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A k-power-free morphism is a (k + 1)-power-free morphism for any integer k ≥ 5

For any integer k ≥ 5, we show that a morphism that preserves k-power-free words also preserves (k + 1)-power-free words.

Lemma 1.6 Let k ≥ 3 be an integer. Let v and v be two conjugated words over A.

If v k is a pure k-power over A then the same holds for v k .

Proof.

Let us assume that v = v 1 v 2 and v = v 2 v 1 for two words v 1 and v 2 over A. And, by contradiction, let us assume that v k is not a pure k-power, that is, (v 2 v 1 ) k = v k = t 1 t k t 2 with t and t 1 t 2 non empty words.

By Lemma 1.5, we get that v is not primitive, i.e., v k is not pure: a final contradiction.

Lemma 1.7 Let k ≥ 3 be an integer, let α and β be two words, and let Y k be a pure k-power over an alphabet B. For any pure k-power X k over B and for any integer

Proof.

If X k ∈ Fcts αY k--1 β , there exist two words γ and δ such that αY

a contradiction with the hypotheses. Therefore, we have |α| > |γ|. In a same way, we get that |β| > |δ|. It follows that Y k--1 is an internal factor of X k .

Introduction and preliminaries

The purpose of this article is to answer a question I was asked a few years ago. It will mainly interest those who asked me about it. But also maybe a few other people.

Let us recall some basic notions of Combinatorics of words.

Words

An alphabet A is a finite set of symbols called letters. Since an alphabet with one element is of limited interest to us, we always assume that the cardinality of alphabets is at least two. A word over A is a finite sequence of letters from A. The empty word ε is the empty sequence of letters. Equipped with the concatenation operation, the set A * of words over A is a free monoid with ε as neutral element and A as set of generators.

Given a non-empty word u = a 1 . . . a n , with a i ∈ A for every integer i from 1 to n, the length of u denoted by |u| is the integer n, that is, the number of letters of u. By convention, we have |ε| = 0. The mirror image of u, denoted by ũ, is the word a n . . . a 2 a 1 .

A word u is a factor of a word v if there exist two (possibly empty) words p and s such that v = pus. We denote by Fcts(v) the set of all factors of v. If u ∈ Fcts(v), we also say that v contains the word u (as a factor). If p = ε, u is a prefix of v. If s = ε, u is a suffix of v. If u = v, u is a proper factor of v. If u, p, and s are non-empty words, u is an internal factor of v.

Two words u and v are conjugated if u = t 1 t 2 and v = t 2 t 1 for two (possibly empty) words t 1 and t 2 .

1

Let w be a non-empty word and let i, j be two integers such that 0 ≤ i -1 ≤ j ≤ |w|. We denote by w[i..j] the factor of w such that |w[i..j]| = j -i + 1 and w = pw[i..j]s for two words s and p satisfying |p| = i -1. Note that, when j = i -1, we have w[i..j] = ε. When i = j, we also denote by w[i] the factor w[i..i], which is the i th letter of w. In particular, w [1] and w [|w|] are respectively the first and the last letter of w.

Powers of a word are defined inductively by u 0 = ε, and for every integer n ≥ 1, u n = uu n-1 . Given an integer k ≥ 2, since the case ε k is of little interest, we call a k-power any word u k with u = ε. Given an integer k ≥ 2, a word is k-power-free if it does not contain any k-power as factor. A primitive word is a word that is not a k-power of another word whatever the integer k ≥ 2. A (non-empty) k-power v k is called pure if any proper factor of v k is k-power-free. In particular, we say that v k is a pure k-power of a word w if v k ∈ Fcts(w) and v k is pure. Repeating the fact that a non-pure k-power contains a k-power, which is itself pure or not, we obtain that any k-power contains a pure k-power. Moreover, if v k is a pure k-power then v is primitive but the converse does not hold.

Remark 1.1 A word cannot start with two different pure k-powers.

The following proposition gives the well-known solutions (see [START_REF] Lothaire | Combinatorics on words[END_REF]) to two elementary equations on words and will be widely used in the following sections: Proposition 1.2 Let A be an alphabet and u, v, w three words over A.

1. If vu = uw and v = ε, then there exist two words r and s over A, and an integer n such that u = r(sr) n , v = rs and w = sr. 2. If vu = uv, then there exist a word w over A, and two integers n and p such that u = w n and v = w p .

We also need a property on words that is an immediate consequence of Proposition 1.2(2).

Lemma 1.3 [1,2] If a non-empty word v is an internal factor of vv, i.e., if there exist two non-empty words x and y such that vv = xvy, then there exist a non-empty word t and two integers i, j ≥ 1 such that x = t i , y = t j , and v = t i+j .

We also use a well-known result on combinatorics on words:

Proposition 1.4 (Fine and Wilf ) [START_REF] Lothaire | Combinatorics on words[END_REF][START_REF] Lothaire | Algebraic Combinatorics on words, volume 90 of Encyclopedia of Mathematics[END_REF] Let x and y be two words. If a power of x and a power of y have a common prefix of length at least equal to |x| + |y| -gcd(|x|, |y|) then x and y are powers of the same word.

As a consequence of Proposition 1.4, we get:

Corollary 1.5 (Keränen) [1] Let x and y be two words. If a power of x and a power of y have a common factor of length at least equal to |x| + |y| -gcd(|x|, |y|) then there exist two words t 1 and t 2 such that x is a power of t 1 t 2 and y is a power of t 2 t 1 with t 1 t 2 and t 2 t 1 primitive words. Furthermore, if |x| > |y| then x is not primitive.

Having |Y k--1 | ≥ |X| + |Y | means that a power of X and a power of Y have a common factor of length at least |X| + |Y |. By Corollary 1.5, there exist two words X 1 and X 2 and two integers i and j such that X = (X 1 X 2 ) i and Y = (X 2 X 1 ) j with X 1 X 2 and X 2 X 1 primitive words. Since X k and Y k are pure k-powers, it implies that i = j = 1. We get that α(X 2 X 1 ) k--1 β = γ(X 1 X 2 ) k δ with |α| > |γ| and |β| > |δ|. But X 2 X 1 is not an internal factor of (X 2 X 1 ) 2 . Thus α ends with X 1 and β starts with X 2 . If follows that (X 1 X 2 ) k = X k ∈ Fcts αY k-β : a contradiction with the hypotheses.

So, we necessarily have |Y k--2 | < |X|.

Even if we can work with the previous lemma, in fact, the different situations we will encounter are similar of the hypotheses of the following corollary. Let us recall that we denote s j=1 w j the concatenation of the s words w 1 , w 2 , . . . , w s .

Lemma 1.8 Let k ≥ 3 and s ≥ 1 be two integers, let α 0 , α 1 , . . . , α s be s + 1 words over an alphabet B, and let Y k 1 , Y k 2 , . . . , Y k s be s pure k-powers over B of the same length k × L. For any pure k-power X k over B and for any integer

0 ≤ ≤ k -3, if X k ∈ Fcts α 0 s i=1 Y k--1 i α i and X k / ∈ Fcts α 0 s i=1 Y k- i α i , then |X| > (k --2)×L.
Proof.

This proof is done by induction on s.

The property is obtain for s = 1 by Lemma 1.7. Let us assume that the property is satisfied for an integer s.

Let α 0 , α 1 , . . . , α s+1 be s+2 words over an alphabet B, and let Y k 1 , Y k 2 , . . . , Y k s+1 be s+1 pure k-powers over B of the same length k × L. Let X k be a pure k-power over B and let 0 ≤ ≤ k -3 be an integer such that

X k ∈ Fcts α 0 s+1 i=1 Y k--1 i α i and X k / ∈ Fcts α 0 s+1 i=1 Y k- i α i .
There exist two words π and σ such that

πX k σ = α 0 s+1 i=1 Y k--1 i α i . If |σ| ≥ |α s+1 |, then X k ∈ Fcts α 0 s i=1 Y k--1 i α i Y k--1 s+1 . But X k / ∈ Fcts α 0 s i=1 Y k- i α i Y k--1 s+1 (it is a subset of Fcts α 0 s+1 i=1 Y k- i α i .
Taking

α s Y k--1 s+1 instead of α s , by induction hypothesis, we get that |X| > (k --2) × L.
On the same way, if |π| ≥ |α 0 |, taking Y k--1 1 α 1 for α 0 and α i for α i-1 for all integers 2 ≤ i ≤ s + 1, by induction hypothesis, we get that |X| > (k --2) × L.

Thus |σ| < |α s+1 | and |π| < |α 0 |, that is s i=1 Y k--1 i α i Y s+1 and, in particular, Y k--1 1 are internal factors of X k . As we have done in the proof of Lemma 1.7, if |Y k--1 1 | ≥ |X| + |Y 1 | by Corollary 1.5 and since X k and Y k
1 are pure k-powers, there exist two words X 1 and X 2 such that X = X 1 X 2 and Y 1 = X 2 X 1 with X 1 X 2 and X 2 X 1 primitive words. But X 2 X 1 is not an internal factor of (X 2 X 1 ) 2 . Thus α 0 ends with X 1 and α 1 starts with 

X 2 . If follows that (X 1 X 2 ) k = X k ∈ Fcts α 0 Y k- 1 α 1 ⊂ Fcts α 0 s+1 i=1 Y k- i α i :

Morphisms

Let A and B be two alphabets. A morphism f from A * to B * is a mapping from A * to B * such that f (uv) = f (u)f (v) for all words u, v over A. When B has no importance, we say that f is a morphism on A or that f is defined on A.

Given an integer

L, f is L-uniform if |f (a)| = L for every letter a in A. A morphism f is uniform if it is L-uniform for some integer L ≥ 0.
Given a set X of words over A, and given a morphism f on A, we denote by f (X) the set {f (w) | w ∈ X}.

A morphism f on A is k-power-free if and only if f (w) is k-power-free for every k-powerfree word w over A. For instance, the empty morphism (∀a ∈ A, (a) = ε) or the identity endomorphism Id (∀a ∈ A, Id(a) = a) are k-power-free.

We say that a morphism is non-erasing if, for all letters a ∈ A, f (a) = ε. The empty morphism is the only morphism that is both erasing and k-power-free. Indeed, for any non-empty erasing morphism f , there exist two different letters a and b in A (remember Card(A) ≥ 2) such that f (a) = ε, f (b) = ε, and so f (aba k-1 ) contains a k-power.

A morphism on A is called prefix (resp. suffix ) if, for all different letters a and b in A, the word f (a) is not a prefix (resp. not a suffix) of f (b). A prefix (resp. suffix) morphism is non-erasing. A morphism is bifix if it is prefix and suffix.

Given a morphism f on A, the mirror morphism f of f is defined for all words w over A, by f (w) = f ( w). In particular, f (a) = f (a) for every letter a in A. Note that f is k-power-free if and only if f is k-power-free.

Proofs of the three following lemmas are left to the reader. Lemma 1.9 Let f be a bifix morphism on an alphabet A and let u, v, w, and t be four words over A. The equality f (u) = f (v)p where p is a prefix of f (w) implies u = vw for a prefix w of w such that f (w ) = p. Symetrically, the equality f (u) = sf (v) where s is suffix of f (t) implies u = t v for a suffix t of t such that f (t ) = s. Lemma 1.10 Let f be a prefix morphism on an alphabet A, let u and v be words over A, and let a and b be letters in A. Furthermore, let p 1 (resp. p 2 ) be a prefix of f (a) (resp. of

f (b)). If (p 1 ; p 2 ) = (ε; f (b)) and if (p 1 ; p 2 ) = (f (a); ε) then the equality f (u)p 1 = f (v)p 2 implies u = v and p 1 = p 2 .
Lemma 1.11 Let f be a suffix morphism on an alphabet A, let u and v be words over A, and let a and b be letters in A. Furthermore, let s 1 (resp. s 2 ) be a suffix of f (a) (resp. of

f (b)). If (s 1 ; s 2 ) = (ε; f (b)) and if (s 1 ; s 2 ) = (f (a); ε) then the equality s 1 f (u) = s 2 f (v) implies u = v and s 1 = s 2 .
Definition 1.12 A morphism f from A * to B * is a ps-morphism (Keränen [1] Obviously, taking c = b, and s = ε in a first time and p = ε in a second time, we obtain that a ps-morphism is a bifix morphism. Lemma 1.13 [1,2] If f is not a ps-morphism then f is not a k-power-free morphism for all integers k ≥ 2.

Lemma 1.14 [START_REF] Wlazinski | Reduction in non-(k + 1) power-free morphisms. Submited to A Special Issue of TIA dedicated to the[END_REF] Let f be a ps-morphism from A * to B * and let u, v and w be words over A such that f (u) = δβ, f (v) = αβ, and f (w) = αγ for some non-empty words α, β, γ, and δ over B. Then it implies that v = v 1 av 2 , u = u 1 bv 2 , and w = v 1 cw 2 for some words v 1 , v 2 , u 1 , and w 2 , and some letters a, b, and c. Moreover, we have either b = a or c = a.

Furthermore, if |δ| < |f (u[1])| then u 1 = ε and if |γ| < |f (w[|w|])| then w 2 = ε.
Assuming that f (w) = pu k s for a factor w of a word w and a non-empty word u, and assuming that w contains a factor w 0 such that |f (w 0 )| = |u|, if f is a ps-morphism, Lemma 1.16 states that w necessarily contains a k-power w k such that f (w ) is a conjugate of u. We will say that f (w) contains a synchronised k-power u k or that f (w) and u k are synchronised. More precisely: Definition 1.15 Let k ≥ 2 be an integer. Let f be a morphism from A * to B * , w be a word over A, and u be a non-empty word over B such that f (w) contains the k-power u k . Let w be a shortest factor of w whose image by

f contains u k , i.e., f (w) = pu k s with |p| < |f (w[1])| and |s| < |f (w[|w|])|.
We say that f (w) and u k are synchronised if there exist three words w 0 , w 1 , and w 2 such that |f (w 0 )| = |u| and w = w 1 w 0 w 2 with p = ε if w 1 = ε, and s = ε if w 2 = ε. Lemma 1.16 [START_REF] Wlazinski | Reduction in non-(k + 1) power-free morphisms. Submited to A Special Issue of TIA dedicated to the[END_REF] Let k ≥ 2 be an integer. If f is a ps-morphism and if f (w) contains a synchronised k-power then w contains a k-power.

Remark 1.17 [START_REF] Wlazinski | Reduction in non-(k + 1) power-free morphisms. Submited to A Special Issue of TIA dedicated to the[END_REF] More precisely, the word w starts or ends with a k-power which image by f is a conjugated of the synchronised k-power.

Lemma 1.18 [START_REF] Wlazinski | Reduction in non-(k + 1) power-free morphisms. Submited to A Special Issue of TIA dedicated to the[END_REF] Let k ≥ 4 be an integer. The image of a pure k-power by a k-power-free morphism is also a pure k-power.

As direct consequences of Lemmas 1.7, 1.8 and 1.18, we get the two following corollaries: Corollary 1.19 Let k ≥ 4 be an integer and let f be a morphism from A * to B * . Let α and β be two words over B and let v k be a pure k-power over A. For any pure kpower t k over A and for any integer

0 ≤ ≤ k -3, if f (t) k ∈ Fcts αf (v) k--1 β and f (t) k / ∈ Fcts αf (v) k-β then either f is not k-power free or |f (t)| > (k --2)|f (v)|.
Corollary 1.20 Let k ≥ 4 and s ≥ 1 be two integers and let f be a morphism from A * to B * . Let α 0 , α 1 , . . . , α s be s + 1 words over B, and let

v k 1 , v k 2 , . . . , v k s be s pure k-powers such that |f (v i )| = L for all integers 1 ≤ i ≤ s.
For any pure k-power t k over A and for any integer

0 ≤ ≤ k -3, if f (t) k ∈ Fcts α 0 s i=1 f (v i ) k--1 α i and f (t) k / ∈ Fcts α 0 s i=1 f (v i ) k-α i then either f is not k-power free or |f (t)| > (k --2) × L.
2 Reduction of a power 2.1 About k-power-free morphisms Lemma 2.1 [START_REF] Wlazinski | Reduction in non-(k + 1) power-free morphisms. Submited to A Special Issue of TIA dedicated to the[END_REF] (see Figure 1) Let k ≥ 4 be an integer. Let f be a ps-morphism from A * to B * . Let v and T be non-empty words over A such that v k is a pure k-power. Let us assume that

f (T ) = π 1 f (v) k σ 2 with |π 1 | < |f (T [1])| and |σ 2 | < |f (T [|T |])|.
Then one of the following holds:

• (P.1) : There exist a pure k-power x k , a word y over A, and a word Z over B such that

(P.1.1) : T = x k y, |y| ≤ 1, f (y) = π 1 σ 2 , f (x) = π 1 Z, and f (v) = Zπ 1 (P.1.2) : or T = yx k , |y| = 1, f (y) = π 1 σ 2 , f (x) = Zσ 2 , and f (v) = σ 2 Z.
• (P.2) : There exist a pure k-power x k and a non-empty word y over A such that (P.2.1)

: T = x k y with |f (x k-1 )| < |π 1 f (v)| (P.2.2) : or T = yx k with |f (x k-1 )| < |f (v)σ 2 |.
• (P.3) : f is not k-power-free. With hypotheses and notations of Lemma 2.1, if f (T ) and f (v) k are synchronised (this is obviously the case when f is a uniform ps-morphism) then either f is not k-power-free or T satisfies (P.1).

Remark 2.3 If T and v k are factor of the same word ω and if f (v) k is a shortest k-power in ω then T can not satisfy (P.2).

Corollary 2.4 [5]

Let k ≥ 4 be an integer. Let f be a ps-morphism from A * to B * . Let v k and t k be two pure k-powers over A. Let us assume that f

(t k ) = π 1 f (v) k σ 2 with |π 1 | < |f (t[1])| and |σ 2 | < |f (t[|t|])|. If π 1 = ε or if σ 2 = ε then f is not k-power-free.
Corollary 2.5 [START_REF] Wlazinski | Reduction in non-(k + 1) power-free morphisms. Submited to A Special Issue of TIA dedicated to the[END_REF] Let k ≥ 4 be an integer. Let f be a ps-morphism from A * to B * . Let v and T be non-empty words over A such that v k is a pure k-power. Let us assume that

f (T ) = π 1 f (v) k+1 σ 2 with |π 1 | < |f (T [1])| and |σ 2 | < |f (T [|T |])|.
Then either f is not k-power-free or there exist a pure k-power x k , a word Y over A, and a word Z over B such that

(P.1.1) : T = x k+1 Y , |Y | ≤ 1, f (Y ) = π 1 σ 2 , f (x) = π 1 Z, and f (v) = Zπ 1 (P.1.2) : or T = Y x k+1 , |Y | = 1, f (Y ) = π 1 σ 2 , f (x) = Zσ 2 , and f (v) = σ 2 Z.
Let α, β, and γ be three integers such that γ ≤ α and β ≤ α -γ + 1. We denote v γ (β) the

β th factor of v γ in v α that is v α = v β-1 v γ (β) v α-γ+1-β . In particular, when γ = 1, v (β) is the β th successive factor of v in v α .
By Corollary 2.2 and Corollary 2.5, we immediatly get: Corollary 2.6 Let α and k be two integers such that α ≥ k + 1 ≥ 5. Let f be a psmorphism from A * to B * . Let v and T be non-empty words over A such that v k is a pure k-power. Let us assume that

f (T ) = π 1 f (v) α σ 2 with |π 1 | < |f (T [1])| and |σ 2 | < |f (T [|T |])|. For any integer 1 ≤ β ≤ α -k + 1, the word T (β) such that f (T (β) ) = π (β),1 f (v k (β) )σ (β),2 with |π (β),1 | < |f (T (β) [1])| and |σ (β),2 | < |f (T (β) [|T (β) |])| satisfies (P.1).

Equations of reduction

Lemma 2.7 [START_REF] Wlazinski | Reduction in non-(k + 1) power-free morphisms. Submited to A Special Issue of TIA dedicated to the[END_REF] Let α 1 , α 2 , β 1 , β 1 , β 2 , γ 1 , γ 2 be words over an alphabet B such that

|β 1 | = |β 2 | = 0, β 1 is a proper suffix of β 1 , and 0 ≤ |α 2 | -|α 1 | ≤ |β 1 |. Under these hypotheses, the equality α 2 β 2 γ 2 = α 1 β 1 β 1 γ 1 implies α 2 γ 2 = α 1 β 1 γ 1 .
Lemma 2.8 [START_REF] Wlazinski | Reduction in non-(k + 1) power-free morphisms. Submited to A Special Issue of TIA dedicated to the[END_REF] Let κ ≥ 3 be an integer. Let f be a morphism from A * to B * . Let (w i ) i=1..κ+1 and (x i ) i=1..κ be words over A such that |f

(x i )| = |f (x j )| = 0 for all integers i, j in [1, κ].
We denote by w the word w 1 x 1 ...w κ x κ w κ+1 .

We assume that there exist words u, p, s, (X i ) i=1..κ , and

(Y i ) i=1..κ over B such that f (w 1 ) = pX 1 , f (w κ+1 ) = Y κ s, and f (w i ) = Y i-1 X i for all 2 ≤ i ≤ κ. Moreover, we assume that, for all integers i in [1, κ], we have u = X i f (x i )Y i . It means that f (w) = pu κ s.
Let us also assume that there exists an integer q such that, for every integer i in

[1, κ], 0 ≤ |X q | -|X i | ≤ |X q |
where X q is a common suffix of X q and f (x q ). Then the word w = w 1 w 2 ...w κ w κ+1 satisfies f ( w) = pǔ κ s with ǔ = X i Y i for every integer i in [1, κ].

In particular, f ( w) and ǔκ are synchronised only if f (w) and u κ are synchronised.

The situation described in Figure 2 is an example of a case where the hypotheses of Lemma 2.8 hold. We say that we have reduced w.

Let us note that p is not necessarily a prefix of f (w 1 [1]) and s is not necessarily a suffix of 

f (w κ [|w κ |]).
| of |Y i | (i.e., |X q | is the minimum of |X i |), the condition "0 ≤ |X q | -|X i | ≤ |X q |
where X q is a common suffix of X q and f (x q )" of Lemma 2.8 can 

≤ |Y q | -|Y i | ≤ |Y q | where Y q is a common prefix of Y q and f (x q )". 2. A prefix u 1 of u is also a prefix of ǔ if |u 1 | < |X q |, and a suffix u 2 of u is also a suffix of ǔ if |u 2 | < max |Y j |. 3. If, instead of u = X κ f (x κ )Y κ , we only have that X κ f (x κ )Y κ is a prefix of u (see Figure 3) then f ( w) = pǔ κ-1 X κ Y κ s with X κ Y κ prefix of ǔ.
4. If q = 1 and X q is a suffix of f (x q ), i.e., X q = ε (see Figure 4), then we do not need x 1 and optionally not w 1 in the hypotheses of Lemma 2.8. Conclusion remains true

with u = X 1 Y 1 , w 2 = w 1 w 2 or w 2 , f (w 2 ) = pX 1 Y 1 X 2 , w = w 2 x 2 w 3 ...w κ x κ w κ+1
, and w a (not necessarily proper) suffix of w 2 w 3 ...w κ w κ+1 5. By mirror image of Case 4, we get that, if q = κ and Y q is a prefix of f (x q ) then we do not need x κ and optionally not w κ+1 in the hypotheses of Lemma 2.8.

Conclusion remains true with

u = X κ Y κ , w κ = w κ w κ+1 or w κ , f (w κ ) = Y κ-1 X κ Y κ s, w = w 1 x 1 w 2 ...w κ-1 x κ-1 w κ ,
and w a (not necessarily proper) prefix of w 1 w 2 ...w κ-1 w κ .

6. As a combination of Case 4 and Case 5, we get that, if q = 1, q = κ, X q is a suffix of f (x q ), and Y q is a prefix of f (x q ) then we do not need neither

x 1 nor x κ in the hypotheses of Lemma 2.8. Conclusion remains true with u = X 1 Y 1 = X κ Y κ , w 2 = w 1 w 2 or w 2 , w κ = w κ w κ+1 or w κ , f (w 2 ) = pX 1 Y 1 X 2 , f (w κ ) = Y κ-1 X κ Y κ s, w = w 2 x 2 w 3 ...w κ-1 x κ-1 w κ ,
and w a (not necessarily proper) factor of w 2 w 3 ...w κ-1 w κ .

For any positive integer , since |f

(x i )| = |f (x j )| is equivalent to |f (x i )| = |f (x j )
| and since a prefix (resp. a suffix) of f (x i ) is a prefix (resp. a suffix) of f (x i ), we immediately obtain the following Corollary that will be the central point of proof of Lemma 4.5.

Corollary 2.10 (method of reduction) [START_REF] Wlazinski | Reduction in non-(k + 1) power-free morphisms. Submited to A Special Issue of TIA dedicated to the[END_REF] Let κ ≥ 3 and ≥ 1 be two integers, let α be an integer in {1, 2} and let β be an integer in {κ -1, κ}

Let f be a morphism from A * to B * and let (w i ) i=α..β+1 , (x i ) i=α..β be words over A such that |f

(x i )| = |f (x j )| = 0 for all integers i, j in [α, β].
We denote by w the word w α x α ...w β x β w β+1 .

We assume that there exist u, p, s,

(X i ) i=α..β and (Y i ) i=α..β words over B such that f (w i ) = Y i-1 X i for all integers i in [1 + α; β]. Furthermore, we also assume that f (w α ) = pu α-1 X 1 and f (w β+1 ) = Y κ u κ-β s where u = X i f (x i )Y i ( = ε) for all integers i in [α, β]: it means that f (w) = pu κ s.
Finally, we assume that there exists an integer q such that, for any integer i in

[α, β], 0 ≤ |X q | -|X i | ≤ |X q | where X q is a common suffix of X q and f (x q ), 0 ≤ |X q | -|X i | ≤ |f (x q )| when α = 2, or 0 ≤ |Y i | -|Y q | ≤ |f (x q )| when β = κ -1.
Then, for any integer 0 ≤ φ < , the word

w = w α x φ α ...w β x φ β w β+1 satisfies f (w ) = pu κ s with u = X i f (x φ i )Y i for any integer i in [1; κ].
In particular, f (w ) and u κ are synchronised only if f (w) and u κ are synchronised.

Situations of reduction

Let k ≥ 4 be an integer. Let f be a morphism from A * to B * and let ω be a word over A such that f (ω) = (χγ) k χς for some words , χ, γ and ς over B such that χγ = ε,

| | < |f (ω[1])| and |ς| < |f (ω[|ω|])|.
We denote U = χγ and S = χs. In particular, when γ = ε, we get that f (ω) = U k+1 ς.

For any integer j in [1, k + 1], let i j the smallest integer such that (χγ) j-1 is a prefix of f (ω[1..i j ]). And let i j be the smallest integer such that (χγ) j-1 χ is a prefix of f (ω[1..i j ]). In particular, we have i 1 = 1, and i k+1 = |ω| (see Figure 5). By convention, let i k+2 = i k+1 . Furthermore, there exist words p j , p j , s j and s j such that,

f (ω[i j ]) = p j s j , f (ω[i j ]) = p j s j , p 1 = , s k+2 = ς p j = ε if j = 1 and s 1 = ε, f (ω[1..i j ]) = (χγ) j-1 s j and f (ω[1..i j ]) = (χγ) j-1 χs j for any integer j in [1, k + 1].
Moreover, we assume that i j < i j+1 . In particular, we get that χγ = s j f (ω

[i j + 1..i j+1 -1])p j+1 when 1 ≤ j ≤ k.
Since a factor of ω can appear many times in ω, it is necessary to indicate which exact factor we are going to work with: if ω[n.

.m] = z, we denote n = n z and m = m z fixing by this way the considered occurrence of z in ω. For any positive integer α, if ω[n.

.m] = z α , we also denote n = n z and m = m z without specifying α. It is the same notation as the case α = 1: we will precise only if necessary.

To simplify notations, let us recall that, given two integers 1 ≤ n z ≤ m z ≤ |ω|, the word ω[n z ..m z ] = z α define two words we denote z p and z s such that ω = z p z α z s , with

n z = |z p | + 1 and m z = |z p z α |. This means that z p = ω[1..n z -1] and z s = ω[m z + 1..|ω|].
Given two integers 1 ≤ n z ≤ m z ≤ |ω|, we also define a word D z and three integers λ z , d z and c v (even if c v is not used in this section). Eventually, we will precise D z,ω , λ z,ω , d z,ω and More precisely, if n z = 1 and = ε then λ z = 0, d z = 1 and D z is the word such that

f (z) = D z . If n z = 1 and = ε then λ z = 1, d z = 0 and D z = ε. When n z ≥ 2, let λ z be the integer such that n z ∈ ]i λz ; i λz+1 ], i.e., | (χγ) λz-1 | ≤ |f (ω[1..n z -1])| = |f (z p )| < | (χγ) λz |. If |f (z p z)| ≤ | (χγ) λz | then let d z = 0 otherwise let d z = 1. Let D z be the word such that f (z p z dz ) = (χγ) λz-1+dz D z . It means that D z = s λz f (ω[i λz + 1..n z -1]) when d z = 0 and s λz f (ω[i λz + 1..n z -1])f (z) = χγD z when d z = 1. In particular, D z is a proper suffix of f (z) when d z = 1. Finally, c z is the lowest integer such that |f (ω[1..m z ])| < | (χγ) λz+cz-1 χ| when m z = |ω| and c z = k + 1 -λ z otherwise.
It is important to remark that, if ω[n z ..m z ] = z α , the integers n z and m z define z α and z. But, since we may have several occurrences of z α in ω, we do not have the contrary. In other words, the equality z = z not necessarily implies n z = n z or m z = m z . In the same vein, λ z , d z , c z and D z depend on n z and m z but not directly of z. But if no question exists over the considered factor of ω or if the choice of the considered factor does not matter, we will write

z α instead of ω[n z ..m z ].
For any integer α ≥ 2 and for any word ω We say that f (y) α is a conjugated shift to the right of f (z) α if f (z) α is a conjugated shift to the left of f (y) α . We simply say that f (y) α is a conjugated shift of f (z) α if it is a conjugated shift to the left or to the right of f (z) α .

[n z ..m z ] = z α with n z , m z ∈ [1, |ω|], the word f (ω[n y ..m y ]) = f (y α ) = f (y) α with n y , m y ∈ [1, i k+2 ] is a conjugated shift to the left of f (ω[n z ..m z ]) = f (z α ) = f (z) α (in f (ω)) if there exist two words t 1 = ε and t 2 such that f (y) = t 2 t 1 , f (z) = t 1
For a general use of conjugated shifts of f (z) α , we will switch the roles of t 1 and t 2 in definition and conditions (1) to (3) for a conjugated shift to the right.

Lemma 2.11 For any integer α ≥ 2, if f (x) α is a conjugated shift to the right of f (z) α and if f (y) α is a conjugated shift to the left of f (z) α then f (y) α is a conjugated shift to the left of f (x) α .
Proof.

We will only prove Lemma 2.11 when

d x = d v = d z .
The other cases are left to the reader.

Let t 1 ( = ε), t 2 , t 1 and t 2 ( = ε) be the words such that f (y) = t 2 t 1 , f (x) = t 2 t 1 and f (z) = t 1 t 2 = t 1 t 2 . We have D z = D y t 2 and D x = D z t 1 . And, since f (x) α is a factor of f (ω), there exists an integer β such that D x f (x) α is a prefix of (χγ) β χς. If |t 1 | ≤ |t 1 |, let T be the word such t 1 = t 1 T . We get that t 2 = T t 2 , D x = D y t 2 t 1 , f (y) = (t 2 t 1 )T , f (x) = T (t 2 t 1 ) and t 2 t 1 = ε: it ends the proof. If |t 1 | > |t 1 |, let T be the word such t 1 = t 1 T . We get that t 2 = T t 2 , D x = D y T t 2 t 1 = D y T f (x).
It means that f (x) α is preceded by f (x) in f (ω), i.e., (χγ) β χς starts with D y T f (x) α+1 . We will consider the first occurence of f (x) α in f (x) α+1 denoted by f (x) α to avoid confusion. We get D x = D y T , f (y) = T (t 2 t 1 ), f (x) = (t 2 t 1 )T and t 2 t 1 = ε.

Proofs of Lemmas 2.12 and 2.13 and Corollary 2.14 are left to the reader. Lemma 2.12 For any integer α ≥ 2, if f (x) α and f (y) α are two conjugated shifts to the right of f (z) α then f (y) α is a conjugated shift of f (x) α . Lemma 2.13 For any integer α ≥ 2, if f (x) α and f (y) α are two conjugated shifts to the left of f (z) α then f (y) α is a conjugated shift of f (x) α . Corollary 2.14 The relation , defined on Fcts (f (ω)) by x y if there exists an integer α ≥ 2 such that x α is a conjugated shift of y α , is a relation of equivalence.

For any pure k-power ω[n v ..m v ] = v k of ω, there are k-2 choices for the factor v 3 in v k . Let us recall that we denote v 3 (β) the β th factor of v 3 in v k that is ω[n v ..m v ] = v β-1 v 3 (β) v k-β-2 with 1 ≤ β ≤ k -2.
We will focus on theses different cubes v 3 but without specifying β in this section.

Simplifications will not always be made in the occurrence of χγ where a word f (x 3 ) begins, i.e., the λ x -th. It will happen that we must consider the next occurrence of χγ according to the values of d x and d v . In order to specify the selected occurrence of χγ, we define the sets L j,v and R j,v .

For any factor ω[n v ..m v ] = v 3 of a pure k-power v k ∈ Fcts (ω), and for any integer j ∈ [1; k+1], let L j,v be the set of the words ω

[n x ..m x ] = x 3 such that f (x) k is a conjugated shift of f (v) k , f (ω[n x ..m x ]) = f (x) 3 is a conjugated shift to the left of f (ω[n v ..m v ]) = f (v) 3 with j = λ x if d x = d v = 0 and j = λ x + 1 otherwise. In particular, if v ∈ L j,v and d v = 1 then j = λ v + 1.
We also denote R j,v the set of the words ω 6). If ω[n xj ..m xj ] = x 3 j is a word in L j,v ∪ R j,v , we denote t 1,j , t 2,j the words such that f (v) = t 1,j t 2,j and f (x j ) = t 2,j t 1,j .

[n x ..m x ] = x 3 such that f (x) k is a conjugated shift of f (v) k , f (ω[n x ..m x ]) = f (x) 3 is a conjugated shift to the right of f (ω[n v ..m v ]) = f (v) 3 with j = λ x + d v × d x (see Figure
f v ( ) f v ( ) f z ( ) f z ( ) f z ( ) f y ( ) f y ( ) f y ( ) f x ( ) f x ( ) f x ( ) D v in R j,v 3 y ,z 3 v d = 1 U c = 2 v U v c = 3 3 x in L j,v U f v ( ) D v f v ( ) f v ( ) f x ( ) f x ( ) f x ( ) f y ( ) f y ( ) f y ( ) f z ( ) f z ( ) f z ( ) U U c = 2 v d = 0 v x ,z 3 in 3 L j,v y 3 in R j,v U v c = 1
More specifically, if j 0 is an integer such that ω[n v ..m v ] = v 3 ∈ L j0,v (∪R j0,v ), we may assume that n xj 0 = n v and m xj 0 = m v , i.e., x j0 = v. Let us remark that, by this choice, j 0 = λ v + d v . But j 0 can take other values.

Remark 2.15 If there exist two integers i, j, and a pure k-power x k such that

x 3 ∈ L i,v ∪ R i,v with d x = d v and L j,v ∪ R j,v = ∅, then L j,x ∪ R j,x = ∅. Indeed, if y k be a word in L j,v ∪ R j,v , then, by Corollary 2.14, y k is a conjugated shift of x k .

Simplification

In all this section, k ≥ 4 is an integer, f is a morphism from A * to B * and ω is a word over A such that f (ω) = (χγ) k χς for some words , χ, γ and ς over B such that χγ = ε,

| | < |f (ω[1])| and |ς| < |f (ω[|ω|])|.
We denote U = χγ and S = χs.

Let us recall that, for any integer j in [1, k +1], i j is the smallest integer such that (χγ) j-1 is a prefix of f (ω[1..i j ]) and i j is the smallest integer such that (χγ) j-1 χ is a prefix of

f (ω[1..i j ]). Moreover, f (ω[i j ]) = p j s j and f (ω[i j ]) = p j s j with f (ω[1..i j ]) = (χγ) j-1 s j and f (ω[1..i j ]) = (χγ) j-1 χs j .
For any pure k-power ω[n v ..m v ] = v k such that f (v) k is a factor of (χγ) k χ, there are (at least) k + 2 -c v different occurrences of (χγ) cv-1 χ in f (ω). Since, for any integer

j ∈ [1; k + 2 -c v ], f (v) k is a factor of p j (χγ) cv-1 χs j+cv-1 = f (ω[i j ..i j+cv-1 ]
), let n j be the greatest integer and m j be the lowest integer such that

i j ≤ n j ≤ m j ≤ i j+cv-1 and f (v) k is factor of f (ω[n j ..m j ]). Let us denote v j the word ω[n j ..m j ]. In other words, for any integer j ∈ [1; k + 2 -c v ], the word v j is the shortest factor of ω[i j ..i j+cv-1 ] such that f ( v j ) contains f (v) k . More precisely, f ( v j ) = π 1,j f (v) k σ 2,j for two words π 1,j and σ 2,j such that |π 1,j | < |f (ω[n j ])| = |f ( v j [1])| and |σ 2,j | < |f (ω[m j ])| = |f ( v j [| v j |])|.
If j > 1 then π 1,j is a suffix of the image of a factor of ω. If j < k + 2 -c v then σ 2,j is a prefix of the image of a factor of ω.

Remark 3.1 By Lemma 2.1, either f is not k-power-free or the word v j satisfies one of the following properties:

• (P.1) : There exist a pure k-power x k j,v , a word y j,v over A and a word Z j over B such that

(P.1.1) : v j = (x j,v ) k y j,v , f (y j,v ) = π 1,j σ 2,j , f (x j,v ) = π 1,j Z j and f (v) = Z j π 1,j (P.1.2) : or v j = y j,v (x j,v ) k , f (y j,v ) = π 1,j σ 2,j , f (x j,v ) = Z j σ 2,j and f (v) = σ 2,j Z j .
• (P.2) : There exist a pure k-power v k j and a non-empty word y j,v over A such that (P.2.1) :

v j = (x j,v ) k y j,v with |f (x j,v k-1 )| < |π 1,j f (v)| < |f (x j,v )| + |f (v)| (P.2.2) : or v j = y j,v (x j,v ) k with |f (x j,v k-1 )| < |f (v)σ 2,j | < |f (x j,v )| + |f (v)|.
It particularly means that, when |χγ| > 2|f (v)|, we have i j < i j+1 for any integer j in

[1, k + 1].
In other words, if v j satisfies (P.1.1) then f (x j,v ) k is a conjugated shift to the left of f (v) k . And, if v j satisfies (P.1.2) then f (x j,v ) k is a conjugated shift to the right of f (v) k .

Let us recall that we denote z 3 (β) the β th factor of z 3 in z k . If β = 1 and v j satisfies (P.1.1) then f (v j

3 (β) ) = f (v j ) 3 is a conjugated shift to the left of f (v 3 (β) ) = f (v) 3 . If β = k -2 and v j satisfies (P.1.2) then f (v j 3 (β) ) = f (v j ) 3 is a conjugated shift to the right of f (v 3 (β) ) = f (v) 3 . Otherwise f (v j )
3 is both a conjugated shift to the right and a conjugated shift to the left of f (v) 3 . For instance, if 2 ≤ β ≤ k -3 and v j satisfies (P.1.1) then f (v j 

(v j2 (β) ) 3 is a conjugated shift of f (v j1 (β+1) ) 3 .
We have to match theses possibilities with the ones of the position of a factor f (v) 3 

of f (v) k in (χγ) k .
Lemma 3.2 If v j1 and v j2 satisfy (P.1) then (v j1 ) j2 satisfies (P.1) and, consequently,

||D xj 1 ,v | -|D xj 2 ,v || < |f (v)|.

Proof.

It is a consequence of Corollary 2.14.

Two consecutive (x j,v ) k can overlap but under some conditions, the length of this overlap is bounded. Proposition 3.3 Let us assume that f is a k-power morphism and that, for all integers i ∈ [1, k + 2 -c v ], any power of f (x i,v ) and of χγ do not have any common factor of length greater than |f (x i,v )| + |χγ|.

For any integer j ∈ [1, k + 1 -c v ], if v j and v j+1 satisfy (P.1) then there exist two words τ 1,j and τ 2,j such that w[n j ..m j+1 ] contains the factors

(x j,v ) k-1 τ 1,j (x j+1,v ) k and (x j,v ) k τ 2,j (x j+1,v )t k-1 .
In particular, when k ≥ 4, the word w[n j ..m j+1 ] contains (x j,v ) 3 τ 1,j (x j+1,v ) 3 .

Proof.

Since any power of f (x j,v ) (resp. f (x j+1,v ) and of χγ do not have any common factor of length greater than |f (x j,v )| + |χγ| (resp. |f (x j+1,v )| + |χγ|), we get that i j < i j+1 .

Since v j and v j+1 satisfy (P.1), let w[n j ..m j+1 ] the factor of w[n j ..m j+1 ] that starts with (x j,v ) k and ends with (

x j+1,v ) k . If |f (w[n j ..m j+1 ])| ≤ (2k -1)|f (x j,v )| then f (x k j,v ) and f (x k j+1,v ) have a common factor of length at least |f (x j,v )| = |f (x j,v )| + |f (x j+1,v )| -gcd(|f (x j,v )|; |f (x j+1,v )|)
. By Corollary 1.5 and Lemma 1.18, there exist two words t 1 and t 2 such that f (x j,v ) = t 1 t 2 and f (x j+1,v ) = t 2 t 1 with t 1 t 2 and t 2 t 1 primitive words. It means that f (w[n j ..m j+1 ]) is a common factor of a power of f (x j,v ) and χγ. Since When f is k-power-free, a k-power in M in.P wrs(ω) is necessarily a pure k-power.

i j ≤ n j < i j+1 ≤ n j+1 , we get that |f (w[n j ..m j+1 ])| ≥ |χγ| + |f (x k j+1,v )| -||D xj,v | -|D xj+1,v ||. By Lemma 3.2, it implies that |f (w[n j ..m j+1 ])| ≥ |χγ| + |f (x k-1 j,v
In a similar way, let min int = min{|f (t)| | t k ∈ Int.P wrs(ω)} and let M in.Int.P wrs(ω) = {v k ∈ Int.P wrs(ω) | |f (v)| = min int }, i.e., M in.Int.P wrs(ω) is the set of the k-powers of Int.P wrs(ω) those image have a minimal length. As for M in.P wrs(ω), when f is k-power-free, a k-power in M in.Int.P wrs(ω) is necessarily a pure k-power.

Note that min int = min implies that ω starts or ends with a pure k-power those image by f is minimal and that M in.Int.P wrs(ω) = M in.P wrs(ω).

Let Sp 1 (ω) be the set {v k | v k ∈ P ure.Int.P wrs(ω) and v j satisfies (P.1) for all integers 

j ∈ [1; k + 2 -c v ]}. Let
≤ ≤ k -2, we have L j,v ( ) = ∅ and R j,v ( ) = ∅ for any integer j ∈ [1, k + 2 -c v ].
Remark 3.5 If min int = min then P ure.Int.P wrs(ω) = Sp 1 (ω). Remark 3.6 If f is k-power-free and if v k ∈ Sp 2.1,min (ω) (resp. Sp 2.2,min (ω)), then the only integer j such that v j satisfies (P.2.1) (resp. (P.2.2)) is j = 1 (resp. j = k + 2 -c v ). More precisely, (x 1,v ) k (resp. (x k+2-cv,v ) k ) is a prefix (resp. a suffix) of ω.

Remark 3.7 Let us note that, by Corollary 2.6, if a (k + 1)-power v k+1 is an internal factor of ω and if v k

(1) and v k (2) are pure k-powers such that

v k+1 = v k (1) v = vv k (2) then v k (1)
or v k (2) belongs to Sp 1 (ω).

Almost (k + 1)-power

In all this section, k ≥ 4 is an integer, f is a morphism from A * to B * and ω is a word over A such that f (ω) = (χγ) k χς for some words , χ, γ and ς over B such that χγ = ε,

| | < |f (ω[1])| and |ς| < |f (ω[|ω|])|.
We denote U = χγ and S = χs.

For any integer j in [1, k + 1], i j is the smallest integer such that (χγ

) j-1 is a prefix of f (ω[1..i j ]
) and i j is the smallest integer such that (χγ) j-1 χ is a prefix of f (ω[1..i j ]).

Lemma 4.1 For any pure k-power v k of ω, if f is k-power-free and if the words (χγ) k χ and f (v) k have a common factor of length at least |χγ| + |f (v)| then f (ω) and (χγ) k are synchronised.

Proof.

See Step 1 of the proof of Proposition 4.1 in [START_REF] Wlazinski | Reduction in non-(k + 1) power-free morphisms. Submited to A Special Issue of TIA dedicated to the[END_REF].

Let us assume that f is k-power-free and that (χγ) k χ and f (v) k have a common factor of length at least |χγ| + |f (v)|.

Let v 1 and v 2 be the words such that ω = v 1 v k v 2 .

Since (χγ)

k χ is a factor of U k+1 , by Corollary 1.5, there exist two words t 1 and t 2 and two integers r and q such that f (v) = (t 1 t 2 ) r and U = (t 2 t 1 ) q with t 1 t 2 and t 2 t 1 primitive words.

If r ≥ 2 then f (v k-1 ) = (t 1 t 2 ) (k-1)×r . Since k ≥ 3, we have (k -1) × r ≥ 2k -2 ≥ k. It means that f (v k-1
) contains a k-power with v k-1 a k-power-free word by definition of v, i.e., f is not k-power-free.

From now, we assume that r = 1. If q ≤ k -2 then v q would be an internal factor of v k that is of ω with |f (v) q | = |U |: f (ω) and U k are synchronised.

Thus q ≥ k -1. Since χ is a prefix of U = χγ, let be the greatest integer such that (t 2 t 1 ) is a prefix of χ. There exists a prefix T of t 2 t 1 different from t 2 t 1 such that χ = (t 2 t 1 ) T . We have

f (ω) = f (v 1 )(t 1 t 2 ) k f (v 2 ) = U k χς = (t 2 t 1 ) q×k+ T ς with q ≥ k -1.
Let x be the greatest integer such that (t 2 t 1 ) x is a prefix of f (v 1 v) and let y be the greatest integer such that (t 2 t 1 ) y T ς is a suffix of f (v 2 v 2 ). There exist four words t p , t p = ε, t s = ε and t s such that [1])|: it implies that v 1 = ε. So, we get that f (ω) starts with f (v 3 ) = (t 1 t 2 ) 3 and with (t 2 t 1 ) 3 . Since t 2 t 1 is a primitive word, by Lemma 1.3, (t 2 t 1 ) is not an internal factor of (t 2 t 1 ) 2 . Since | | < |t 1 t 2 | = |f (v)|, it implies that = t 1 and t p = t 2 . Moreover f (ω) = (t 1 t 2 ) k f (v 2 ) = t 1 (t 2 t 1 ) q×k+ T ς and so t s = t 1 . In the same way, if y = 0 we get ς = t 2 , t s = t 1 and t p = t 2 . When x = 0 and y = 0, since f (v 1 v) ends with t 1 t 2 and since f (v 2 v 2 ) starts with t 1 t 2 , if t p = t 2 or if t s = t 1 then (t 1 t 2 ) is an internal factor of (t 1 t 2 ) 2 : a contradiction with Lemma 1.3 and the fact that t 1 t 2 is a primitive word.

t 2 t 1 = t p t s = t p t s , f (v 1 v) = (t 2 t 1 ) x t p , f (v 2 v 2 ) = t s (t 2 t 1 ) y T ς and f (v k-3 ) = t s (t 2 t 1 ) qk+ -x-y-2 t p . If x = 0 then |f (v 1 v)| = |f (v 1 )t 1 t 2 | = | t p | < | t 1 t 2 |, i.e., |f (v 1 )| < | | < |f (ω
Thus t p = t 2 = t p , t s = t 1 = t s , f (v 1 v) = t 2 f (v) x and f (v 2 v 2 ) = f (v) y t 1 T ς. Since f is bifix, it follows that f (v 1 v) ends with f (v)
x and f (v 2 v 2 ) starts with f (v) y . So, we get that v q×k+ -1 = v x+y+k-3 is an internal factor ω with q × k + -1 ≥ q. It implies that v q is an internal factor of ω with |f (v) q | = |U |, i.e., f (ω) and U k are synchronised. Remark 4.2 For any pure k-power v k of ω, if f (v) k is an internal factor of (χγ) k χ and if f (ω) and (χγ) k are not synchronised, by Lemma 4.1, then either f is not k-power-free

or |χγ| > |f (v) k-1 | > 3|f (v)|.
As a corollary of Lemma 1.7 and of Lemma 3.9 in [START_REF] Wlazinski | Reduction in non-(k + 1) power-free morphisms. Submited to A Special Issue of TIA dedicated to the[END_REF], we get : Corollary 4.3 Let us assume that f (ω) and (χγ) k χ are not synchronised and that |f (t)| > |γ|, for all pure k-power t k ∈ Fcts (ω).

Let v k be a k-power in M in.Int.P wrs(ω).

For any integer i, if

x 3 i = ω[n xi ..m xi ] is a word in L i,v ∪ R i,v
, we assume that m xi < n xi+1 . When one of the four following situations holds either f is not k-power-free or there exists a word ω such that f (ω ) = (χ γ ) k χ ς for some words , ς , χ and γ

(= γ) over B satisfying χ γ = ε, | | < |f (ω [1])|, |σ | < |f (ω [|ω |])|, and 0 < |χ γ | < |χγ|.
We also get that f (ω ) and (χ γ ) k χ are not synchronised.

Furthermore, for all pure k-powers (t ) k ∈ Fcts (ω ), we have |f (t )| > |γ |.

1. d v = 1, |D v f (v) 2 | < |χ| and L j,v ∪ R j,v = ∅ for any integer j ∈ [2, k + 1]. 2. d v = 1, L j,v ∪ R j,v = ∅ for any integer j ∈ [2, k] and there exists a positive in- teger φ such that ω[n v ..|ω|] starts with v φ+2 and sup 2|f (v)|; |D v f (v) φ | ≤ |χ| < |D v f (v) φ+1 |. 3. d v = 0, |D v f (v) 2 | ≤ |χ| and L j,v ∪ R j,v = ∅ for any integer j ∈ [1, k + 1]. 4. d v = 0, |D v f (v)| ≤ |χ| < |D v f (v) 2 | and L j,v ∪ R j,v = ∅ for any integer j ∈ [1, k].
Proof of Corollary 4.3 is almost the same than Proof of Lemma 3.9 in [START_REF] Wlazinski | Reduction in non-(k + 1) power-free morphisms. Submited to A Special Issue of TIA dedicated to the[END_REF]. Condition m xi < n xi+1 prevents possible overlaps between consecutive x 3 i . Proof.

See Appendix A for figures of different cases.

Let us first note that, either f is not k-power-free or v k ∈ P ure.Int.P wrs(ω).

Since f (x 2 ) k is an internal factor of (χγ) k χ, by Remark 4.2, either f is not k-power-free

or |χγ| > 3|f (x 2 )| = 3|f (v)|. And, since |γ| < |f (v)|, we have |χ| > 2|f (v)|.
Case (1):

d v = 1, |D v f (v) 2 | < |χ| and L j,v ∪ R j,v = ∅ for any integer j ∈ [2, k + 1]. If x 3 j ∈ L j,v and d xj = 1 (including x j0 = v) or if x 3 j ∈ R j,v
, let X j be the word D xj and let e j be the integer d xj . If x 3 j ∈ L j,v and d xj = 0, let X j be the suffix of f (x j ) such that D xj f (x j ) 2 = χγX j and let e j = 2. Let q be an integer such that

|X q | = max{|X j |; j ∈ [2; k + 1]}. For all integers j ∈ [2, k + 1], if d xj = 0 with x 3 j ∈ L j,v , or if d xj = 1, then, by definition, we have that X j is a suffix of f (x j ). If d xj = 0 with x 3 j ∈ R j,v then it means that D v = D xj t 2,j . But D v is a suffix of f (v) = t 1,j t 2,j . So, it implies that X j = D xj is a suffix of t 1,j and of f (x j ) = t 2,j t 1,j .
In particular, X q is a suffix of f (x q ). It follows that 0

≤ |X q | -|X j | ≤ |X q | ≤ |f (x q )| for all integers j ∈ [2, k + 1]. Furthermore, if d xj = 0 with x 3 j ∈ R j,v then λ xj = j, and 
λ xj = j -1 otherwise. It follows that f (ω[1..n xj -1])f (x ej j ) = U j-1 X j = (χγ) j-1 X j . Since |X j f (x j )| ≤ 2|f (x j )| = |f (v) 2 | ≤ |χ|, it follows that X j f (x j ) is a prefix of χ. Hence, there exists a word Y j such that χ = X j f (x j )Y j for all integers j ∈ [2, k+1]. Let w 2 be the prefix of ω such that f (w 2 ) = χγX 2 , i.e., w 2 = ω[1..n x2 -1]x e2
2 and let w k+2 be the suffix of ω such that f

(w k+2 ) = Y k+1 ς, i.e., ω = ω[1..n x k+1 -1]x 1+e k+1 k+1 w k+2 . In particular, we have f (ω[n xj ..n xj+1 -1])f (x ej+1 j+1 ) = f (x 1+ej j
)Y j γX j+1 for all integers j ∈ [2, k]. Since f is bifix, it implies that there exists a word w j such that f (w j ) = Y j-1 γX j for all integers j ∈ [3, k + 1].

In summary, we obtain that ω = w 2 x 2 w 3 x 3 ..w k+1 x k+1 w k+2 , f (ω) = (χγ) k χς with χγ = X j f (x j )Y j γ for all integers j ∈ [2, k] and χγ = X k+1 f (x k+1 )Y k+1 γ. Moreover, there exists an integer q ∈

[2, k + 1] such that 0 ≤ |X q | -|X j | ≤ |X q | ≤ |f (x q )| and X q is a suffix of f (x q ).
Taking Y k+1 = Y k+1 and Y j = Y j γ for all integers j ∈ [2, k], by Corollary 2.10 (or Lemma 2.8 and using Remark 2.9 (Points 3 and 4)), in particular the property of synchronised words, we can reduce f (ω). More precisely, let χ be the non-empty word X q Y q , i.e., χ is the suffix of χ of length |χ| -|f (v)|. And let w 2 be the shortest suffix of w 2 such that f (w 2 ) ends with χ γX 2 and let ω be the word w 2 w 3 ..w k+1 w k+2 .

We obtain that f [1])|. And we denote γ = γ and ς = ς.

(ω ) = (χ γ) k χ ς for a word | | < |f (ω [1])| = |f (w 2
Let us recall that, by hypothesis, m xi < n xi+1 , for all integers i ∈ [2, k]. Briefly, it means that either w i ends by x i and w i+1 starts with x i , or w i ends by x 2 i , or w i+1 starts with

x 2 i . More precisely, let τ 2 = ω[1..n x2 -1], τ k+2 = ω[m x k+1 + 1..|ω|] and, for all integers i ∈ [3, k + 1], let τ i = ω[m xi-1 + 1..n xi -1]. We get that ω = τ 2 x 3 2 τ 3 x 3 3 ..τ k+1 x 3 k+1 τ k+2 and that ω is a suffix of τ 2 x 2 2 τ 3 x 2 3 ..τ k+1 x 2 k+1 τ k+2 , i.e., w i = x αi-1
i-1 τ i x βi i , with α i + β i = 2 and α 1 = β k+2 = 0. In fact, since x 1 and x k+2 are not defined, we have w 2 = τ 2 x β2 2 and

w k+2 = x α k+1 k+1 τ k+2 . In particular, for all integers i ∈ [3, k], we have w i-1 w i w i+1 w i+2 = x αi-2 i-2 τ i-1 x 2 i-1 τ i x 2 i τ i+1 x 2 i+1 τ i+2 x βi+2 i+2 . Let (t ) k be a pure k-power of ω , i.e., f (t ) k ∈ Fcts (f (w 2 w 3 . . . w k+1 w k+2 )). If (t ) k ∈ Fcts (ω) then |f (t )| > |γ| = |γ |. If (t ) k /
∈ Fcts (ω) and, for all integers i ∈ [3, k], f (t ) k / ∈ Fcts (f (w i-1 w i w i+1 w i+2 )), it implies that there exists an integer j such that |f (t

) k | > |f (w j w j+1 w j+2 )| ≥ 2|χ γ | - |f (v)| ≥ 2|χ| -3|f (v)| > |f (v)| > |γ| = |γ |. If (t ) k / ∈ Fcts (ω) and f (t ) k ∈ Fcts (f (w i-1 w i w i+1 w i+2 )) for an integer i ∈ [3, k], let us denote τ i-1 = x αi-2 i-2 τ i-1 , τ i = τ i , τ i+1 = τ i+1 , τ i+2 = τ i+2 x βi+2 i+2 . Thus, we have f (t ) k ∈ Fcts f (τ i-1 ) 3 j=1 f (x i-2+j ) 2 f (τ i-1+j ) . Let T be the word f (τ i-1 ) 3 j=1 f (x i-2+j ) 3 f (τ i-1+j ). If f (t ) k /
∈ Fcts (T ), by Corollary 1.20 with = k -3 and s = 3, we get that either f is not

k-power-free or |f (t )| > |f (x i )| = |f (v)| > |γ| = |γ |. If f (t ) k ∈ Fcts (T ) ⊂ Fcts (f (ω)), let T be the shortest factor of T that contains f (t ) k . By Lemma 2.1, either f is not k-power-free or T = x k y or yx k with |f (t )| ≥ |f (x)| > |γ| = |γ |. Case (2): d v = 1, L j,v ∪R j,v = ∅ for any integer j ∈ [2, k] and there exists a positive integer φ such that ω[n v ..|ω|] starts with v φ+2 and sup 2|f (v)|; |D v f (v) φ | ≤ |χ| < |D v f (v) φ+1 |. In this case, χ is an internal factor of f (v) φ+2 . More precisely, χ is a prefix of D v f (v) φ+1 .
For every integer j ∈ [2, k], we define X j and e j as Case (1) and we obtain that X j is also a suffix of f (x j ).

If x 3 j ∈ L j,v with d xj = 1, then χ is a prefix of the word D v f (v) φ+1 = X j t 2,j (t 1,j t 2,j ) φ+1 and so of X j f (x j ) φ+2 . If x 3 j ∈ L j,v with d xj = 0, since (χγ) 2 is a prefix of χγD v f (v) φ+1 = χγD v (t 1,j t 2,j ) φ+1 = D xj (t 2,j t 1,j ) φ+2 t 2,j = χγX j f (x j ) φ t 2,j , it follows that χ is a prefix of X j f (x j ) φ+1 .
In the same way, we show that χ is a prefix of X j f (x j ) φ+1 when x 3 j ∈ R j,v . Let q be an integer such that

|X q | = max{|X j |; j ∈ [2; k]}. If x 3 j ∈ L j,v with d xj = 1, or if x 3 j ∈ R j,v with d xj = 0 then |X j | ≤ |X j0 | = |X v |. Thus, if q = j 0 , either x 3 j ∈ L j,v with d xj = 0, or x 3 j ∈ R j,v with d xj = 1. Let δ be the greatest integer such that |X q f (x q ) δ | ≤ |χ| < |X q f (x q ) δ+1 |. For every integer j ∈ [2, k], since |X j f (x j ) δ | ≤ |X q f (x q ) δ | ≤ |χ|, there exists a word Y j such that χ = X j f (x j ) δ Y j . Since χ is a prefix of X q f (x q ) φ+2 , we obtain χ = X q f (x q ) δ Y q with Y q a prefix of f (x q ).
Let w 2 be the prefix of ω such that f (w 2 ) = χγX 2 , let w k+1 be the suffix of ω such that f (w k+1 ) = Y k γχς and, for all integers j ∈ [3, k], let w j be the word such that f (w j ) = Y j-1 γX j .

Taking Y j = Y j γ for all integers j ∈ [2, k], by Corollary 2.10 (or Lemma 2.8 and using Remark 2.9(6)), we can reduce f (ω). More precisely, let χ be non-empty the word X q Y q . Accordingly, χ is both a prefix and a suffix of χ so χ is an internal factor of f (v) φ+1 . Let w 2 be the shortest suffix of w 2 such that f (w 2 ) ends with χ γX 2 . Let w k+1 be the shortest prefix of w k+1 such that f (w k+1 ) starts with Y k γχ . There exists a word ς such that f (w k+1 ) = Y k γχ ς . Let ω be the word w 2 w 3 ..w k w k+1 . If we denote γ = γ, we obtain

f (ω ) = (χ γ ) k χ ς where |χ | = |χ| -|f (x q )| < |χ|.
For any pure k-power (t ) k ∈ Fcts (ω ), as in Case (1), we show that either f is not k-power-free or |f (t )| > |γ |.

Case (3):

d v = 0, |D v f (v) 2 | ≤ |χ| and L j,v ∪ R j,v = ∅ for any integer j ∈ [1, k + 1].
For every integer j ∈ [1, k + 1], let X j be the word

D xj f (x j ) if x 3 j ∈ L j,v with d xj = 0 (including x j0 = v), or the word D xj if x 3 j ∈ L j,v with d xj = 1, or if x 3 j ∈ R j,v . If x 3 j ∈ L j,v
, let e j = 1, and if x 3 j ∈ R j,v , let e j = 0. For any word

x 3 j ∈ R j,v , since |D v f (v) 2 | ≤ |χ| ≤ |χγ|, we necessarily have d xj = 0. Furthermore, 0 ≤ |X j0 | -|X j | = |t 2,j | < |f (x j0 )| = |f (v)|. If x 3 j ∈ L j,v and d xj = 0, we have X v = D v f (v) = D xj t 2,j t 1,j t 2,j = X j t 2,j and so 0 ≤ |X v | -|X j | = |t 2,j | < |f (v)|. If x 3 j ∈ L j,v and d xj = 1, we have X j t 2,j = D xj t 2,j = D v t 1,j t 2,j = X v and so 0 ≤ |X v | -|X j | = |t 2,j | < |f (v)|. We have |X v | = max{|X j |; j ∈ [1; k + 1]} and f (ω[1..n xj -1])f (x ej j ) = (χγ) j-1 X j for all integers j ∈ [1, k + 1]. Since |X j f (x j )| ≤ |D v f (v) 2 | ≤ |χ|, the word X j f (x j ) is a prefix of χ. Thus, there exist words Y j such that χ = X j f (x j )Y j for all j in [1, k + 1]. Let w 1 be the word ω[1..n x1 -1]x e1
1 and let w k+2 be the word such that ω[n x k+1 ..|ω|] = x 1+e k+1 k+1 w k+2 . In particular, we have f (w 1 ) = pX 1 , f (w k+2 ) = Y k+1 ς and, for every integer

j ∈ [1, k], f (ω[n xj ..n xj+1 -1])f (x ej+1 j+1 ) = f (x 1+ej j
)Y j γX j+1 . Since f is bifix, it implies that there exists a word w j such that f (w j ) = Y j-1 γX j for all integers j ∈ [2, k + 1]. By Corollary 2.10 (or Lemma 2.8), we can reduce f (ω). More precisely, ω = w 1 w 2 ..w k+1 w k+2 , = , ς = ς, and

χ = X i Y i ( = ε) for all integers i ∈ [1, k + 1]. We obtain f (ω ) = (χ γ) k χ ς with | | < |f (ω[1])| = |f (w 1 [1])| = |f (ω [1])|, |ς | < |f (ω[|ω|])| = |f (ω [|ω |])|, γ = γ and |χ | = |χ| -|f (v)| < |χ|.
For any pure k-power (t ) k ∈ Fcts (ω ), as in Case (1), we show that either f is not k-power-free or |f (t )| > |γ |.

Case (4):

d v = 0, |D v f (v)| ≤ |χ| < |D v f (v) 2 | and L j,v ∪R j,v = ∅ for any integer j ∈ [1, k].
Let S 2 be the set of integers j such that there exists a word x 3 j in R j,v with d xj = 1 but no word in R j,v with d xj = 0 and no word in L j,v .

Case 4.1 : S 2 = ∅ If x 3 j ∈ R j,v (with d xj = 0), if x 3 j ∈ L j,v with d xj = 1, or if x 3 j ∈ L j,v with d xj = 0 and |D xj f (x j ) 2 | ≥ |χ| then let X j be the word D xj and let e j = d xj . If x 3 j ∈ L j,v with d xj = 0 and |D xj f (x j ) 2 | < |χ| then let X j be the word D xj f (x j ) and let e j = 1. For all integers j ∈ [1, k], we have f (ω[1..n xj -1])f (x ej j ) = (χγ) j-1 X j . For all integers j ∈ [1, k], X j f (x j ) is a prefix of χ. Consequently, there exists a word Y j such that χ = X j f (x j )Y j . Since |χf (x j )| > |X j f (x j ) 2 | ≥ |χ|, we obtain that X j f (x j ) 2 is a prefix of (χγ) 2 . It follows that Y j is a prefix of f (x j ).
Let q be an integer such that )Y j γX j+1 for all integers j ∈ [1, k -1]. Since f is bifix, it implies that there exists a word w j such that f (w j ) = Y j-1 γX j for all integers j ∈ [2, k].

|X q | = max{|X j |; j ∈ [1; k]}. In particular, we have |Y q | ≤ |f (x q )| and 0 ≤ |X q | -|X j | = |Y j | -|Y q | ≤ |f (x j )| = |f (x q )| for every integer j in [1; k].
By Lemma 2.8 and using Remark 2.9(5), we can reduce f (ω).

The non-empty word χ = X k+1 Y k+1 is a prefix of χ. Moreover, any suffix of χ of length at most max{|Y i |} is also a prefix of χ . Let w k+1 be the shortest prefix of w k+1 such that f (w k+1 ) starts with χ . There exists a word ς such that f (w k+1 ) = χ ς . We take ω = w 1 w 2 . . . w k+1 , γ = γ, = . Hence,

f (ω ) = (χ γ) k χς starts with (χ γ ) k χ ς . Moreover, | | = | | < |f (W [1])| = |f (w 1 [1])| = |f (ω [1])| and |χ | < |χ|.
For any pure k-power (t ) k ∈ Fcts (ω ), as in Case (1), we show that either f is not k-power-free or |f (t )| > |γ |. Furthermore, the words f (x j ) and f (x j1 ) are conjugated. Let τ 2,j be the non-empty suffix of X j (and of f (x j )) such that X j = X j1 τ 2,j and let τ 1,j be the word such that f (x j ) = τ 1,j τ 2,j . Since χX j1 ends with τ 1,j , we obtain f (x j1 ) = τ 2,j τ 1,j . Thus, (χγ) 2 starts with X j1 (τ 2,j τ 1,j ) 2 = X j f (x j )τ 1,j . Since f is bifix, it implies that ω[m xj + 1..|ω|] also starts with x j . In other words, x 3 j is followed by x j in ω.

Let q be an integer such that

|X q | = max{|X j |; j ∈ [1; k]}. In particular, 0 ≤ |X q | -|X j | ≤ |f (x q )|.
Since |χ| > 2|f (v)|, the word X j f (x j ) is a prefix of χ, for all integers j ∈ [1, k]. Consequently, there exists a word Y j such that χ = X j f (x j )Y j .

Let w 2 be the prefix of ω such that f (w 2 ) = χX 1 , that is,

w 2 = ω[1..n x1 -1]x e1
1 and let w k+2 be the suffix of ω such that f

(w k+2 ) = Y k+1 S, that is, ω = ω[1..n x k+1 -1]x 1+e k+1 k+1 w k+2 . Accordingly, for all integers j ∈ [1, k-1], we have f (ω[n xj ..n xj+1 -1])f (x ej+1 j+1 ) = f (x 1+ej j
)Y j γX j+1 . Since f is bifix, it implies that there exists a word w j such that f (w j ) = Y j-1 γX j for all integers j ∈ [3, k + 1]. By Lemma 2.8 and using Remark 2.9(4), we can reduce f (ω). Reduction is almost the same that case where

d v = 1, |D v f (v) 2 | < |χ|, and L j,v ∪ R j,v = ∅ for every integer j ∈ [2, k + 1].
Let us note that χ is a suffix of χ and that any prefix of χ of length at most max{|X j |} is also a prefix of χ .

For any pure k-power (t ) k ∈ Fcts (ω ), as in Case (1), we show that either f is not k-power-free or |f (t )| > |γ |. Proposition 4.4 Let k ≥ 5, let f be a morphism from A * to B * and let ω be a word over A.

We assume that f (ω) = (χγ) k χς for some words , ς, χ and γ such that

| | < |f (ω[1])|, |ς| < |f (ω[|ω|])|, χγ = ε.
If f (ω) and (χγ) k χ are not synchronised and if |γ| < |f (t)|, for all pure k-powers t k ∈ Fcts (ω) then f is not k-power-free.

Proof of Proposition 4.4 is done using iteratively Lemma 4.5. By induction, if f was not k-power-free, we could find an infinite sequence (ω i , χ i , γ i ) i≥0 of words starting with (ω 0 , χ 0 , γ 0 ) = (ω, χ, γ) such that 0 < |χ i+1 γ i+1 | < |χ i γ i |: this is impossible. Proof.

If f is not k-power-free, in particular, if f is not a ps-morphism then it ends the proof. Hence, we assume that f is a ps-morphism. In particular, f is injective.

Let us denote U = χγ, U = γχ and S = χς: we get that f (ω) = U k S.

The words ω necessarily contains a k-power. Indeed, the contrary ends the proof: f would not be k-power-free.

For any pure k-power v k ∈ Fcts (ω), since f (ω) and (χγ) k χ are not synchronised, by Lemma 4.1, (χγ) k χ and f (v) k do not have any common factor of length at least |χγ| + |f (v)|.

Step 1 : ω[2..|ω| -1] contains a k-power and so a pure-k-power.

The proof is almost the same as the corresponding step in the proof of Proposition 4.1 in [START_REF] Wlazinski | Reduction in non-(k + 1) power-free morphisms. Submited to A Special Issue of TIA dedicated to the[END_REF].

By contradiction, let us assume that ω[2..|ω| -1] is k-power-free. It implies that ω starts or ends with a pure k-power. Let s 1 and p k+2 be the words such that f Let us recall that, since we assume that ω[2..|ω| -1] is k-power-free, any pure k-power of ω = ω[1..|ω|] is necessarily a prefix or a suffix of it.

(ω[1]) = s 1 and f (ω[|ω|]) = p k+2 ς, that is, (χγ) k χ = s 1 f (ω[2..|ω| -1])p k+2 . If |s 1 | ≤ |(χγ) k-1 χ|
If ω starts with a pure k-power t k , let W com be the greatest prefix of s 1 f (t[2..|t|])f (t k-1 ) that is a factor of (χγ) k χ so a common factor of a power of f (t) and a power of χγ. Let us note that if ω

= t k then W com = (χγ) k χ otherwise W com = s 1 f (t[2..|t|])f (t k-1 ). If |W com | ≥ |χγ|+|f (t)|,
by Corollary 1.5, there exist two words t 1 and t 2 , and two integers r and q such that f (t) = (t 1 t 2 ) r and χγ = (t 2 t 1 ) q with t 1 t 2 and t 2 t 1 primitive words. Since t k is a pure k-power, it follows that r = 1. Otherwise, f is not k-power-free. Since f (ω) and χγ are not synchronised, we have |f (t)| = |χγ|, i.e., q ≥ 2. Thus f (ω[2..|ω|]) contains (t 2 t 1 ) qk-1 with qk -1 ≥ k. Either f is not k-power-free or ω[2..|ω|] ends with a k-power. In this second case, by a length criterion, f (ω[2..|ω| -1]) necessarily contains (t 2 t 1 ) qk-1-q with qk -1 -q ≥ k: f is not k-power-free.

So, we have |W

com | < |χγ|+|f (t)|. By definition of W com , if ω = t k then W com = (χγ) k χ = s 1 f (t[2..|t|])f (t k-2 )f (t[1..|t| -1])p k+2 would be a common factor of f (t) k and (χγ) k χ with |W com | ≥ 2|f (t)| and |W com | > 2|χγ|. That is |W com | > |f (t)| + |χγ| : a contradiction. It follows that ω = t k and |W com | = |f (t)| + |s 1 f (t[2..|t|])f (t k-2 )|. Since |γ| < |f (t)| and |s 1 | ≤ |f (t)|, we get that |W com | > |f (t)| + |γ| + 2|s 1 |. So it implies |s 1 | < |χ|/2.
If ω does not end with a k-power, we get that ω[2..|ω|] is k-power-free and f (ω[2..|ω|]) contains the k-power (γχ) k : f is not k-power free.

In the case where ω ends with a k-power (t ) k , we similarly obtain |p k+2 | < |χ|/2 and ω starts with a k-power t k . It follows that |s 1 | + |p k+2 | < |χ|: a final contradiction.

Step 2: For any pure k

-power v k ∈ Fcts (ω[2..|ω| -1]), |f (v k-2 )| < |χ| and the word f (v) k is an internal factor of (χγ) 2 χ, i.e., c v = 1, 2 or 3. For any pure k-power v k ∈ Fcts (ω[2..|ω| -1]), the word f (v) k is an internal factor of (χγ) k χ. So, by Lemma 4.1, |f (v) k | < |χγ| + |f (v)|, i.e., |f (v) k-1 | < |χγ| < |χ| + |f (v)|. It follows that |f (v) k-2 | < |χ| and |f (v) k | < |χγχ|. That is, f (v) k is an internal factor of (χγ) 2 χ. It implies c v = 1, 2 or 3.
Let us recall that, for every integer j ∈

[1; k + 2 -c v ], f (v) k is an internal factor of p j (χγ) cv s j+cv and v j is the shortest factor of W [i j ..i j+cv ] such that f ( v j ) contains f (v) k . Step 3: Case Sp 1 (ω) = ∅ Let v k ∈ Sp 1,min (ω), i.e., v k is a pure k-power such that |f (v)| is minimal, and v j satisfies P.1, for all integers j ∈ [1, k + 2 -c v ]
. See Remark 3.1 for the notations. In particular, let us recall that there exist a letter y j and a word x j,v such that |f (v)| = |f (x j,v )|, and v j = x k j,v y j or v j = y j x k j,v . We are going to see that it implies that either f is not k-power-free or f (ω) can be reduced. These reductions using Corollary 4.3 create news words ω, χ and γ that satisfy all the necessary conditions.

Let us also recall that we denote by z 3 (β) the β th factor of z 3 in a k-power z k , that is,

z k = z β-1 z 3 (β) z k-β-2 with 1 ≤ β ≤ k -2. Case 3.1: c v = 3 We have 2|f (v)| ≤ |f (v) k-2 | < |χ|. Moreover, since f (v) k and (χγ) k χ do not have any common factor of length at least |χγ| + |f (v)|, we necessarily have d v = 1 and |D v f (v k-2 )| < |χγ| < |D v f (v k-1 )|. That is, |D v f (v φ )| ≤ |χ| < |D v f (v φ+1 )| with φ = k-3 or k -2. For every integer j ∈ [1; k -1], since f (x k j,v
) k and (χγ) k χ do not have any common factor of length at least |χγ| + |f (x j,v )|, we necessarily have ) . In other words, we have 

d xj,v = 1. For every integer j ∈ [1; k -1], if v j satisfies (P.1.1) then (x 3 j,v ) (1) ∈ L j+1,v (1) and if v j satisfies (P.1.2) then (x 3 j,v ) (1) ∈ R j+1,v (1 
L j+1,v (1) ∪ R j+1,v ( 
v = 2, we have |D v (β) f (v (β )) 2 | < |χ|. For every integer j ∈ [1; k], if v j satisfies (P.1.1) then (x 3 j,v ) (β) ∈ L j+1,v (β) and if v j satisfies (P.1.2) then (x 3 j,v ) (β) ∈ R j+1,v (β) . That is, L j,v (β) ∪ R j,v (β) = ∅ for every integer j ∈ [2; k + 1]
. By Corollary 4.3(1), either f is not k-power-free or a reduction can be done. 

v (β) = 0 It means that |D v f (v) k-2 | ≤ |χγ|. If c v (1) = 1 then |D v (1) f (v (1) ) 2 | ≤ |χ| and L j,v (1) ∪ R j,v (1) = ∅ for every integer j ∈ [1; k + 1]
. By Corollary 4.3(3), either f is not k-power-free or a reduction can be done. 4), either f is not k-power-free or a reduction can be done.

If c v (1) = 2, there exists an integer φ ≥ β such that |D v (φ) f (v (φ) )| ≤ |χ| < |D v (φ) f (v (φ )) 2 | and L j,v (φ) ∪ R j,v (φ) = ∅ for every integer j ∈ [1; k]. By Corollary 4.3(
Step 4: Case Sp 1 (ω) = ∅ (and therefore min int = min ) By Corollary 2.5 and Corollary 2.6 (see also Remark 3.7), it follows that ω does not contain any (k + 1)-power, otherwise, we would have Sp 1 (ω) = ∅.

Supposing that f is k-power-free, let us recall that, if v k is a k-power of M in.Int.P wrs(ω) and then v k is a pure k-power, i.e., v k ∈ P ure.Int.P wrs(ω). Moreover, we necessarily have v k ∈ Sp 2,min (ω) = Sp 2.1,min (ω) ∪ Sp 2.2,min (ω). Let us also recall that if v k ∈ Sp 2.1,min (ω) (resp. Sp 2.2,min (ω)), then the only integer j such that v j satisfies (P.2.1) (resp. (P.2.2)) is j = 1 (resp. j = k + 2 -c v ) and x k 1,v (resp. x k k+2-cv,v ) is a prefix (resp. a suffix) of ω. Finally, let us recall that, if = ε (resp. ς = ε), any k-power prefix (resp. suffix) of ω is an internal factor of ω.

As in

Step 3, we are going to see that it implies that either f is not k-power-free or f (ω) can be reduced. And again, we obtain words ω, χ and γ satisfying all the necessary conditions. Let ω 1 the word such that ω = x 1,v ω 1 and let X 1 be the word such that f (x 1,v ) = π 1,1 X 1 . We have L j,v ∪ R j,v = ∅ for all integers j ∈ [2; k + 1] in f (ω). But, in f (ω 1 ), we get d v,ω1 = 1, |d v,ω1 f (v) 2 | < |χ 1 | and also L j,v ∪ R j,v = ∅. Any pure k-power prefix of ω 1 is in P ure.Int.P wrs(ω 1 ). And, for any pure k-power (v ) k in P ure.Int.P wrs(ω 1 ), we have |f (v )| ≥ |f (v)| > |γ 1 |. If ω 1 ends with a not-pure k-power z k , let t k be a pure k-power factor of z k . Since ω 1 is a suffix of ω, either t k is a suffix of ω or t k ∈ Int.P wrs(ω). In both cases, we have |f We have L j,v ∪ R j,v = ∅ for all integers j ∈ [2; k] in f (ω). As previous case, either f is not k-power-free or a reduction can be done in f (ω 1 ) using Corollary 4.3(2). Let ω 1 the word such that ω = x 1,v ω 1 t[|t|], let X 1 be the word such that f (x 1,v ) = π 1,1 X 1 , let Y 1 be the word such that f (t[|t|]) = Y 1 ς, let χ 1 be the word such that χ = X 1 χ 1 Y 1 and let γ 1 be the word Y 1 γX 1 . We have f (ω 1 ) = (χ 1 γ 1 ) k χ 1 , f (v) k ∈ M in.P wrs(ω 1 ) = M in. it implies that f (v) = (t 1 t 2 ) r and f (t) = (t 2 t 1 ) q for two positive integers r and q and two words t 1 and t 2 . If r ≥ 2 or q ≥ 2 then f is not k-power-free. Let ω 1 the word such that ω = x 1,v ω 1 x k+1,v , let X 1 be the word such that f (x 1,v ) = π 1,1 X 1 , let Y 1 be the word such that f (x k+1,v ) = Y 1 σ 2,k+1 , let χ 1 be the word such that χ = X 1 χ 1 Y 1 and let γ 1 be the word Y 1 γX 1 . We have f ( 

  a contradiction with the hypotheses. So, we necessarily have |X| > |Y k--2 1 |.

  called f a ps-code) if and only if the equalities f (a) = ps, f (b) = ps and f (c) = p s with a, b, c ∈ A (possibly c = b) and p, s, p , s ∈ B * imply b = a or c = a.

Figure 1 :

 1 Figure 1: Different cases in Lemma 2.1

Figure 2 :

 2 Figure 2: Reduction of a power

Figure 3

 3 Figure 3 deals with Point 3 of Remark 2.9 and Figure 4 deals with Point 4 of Remark 2.9.

Figure 3 :

 3 Figure 3: Point 3 of Remark 2.9

Figure 4 :

 4 Figure 4: Point 4 of Remark 2.9

Figure 5 :

 5 Figure 5: Example of a decomposition of f (ω)

  t 2 and if we have one of the following conditions: 1. D z = D y t 2 when d y = d z 2. D y = D z t 1 when d y = 1 and d z = 0 3. D y f (y)t 2 = χγD z when d y = 0 and d z = 1 Let us remark that conditions (2) and (3) imply |D z | < |t 2 |. Moreover, taking t 2 = ε, let us also note that f (z α ) is a conjugated shift to the left of itself.

Figure 6 :

 6 Figure 6: Examples of L j,v and R j,v depending on d v and c v when k = 3

3 (

 3 β) ) is a conjugated shift to the left of f (v 3 (β) ) and a conjugated shift to the right of f (v 3 (β-1) ). If v j1 and v j2 satisfy (P.1.1) (resp. (P.1.2)) then f (v j2 (β) ) 3 is a conjugated shift (to the left or to the right) of f (v j1 (β) ) 3 . Moreover, if v j1 satisfies (P.1.1) and v j2 satisfies (P.1.2) then f

  )|: a contradiction with the hypotheses.It follows that |f (w[n j ..m j+1 ])| > (2k -1)|f (x j,v )|. Let Int.P wrs(ω) be the set of the k-powers v k of ω such that f (v k ) ∈ Fcts (χγ) k χ . More precisely, Int.P wrs(ω) is the set of the k-powers of ω[2..|ω| -1] when = ε and ς = ε, of ω[1..|ω| -1] when = ε and ς = ε, of ω[2..|ω|] when = ε and ς = ε and of ω when = ς = ε. We denote P ure.Int.P wrs(ω) the set of pure k-powers of Int.P wrs(ω).

  Let min = min{|f (t)| | t k ∈ Fcts (ω)} and let M in.P wrs(ω) = {v k ∈ Fcts (ω) /|f (v)| = min , i.e., M in.P wrs(ω) is the set of the k-powers of ω those image have a minimal length.

Let w 1

 1 be the word ω[1..n x1 -1]x e1 1 and let w k+1 be the word such that ω[n x k ..|ω|] = x 1+e k k w k+1 . We have f (w 1 ) = X 1 , f (w k+1 ) = Y k γχς. We obtain that f (ω[n xj ..n xj+1 -1])f (x ej+1 j+1 ) = f (x 1+ej j

Case 4 . 2 :

 42 S 2 = ∅ Let j 0 ∈ S 2 and let v = x j 0 . If j ∈ S 2 , let X j be the word D xj and let e j = 1.If j /∈ S 2 , we assume that ifx 3 j ∈ R j,v then d xj = 0 else we take x 3 j ∈ L j,v . If x 3 j ∈ R j,v (with d xj = 0), or if x 3 j ∈ L j,v with d xj = 0 and |D xj f (x j ) 2 | > |χ| (for instance x j0 ), let X j be the word such that D xj f (x j ) 2 = χXj and let e j = 2. If x 3 j ∈ L j,v with d xj = 1, or d xj = 0 and |D xj f (x j ) 2 | ≤ |χ|, let X j be the word such that D xj f (x j ) 3 = χX j and let e j = 3. For all integers j ∈ [1, k], we have f (ω[1..n xj -1])f (x ej j ) = (χγ) j X j . Especially, the word X j is a suffix of f (x j ) for every integer j ∈ [1, k]. Let j 1 be an integer in S 2 , i.e., x 3 j1 ∈ R j,v and d xj 1 = 1. Hence, (χγ) 2 starts with X j1 f (x 2 j1 ). By definition, we have χX j0 = D v f (v) 2 = χX j1 t 2,j . For any word x 3 j ∈ L j,v with d xj = 1, or with d xj = 0 and |D xj f (x j ) 2 | ≤ |χ|, always by definitions, we obtain χX j = χX j0 t 1,j . It follows that |f (x j1 )| = |f (x j )| ≥ |X j | > |X j0 | ≥ |X j1 |.

Lemma 4 . 5

 45 Let k ≥ 5, let f be a morphism from A * to B * and let ω be a word over A.We assume that f (ω) = (χγ) k χς for some words , ς, χ and γ such that| | < |f (ω[1])|, |ς| < |f (ω[|ω|])| and χγ = ε. We also assume that f (ω) and (χγ) k χ are not synchronised, and that |γ| < |f (t)|, for all pure k-powers t k ∈ Fcts (ω).Then either f is not k-power-free or there exist a word ω such that f (ω) = ˇ ( χγ) k χς for some words ˇ , ς, χ and γ satisfying |ˇ | < |f (ω[1])|, |ς| < |f (ω[|ω|])|, χγ = ε, and 0 < | χγ| < |χγ|. Moreover, f (ω) and ( χγ) k χ are not synchronised, and |γ| < |f ( ť)| for all pure k-powers ( ť) k ∈ Fcts (ω).

  then there exists a word U c such that s 1 U c is the prefix of s 1 f (ω[2..|ω| -1])p k+2 = (χγ) k χ of length |s 1 (χγ)|. Trivially, the word U c is a conjugate of χγ (and |U c | = |χγ|). If |s 1 | + |p k+2 | ≤ |χ|, we naturally have |s 1 | ≤ |(χγ) k-1 χ|. Moreover |s 1 | + |U k c | + |p k+2 | ≤ |(χγ) k χ|. It means that f (ω[2..|ω| -1]) starts with U k c . Since ω[2..|ω| -1] is a k-power-free word, it ends the proof, f is not k-power-free. Let us now study the case where |s 1 | + |p k+2 | > |χ|.

1 )

 1 = ∅ with j + 1 ∈ [2; k]. By Proposition 3.3 and Corollary 4.3(2), either f is not k-power-free or we can reduce ω. Case 3.2: c v = 3 and there exists a positive integer β (≤ k -2) such that d v (β) = 1 We necessarily have c v = 2 and thus k+2-c v = k. Since f (v) k and (χγ) k χ do not have any common factor of length at least |χγ| + |f (v)| and since c

Case 3 . 3 :

 33 c v = 3 and, for every positive integer β (≤ k -2), we have d

Case 4 . 1 :

 41 Sp 2.2,min (ω) = ∅ We use the notations of Remark 3.1.Let v k a pure k-power in Sp 2.1,min (ω). We havev 1 = x k 1,v y 1 with |f (x 1,v ) k-1 | < |π 1,1 | + |f (v)| and v j = x k j,v y or v j = y j x k j,v for all integers 2 ≤ j ≤ k + 2 -c v where f (x j,v ) k is a conjugated shift of f (v) k .

Case 4 . 1 . 1 :

 411 ω does not end with a pure k-power or ω ends with a pure k-powert k such that |f (t)| > |γ| + |X 1 |.Let χ 1 be the word such that χ = X 1 χ 1 and let γ 1 be the word γX 1 . We havef (ω 1 ) = (χ 1 γ 1 ) k χ 1 ς and |f (v)| > |X 1 | + (k -2)|f (x 1,v )| > |X 1 | + (k -2)|γ| ≥ |γ 1 |. Since ω 1 is a proper suffix of ω, v k ∈ M in.Int.P wrs(ω 1 ). Moreover, since f (x 1,v ) k-1 and f (v) k are internal factor of (χγ) k χ and since f (v) k (resp. f (x 1,v ) k-1) and (χγ) k χ do not have any common factor of length at least |χγ| + |f (v)| (resp. |χγ| + |f (x 1,v )|), we necessarily have d v,ω = 0 and c v,ω ≤ 2.

Case 4 . 1 . 1 . 1 :

 4111 c v,ω = 1

  (z)| > |f (t)| > |γ 1 |.By Corollary 4.3(1), either f is not k-power-free or a reduction can be done in f (ω 1 ). Case 4.1.1.2: c v,ω = 2

Case 4 . 1 . 2 :

 412 ω ends with a pure k-power t k such that |f (t)| ≤ |γ| + |X 1 |.

  Int.P wrs(ω 1 ) and |f (v)| > |X 1 | + (k -2)|f (x 1,v )|.As previously, we necessarily haved v,ω = 0 and c v,ω ≤ 2. Since k ≥ 5, we have |f (v)| > 2|X 1 | + 2|γ| ≥ |X 1 | + |f (t)| + |γ| ≥ |X 1 | + |Y 1 | + |γ| = |γ 1 |. Let us remark that, if c v,ω = 2, we do have |f (v)| > |γ 1 | when k = 4. Indeed, let T be the common factor of f (t) k-1 Y 1 and f (v) k . If |T | ≥ |f (t)| + |f (v)|, byLemma 1.5, 

  If q = r = 1 then |f (t)| = |f (v)| > |X 1 | + (k -2)|f (x 1,v )| > |X 1 | + 2|γ|: a contradiction with the hypothesis |f (t)| ≤ |γ| + |X 1 |. If |T | < |f (t)| + |f (v)|, then |f (v)| > |Y 1 | + (k -2)|f (t)| > 2|Y 1 | + |γ|. Since |f (v)| > 2|X 1 | + |γ|, we get that |f (v)| > |γ 1 |.As in Case 4.1.1, either f is not k-power-free or a reduction can be done in f (ω 1 ) using Corollary 4.3(1) when c v,ω = 1 or Corollary 4.3(2) when c v,ω = 2. Case 4.2: Sp 2.1,min (ω) = ∅ This case is the mirror image of Sp 2.2,min (ω) = ∅. Case 4.3:Sp 2.1,min (ω) ∩ Sp 2.2,min (ω) = ∅ Let v k a pure k-power in Sp 2.1,min (ω) ∩ Sp 2.2,min (ω). Since f (v) k (resp. f (x 1,v ) k and f (x k+2-cv,v ) k) and (χγ) k χ do not have any common factor of length at least |χγ| + |f (v)| (resp. |χγ| + |f (x 1,v )| and |χγ| + |f (x k+2-cv )|), we necessarily have d v,ω = 0 and c v,ω = 1.

  ω 1 ) = (χ 1 γ 1 ) k χ 1 and |f (v)| > max{|f (x k-1 1,v )| -|π 1,1 |; |f (x k-1 k+1,v )| -|σ 2,k+1 |} > max{|X 1 | + |f (x 1,v )|; |Y 1 | + |f (x k+1,v )|} + (k -3)|γ| ≥ |X 1 | + |Y 1 | + |γ| = |γ 1 |. Since x k+11,v and x k+1 k+1,v are not factor of ω, we get that f (v) k ∈ M in.Int.P wrs(ω 1 ).

Figure 10 :

 10 Figure 10: Example of a reduction with v 3 (1) using case 4 of Corollary 4.3 when k = 4 and S 2 = ∅.Let us remark that, in this example, a reduction with v 3(2) using case 1 of Corollary 4.3 can also be used.

Figure 11 :

 11 Figure 11: Example of a reduction with v 3 (1) using case 4 of Corollary 4.3 when k = 4 and S 2 = ∅

  

  

  

  

  

  Sp 2 (ω) (resp. Sp 2.1 (ω) and Sp 2.2 (ω)) be the set {v k | v k ∈ P ure.Int.P wrs(ω) \ Sp 1 (ω) | there exists an integer j ∈ [1; k + 2 -c v ] such that v j satisfies (P.2) (resp. (P.2.1) and (P.2.2))}. Let Sp 1,min (ω) be the set {v k | v k ∈ M in.Int.P wrs(ω) and v j satisfies (P.1) for all integers j ∈ [1; k + 2 -c v ]}. Let Sp 2,min (ω) (resp. Sp 2.1,min (ω) and Sp 2.2,min (ω)) be the set {v k | v k ∈ M in.Int.P wrs(ω) \ Sp 1 (ω) | there exists an integer j ∈ [1; k + 2 -c v ] such that v j satisfies (P.2) (resp. (P.2.1) and (P.2.2))}. If v k belongs to Sp 1 (ω) then, for any integer 2

	Remark 3.4

Let us recall thatd v = 1, |D v f (v) 2 | < |χ| and L j,v ∪ R j,v = ∅ for any integer j ∈ [2, k + 1].

Let us recall thatd v = 0, |D v f (v) 2 | ≤ |χ| and L j,v ∪ R j,v = ∅ for any integer j ∈ [1, k + 1].

Let us recall thatd v = 0, |D v f (v)| ≤ |χ| < |D v f (v) 2 | and L j,v ∪ R j,v = ∅ for any integer j ∈ [1, k].

Proof.

Let f be morphism from A * to B * . We assume that f is not (k + 1)-power-free and we want to show that f is not k-power-free.

The morphism f must be a ps-morphism. Otherwise, f is not k-power-free: it ends the proof.

Let w be a shortest (k + 1)-power-free word which image by f contains a (k + 1)-power. That is f (w) = pu k+1 s for a non-empty word u over B and |w| = n is minimal.

By the criterion of minimal length of w, p is a proper prefix of f (w [1]) and s is a proper suffix of f (w[|w|]).

If f (w) and u k+1 are synchronised, by Lemma 1.16, w contains a (k + 1)-power: a contradiction with the definition of w. Taking = p, ς = s, γ = ε and χ = u, by Proposition 4.4, f is not k-power-free.