Fets (auf (0)*7B) then either f is not k-power free or |f(t)| > (k — € —2)|f(v)].

Corollary 1.20 Let k > 4 and s > 1 be two integers and let f be a morphism from A*
to B*. Let ag, aq, ..., ag be s + 1 words over B, and let v’f, vé, AU vf be s pure
k-powers such that |f(v;)| = L for all integers 1 < i < s. For any pure k-power t* over A
and for any integer 0 < £ < k — 3, if f(t)* € Fets (oo [Ti; (f(vi)* o)) and f(t)* ¢

Fets (oo [T, (F(vi)" ;) then either f is not k-power free or |f(t)] > (k— € —2) x L.

2 Reduction of a power

2.1 About k-power-free morphisms

Lemma 2.1 [5] (see Figure 1)



Let k > 4 be an integer. Let f be a ps-morphism from A* to B*. Let v and T be non-empty
words over A such that v* is a pure k-power. Let us assume that f(T) = 71 f(v)*oq with
|m1| < |f(TA))] and |o2| < |f(T[|T|])|. Then one of the following holds:

e (P.1) : There exist a pure k-power z*, a word y over A, and a word Z over B such that
(PL1) : T = aby, |y <1, [(y) = mo, f(@) = mZ, and f(v) = Zy
(P1.2) : or T =yx*, |yl =1, fly) = 7109, f(x) = Zoa, and f(v) = 027.
o (P.2) : There exist a pure k-power x* and a non-empty word y over A such that
(P.2.1) : T = aFy with |f(z*=1)| < |m1f(v)]
(P.2.2) : or T = ya* with |f(z*1)| < |f(v)oal.
e (P.3) : [ is not k-power-free.
) 1) /)
f(T): |TE] 1 I Gzl
VACARY)) ST
(P.1.1) :
SO
(P12) |
)
(P2.1) ¢ H _
£ f0) o
(P22) |

—
1) 7))

Figure 1: Different cases in Lemma 2.1

Corollary 2.2 [5]

With hypotheses and notations of Lemma 2.1, if f(T) and f(v)* are synchronised (this is
obviously the case when f is a uniform ps-morphism) then either f is not k-power-free or
T satisfies (P.1).

Remark 2.3 IfT and v* are factor of the same word w and if f(v)* is a shortest k-power
inw then T can not satisfy (P.2).

Corollary 2.4 [5]

Let k > 4 be an integer. Let f be a ps-morphism from A* to B*. Let v* and t* be two
pure k-powers over A. Let us assume that f(t*) = w1 f(v)*oy with || < |f(¢[1])| and
loa| < |f(E[|E])|. If m1 # € or if o2 # € then f is not k-power-free.



Corollary 2.5 [5]

Let k > 4 be an integer. Let f be a ps-morphism from A* to B*. Letv and T be non-empty
words over A such that v* is a pure k-power. Let us assume that f(T) = 71 f (v)*T 1oy with
|m1| < |f(T[1)] and |o2| < |f(T[|T|])|.- Then either f is not k-power-free or there exist a
pure k-power ¥, a word Y over A, and a word Z over B such that

(P1.1)Y : T =2y |V <1, f(Y) =m0, flx) =mZ, and f(v) = Zm
(P12) :or T =Y |Y| =1, f(Y) =m0, f(z) = Zog, and f(v) = 022.

Let «, 8, and  be three integers such that v < o« and § < a — v+ 1. We denote 11&3) the
Bt factor of v in v® that is v® = vﬁflvzﬁ)va*wrlfﬁ. In particular, when v = 1, v(g) is
the 8" successive factor of v in v.

By Corollary 2.2 and Corollary 2.5, we immediatly get:

Corollary 2.6 Let o and k be two integers such that « > k+ 1 > 5. Let f be a ps-
morphism from A* to B*. Let v and T be non-empty words over A such that v* is a pure
k-power. Let us assume that f(T) = 71 f(v)%0s with |m1| < |f(T[1))| and |oa| < |f(T[IT|])]-
For any integer 1 < 8 < a — k + 1, the word T(gy such that f(Ts)) = ﬂ(ﬁ),lf(vfﬂ))cr(ﬁ),g
< |f(T(5)[1])‘ and ‘0(5)72 < |f(T(5)[|T(ﬂ)H)| satisﬁes (Pl)

with ‘71’([3)71

2.2 Equations of reduction

Lemma 2.7 [5]

Let ay, aa, By, 81, B2, 71,72 be words over an alphabet B such that |81 = |B2| # 0, B] is a
proper suffix of B1, and 0 < |ag| — |ag| < |5Y].
Under these hypotheses, the equality asfeys = a1 1171 implies aavys = a1 171 -

Lemma 2.8 [5]

Let k > 3 be an integer. Let f be a morphism from A* to B*. Let (w;)i=1.x+1 and
(@i)i=1..x be words over A such that |f(z;)| = |f(z;)| # 0 for all integers i,j in [1,K].

We denote by w the word wiTy... WX kW1 -

We assume that there exist words u, p, s, (X;)i=1..x, and (Y;);=1., over B such that
flwy) = pXy, flwes1) = Yus, and f(w;) = Y;1X; for all 2 < i < k. Moreover, we
assume that, for all integersi in [1, k], we have uw = X, f(x;)Y;. It means that f(w) = pu”s.
Let us also assume that there exists an integer q such that, for every integer i in [1, k],
0 < |Xg| = [Xi| < |X[| where X is a common suffiz of X, and f(x,). Then the word
W = WiWsa...wWe1 Satisfies f(w) = pu”s with @ = X;Y; for every integer i in [1,K].

In particular, f(@) and " are synchronised only if f(w) and u" are synchronised.

The situation described in Figure 2 is an example of a case where the hypotheses of
Lemma 2.8 hold.



u i
L fw) , 1w ,
» X, CY ) r X, , 7
X, s J(x) . )43 X, , Y2
Xy . Jq) s Ty > Xy , Yy
D X, Xy
—
f(xq) Sxg)
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Figure 2: Reduction of a power

We say that we have reduced w.

Let us note that p is not necessarily a prefix of f(wi[1]) and s is not necessarily a suffix of

fwillwel]).
Figure 3 deals with Point 3 of Remark 2.9 and Figure 4 deals with Point 4 of Remark 2.9.

u i
L fw) , ) ,
L X, GO N Y o X l h
X, T N ¥ X, , ¥
Xq s f .(xq) . Yq E Xq s Yq
v t X7 | % t X |
— —
f(xq) g
X s J(xe) , Y X Y
X, L S ) Y, s, X« \ Y 5,
'—| "—|
f(Wm ) f @eir)
Figure 3: Point 3 of Remark 2.9
Remark 2.9

1. Using the mirror image and exchanging | X,| the mazimum of | X;| by
the mazimum |Yy| of |Y;| (i.e., |X4| is the minimum of |X;|), the condition "0 <
| Xo| = Xs| < [X7| where X7 is a common suffiz of Xy and f(x4)” of Lemma 2.8 can




Jw) Sw)
. X I. n :p s X, ‘. Y
X, . f(x) . )Z) X, . Y
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Xt S () Y X Yo
X Jx) Y, s X | Y, s
[ @) ' ' )

Figure 4: Point 4 of Remark 2.9

be replaced by "0 < |Yy| — |Y;| < |Y,| where Y] is a common prefix of Yy and f(xq)”.
. A prefic ui of u is also a prefix of @ if |u1| < |X4|, and a suffix ug of u is also a
suffic of @ if Jus| < max|Yj].
. If, instead of u = X, f(x,)Ye, we only have that X, f(zx)Ys is a prefix of u (see
Figure 3) then f(w) = pu™1X,Y,s with XY, prefiz of u.

- Ifq# 1 and Xy is a suffiz of f(xg), i-e., X; =€ (see Figure 4), then we do not need
x1 and optionally not wy in the hypotheses of Lemma 2.8. Conclusion remains true
with u = X1Y1, wh = wyws or we, f(wh) = pX1Y1Xs, w = whrows.. WeXxWxi1,
and W a (not necessarily proper) suffix of whws...w Wk 11

. By mirror image of Case 4, we get that, if ¢ # k and Yy is a prefiz of f(x,) then we
do not need x,, and optionally not w11 in the hypotheses of Lemma 2.8. Conclusion
remains true with u = XY, wl, = wewgr1 or wy, f(wh) = Ve 1X.Yes, w =
W TIW.. Wy 1Z—1Wh, and W a (not necessarily proper) prefiz of wiws... w,_wl,.

K’

. As a combination of Case 4 and Case 5, we get that, if ¢ # 1, ¢ # K, X4 is a suffic
of f(zq), and Yy is a prefix of f(xq) then we do not need neither x1 nor x, in the
hypotheses of Lemma 2.8. Conclusion remains true with u = X1V, = XYy, wh =
WiWa O Wa, W, = WeWxi1 OF Wy, f(wh) = pX V1 Xy, f(w)) = Vi1 X Yes, w =
WhHTW3.. . Wy—1X,—1W, and W a (not necessarily proper) factor of whws...w,_1w.,.

K7

For any positive integer ¢, since |f(x;)| = |f(x;)| is equivalent to |f(zf)| = \f(m§)| and
since a prefix (resp. a suffix) of f(x;) is a prefix (resp. a suffix) of f(x!), we immediately
obtain the following Corollary that will be the central point of proof of Lemma 4.5.

Corollary 2.10 (method of reduction)[5]
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Let k > 3 and £ > 1 be two integers, let o be an integer in {1,2} and let S be an integer
in{k—1,k}

Let f be a morphism from A* to B* and let (w;)i=a..+1, (Ti)i=a..s be words over A such
that |f(x;)| = |f(x;)| # 0 for all integers i, j in [, ).

We denote by w the word waxﬁ...ng%wﬁﬂ.

We assume that there exist u, p, s, (X;)i=a..s and (Yi)i=a..3 words over B such that
fw;) =Y;1X; for all integers i in [1+ a; B]. Furthermore, we also assume that f(we) =
pu Xy and f(wgy1) = Yeu" Ps where u = X; f(2£)Y;(# €) for all integers i in [, B]:
it means that f(w) = pu®s.

Finally, we assume that there exists an integer q such that, for any integer i in |a, (],
0 < [X,| — | X;| < |X[| where X[ is a common suffiz of X and f(x,), 0 <[ X, — | X;] <
|f(zq)| when a =2, or 0 <|Y;| —|Y,| < |f(zq)| when =k —1.

K

Then, for any integer 0 < ¢ < £, the word w' = waxﬁ...nggw,gﬂ satisfies f(w') = pu'™s
with w' = X, f(z?)Y; for any integer i in [1; k).

In particular, f(w') and u'* are synchronised only if f(w) and u" are synchronised.

2.3 Situations of reduction

Let £ > 4 be an integer. Let f be a morphism from A* to B* and let w be a word over
A such that f(w) = o(xy)*xs for some words g, X, ¥ and ¢ over B such that yy # e,
lo| < |f(w[1])] and || < |f(w[|lw]])|- We denote U = x and S = xs. In particular, when
v =&, we get that f(w) = oU* "¢,

For any integer j in [1,k + 1], let i; the smallest integer such that o(x7y)?~* is a prefix of
f(w[1..35]). And let 7} be the smallest integer such that o(xy)?~'x is a prefix of f(w[1..i]).
In particular, we have i; = 1, and i} ; = |w| (see Figure 5). By convention, let i 2 =i} .
Furthermore, there exist words p;, p}, s; and s} such that, f(wli;]) = Dp;s;, fwli}]) = pis,
p1 =0, Ski2 =< pj #eif j # 1and s1 # ¢, f(w[l..ij]) = o(x7)’'s; and f(w[lzg]) =
Q(X’y)j_lxs;- for any integer j in [1,k + 1].

Moreover, we assume that i; < ¢;41. In particular, we get that xy = s, f(w[i; + 1..3;41 — 1])pj+1
when 1 < j <k.

Since a factor of w can appear many times in w, it is necessary to indicate which exact
factor we are going to work with: if w[n..m] = z, we denote n = n, and m = m, fixing by
this way the considered occurrence of z in w. For any positive integer «, if w[n..m] = 2%,
we also denote n = n, and m = m, without specifying a. It is the same notation as the
case o = 1: we will precise only if necessary.

To simplify notations, let us recall that, given two integers 1 < n, < m, < |w|, the
word w[n,..m,] = 2 define two words we denote z, and z, such that w = z,2%z,, with
n, = |2p| + 1 and m, = |2,2%|. This means that z, = w[l..n, — 1] and 2z, = w[m, + 1..|w|].

Given two integers 1 < n, < m, < |w|, we also define a word D, and three integers A, d,
and ¢, (even if ¢, is not used in this section). Eventually, we will precise D, 4, Ay o, dy., and

11
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Figure 5: Example of a decomposition of f(w)

€ if a doubt may occur. Briefly, A, is the integer such that f(w[n,..m,]) = f(z%) starts
in the A" occurrence of xv; d, indicates if the first occurrence of f(z) in f(w[n,..m,])
straddles or not two consecutive occurrences of x7; ¢, is the lowest integer such that
(xv)% 1x and f(w[n,..m,]) overlap and D, is a prefix of y7y such that f(z,z) ends with
D, or D,f(z2).

More precisely, if n, = 1 and ¢ # € then A\, = 0, d, = 1 and D, is the word such that
f(z) =0D,. If n, =1 and o =€ then A\, =1, d, =0 and D, = ¢. When n, > 2, let ),
be the integer such that 1, € i,5dy, 1], i.e., Jo(x1)* | < [f(@lLn, — )] = [£(z)] <
lo(x ). TIf |f(2p2)] < lo(x7)*| then let d = 0 otherwise let d, = 1. Let D, be the
word such that f(z,2%) = o(xy)*~'*%D,. It means that D, = sy, f(w[ix, + 1..n, — 1])
when d, = 0 and sy, f(w[ix, + 1..n, — 1)) f(2) = xvD, when d, = 1. In particular, D, is a
proper suffix of f(z) when d, = 1. Finally, ¢, is the lowest integer such that |f(w[l..m,])] <
lo(xy) T~ 1x| when m, # |w| and ¢, = k + 1 — \, otherwise.

It is important to remark that, if w[n,..m,] = z%, the integers n, and m, define z* and z.
But, since we may have several occurrences of z% in w, we do not have the contrary. In
other words, the equality z = 2z’ not necessarily implies n, = n,, or m, = m,,. In the same
vein, A\, d,, ¢, and D, depend on n, and m, but not directly of z. But if no question
exists over the considered factor of w or if the choice of the considered factor does not
matter, we will write 2z instead of w[n,..m,].

For any integer o > 2 and for any word w[n,..m,] = z* with n,,m, € [1, |w]|], the word
flwlng.my]) = f(y*) = f(y)* with ny,my € [1,ig42] is a conjugated shift to the left of
flwlng..my]) = f(2%) = f(2)* (in f(w)) if there exist two words ¢; # ¢ and to such that
f(y) = tat1, f(z) = tits and if we have one of the following conditions:

1. D, = Dyt; when dy, = d,
2. Dy:Dtlwhend—landd—O
3. Dyf(y)ta = xyD, when d, =0 and d, =1

12



Let us remark that conditions (2) and (3) imply |D,| < |t2|. Moreover, taking to = ¢, let
us also note that f(z%) is a conjugated shift to the left of itself.

We say that f(y)® is a conjugated shift to the right of f(2)* if f(2)“ is a conjugated shift
to the left of f(y)®. We simply say that f(y)® is a conjugated shift of f(z)® if it is a
conjugated shift to the left or to the right of f(z)®.

For a general use of conjugated shifts of f(2)%, we will switch the roles of ¢; and ¢5 in

definition and conditions (1) to (3) for a conjugated shift to the right.

Lemma 2.11 For any integer a > 2, if f(x)® is a conjugated shift to the right of f(z)®
and if f(y)* is a conjugated shift to the left of f(z2)* then f(y)® is a conjugated shift to

the left of f(x)®.

Proof.

We will only prove Lemma 2.11 when dy = dy = d,. The other cases are left to the reader.
Let t1(# €), ta, t} and tH(# €) be the words such that f(y) = tot1, f(x) = tht] and
f(z) = tite = tity. We have D, = Dyty and Dy = D,t}. And, since f(x)® is a factor of
f(w), there exists an integer B such that D, f(x)® is a prefix of (x7)®xs.

If |t}] < |t1], let T be the word such t; = t/T. We get that t) = Tty, Dy = Dytot],
fy) = (t2t)T, f(x) = T(tat]) and ot} # e: it ends the proof.

If |t] > |t1], let T be the word such t| = t;T. We get that to = T'ty, Dy = DyTtht) =
DyTf(z). It means that f(x)* is preceded by f(x) in f(w), i.e., (x7)?xs starts with
DT f(x)**. We will consider the first occurence of f(z)® in f(z)*™! denoted by f(z)*
to avoid confusion. We get Dg = D,T', f(y) = T(t5t1), f(T) = (t5t1)T and thty #e.

Proofs of Lemmas 2.12 and 2.13 and Corollary 2.14 are left to the reader.

Lemma 2.12 For any integer a > 2, if f(x)* and f(y)® are two conjugated shifts to the
right of f(2)* then f(y)® is a conjugated shift of f(x)<.

Lemma 2.13 For any integer a > 2, if f(x)® and f(y)* are two conjugated shifts to the
left of f(2)* then f(y)® is a conjugated shift of f(x)<.

Corollary 2.14 The relation R, defined on Fcts (f(w)) by xRy if there exists an integer
a > 2 such that = is a conjugated shift of y<, is a relation of equivalence.

For any pure k-power w[n,..m,] = v* of w, there are k—2 choices for the factor v* in v*. Let
us recall that we denote vy the 5 factor of v in v* that is w[ny..my] = v~ vi v* =72
with1 <8 <k-2.

We will focus on theses different cubes v but without specifying 3 in this section.

Simplifications will not always be made in the occurrence of xy where a word f(z3) begins,
i.e., the Ay-th. It will happen that we must consider the next occurrence of x~v according
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to the values of dy and d,. In order to specify the selected occurrence of x7y, we define the
sets L;, and R; ,.

For any factor wln,..m,] = v> of a pure k-power v* € Fcts(w), and for any integer

j € [1;k+1], let L;, be the set of the words w(ny..my| = 2® such that f(z)* is a conjugated
shift of f(v)*, f(w[nx..my]) = f(x)? is a conjugated shift to the left of f(w[n,..m,]) = f(v)3
with j = A if dx = dy = 0 and j = A + 1 otherwise. In particular, if v € L;, and d, =1
then 7 = A, + 1.

We also denote R;, the set of the words w[ny..my] = 23 such that f(z)* is a conjugated
shift of f(v)*, f(w[nx..my]) = f(x)? is a conjugated shift to the right of f(w[ny..m,]) =
f(v)? with j = A\ +d, x dy (see Figure 6).

d,=0 x3z3inL;, »inRj, d,=1 x3in L;, y3Z3in R;,

SR U e U

D, [ 7o [ f» [ fo | (7D, [ 7o [ Jo)_ |

ECEECEECE /o | fo | fo ]

| /o [ 5o | fo ] e e e ]

o | fo | feo | [fo | f@o | fo |

' U ——>i U ——>i 1 U 77}: U 77}:

cv:2‘ cvzl‘ 0:3: c:2:

Figure 6: Examples of L;, and R;, depending on d, and ¢, when k = 3

If wlny..my] = :cj is a word in Lj;, U R;,, we denote ¢ j,t2; the words such that
fv) =tijta; and f(z;) = tajt1,5.
More specifically, if jo is an integer such that wlny..my] = v® € Lj, »(URj, ), Wwe may

assume that Ny, = Ny and My = My, i.e., rj, = v. Let us remark that, by this choice,
jo = Av + dy. But jg can take other values.

Remark 2.15 If there exist two integers i, j, and a pure k-power x* such that x® €
LiwUR;, withdy =dy and L, UR;, # 0, then Lj,UR;, # 0. Indeed, if y* be a word
in L;,UR;,, then, by Corollary 2.14, y* is a conjugated shift of x*.

3 Simplification

In all this section, k > 4 is an integer, f is a morphism from A* to B* and w is a word
over A such that f(w) = o(x7)*xs for some words g, X, v and ¢ over B such that x7y # ¢,
lo| < |f(w[1])] and |¢] < |f(w]|w]])|- We denote U = xvy and S = xs.

Let us recall that, for any integer j in [1, k+1], 4; is the smallest integer such that o(xy)i !
is a prefix of f(w[1..7;]) and ¢} is the smallest integer such that o(x7)’~"x is a prefix of
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f(w[lzg]) Moreover, f(w[i;]) = p;s; and f(w[zg]) = p;s;- with f(w[l..i;]) = o(x7)?'s;
and f(w[l..i}]) = o(x7)’ " 'xs)-

For any pure k-power w[n,..m,] = v* such that f(v)* is a factor of (x7y)¥x, there are
(at least) k + 2 — ¢, different occurrences of (x7)®~!x in f(w). Since, for any integer
jellik+2—c¢l, f(0)"is a factor of p;j(xy)™ " *xsj e, 1 = f(Wlij.iy ., 1]), let n; be
the greatest integer and m; be the lowest integer such that i; < n; < m; < 29 Tl and
f(v)* is factor of f(w[n;..m;]). Let us denote ¥; the word w[n;..m;]. In other words, for
any integer j € [1;k +2 — ¢], the word vj is the shortest factor of wli;..i} . ;] such that
f(@;) contains f(v)*. More precisely, f(v;) = m1,;f(v)*o2; for two words m ; and o2 ;
such that [my ;| < |f(wlns])| = |f(@;[1])] and |oo;| < [f(wlm;])] = [f(@;[7;]])]-

If j > 1 then 7 ; is a suffix of the image of a factor of w. If j <k +2 — ¢, then oy ; is a
prefix of the image of a factor of w.

Remark 3.1 By Lemma 2.1, either f is not k-power-free or the word v; satisfies one of
the following properties:

o (P.1) : There exist a pure k-power a:ﬁv, a word ;. over A and a word Z; over B such
that

05 = (250) Y0 FWj0) = mj025, f(2j0) = m ;25 and f(v) = Z;m

for Uy = yiw(@50)", fY50) =500, f250) = Zjoa; and f(v) = 02,;7;.

)
)

e (P.2) : There exist a pure k-power v;? and a non-empty word y;,., over A such that
)

05 = (24,0) ys0 with | f(x5,5 Y] < |mf ()] < [f(2)0)] +1f ()]
(P22) : orv; = yjﬁv(xj,u)k with \f(xj_yvk’l)| <|f()oa;| < |f(xjo) +|f(v)].

It particularly means that, when |xy| > 2|f(v)|, we have i; < i;41 for any integer j in
1,k +1].

In other words, if U; satisfies (P.1.1) then f(z;,)" is a conjugated shift to the left of f(v)*.
And, if 9; satisfies (P.1.2) then f(z;,)¥ is a conjugated shift to the right of f(v)*.

Let us recall that we denote z?m the B factor of 22 in z*.

If 5 =1 and v; satisfies (P.1.1) then f(vj%ﬁ)) = f(vj)? is a conjugated shift to the left of
f(v?ﬁ)) = f(v)3. If B = k—2 and ¥; satisfies (P.1.2) then f(vj:(;ﬂ)) = f(v;)? is a conjugated
shift to the right of f(vé”ﬁ)) = f(v)3. Otherwise f(v;)? is both a conjugated shift to the

right and a conjugated shift to the left of f(v)3. For instance, if 2 < 8 < k — 3 and v;
satisfies (P.1.1) then f(v;{s)) is a conjugated shift to the left of f(v{y)) and a conjugated

shift to the right of f(vf’ﬁ_l)).

If 7;, and v;, satisfy (P.1.1) (vesp. (P.1.2)) then f(v;,(s))° is a conjugated shift (to the
left or to the right) of f(v;, (5))>.

Moreover, if U;, satisfies (P.1.1) and 0, satisfies (P.1.2) then f(vj,s))" is a conjugated
shift of f(vjl (ﬁ+1))3.

15



We have to match theses possibilities with the ones of the position of a factor f(v)* of
F)* in (x7)*.

—

Lemma 3.2 If v;, and v;, satisfy (P.1) then (vj,)
||ij1,'u| - |Dw12,v|| < |f(’U)‘

i satisfies (P.1) and, consequently,

Proof.

It is a consequence of Corollary 2.14. O

Two consecutive (mj,v)k can overlap but under some conditions, the length of this overlap
is bounded.

Proposition 3.3 Let us assume that f is a k-power morphism and that, for all integers
i €1, k+2—cy], any power of f(x;.) and of x7y do not have any common factor of length
greater than |f(z;.)| + [x7]-

For any integer j € [1,k+ 1 — ¢}, if U; and Uj11 satisfy (P.1) then there exist two
words T1; and T j such that wn;..mjy1] contains the factors (ch)v)k_lTLj(xjH,v)k and
(,0)* 72,5 (2j41,0)t" "

In particular, when k > 4, the word wn;..m;j41] contains (x;,)371 j(xj41,0)>

Proof.

Since any power of f(z;.) (resp. f(zj+1,,) and of xy do not have any common factor of
length greater than |f(z;,)| + [x7| (vesp. |f(zj+1.0)| + [x7]), we get that i; < iji1.
Since v; and v 41 satisfy (P.1), let w[n’..m} ] the factor of w[n;..m; 1] that starts with
(2j,)" and ends with (2;41.,)".

If | f(w[nf..m])| < (2k — 1)[f(2;,,)| then f(wé?’v) and f(xfﬂ’v) have a common factor
of length at least | £(z5.0)| = |/ (05.0)| + £ (@510 — ged(1f @30} 5 | (141.))- By Corol
lary 1.5 and Lemma 1.18, there exist two words t; and ¢ such that f(:cj,v) = t1ty and
f(zj41,0) = tath with t1t2 and tot; primitive words. It means that f(w[n;mgﬂ]) is a
common factor of a power of f(z;,) and x7. Since i; < n; < 4,41 < nj41, we get that
|f(w[n;m;+1])| > x|+ |f(:17§+1’v)| —|[Dz; ,| = Dz, |- By Lemma 3.2, it implies that
|f(w[nf..m D] > [xv] + |f(:13§;1)| a contradiction with the hypotheses.

It follows that |f(w[n}..m} )] > (2k = D[f(z;0)]- O

Let Int.Pwrs(w) be the set of the k-powers v* of w such that f(v*) € Fets ((x7)"x).
More precisely, Int.Pwrs(w) is the set of the k-powers of w[2..|w| — 1] when ¢ # ¢ and
¢ # ¢, of w[l..lw| — 1] when p = ¢ and ¢ # €, of w[2..|w|] when ¢ # € and ¢ = ¢ and of w
when ¢ = ¢ = . We denote Pure.Int. Pwrs(w) the set of pure k-powers of Int. Pwrs(w).

Let liin = min{|f(t)| | t* € Fcts (w)} and let Min.Pwrs(w) = {v* € Fets (w) /|f(v)] =
Linin, 1.€., Min.Pwrs(w) is the set of the k-powers of w those image have a minimal length.
When f is k-power-free, a k-power in Min.Pwrs(w) is necessarily a pure k-power.
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In a similar way, let £iin ine = min{|f(¢)| | t* € Int.Pwrs(w)} and let Min.Int. Pwrs(w) =
{v* € Int.Pwrs(w) | |f(v)] = lumin int}, i-e., Min.Int.Pwrs(w) is the set of the k-powers
of Int.Pwrs(w) those image have a minimal length. As for Min.Pwrs(w), when f is
k-power-free, a k-power in Min.Int. Pwrs(w) is necessarily a pure k-power.

Note that iin int 7 fmin implies that w starts or ends with a pure k-power those image
by f is minimal and that Min.Int. Pwrs(w) # Min.Pwrs(w).

Let Spi(w) be the set {v* | v* € Pure.Int.Pwrs(w) and v satisfies (P.1) for all integers
j € [l;k+2—c/]}. Let Spa(w) (resp. Spai(w) and Spaa(w)) be the set {vF | vF €
Pure.Int.Pwrs(w)\ Sp1(w) | there exists an integer j € [1; k42— ¢,] such that v; satisfies
(P.2) (resp. (P.2.1) and (P.2.2))}.

Let Sp1,min(w) be the set {vF | v¥ € Min.Int.Pwrs(w) and ; satisfies (P.1) for all
integers j € [1;k + 2 — ¢y]}. Let Spomin(w) (resp. Sp2.1,min(w) and Spa.2 min(w)) be the
set {v* | vk € Min.Int.Pwrs(w) \ Sp;(w) | there exists an integer j € [1;k + 2 — ¢,] such
that v; satisfies (P.2) (resp. (P.2.1) and (P.2.2))}.

Remark 3.4 If v belongs to Spi(w) then, for any integer 2 < £ < k — 2, we have
Ljuwy #0 and R, # 0 for any integer j € [1,k +2 — cy].

Remark 3.5 If liin int = min then Pure.Int.Pwrs(w) = Spi(w).

Remark 3.6 If f is k-power-free and if v € Spa.1min(w) (resp. Spa.o.min(w)), then the
only integer j such that v; satisfies (P.2.1) (resp. (P.2.2))isj =1 (resp. j =k+2—cy).
More precisely, (x1.,)* (resp. (Tiy2—c,0)*) is a prefix (resp. a suffiz) of w.

Remark 3.7 Let us note that, by Corollary 2.6, if a (k + 1)-power v**1 is an internal

factor of w and if Ué“l) and vé) are pure k-powers such that v*+1 = vé“l)v = vvé) then Ué“l)

or v&) belongs to Spy(w).

4 Almost (k + 1)-power

In all this section, k > 4 is an integer, f is a morphism from A* to B* and w is a word
over A such that f(w) = o(x7)¥xs for some words o, x, v and ¢ over B such that yy # ¢,
lo| < |f(w[1])] and |s] < |f(w[|w|])|- We denote U = xy and S = xs.

For any integer j in [1,k + 1], i; is the smallest integer such that o(x7y)?~! is a prefix of
f(wl[1..4;]) and @ is the smallest integer such that o(xv)?~'x is a prefix of f(w[1..7}]).

Lemma 4.1 For any pure k-power v* of w, if f is k-power-free and if the words (Xv)kx
and f(v)* have a common factor of length at least |xy| + |f(v)| then f(w) and (x7v)* are
synchronised.

Proof.
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See Step 1 of the proof of Proposition 4.1 in [5].

Let us assume that f is k-power-free and that (X'y)kx and f(v)* have a common factor of
length at least |xv| + |f(v)].
k

Let v; and vy be the words such that w = viv~vs.

Since (Xw)kx is a factor of U**!, by Corollary 1.5, there exist two words t; and t, and
two integers r and ¢ such that f(v) = (t1t2)" and U = (tat1)? with t1t5 and toty primitive
words.

If 7 > 2 then f(v*~1) = (t1t2)*~V*". Since k > 3, we have (k — 1) x r > 2k —2 > k. Tt
means that f(v*~1) contains a k-power with v*~! a k-power-free word by definition of v,
i.e., f is not k-power-free.

From now, we assume that r = 1. If ¢ < k — 2 then v? would be an internal factor of v*
that is of w with |f(v)9]| = |U|: f(w) and U* are synchronised.

Thus ¢ > k—1. Since x is a prefix of U = x7, let £ be the greatest integer such that (tat;)*
is a prefix of . There exists a prefix T of tot; different from ¢ot; such that x = (tot1)*T.
We have f(w) = f(v1)(tit2)* f(ve) = oU*xs = o(tat1)?** T with ¢ > k — 1.

Let « be the greatest integer such that o(t2t1)” is a prefix of f(v1v) and let y be the greatest
integer such that (t2t1)YTs is a suffix of f(v*vy). There exist four words t),, t7/ # ¢, t, # ¢
and t] such that toty = ), = t/th, f(viv) = o(tat1)"t,, f(v?v2) = t)(t2t1)?Ts and
JOFT3) =t (tatq )R HEmm—v =2,

If 2 = 0 then |f(er0)] = [f(e0)tita] = loth] < lotstal, ic., [f(on)] < lo] < [f(@1)]: it
implies that v; = . So, we get that f(w) starts with f(v3) = (t1t2)® and with o(tat;)3.
Since tot; is a primitive word, by Lemma 1.3, (t2t1) is not an internal factor of (t2¢1)?. Since
lo| < [tat2| = [f(v)], it implies that ¢ = ¢; and t,, = to. Moreover f(w) = (t1t2)* f(v2) =
ty(tot1)?**T*T¢ and so t” = t;. In the same way, if y = 0 we get ¢ = to, t// = t; and
tr =ts. When 2 # 0 and y # 0, since f(v1v) ends with t12; and since f(v?vs) starts with
titg, if £}, # to or if t{ # t; then (t,2) is an internal factor of (t1t2)?: a contradiction with
Lemma 1.3 and the fact that ¢1¢5 is a primitive word.

Thus t, =ty = ), t, = t; = !, f(v1v) = otaf(v)” and f(v®v2) = f(v)Yt,Ts. Since f
is bifix, it follows that f(viv) ends with f(v)® and f(v?v;) starts with f(v)Y. So, we get
that v9*k+0=1 = ¢=+¥+k=3 i3 an internal factor w with ¢ x k + ¢ — 1 > ¢. It implies that
v? is an internal factor of w with |f(v)?| = |U|, i.e., f(w) and U* are synchronised.

Remark 4.2 For any pure k-power v* of w, if f(v)* is an internal factor of (x'y)kx and
if f(w) and (x)* are not synchronised, by Lemma 4.1, then either f is not k-power-free

or [xyl > [f(0)*1] > 3| f(v)].
As a corollary of Lemma 1.7 and of Lemma 3.9 in [5], we get :

Corollary 4.3 Let us assume that f(w) and (xy)*x are not synchronised and that | f(t)| >
7], for all pure k-power t* € Fets (w).

Let v* be a k-power in Min.Int.Pwrs(w).
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For any integer i, if wf’ = wlny,..My,| is @ word in L; , UR; ., we assume that my, < Ny -
When one of the four following situations holds either f is not k-power-free or there exists
a word W' such that f(w') = o' (X'v)*X's" for some words ¢, <', X' and v/ (= ) over B
satisfying X'y # €, |o'| < [f (W], [0’ < [f(W'[lw'[)], and 0 < |x"y'| < [x7I-

We also get that f(w') and (X'Y")¥x’ are not synchronised.

Furthermore, for all pure k-powers (t')* € Fcts (w'), we have |f(t')] > |7/].

1. dy =1, |Dyf(v)?| < |x| and L;, U R, # 0 for any integer j € [2,k +1].

2.dy =1, Lj, URj, # 0 for any integer j € [2,k]| and there exists a positive in-
teger ¢ such that wlny..|w|] starts with v*™2 and sup {2|f(v)[;| Dy f(v)?|} < x| <
D f(0)+1].

3. dy =0, |Dyf(v)? < |x| and L, UR;, #0 for any integer j € [1,k + 1].

4. dy =0, |Dyf(v)| < |x| < |Dyf(v)?| and L;, U R;, # 0 for any integer j € [1,k].

Proof of Corollary 4.3 is almost the same than Proof of Lemma 3.9 in [5]. Condition
My, < Nx;,, Prevents possible overlaps between consecutive x3.

Proof.
See Appendix A for figures of different cases.

Let us first note that, either f is not k-power-free or v* € Pure.Int. Pwrs(w).

Since f(x2)¥ is an internal factor of (X'y)kx, by Remark 4.2, either f is not k-power-free
or [xv| > 3|f(z2)] = 3[f(v)|. And, since |y| <|[f(v)], we have [x| > 2|f(v)].

Case (1): dy =1, |Dyf(v)?| < |x| and L;, U R;,, # 0 for any integer j € [2,k + 1].

If xj” € Lj, and dy; = 1 (including z;, = v) or if x? € R, let X; be the word Dy, and
let e; be the integer dy;. If 23 € L;, and dy; = 0, let X; be the suffix of f(z;) such that
Dy, f(x;)? = x7X; and let e; = 2. Let ¢ be an integer such that |X,| = max{|X;[;j €
[2;k 4+ 1]}. For all integers j € [2,k + 1], if dy; = 0 with x:; € Lj,, or if dy; = 1, then, by
definition, we have that X is a suffix of f(z;). If dy, = 0 with 23 € R;, then it means
that Dy = Dtz ;. But Dy is a suffix of f(v) = t1,ta;. So, it implies that X; = Dy, is a
suffix of ¢1 ; and of f(x;) = ta t1 ;.

In particular, X, is a suffix of f(z,). It follows that 0 < | X, — |X;| < [ Xq] < |f(zg)]
for all integers j € [2,k + 1]. Furthermore, if dy;, = 0 with x? € Rj, then A\, = j, and
Ay, = j — 1 otherwise. Tt follows that f(w([l..ny —1])f(z}) = oU' ' X; = o(x7)7 ' X;.

Since | X f(z;)| < 2|f(x5)| = |f(v)?] < |x|, it follows that X f(z;) is a prefix of x. Hence,
there exists a word Y'; such that x = X f(z;)Y; for all integers j € [2, k+1]. Let wy be the
prefix of w such that f(w2) = oxyXe, i.e., wa = w[l..nyx, — 1]25? and let wy12 be the suffix

of w such that f(wyyo) = Yiiis, i.e., w = wll.ng,, — 1]$iiik+1wk+2. In particular, we

have f(w[ny..nx,, — 1])f(x;ff) = f(le-+ej)ijij+1 for all integers j € [2, k]. Since f is
bifix, it implies that there exists a word w, such that f(w;) =Y ,;_1vX, for all integers

jeBk+1].
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In summary, we obtain that w = weTowsT3.. Wk 11Tkt 1 W2, f(Ww) = o(x7)*xs with xy =
X;f(z;)Y jv for all integers j € [2,k] and xv = Xyi1f(Tkt1)Y k417. Moreover, there
exists an integer ¢ € [2, k+1] such that 0 < | X,| —|X;| < |X,| < |f(zq)| and X, is a suffix
of f(xzg).
Taking Y41 = Y41 and Y; = Yy for all integers j € [2,k], by Corollary 2.10 (or
Lemma 2.8 and using Remark 2.9 (Points 3 and 4)), in particular the property of synchro-
nised words, we can reduce f(w). More precisely, let X’ be the non-empty word X,Y,
i.e., X' is the suffix of x of length |x| — |f(v)|. And let W be the shortest suffix of ws such
that f(wsy) ends with x’vX, and let w’ be the word Wows.. Wk 41 Wk t2.
We obtain that f(w') = o' (X'7)*X's for a word |o'| < |f(w'[1])] = |f(w2[1])]. And we
denote v/ =~ and ¢ =.
Let us recall that, by hypothesis, my, < ny,,,, for all integers i € [2 k]. Briefly, it means
that either w; ends by z; and w; 1 starts with x;, or w; ends by mz, or w;41 starts with
. More precisely, let 7o = w[l..ny, — 1], Thp2 = wlmy,,, + 1..Jw|] and, for all integers

xi.
€ 3, k+1], let ; = w[mx‘ L+ 1long —1]. We get that w = To237323. Thy 12}, 1 Thao

and that ' is a suffix of 37323 Tk+1$k+17'k+2, ie., w; = x?‘lln ’6”, with o; + 8; = 2

and a1 = fry2 = 0. In fact, since x1 and xio are not defined, we have wy = 7'2:652 and
Whao = x?_’ﬁlmﬁ In particular, for all integers i € [3, k], we have w;_jw;w;1w;to =
xf”;n 122 T TZ+1IZ+1TZ+2.I?+2 .

Let (#)* be a pure k-power of ', i.e., f(t')* € Fets (f(wows . .. wyy1wki2))-

If (/)% € Fets (w) then | ()] > bl = .

If (#)k ¢ Fets (w) and, for all integers i € [3,k], f(t)* ¢ Fets (f(wi—1w;wir1wis2)), it
implies that there exists an integer j such that |f(#)*| > |f(wjwj1w;i2)] > 2|xY| —
|f(v)| 2 2x| =3[ () > [f()] > =Y.
(t* §é Fets (w ) and f(t')* € Fcts( (w;— 1wiwi+1wi+2)) for an integer i € [3, k|, let us
/

Bi+ ’
denote TI_ = x S Tio1, Ty = Ty Tigq = Tigls Tipg = T7+2£ZJH_2 . Thus, we have f(t')*

Fets (f(ﬂzl) Hj:l F(@ima14)? f( i71+j)>' Let T' be the word f(7]_,) Hj:l f(@iz24j)? f(’ri71+j)'

If f(#')* ¢ Fets (T), by Corollary 1.20 with £ = k—3 and s = 3, we get that either f is not

k-power-free or |f(t')] > |f(z:)| = [f(v)| > [y] = [V/|- If f(¥')" € Fets (T) C Fets (f(w)),
let 7" be the shortest factor of T that contains f(#')¥. By Lemma 2.1, either f is not
k-power-free or T" = z*y or yx® with [f(t')| > |f(2)| > |v| = [7/]-

Case (2): dy =1, L, ,UR;,, # () for any integer j € [2, k] and there exists a positive integer
¢ such that w[n,..|w|] starts with v**2 and sup {2|f(v)|; |Dv f(v)?|} < x| < |Dyf(v)?].

In this case, y is an internal factor of f(v)®*2. More precisely, y is a prefix of D, f(v)?*!.

For every integer j € [2, k], we define X; and e; as Case (1) and we obtain that X is also
a suffix of f(z;).

If 23 € L;, with dy, = 1, then x is a prefix of the word Dy f(v)*T! = Xjto ;(ty ;12 ;)%
and soof X f(z )QH‘2 If 23 € Lj,, with dy; = 0, since (x7)? is a prefix of xyDy f(v)?*! =
XDy (t1,5t2,5) Tt = Dy, (t27Jt17J)¢+2t27J = XVX f(z;)%ta;, it follows that y is a prefix of
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X f(x;)?*
In the same way, we show that x is a prefix of X; f(z;)?** when :17;3 € Ry

Let ¢ be an integer such that |X,| = max{|X;|;j € [2;k]}. If 2% € L;,, with dy, =1, or
if 23 € R, with dy; = 0 then |X;| < |Xj,| = |X,|. Thus, if ¢ # jo, either 23 € L; , with
dy, =0, or #¥ € R;, with dy; = 1. Let § be the greatest integer such that | X, f(z4)°| <
Ix| < |qu(xq)6+1‘-

For every integer j € [2, k], since |X;f(x;)°| < |Xyf(24)°| < |x], there exists a word Y
such that y = X f(z;)°Y ;. Since x is a prefix of X, f(z,)?*2, we obtain x = X, f(z,)°Y,
with Y, a prefix of f(z,).

Let ws be the prefix of w such that f(ws) = oxyXa, let wgy1 be the suffix of w such
that f(wgi1) = Yiyxs and, for all integers j € [3,k], let w; be the word such that
flwj) =Y;a7X;.

Taking Y; = Y ;v for all integers j € [2,k], by Corollary 2.10 (or Lemma 2.8 and using
Remark 2.9(6)), we can reduce f(w). More precisely, let X’ be non-empty the word X,Y.
Accordingly, x’ is both a prefix and a suffix of y so x’ is an internal factor of f(v)®*+!.
Let wy be the shortest suffix of wy such that f(ws) ends with x'yX5. Let Wyy1 be the
shortest prefix of w41 such that f(Wg1) starts with Yyx’. There exists a word ¢’ such
that f(Wry1) = YryX's’. Let w’ be the word Wows..wyWry1. If we denote 7/ = v, we
obtain f(w') = o(x'7")*X's" where [x'| = [x| — [f(zq)] < [x]-

For any pure k-power (¢')¥ € Fcts(w'), as in Case (1), we show that either f is not
k-power-free or | f(t')| > |/

Case (3): dy, =0, |Dyf(v)?| <|x| and L;, U R;, # 0 for any integer j € [1,k + 1].

For every integer j € [1,k + 1], let X be the word Dy, f(x;) if x? € Lj, with dy; =0
(including xj, = v), or the word Dy, if #% € L;,, with dy, = 1, or if 2% € R; .

If x?’ € Ljy, let ej =1, and if x? € Rj, let e; = 0.

For any word z3 € R;,, since |Dyf(v)?| < |x| < |x7|, we necessarily have dy, = 0.
Furthermore, 0 < | X, | — |X;| = |t2,;] < |f(zjo)] = |f(v)].
If x? € Lj, and dy, = 0, we have X, = D, f(v) = Dytajt1t2; = Xjta; and so

0< |Xv| — |XJ| = |t2’j| < |f('U)| If .’E? S Lj,u and de = 1, we have thg’j = ijtZ,j =
thl,jt2,j = X, and so 0 < |Xv| — ‘Xj| = |t27j| < |f(’l))|

We have | X,| = max{|X;|;j € [1;k + 1]} and f(w[l.ng — 1)) f(z7’) = o(x7)! ™' X; for all
integers j € [1,k + 1].

Since |X;f(x;)] < |Dyf(v)?| < |x|, the word Xjf(x;) is a prefix of x. Thus, there
exist words Y; such that x = X, f(x;)Y; for all j in [1,k + 1]. Let w; be the word
w[l..ny, —1]z7* and let wi42 be the word such that wny,,..|Jw|] = :n,lcﬁk“wkw. In

particular, we have f(w1) = pXi, f(wri2) = Yiiic and, for every integer j € [1,k],

fwlnyg.ny,, — 1])f(x;f11) = f(x;+ej)Yijj+1. Since f is bifix, it implies that there

exists a word w; such that f(w;) =Y ,;_17X; for all integers j € [2,k + 1].
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By Corollary 2.10 (or Lemma 27.8)7 we can reduce f(w). More precisely, w’ = wiws..wk4+1Wk12,
o =0, ¢ =g, and ¥ = X,;Y,(# ¢) for all integers i € [1,k + 1]. We obtain f(w') =
o' () x's" with |o| < [f(w[])] = [f (wi[I)] = [f( [, ['] < [f(wllwD] = [f ([l ])],
7' = and [X'| = [x] = [f(v)] <Ix]-

For any pure k-power (¢')¥ € Fcts(w'), as in Case (1), we show that either f is not
k-power-free or |f(t')| > |7/|.

Case (4): d, =0, |Dyf(v)| < |x| < |Dvf(v)?| and L, ,UR;, # 0 for any integer j € [1, k].
Let Sy be the set of integers j such that there exists a word z? in R, with dy; = 1 but
no word in R;, with dyx;, = 0 and no word in L; .

Case 4.1: So =1}

If a:f € Rj, (with dy, = 0), if xf € Lj, with dy; = 1, or if a:;’ € Lj, with dy; = 0 and
| Dy, f(5)%] > |x| then let X; be the word Dy; and let e; = dy;. If 23 € L, with dy; =0
and |Dy, f(x;)?| < |x| then let X; be the word Dy, f(z;) and let e; = 1. For all integers
j € [1, k], we have f(w[l.ng — 1) f(z") = o(x7)’ ' X;.

For all integers j € [1,k], X;f(x;) is a prefix of x. Consequently, there exists a word Y;

such that y = X f(x;)Y ;. Since |xf(z;)| > |X; f(x;)?| > |x|, we obtain that X f(x;)? is
a prefix of (yv)?. It follows that Y; is a prefix of f(x;).

Let g be an integer such that |X,| = max{|X;|;j € [1;k]}. In particular, we have |Y |
|[f(wq)| and 0 < [Xg| — | X[ = [Y;] = [Yq| < |f(x;)] = |f(zq)] for every integer j in [L;A]
Let wy be the word w[l..ny, — 12" and let wg41 be the word such that wny,..Jw|]] =
23wy 1. Wehave f(w;) = 0X1, f(wri1) = Yryxs. We obtain that Jwng.ny,, —1]) f(z
f(ac]l-Hj )Y jvX 41 for all integers j € [1,k—1]. Since f is bifix, it implies that there exists

a word w; such that f(w;) =Y ;_1vX; for all integers j € [2, k].

<

By Lemma 2.8 and using Remark 2.9(5), we can reduce f(w).

The non-empty word X' = Xp41Y k41 is a prefix of y. Moreover, any suffix of y of length
at most max{|Y;|} is also a prefix of x’. Let Wiy; be the shortest prefix of wy41 such
that f(wWgy1) starts with x’. There exists a word ¢’ such that f(wrr1) = x's’. We take
W = wiws ... Wri1, ¥ =7, 0 = 0. Hence, f(w') = o(x'7)*xs starts with o' (x'7")*x's’.
Moreover, [o/] = ol < |F(W[I)] = |f(wr [1))] = |£(/[1])] and || < [x].

For any pure k-power (#')¥ € Fets(w'), as in Case (1), we show that either f is not
k-power-free or |f(t')| > |7/|.

Case 4.2: So #£

Let j{ € Sz and let v/ = T

If j € So, let X be the word Dy, and let e; = 1.

If j ¢ Sz, we assume that if 23 € R;, then dy; = 0 else we take 2 € L;,. If 2} € R;,
(with dy; = 0), or if % € Lj, with dy; = 0 and |Dy, f(x;)?| > |x| (for instance zj,), let
X; be the word such that Dy, f(z;)* = xX; and let ¢; = 2. If 2% € L;, with dy, = 1,
or dy, = 0 and |Dy, f(x;)?| < |x], let X; be the word such that Dy, f(z;)? = xX; and let
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e; = 3. For all integers j € [1, k], we have f(w[l..ng — 1])f(x}’) = o(x7)? X;. Especially,
the word X is a suffix of f(xz;) for every integer j € [1, k].

Let j; be an integer in Sy, i.e., :c?’l € R;, and dy, = 1. Hence, (x7)? starts with lef(:v?I).
By definition, we have xX;, = D, f(v)? = xX},t2 ;. For any word xi’ € Lj, with dy; =1,
or with dy; = 0 and |ijf(mj)2| < |x|, always by definitions, we obtain xX; = xXj,t1;.
It follows that |f(xj,)| = |[f(z;)| > |X;| > |Xj,| > |Xj,|. Furthermore, the words f(z;)
and f(z;,) are conjugated. Let 75 ; be the non-empty suffix of X; (and of f(z;)) such that
X; = X;, 19 ; and let 7y ; be the word such that f(z;) = 71 ;72,;. Since xX;, ends with
T1,5, W€ obtain f(:l?jl) = T2,57T1,5- Thus, (X’}/)2 starts with le (7'2,]'7-1,]')2 = Xjf(xj)Tl,j~
Since f is bifix, it implies that wlmy, + 1..|w|] also starts with z;. In other words, xf is
followed by z; in w.

Let g be an integer such that | X,| = max{|X,|;j € [1;k]}. In particular, 0 < |X,|—|X,| <
|f(2q)]-

Since |x| > 2|f(v)], the word X f(x;) is a prefix of x, for all integers j € [1,k]. Conse-
quently, there exists a word Y; such that x = X f(z,)Y;.

Let wo be the prefix of w such that f(wa) = gx X1, that is, we = w[l..ny, — 1]z$* and let

1] 1+ert1

w42 be the suffix of w such that f(wgi2) = Yii1S, thatis, w = Wl — Ty Weta.

Accordingly, for all integers j € [1, k—1], we have f(w[ny; .1y, , — 1])f(x;f11) = f(x;Jrej )Y jvX 1.

Since f is bifix, it implies that there exists a word w; such that f(w;) =Y ;_17X; for all
integers j € 3,k + 1].

By Lemma 2.8 and using Remark 2.9(4), we can reduce f(w). Reduction is almost the
same that case where d, = 1, |D,f(v)?| < |x|, and L;, U Rj, # 0 for every integer
J € [2,k+1]. Let us note that x’ is a suffix of x and that any prefix of x of length at most
max{|X;|} is also a prefix of x'.

For any pure k-power (#)* € Fcts(w'), as in Case (1), we show that either f is not
k-power-free or |f(t')] > [v'|.

Proposition 4.4 Let k > 5, let f be a morphism from A* to B*and let w be a word over
A.

We assume that f(w) = o(x7)*xs for some words o, s, x and v such that |o| < |f(w[1])],
<l < [f(wllwD], xv #e.

If f(w) and (x7)*x are not synchronised and if |y| < |f(t)|, for all pure k-powers t* €
Fcts (w) then f is not k-power-free.

Proof of Proposition 4.4 is done using iteratively Lemma 4.5. By induction, if f was
not k-power-free, we could find an infinite sequence (wj, xi,7i)i>o0 of words starting with
(wo, X0, Y0) = (w, X,7y) such that 0 < |x;+17¥i+1| < |xi7i|: this is impossible.

Lemma 4.5 Let k > 5, let f be a morphism from A* to B*and let w be a word over A.

We assume that f(w) = o(x7)*xs for some words o, 5, x and y such that |o| < |f(w[1])],
Is] < |f(w[|wl])| and xy # . We also assume that f(w) and (x7)*x are not synchronised,
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and that |y| < |f(t)|, for all pure k-powers t* € Fcts (w).

Then either f is not k-power-free or there exist a word & such that f(@) = o6(x7)*x<
for some words g, <, X and 7§ satisfying |o| < |f(@])], [<] < [f(@[@lD], X7 # &, and
0 < [X¥] < |x7|- Moreover, f(w) and (x¥)*X are not synchronised, and || < |f(£)| for all
pure k-powers (f)* € Fets (©).

Proof.

If f is not k-power-free, in particular, if f is not a ps-morphism then it ends the proof.
Hence, we assume that f is a ps-morphism. In particular, f is injective.

Let us denote U = xv, U = yx and S = xs: we get that f(w) = oU*S.

The words w necessarily contains a k-power. Indeed, the contrary ends the proof: f would
not be k-power-free.

For any pure k-power v* € Fets (w), since f(w) and (xy)*x are not synchronised, by

Lemma 4.1, (xv)*x and f(v)* do not have any common factor of length at least |x7| +
Lf(v)l.

Step 1 : w[2..|w| — 1] contains a k-power and so a pure-k-power.

The proof is almost the same as the corresponding step in the proof of Proposition 4.1 in

[5].

By contradiction, let us assume that w[2..|w| — 1] is k-power-free. It implies that w starts

or ends with a pure k-power. Let s; and pgio be the words such that f(w[1]) = gs; and

FWllwl]) = pr+as, that is, (x7)*x = s1.f(W[2..[w| = 1])prra.

If 51| < |(x7)*~!x| then there exists a word U.. such that s, U, is the prefix of s; f(w[2..|w| — 1]))pri2 =
(x7)*x of length |s1(x)|. Trivially, the word U, is a conjugate of xv (and |U.| = |x7|).

If |s1] + [pr+2| < |x], we naturally have |si| < [(x7)"~'x|. Moreover [si| + [UF| + [py2| <
[(x7)¥x|. Tt means that f(w[2..|w| — 1]) starts with U¥. Since w[2..|w| — 1] is a k-power-free
word, it ends the proof, f is not k-power-free.

Let us now study the case where |s1| + |pria| > |x|-

Let us recall that, since we assume that w[2..|w| — 1] is k-power-free, any pure k-power of
w = w[l..|w|] is necessarily a prefix or a suffix of it.

If w starts with a pure k-power t*, let W,,,, be the greatest prefix of sy f(#[2..|t]]) f(t*~1)
that is a factor of (x7)¥x so a common factor of a power of f(t) and a power of . Let
us note that if w = t* then Weo,, = (x77)¥x otherwise Weom = s1f(¢[2..|¢]]) f(#*1).

If [Weom| > Ixy|+|f(t)], by Corollary 1.5, there exist two words ¢; and ¢2, and two integers
r and ¢ such that f(t) = (t1t2)" and xy = (t2t1)? with 1t and tot; primitive words. Since
t* is a pure k-power, it follows that r = 1. Otherwise, f is not k-power-free. Since f(w)
and v are not synchronised, we have |f(t)| # |x7|, i-e., ¢ > 2. Thus f(w[2..|w|]) contains
(tat1)9%~! with gk — 1 > k. Either f is not k-power-free or w[2..|w|] ends with a k-power.
In this second case, by a length criterion, f(w[2..|w| — 1]) necessarily contains (tt;)7*~17¢
with gk — 1 —q > k: f is not k-power-free.

So, we have |Weom| < [x7|+|f(t)|. By definition of Wgpm, if w = t* then Weom = (x7)*x =
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s1f([2. ) fF(#*=2) f(#[1..]t| — 1])prs2 would be a common factor of f(£)* and (xv)*x with
[Weom| = 2|f(t)] and [Weom| > 2|x7v|- That is |Weem| > |f(t)] + |x7| : a contradiction.
It follows that w # t* and |Weom| = |f(£)] + |sif(¢[2..]t]) F(#*~2)|. Since |y| < |f(¢)| and
[si] < |f(t)], we get that |[Weom| > | f(£)] + 7] + 2|s1]- So it implies |s1] < |x|/2. If w does
not end with a k-power, we get that w(2..|w|] is k-power-free and f(w[2..|w]|]) contains the
k-power (yx)*: f is not k-power free.

In the case where w ends with a k-power (#')¥, we similarly obtain |pr 2| < |x|/2 and w

starts with a k-power t*. It follows that |s1| + |pri2| < |x|: a final contradiction.

Step 2: For any pure k-power v* € Fets (w[2..|w| — 1]), |f(v*72)| < |x| and the word
f(v)¥ is an internal factor of (x7v)2x, i.e., ¢, = 1,2 or 3.

For any pure k-power v¥ € Fets (w[2..Jw| — 1]), the word f(v)* is an internal factor of
(1)*x. So, by Lemma 4.1, [f(0)] < hxvl + | F(0)], Les £} < [l < [x] + [F(0)].
It follows that |f(v)*~2| < |x| and |f(v)*| < |xvx|- That is, f(v)* is an internal factor of
(x7)?x. It implies ¢, = 1,2 or 3.

Let us recall that, for every integer j € [1;k + 2 — ¢,], f(v)¥ is an internal factor of
;i (X7) 8j+e, and U; is the shortest factor of Wli;..i 4, ] such that f(?;) contains f(v)*.

Step 3: Case Sp;(w) #0

Let v* € Sp1,min(w), i.e., v is a pure k-power such that |f(v)| is minimal, and v; satisfies
P.1, for all integers j € [1,k + 2 — ¢y]. See Remark 3.1 for the notations. In particular,
let us recall that there exist a letter y; and a word x;, such that |f(v)| = |f(z;v)|, and
v; = m?yvyj or v; = ijiv'

k

We are going to see that it implies that either f is not k-power-free or f(w) can be reduced.
These reductions using Corollary 4.3 create news words w, x¥ and ¥ that satisfy all the
necessary conditions.

Let us also recall that we denote by z?ﬁ) the St factor of 2% in a k-power z*, that is,

2k = zﬁflz(gﬁ)zk’ﬂfz with 1 < g8 <k —2.

Case 3.1: ¢, =3

We have 2|f(v)| < |f(v)¥72| < |x|. Moreover, since f(v)¥ and (x7)*x do not have
any common factor of length at least |x7y| + |f(v)|, we necessarily have dy = 1 and
Dy f(42)] < x| < Do f(@* D). That is, |Dyf(v%)] < x| < | Dy f(u?*)] with ¢ = k—3
or k—2.

For every integer j € [1;k — 1], since f(va)k and (x7)¥x do not have any common
factor of length at least |xy| + |f(z;0)|, we necessarily have dy, . = 1. For every integer

j € [1;k—1], if 0; satisfies (P.1.1) then (z3,)(1) € Ljt1,0,, and if U; satisfies (P.1.2) then
(23 ,)(1) € Rj41,04,,- In other words, we have Lji14,, U Rji1,0,, # 0 with j +1 € [2;k].
By Proposition 3.3 and Corollary 4.3(2), either f is not k-power-free or we can reduce w.

Case 3.2: ¢, # 3 and there exists a positive integer 5 (< k — 2) such that dvis =1

We necessarily have ¢, = 2 and thus k+2—c, = k. Since f(v)* and (x7)*x do not have any
common factor of length at least |xy|+ |f(v)| and since ¢, = 2, we have |Dv(5)f(v([3))2\ <
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For every integer j € [1;k], if U; satisfies (P.1.1) then (23,)(5) € Ljt1,, and if 9;
satisfies (P.1.2) then (m?’v)(g) € Rjt1,0 - Thatis, Lj,, U Ry, # 0 for every integer
j € [2;k+1]. By Corollary 4.3(1), either f is not k-power-free or a reduction can be done.

Case 3.3: ¢, # 3 and, for every positive integer 5 (< k — 2), we have d, ,, =0

V(g)
It means that |D, f(v)*~2| < |x7|.

If ¢y, = 1 then |Dv(1)f(v(1))2| < |x| and Ljvoy UR ) # () for every integer j € [1; k+1].
By Corollary 4.3(3), either f is not k-power-free or a reduction can be done.

If ¢y ,, = 2, there exists an integer ¢ > f such that |Dy, f(vig)| < [x| < Dy, f(ve))?
and L, U Rjy,, # 0 for every integer j € [1;k]. By Corollary 4.3(4), either f is not
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k-power-free or a reduction can be done.

Step 4: Case Sp;(w) = 0 (and therefore £y int 7 fmin)

By Corollary 2.5 and Corollary 2.6 (see also Remark 3.7), it follows that w does not contain
any (k + 1)-power, otherwise, we would have Sp;(w) # 0.

Supposing that f is k-power-free, let us recall that, if v* is a k-power of Min.Int. Pwrs(w)
and then v is a pure k-power, i.e., v* € Pure.Int.Pwrs(w). Moreover, we necessarily have
v* € SPo.min(w) = SP2.1.min (W) USP2.a min(w). Let us also recall that if v¥ € Spa 1 min(w)
(resp. SpP2.2,min(w)), then the only integer j such that v; satisfies (P.2.1) (resp. (P.2.2))
is j =1 (resp. j = k+2—c¢,) and zf, (resp. m£+2fcv,v> is a prefix (resp. a suffix) of w.
Finally, let us recall that, if ¢ = ¢ (resp. ¢ = €), any k-power prefix (resp. suffix) of w is
an internal factor of w.

As in Step 3, we are going to see that it implies that either f is not k-power-free or f(w) can
be reduced. And again, we obtain words @, x and ¥ satisfying all the necessary conditions.
Case 4.1: Sp2amin(w) =0

We use the notations of Remark 3.1.

Let v* a pure k-power in Sp2.1 min(w). We have v7 = x’fﬁvyl with |f(x1,v)k’1| < |ma| +
|f(v)] and v; = :r?’vy or v; = yja:?’v for all integers 2 < j < k + 2 — ¢, where f(x,,)" is a
conjugated shift of f(v)*.

Let wy the word such that w = z;1 ,w; and let X; be the word such that f(z1,) = 71,1 X7.
Case 4.1.1: w does not end with a pure k-power or w ends with a pure k-power t* such
that [f(¢)] > |v] + | X4].

Let x1 be the word such that x = X7y and let v; be the word vX;. We have f(w;) =
Oam)*xas and [f(v)] > [Xa| + (k= 2)[f(z10)] > [Xa] + (k = 2)ly] > |l Since w; is
a proper suffix of w, v* € Min.Int.Pwrs(w;). Moreover, since f(z1,)*~! and f(v)* are
internal factor of (x7)*x and since f(v)* (resp. f(z1.,)*"1) and (xv)*x do not have any
common factor of length at least |xy| + | f(v)| (vesp. |x¥|+ |f(z1,)]), we necessarily have
dv =0and ¢y <2.

Case 4.1.1.1: ¢y, =1

26



We have L;, UR;, # 0 for all integers j € [2;k + 1] in f(w). But, in f(w), we get
dywy =1, |dy ., f(v)?| < |xa] and also L;, U R;, # 0. Any pure k-power prefix of w; is
in Pure.Int.Pwrs(w;). And, for any pure k-power (v')¥ in Pure.Int.Pwrs(w;), we have
If(v)] > |f(v)| > |y1|- If wy ends with a not-pure k-power z*, let t* be a pure k-power
factor of 2*. Since w; is a suffix of w, either t* is a suffix of w or t* € Int.Pwrs(w). In
both cases, we have |f(z)| > |f(t)] > Im]-

By Corollary 4.3(1), either f is not k-power-free or a reduction can be done in f(w;).
Case 4.1.1.2: ¢y, =2

We have L; , UR;, # 0 for all integers j € [2;k] in f(w). As previous case, either f is not
k-power-free or a reduction can be done in f(w;) using Corollary 4.3(2).

Case 4.1.2: w ends with a pure k-power t* such that |f(¢)| < |y| + | X1

Let wy the word such that w = z1 ,w1t[|t]], let X7 be the word such that f(z1,) = m1,1X1,
let Y7 be the word such that f(¢[|t]]) = Yis, let x1 be the word such that x = X;1x1Y1
and let y; be the word Y17 X;. We have f(wi) = (x171)*x1, f(v)F € Min.Pwrs(w;) =
Min.Int.Pwrs(wi) and |f(v)] > | X1| + (B = 2)| f(x1,0)]-

As previously, we necessarily have dy ., = 0 and ¢y, < 2.

Since k > 5, we have |f(v)| > 2[Xa] 4+ 2]7| = [Xa] + [f(O)] + [7] = [Xa| + Y1 + 7] = [ .
Let us remark that, if ¢, = 2, we do have |f(v)| > |y1| when k& = 4. Indeed, let T
be the common factor of f(t)*~'Y; and f(v)*. If |T| > |f(t)| + |f(v)|, by Lemma 1.5,
it implies that f(v) = (t1t2)" and f(t) = (t2t1)? for two positive integers r and ¢ and
two words t; and to. If r > 2 or ¢ > 2 then f is not k-power-free. If ¢ = r = 1 then
[f@®)] = 1f(0)] > |Xa]+ (k= 2)|f(x1,5)] > |X1]|+2|7|: a contradiction with the hypothesis
O] < 7l + X3l T (7] < [£0) + ()], then [£()] > [¥a] + (k — 2| F(1)] > 2% + 1.
Since [f(u)] > 2\X| + 7], we get that |£(1)] > .

As in Case 4.1.1, either f is not k-power-free or a reduction can be done in f(w;) using
Corollary 4.3(1) when ¢, = 1 or Corollary 4.3(2) when ¢, ,, = 2.

Case 4.2: Sp21 min(w) =0

This case is the mirror image of Sp2 .2 min(w) = 0.
Case 4.3: Sp2.1,min(w) N Sp2.2,min(w) # 0

Let v* a pure k-power in SP2.1,min (W) N SP2.2,min(w).

Since f(v)* (resp. f(21,,)* and f(Tri2-c,0)") and (x7)*x do not have any common
factor of length at least x| + |f(v)| (resp. |xy|+ |f(z1.)] and |xv| + |f(Zk+2—c,)]), We
necessarily have d, ,, = 0 and ¢y, = 1.

Let wy the word such that w = 1 yw1Tk41,0, let X1 be the word such that f(z1,) =
m1,1X1, let Y7 be the word such that f(xyi1,.) = Y102 k41, let x1 be the word such that
X = X1x1Y: and let y; be the word Yi7X;. We have f(wi) = (x1m1)¥x1 and |f(v)| >
max{| f (@} ;) = ma i [ f (@] )| = ook} > max{| X |+ [ f(z10)]; [Vi]+ | f(@hg1,0) 1} +
(k =3yl = [Xa] + M+ || = Inl

k+1 k+1
1

Since 21" and x; 7], are not factor of w, we get that f(v)"* € Min.Int.Pwrs(w;).
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We have L;, UR;, # 0 for all integers j € [2;k] in f(w). In f(w1), we get dyo, = 1,
2| f(v)| < |D, wlf( )k 2| < |x1] < | Dy, f(v)*~1| and also L, , UR;,, # 0. Either f is not
k-power-free or a reduction can be done in f(w;) using Corollary 4.3(2).

Case 4.4: SpZ.l,min(w) N Sp2.2,min(w) = (Z) with Sp2‘1,min(w) 7é (Z) and SP2.2,mm(W) 7& (Z)
Let v* a pure k-power in Sp2.1,min(w) and let (v')* a pure k-power in Sps 2 min(w). By
definition, we have |f(v)| = |f ()]

Since f(v)¥ (resp. f(z1.,)¥) and (x7)¥x do not have any common factor of length at least
[xv| + |f ()] (resp. |xv|+ |f(x1,4)]), we necessarily have dy ,, = 0 and ¢y, < 2.

If ¢y, = 2, we get that a power of f(v')F is an internal factor of f(z1,)*f(v)* with
|f(v")*=1| < |x7y|. By Lemma 1.5, it implies that f(v)* and f(v')* are conjugated words.
Since w does not contain v**1 and v* ¢ Spa 1 ymin(w), it is impossible. Thus ¢y, = 1.

Let wy the word such that w = 1 yw1Tky1,,-. Let Y7 be the word such that f(zpi1.,) =
Y109 k41 = Yic, We define the words X1, x1 and 7 as in previous case. We have f(w;) =
(x171)*x1 and f(v)F € Min.Int.Pwrs(w;).

Moreover, |f(v)| > mas{| f(@¥, )] — lel: £} )] = ol} > max{|X1| + | f(z1)]: [¥a] +
|F@rrron)} + (k= 3)7] = 1X2] + ¥l + 1yl = -

As in previous cases, either f is not k-power-free or a reduction can be done in f(w;) using
Corollary 4.3(2).

Corollary 4.6 Let A and B be two alphabets and let k > 5 be an integer. A k-power-free
morphism is a (k + 1)-power-free morphism.

Proof.

Let f be morphism from A* to B*. We assume that f is not (k + 1)-power-free and we
want to show that f is not k-power-free.

The morphism f must be a ps-morphism. Otherwise, f is not k-power-free: it ends the
proof.

Let w be a shortest (k + 1)-power-free word which image by f contains a (k 4+ 1)-power.
That is f(w) = pu**1s for a non-empty word u over B and |w| = n is minimal.

By the criterion of minimal length of w, p is a proper prefix of f(w[1]) and s is a proper
suffix of f(w[w]]).

If f(w) and u**! are synchronised, by Lemma 1.16, w contains a (k + 1)-power: a contra-
diction with the definition of w.

Taking 0 = p, ¢ = s, v = ¢ and x = u, by Proposition 4.4, f is not k-power-free. 5

Remark 4.7 The results in Proposition 4.4, Lemma 4.5 and in Corollary 4.6 are no
longer true for k = 4 because of the case 4.1.2 of the proof of Lemma 4.5.
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A Figures for Corollary 4.3
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Figure 7: Example of a reduction using case 1 of Corollary 4.3 with U?l) when k =4
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Figure 8: Example of a reduction using case 2 of Corollary 4.3 with v?
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Figure 9: Example of a reduction using case 3 of Corollary 4.3 with v?
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Figure 10: Example of a reduction with v?l) using case 4 of Corollary 4.3 when k£ = 4 and
Sy = 0.

Let us remark that, in this example, a reduction with U?z) using case 1 of Corollary 4.3 can
also be used.
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Figure 11: Example of a reduction with ”?1) using case 4 of Corollary 4.3 when k = 4 and

Sy #0
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Different cases for xi’ in case 1 of Corollary 4.3

Let us recall that d, = 1, | Dy f(v)?| < |x| and L;, UR;, # 0 for any integer j € [2,k+ 1].

yai X Y xY
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fxi) f(x:)
e S _ dy=1, x in L,
X; Yi
D,
JS(Cxi) S (i) :
: t EAC) B _ dy,=0, x; in L;,
""" T\' Xi Yi
I—LE f(xl-) :'L' _ Xm:L x; in Ri,v
Xi Yi
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Different cases for xi’ in case 2 of Corollary 4.3

Let us recall that dy = 1, L;, U R;, # ( for any integer j € [2,k] and there exists a
positive integer ¢ such that wln,..|w|] starts with v**2 and sup {2|f(v)];|Dy f(v)?|} <
IX| < [Dyf(v)?*].

xrY x Y XY
X,
T e Py Lo
i v
f(xi f(x)
O e S ) B e W _ dy=1, % in L;,
- Y
O RO }
D, — — S — dy=0, x; in L;,
’ Y.
f(x) _ f(x1)
L — SO d.=1, x;in R;,
I = ! :
D,. !
- L) f(xi)
— J(x) t S dy=0, x; in R,
f)i b
X inl
XY x Y XY
X
‘ f» e o) ,
! 1 LUUT - !
—L T
‘ f(xi) . f(xi) ‘
! 1 e
X 7
D, Yi
S N O
D, ! .
o iz
Lo )
! 1 e
X T —
L 1
D, Y
S f)
; . |
B Y
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Different cases for xi’ in case 3 of Corollary 4.3

Let us recall that d, = 0, | D, f(v)?| < |x| and L;, UR;, # 0 for any integer j € [1,k+1].

_______ XY x Y XY
— 7
S(xi) J(xi)
L — JGxi) — dy=1, x;in L;,
S F(x)
Jx0) ——O dy=0, x; in L;,
ot Yi
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f(\"> ......
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Different cases for z? in case 4 of Corollary 4.3 when S, = ()

Let us recall that d, = 0, |Dy f(v)| < |x| < |Dyf(v)?| and L;, U R;, # 0 for any integer

Jj e 1,k

Xy

XY

/()

J(x)

S(xi)

dy,=0, x;in L;,,
Dy, f(x)|<Ix|

dxl.:O, Xi in Li,v

Dy, fxi)’|2 I
S(x:)

' d,=0, x; in R;,

dx =1, Xi in Lz}v

f(xi)

/‘(,\‘[)

S(xi) K

/( ,\’1’)
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Different cases for z? in case 4 of Corollary 4.3 when S, # ()

Let us recall that d, = 0, |Dy f(v)| < |x| < |Dyf(v)?| and L;, U R;, # 0 for any integer

xiin L;,
Dy, f(xi)"[<|U]

d =0, x;in L;,
[Dy, f(xi)'|> U

dy,=0, x; in R;,

dy=1, x; in R;,
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........ X'Y X
D,y WL e
R Y [ Wy e G0 S
X, 7
)
Do f) T i)
4% Y
D, ) /G S
X; Y,
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X, ) -
D, i
XY X
D, sy Wi
. | T
fo ) f5)
. | . ;
f(x)
Dy, f(xi) ,
X v
{0 N e
. SR
f(xi)
X; f(xi)
D Y
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