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Abstract

Kleene Algebra with Tests (KAT) provides a framework for algebraic equational reasoning on
imperative programs. The recent variant Guarded KAT (GKAT) allows to reason on non-probabilistic
properties of probabilistic programs. Here we introduce an extension of this framework called aGKAT
(approximate GKAT), a form of graded GKAT over a partially ordered monoid (real numbers) which
enables to express satisfaction of (deterministic) properties except with a probability up to a certain
bound. This allows to represent in equational reasoning ’à la KAT’ proofs of probabilistic programs
based on the union bound, a technique from basic probability theory. We show how a propositional
variant of approximate Hoare Logic (aHL), a program logic for union bound, can be soundly encoded
in our system aGKAT. We then illustrate the use of aGKAT on an example of accuracy analysis from
the field of differential privacy.

Keywords: Kleene algebras with tests, Hoare logic, equational reasoning, probabilistic programs,
union bound, formal verification

1 Introduction

Kleene algebra with tests (KAT) have been introduced by Kozen [12] as an algebraic framework for pro-
gram verification. A KAT consists in a Kleene algebra containing a Boolean algebra of tests. The Kleene
algebra part accounts for sequential composition, branching and iteration, and the Boolean algebra part
accounts for the conditions in the if-then-else instructions, while loops, assertions, as well as, considering
KAT a tool able to subsume propositional Hoare logic [13], for the pre and post-conditions. This frame-
work allowed to give algebraic proofs corresponding to several approaches in program verification, see e.g.
[13, 1, 14]. It has been implemented as a library for the Coq proof assistant [17]. It has also been followed
by several variants, like for instance NetKAT [2] which allows to reason about software defined networks,
Concurrent NetKAT [20] for concurrent networks, or TopKAT for reasoning about incorrectness [21].

Recently the variant Guarded KAT (GKAT) [19] has been proposed. This variant consists in a
restriction of KAT where all sums and iterations are guarded by tests. It offers several advantages over
KAT, including the fact that the complexity of its equational theory is lower (almost linear time) and
the fact that it admits a probabilistic model. This latter property paves the way for using GKAT for
reasoning about probabilistic programs. However an important feature of this system is that the tests
of GKAT remain the same as those of KAT, namely they express deterministic (boolean) properties on
states. Therefore the framework of GKAT allows to reason about probabilistic programs, but only for
establishing deterministic (i.e. non probabilistic) properties.

In this paper our goal is to extend the GKAT approach to reason about probabilistic programs by
allowing to handle not only deterministic properties, but also satisfaction of a property with a given
probability bound β. Our objective is not to design an expressive framework for advanced probabilistic
proofs, but instead to allow for simple probabilistic reasoning with a low technical overhead. Namely we
target proofs based on the union bound principle, a property from basic probability theory. It can be
stated as follows: given some properties A1, . . . , An , one has:
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Pr [∪ni=1Ai ] ≤
∑n

i=1 Pr [Ai ]

This principle is ubiquitus when reasoning about properties of randomized algorithms [16] and in their
application in security, privacy [6], learning theory [11], etc.

A previous approach for reasoning about probabilistic imperative programs using the union bound
principle had been provided by the union bound program logic aHL of [4]. This is a Hoare logic for
reasoning about probabilistic programs with non-probabilistic assertions but with judgements carrying
a numeric index for tracking the failure probability. That is, judgments have the form ⊢β c : ϕ ⇒ ψ
where β is an upper bound on the probability that ¬ψ is true after executing c starting from a memory
satisfying ϕ. The authors illustrated how this logic could be used for the verification of accuracy of both
non-interactive and interactive algorithms, in particular in the setting of differential privacy.

A natural approach is trying to adapt this idea to the GKAT framework. To do this and capture the
union bound reasoning in an algebraic framework we extend GKAT with an additional relation, denoted
◁, relating GKAT expressions with elements of a partially ordered monoid, typically real numbers. We
call this new system approximate GKAT (aGKAT). An important feature is that we want the new setting
to subsume standard GKAT, and so for that we require aGKAT to satisfy GKAT’s theory. A second
feature is that we want the probabilistic model of sub-Markov kernels to be a model of our new structure,
when we consider the monoid of real numbers. For this particular instantiation of our structure, the
meaning of the new relation ◁ will be that c ◁β holds if the program c’s probability of successful execution
is bounded by β. The theory of aGKAT extends the one of GKAT, by a small set of axioms characterizing
the properties of the new relation ◁. We illustrate how this theory allows for a concise form of equational
reasoning for establishing probability bounds on some GKAT programs. Moreover in order to demonstrate
the expressivity of our system aGKAT, we show how propositional aHL can be encoded in it. This is
inspired by the classical result of Kozen [13] showing that propositional Hoare logic can be encoded in
KAT. Thus aGKAT can be seen as an algebraic counterpart of propositional aHL, similarly as KAT is
the algebraic counterpart of propositional Hoare logic.

Outline. In Sect. 2 we will recall the background on GKAT and its probabilistic model, and in Sect.
3 we will recall the Hoare logic aHL. Then in Sect 4 we will define our system, aGKAT, its theory and
its semantics. After that in Sect. 5 we will provide an encoding of the logic aHL in the algebra aGKAT
and prove its soundness. Finally Sect. 7 will be devoted to an example, the analysis in aGKAT of the
accuracy of the probabilistic algorithm Report-noisy-max.

2 Guarded Kleene algebra with tests

This section recalls the language and the semantics of Guarded Kleene Algebra with Tests (GKAT) [19],
an abstraction of imperative programs where conditionals (c1 +b c2) and loops (c(b)) are guarded by
Boolean predicates b. The structure is a restriction of KAT in which we are not allowed to freely use
operators + and ∗ to build terms, i.e. GKAT does not allow nondeterminism. Although less expressive
that KAT, GKAT offers two advantages: decidability in (almost) linear time (compared to PSPACE
complexity of decidability in KAT), and better foundation for probabilistic applications. Although the
first one was the main motivation to introduce the structure [19], we are more interested in the second
advantage for the purpose of this paper.

2.1 Syntax

The syntax of GKAT is defined with a set of actions Σ and a finite set of primitive tests T , which are
disjoint. We denote actions by a and primitive tests by p. The classes of boolean expressions BExp
(also called tests) and GKAT expressions Exp (also called programs) are then defined by the following
grammars:
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b, b1, b2 ∈ BExp ::=

| 0 false

| 1 true

| p ∈ T p

| b1 · b2 b1 and b2

| b1 + b2 b1 or b2

| ¬ b not b

c, c1, c2 ∈ Exp ::=

| 1 skip

| a ∈ Σ do a

| b ∈ BExp assert b

| c1 · c2 c1; c2

| c1 +b c2 if b then c1 else c2

| c(b) while b do c

where, for any b, b1, b2 ∈ BExp, operators ·, + and ¬ denote conjunction, disjunction and negation,
respectively, and, for any c, c1, c2 ∈ Exp, operator · denotes sequential composition. We will also write
b for ¬ b. The notations on the right-hand-side are given to help intuition and will sometimes be used
when writing programs. The Boolean expression 1, as it is also an element of Exp, encodes command
skip.
The precedence of the operators is the usual one. To simplify the writing, we often omit the operator ·
by writing c1c2 for the expression c1 · c2, for any c1, c2 ∈ Exp.

For defining actions and primitive tests we will now introduce some terms:

t ∈ Terms ::= x ∈ Var | r ∈ R | t1 + t2 | t1 − t2 | t1 × t2

The set of primitive tests is defined by T = {t1 < t2, t1 = t2 | t1, t2 ∈ Terms}.
In this paper we are interested in using GKAT for representing probabilistic programs. Let us for

that first fix a few definitions. Given a set S , D(S ) is the set of probability sub-distributions over S with
discrete support, i.e. the set of functions f : S → [0, 1] such that Supp(f ) = {x ∈ [0, 1] | f (x ) > 0} is
discrete and f sums up to at most 1, i.e.

∑
s∈S

f (s) ≤ 1. In particular, the Dirac distribution δs ∈ D(S ) is

the map w → [w = s] =

{
1, if w=s

0, otherwise

We will thus consider a set Distr of sub-distributions over R with discrete support and two kinds of
actions, assignment of value to a variable and sampling from a distribution. The set of actions is thus:

Σ = {x ← t , x
$← d | x ∈ Var , t ∈ Terms, d ∈ Distr}.

The first action evaluates term t and assigns the result to x and the second one samples from d and
assigns the result to x . Some examples of distributions are the tossing of a fair coin, with probability
0.5 for 0 and 1 only, that we will denote Coin, and the (discrete version of) Laplacian distribution Lp(a)

centered in a with parameter p. The density function of Lp(a) is given by 1
2p exp( |x−a|p ).

Observe that while actions and thus GKAT expressions, that is to say programs, are probabilistic,
because of samplings, the tests themselves are deterministic and have values true or false. In particular
the conditional branching is only done on deterministic tests.

2.2 Semantics

We now present the semantic interpretation of GKAT that we will be using, the Probabilistic model [19].
Note that more interpretations of GKAT are presented in [19], namely a relational model and a language
model. We first revise some basic concepts needed for the semantics. The Iverson bracket [p], for p a
predicate term, is the function taking value 1 if p is true and 0 otherwise. Typical models of probabilistic
imperative programming languages interpret programs as Markov kernels, i.e. maps from S to probability
distributions. The semantic model defined below interprets programs as sub-Markov kernels, i.e. Markov
kernels over sub-distributions.

Definition 2.1 (Probabilistic interpretation). Let i = (State, eval , sat) be a triple where:

• State is a set of states,

• for each action a ∈ Σ, eval(a) : State → D(State) is a sub-Markov kernel,

• for each primitive test p ∈ T, sat(p) ⊆ State is a set of states.
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The probabilistic interpretation of an expression c with relation to i is the sub-Markov kernel PiJcK :
State → D(State) defined as follows:

1. PiJaK := eval(a)

2. PiJbK(σ) := [σ ∈ sat†(b)]× δσ

3. PiJc1 · c2K(σ)(σ′) :=
∑
σ′′
PiJc1K(σ)(σ′′)× PiJc2K(σ′′)(σ′)

4. PiJc1 +b c2K(σ) := [σ ∈ sat†(b)]× PiJc1K(σ) + [σ ∈ sat†(¬ b)]× PiJc2K(σ)

5. PiJc(b)K(σ)(σ′) := lim
n→∞

PiJ(c +b 1)
n · ¬ bK(σ)(σ′)

where sat† : BExp→ 2State is the lifting of sat : T → 2State to arbitrary Boolean expressions over T .

Remark 2.1 (Finite state case). In the case where State is a finite set of size n, say {s1, . . . , sn} then
a sub-Markov kernel f can be represented as an n × n matrixM = (ai,j )i,j∈[1,n]. Each coefficient ai,j is
defined as ai,j = f (si)(sj ). So in particular the sum over each line is inferior or equal to 1. We denote
abusively: f = M. In the case of a test b the matrix PiJbK has only diagonal coefficients, with value
ai,i = 1 if b(si) = 1, ai,i = 0 if b(si) = 0. In the case of c1 · c2, the matrix PiJc1 · c2K is obtained by the
matrix product of PiJc1K and PiJc2K.

In the following we will consider programs over a finite set of variables Var and the set of states will
be the set of memories, that is to say functions in Var → D where D is the domain of variables (we can
take for instance D = Q, the rational numbers). If x ∈ Var and σ is a memory, then σ[x ← t ] is the
memory identical to σ except that it maps x to the evaluation of t in memory σ. The interpretation of
actions a ∈ Σ as sub-Markov Kernels is then given by:

eval(x ← t)(σ) := δσ[x←t] and eval(x
$← d)(σ) :=

∑
t∈Supp(d)

d(t) · δσ[x←t].

In the sequel memories will often be denoted as m.

2.3 Axioms

The theory of GKAT introduced in [19] is given by the axioms from Fig. 1. Note in particular the fixpoint

c +b c = c (1)

c1 +b c2 = c2 +¬ b c1 (2)

(c1 +b1 c2) +b2 c3 = c1 +b1b2 (c2 +b3 c3) (3)

c1 +b c2 = bc1 +b c2 (4)

c1c3 +b c2c3 = (c1 +b c2) · c3 (5)

(c1 · c2) · c3 = c1 · (c2 · c3) (6)

0 · c = 0 (7)

c · 0 = 0 (8)

1 · c = c (9)

c · 1 = c (10)

c(b) = cc(b) +b 1 (11)

(c +b2 1)
(b1) = (b2c)

(b1) (12)
c3 = c1c3 +b c2

c3 = c
(b)
1 c2

if E (c1) = 0 (13)

Figure 1: Axiomatisation of Guarded Kleene algebra with tests

axiom (13). Intuitively, it says that if expression c3 chooses (using guard b) between executing c1 and
looping again, and executing c2, then c3 is a b-guarded loop followed by c2. However, the rule is not sound
in general (see [19] for more details). In order to overcome such limitation, the side condition E (c1) = 0
is introduced, ensuring that command c1 is productive, i.e. that it performs some action. To this end, the
function E is inductively defined as follows: E (b) := b, E (a) := 0, E (c1 +b c2) := b ·E (c1) +¬ b ·E (c2),
E (c1 · c2) := E (c1) · E (c2), E (c(b)) := ¬ b. We can see E (c) as the weakest test that guarantees that
command c terminates successfully but does not perform any action.

Moreover, note particularly the following observation: in KAT the encoding
c1 ·(b ·c2+¬ b ·c3) = c1 ·b ·c2+c1 ·¬ b ·c3 is not an if-then-else statement; it is rather a nondeterministic
choice between executing c1, then testing b and executing c2, and executing c1, then testing ¬ b and
executing c3. That is why left distributivity does not hold in GKAT for any c ∈ Exp; it only holds for
the particular case of c1 ∈ BExp, i.e. if c1 is a test.
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Note that + is defined on tests and represents disjunction. We define the relation ≤ on tests as:
b1 ≤ b2 iff b1 + b2 = b2. Contrarily to KAT [12], the relation ≤ is not defined on any GKAT expression,
only on tests.

In the Appendix A we list additional derivable equations in GKAT, which were given in [19].
Since any test is a program (Bexp ⊆ Exp), the grammar also allows to write expressions as b1 +b b2,

for any b ∈ BExp. We thus establish the following proposition1 which expresses the guarded sum +b , for
any b ∈ BExp, in terms of the disjunction + on tests.

Proposition 2.1.
b1 +b b2 = b · b1 + ¬ b · b2 (14)

By Boolean reasoning, we can observe that b · b + ¬ b · ¬ b = 1. Such observation will be useful later to
prove the soundness of some aHL rules in aGKAT.

We also have the following property (see Appendix C for the proof):

Proposition 2.2.
b1 + b2 = b1 +b1 b2 (15)

3 Union bound logic - Approximate Hoare logic

Observe that GKAT allows to reason on probabilistic programs but only for establishing deterministic
properties. We want to extend this kind of reasoning.

For that we start in this section by recalling Aproximate Hoare logic (aHL) [4], a logic based on the
union bound, a tool from probability theory for analyzing randomised algorithms. A judgment in aHL is
of the form:

⊢β c : ϕ⇒ ψ

where ϕ, ψ are first-order formulas representing pre- and post-conditions, respectively. Note that ϕ and
ψ are non-probabilistic assertions, i.e. they represent properties of memories rather that properties of
distributions over memories. This means that |= ϕ states that ϕ is valid in memory m. The value β
belongs to [0, 1] and is an upper bound on the probability that the postcondition ψ does not hold on the
output distribution, assuming that ϕ holds on the initial memory. The validity of the judgment is thus
stated as follows:

Definition 3.1 (Validity of aHL judgment). A judgment ⊢β c : ϕ ⇒ ψ is valid if for every memory m
such that m |= ϕ, we have:

PiJcK(m)[¬ ψ] ≤ β

Figure 2 presents the deduction rules of aHL. In rule (Weak) the premise |= ϕ′ ⇒ ϕ means that, in
any model, ϕ′ implies ϕ. Observe that the (While) rule is slightly more restrictive than the usual one
of Hoare logic. Its side conditions ensure that the loop terminates in at most k iterations except with
probability k · β.

4 Approximate Guarded Kleene algebra with tests (aGKAT)

4.1 Definition and theory of aGKAT

We want to define an extension of GKAT which would allow to express the fact that a probabilistic
program c satisfies a deterministic postcondition, except with a probability up to a certain bound, in
the spirit of the logic aHL that we have just recalled. For that we will extend GKAT with a possibility
to relate a GKAT expression with a value β from a partially ordered set. Let us start by giving some
definitions.

We call preordered double monoid (pod-monoid) a structureM = (M ,≤, ·, 1,+, 0) where:

• ≤ is a preorder on M ,

• (M , ·, 1) and (M ,+, 0) are two monoid structures, whose laws are compatible with ≤.
1We thank the anonymous reviewer of another paper for pointing out to us the fact that this property is derivable in

GKAT.
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• Skip:

⊢0 skip : ϕ⇒ ϕ

• Assn:

⊢0 do x ← t : ϕ[t/x ]⇒ ϕ

• Rand :

∀m ·m |= ϕ⇒ PiJx
$← dK(m)[¬ ψ] ≤ β

⊢β do x
$← d : ϕ⇒ ψ

• Seq :

⊢β c : ϕ⇒ ϕ′ ⊢β′ c′ : ϕ′ ⇒ ϕ′′

⊢β+β′ c; c′ : ϕ⇒ ϕ′′

• Cond :

⊢β c : ϕ ∧ b ⇒ ψ c′ : ϕ ∧ ¬ b ⇒ ψ

⊢β if b then c else c′ : ϕ⇒ ψ

• Weak :

|= ϕ′ ⇒ ϕ ⊢β c : ϕ⇒ ψ |= ψ ⇒ ψ′ β ≤ β′

⊢β′ c : ϕ′ ⇒ ψ′

• And :

⊢β c : ϕ⇒ ψ ⊢β′ c : ϕ⇒ ψ′

⊢β+β′ c : ϕ⇒ ψ ∧ ψ′
• Or :

⊢β c : ϕ⇒ ψ ⊢β c : ϕ′ ⇒ ψ

⊢β c : ϕ ∨ ϕ′ ⇒ ψ

• False:

⊢1 c : ϕ⇒ ⊥

• While:

bv : N |= ϕ ∧ bv ≤ 0→ ¬ b ⊢β c : ϕ⇒ ϕ ∀η>0 · ⊢0 c : ϕ ∧ b ∧ (bv = η)⇒ (bv < η)

⊢k ·β while b do c : ϕ ∧ (bv ≤ k)⇒ ϕ ∧ ¬ b

Figure 2: Approximate Hoare Logic rules (aHL)
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Note that we do not request here any property relating · and +. In the sequel we will consider the
pod-monoid consisting of the real unit interval [0, 1] equipped with multiplication and addition truncated
to 1, that is to say min ((β1 + β2), 1), where + is the ordinary addition.

Definition 4.1. An approximate GKAT, denoted aGKAT, is a triple (A,M, ◁) where A is a GKAT,M
is a pod-monoid and ◁ is a relation on A×M satisfying the equations of Fig. 3.

The following axioms are quantified universally for any GKAT expressions c, c1, c2, tests e and monoid
elements β, β1, β2,

(c1 = c2 ∧ c1 ◁ β) ⇒ c2 ◁ β (16)

(c ◁ β1 ∧ β1 ≤ β2) ⇒ c ◁ β2 (17)

(c1 ◁ β1 ∧ c2 ◁ β2) ⇒ c1 · c2 ◁ β1 · β2 (18)

(c1 ◁ β ∧ c2 ◁ β) ⇒ c1 +b c2 ◁ β (19)

(c · c1 ◁ β1 ∧ c · c2 ◁ β2) ⇒ c · (c1 +b c2) ◁ β1 + β2 (20)

c ◁ 1 (21)

0 ◁ 0 (22)

Figure 3: Axioms on the relation ◁

We define a semantic interpretation of aGKAT as follows:

Definition 4.2. The probabilistic semantic interpretation of an aGKAT (A,M, ◁) is obtained by extend-
ing the probabilistic interpretation Pi of GKAT recalled in Sect. 2.2 in the following way:

• we consider the triple i = (State, eval , sat) of Def. 2.1 which gives an interpretation of the GKAT
A,

• the pod-monoidM is interpreted as indicated above by ([0, 1],≤, ·, 1,+, 0) where · is the product and
+ the truncated sum,

• the relation ◁ is interpreted by the relation between sub-Markov kernels f and [0, 1]-reals β consisting
in the pairs (f , β) satisfying:

∀ s ∈ State, Σs′∈State f (s)(s
′) ≤ β (23)

that is to say, for any state s, the total mass of the sub-distribution f (s) is inferior or equal to β.

We still denote this enlarged interpretation as Pi .

If a program c satisfies property (23) w.r.t. β, that is to say if:

∀s∈State ,
∑

s′∈State
PiJcK(s)(s ′) ≤ β

then we will write c ◀ β.

Proposition 4.1. The probabilistic interpretation of an aGKAT (A,M, ◁) from Def. 4.2 gives a model
of (A,M, ◁), that is to say:

1. the interpretation of A satisfies the axioms of GKAT (Fig. 1) and that of ([0, 1],≤, ·, 1,+, 0) satisfies
the axioms of pod-monoid,

2. the axioms of Fig.3 (axioms (16) to (22)) are satisfied.

So Proposition 4.1 implies that if i is a probabilistic interpretation and if a statement c ◁β is derivable
with the aGKAT axioms, then the semantic property c ◀ β holds.

Proof. (Prop. 4.1)
The fact that the interpretation of A satisfies the axioms of GKAT is known from [19].
We give here the proof that the interpretation of A satisfies Axiom (18). The proofs for the other

axioms are given in Appendix D.
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Consider a set of states S . By assumption we know that:

∀s∈S ,
∑
s′∈S
PiJc1K(s)(s ′) ≤ β1, ∀s∈S ,

∑
s′∈S
PiJc2K(s)(s ′) ≤ β2

So we have ∀s∈S ,
∑
s′∈S
PiJc1 · c2K(s)(s ′) =

∑
s′∈S

∑
s′′∈S

PiJc1K(s)(s ′′) · PiJc2K(s ′′)(s ′)

=
∑
s′∈S

(PiJc1K(s)(s ′) ·
∑
s′′∈S

PiJc2K(s ′′)(s ′)) commutativity of +

=
∑
s′∈S
PiJc1K(s)(s ′) · β2 by assumptions

= β1 · β2

2
Remark 4.1. Note that by analogy with Axiom (19), one could have expected an axiom stronger than
Axiom (20), namely that if (c · c1 ◁ β ∧ c · c2 ◁ β) then one would have c · (c1 +b c2) ◁ β (this would then
generalize Axiom (19) when taking c = 1). However it turns out that this candidate additional axiom is
not valid in the probabilistic model. A counter-example is given in the Appendix E.

Proposition 4.2. The following implication holds in any aGKAT:

(c · b1 ◁ β1 ∧ c · b2 ◁ β2)⇒ c · (b1 + b2) ◁ β1 + β2

Proof. Observe that b1 + b2 = b1 +b1 b2 by Prop. 2.2 and use Axiom (20). 2

The following proposition refines in some sense Axiom (20).

Proposition 4.3. The following implication holds in any aGKAT:

(c · b · c1 ◁ β1 ∧ c · b · c2 ◁ β2)⇒ c · (c1 +b c2) ◁ β1 + β2

Proof. Observe that c1 +b c2 = b · c1 +b b · c2 by Axiom 4, Axiom 2, applied two times .Then apply
Axiom (20) to c, c′1 = bc1 and c′2 = bc2. 2

Remark 4.2 (Axiom (20) and left distributivity). Recall that KAT has an axiom of left distributivity
c · (c1 + c2) = c · c1 + c · c2. It does not hold in GKAT with the guarded sum +b though. In some
sense axiom (20) (or its refinement Prop. 4.3) can be seen as a kind of compensation for this lack of left
distributivity because it allows when one is reasoning on an expression c · (c1 +b c2) (in order to establish
a bound β) to continue the proof with two branches, respectively on c · c1 and on c · c2 .

4.2 Semantic reasoning

When reasoning on examples of programs we want to establish properties on their semantic interpre-
tations. For that, beside the axioms of aGKAT we will also need to use some semantic properties, for
instance that some actions can be commuted without changing the semantics of the program. For this
we introduce some notations:

Definition 4.3. Given two GKAT program c and c′ and a probabilistic interpretation i, we write c ≡ c′

if PiJcK = PiJc′K.

Then we have the following properties:

Proposition 4.4. Consider GKAT programs c and c′, and a probabilistic interpretation i.

1. If b is a test which only depends on the values of some variables x1, . . . , xn and if c leaves the values
of those variables unchanged, then we have:

c · b ≡ b · c (24)

2. If c ≡ c′ and c ◀ β, then c′ ◀ β.

Observe that property 1 holds because the syntax of programs does not allow any form of aliasing.
As to property 2, it holds because the definition of c ◀ β only depends on the semantic interpretation
PiJcK.

Let us now illustrate the use of aGKAT on a small example.

8



Example 4.1 (Double tossing). Consider the program c below:

c = (x
$← Coin) · (c1 +[x=1] (y ← 0))

c1 = (x
$← Coin) · ((y ← 1) +[x=1] (y ← 0))

Because of the semantics of the distribution Coin we can assume:

(x
$← Coin) · [x = 1] ◀ 1/2, (x

$← Coin) · [x ̸= 1] ◀ 1/2

We want to prove that after the execution of c, the probability that y equals 0 is inferior to 3/4, and the
probability that y equals 1 is inferior to 1/4, that is to say that:

c · [y = 0] ◀ 3/4 and c · [y = 1] ◀ 1/4

Now, by using Axiom (5), c · [y = 0] can be rewritten as follows:

c · [y = 0] = (x
$← Coin) · (c′1 +[x=1] (y ← 0)[y = 0])

c′1 = (x
$← Coin) · ((y ← 1)[y = 0] +[x=1] (y ← 0)[y = 0])

We then enumerate the various possible branches of executions of c · [y = 0] :

c2 = (x
$← Coin) · [x = 1] · (x $← Coin) · [x = 1] · (y ← 1) · [y = 0] (25)

c3 = (x
$← Coin) · [x = 1] · (x $← Coin) · [x ̸= 1] · (y ← 0) · [y = 0] (26)

c4 = (x
$← Coin) · [x ̸= 1] · (y ← 0) · [y = 0] (27)

First, from the model we know that (y ← 1) · [y = 0] ≡ 0, so c2 ≡ 0, so c2 ◀ 0.

Then, as (x
$← Coin) · [x ̸= 1] ◀ 1/2, by Axioms (21) and (18) we have c4 ◀ 1/2.

Then, as (x
$← Coin) · [x = 1] ◀ 1/2, by Axioms (18) and (21) we have c3 ◀ 1/4.

By applying Prop. 4.3 to c2 and c3 we get:

(x
$← Coin) · [x = 1] · c′1 ◀ 1/4 (28)

By applying again Prop. 4.3, this time to (28) and c4 ◀ 1/2 we finally obtain:

c · [y = 0] ◁ 3/4 (= 1/4 + 1/2) (29)

The proof that c · [y = 1] ◀ 1/4 holds is similar.

5 Encoding aHL in aGKAT

We want to relate deduction in aHL and reasoning in aGKAT. We follow for that the approach of [13]
which shows how to encode propositional Hoare logic in KAT. In this paper a propositional Hoare logic
judgement ⊢ c : ϕ⇒ ϕ′ is encoded in KAT as b · c · b′ = 0 if the predicates ϕ and ϕ′ are equivalent resp.
to the boolean tests b and b′.

In the case of aHL, we will encode an aHL judgement ⊢β c : ϕ ⇒ ϕ′ by the aGKAT statement
b · c · b′ ◁ β, if the predicates ϕ and ϕ′ are equivalent resp. to the boolean tests b and b′.

In this approach, showing that an aHL rule is sound in aGKAT will consist in proving that the
conjunction of the aGKAT equations encoding the premises of the aHL rule implies the equation encoding
the conclusion of the rule.

Observe that similarly as for Hoare logic, some rules of aHL, namely axiom rules (Assn) and (Rand),
do not depend on aHL judgements as premises but rather on an interpretation of actions and predicates,
and possibly a semantic condition (for (Rand)). Thus we do not expect to derive their encoding as an
equation valid in the theory of aGKAT. Instead, when we will deal with examples we will consider a
particular interpretation and thus reason on equalities of expressions in the model.

We now list on Fig. 4 the interpretations of the rules of aHL (Figure 2) in aGKAT, by using the
encoding of aHL judgments as aGKAT equations. Recall that the interpretation is valid only when the
rule is instantiated with predicates (ϕ, ϕ′ . . . ) in the premises which are equivalent to some GKAT
boolean tests. For more readability we will then use the same notation (ϕ, ϕ′ . . . ) for the GKAT boolean
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• Skip:

ϕ1¬ ϕ ◁ 0 (30)

• Assn:

ϕ[t/x ](x ← t)¬ ϕ ◁ 0
(31)

• Rand:
∀m ·m |= ϕ⇒ PiJx

$← dK(m)[¬ ψ] ≤ β ⇒ ϕ(x
$← d)¬ ψ ◁ β (32)

• Seq:
(ϕc¬ ϕ′ ◁ β) ∧ (ϕ′c′¬ ϕ′′ ◁ β′)⇒ ϕcc′¬ ϕ′′ ◁ β′′ (33)

• Cond:
(ϕbc¬ ψ ◁ β) ∧ (ϕ¬ bc′¬ ψ ◁ β)⇒ ϕ(c +b c

′)¬ ψ ◁ β (34)

• Weak:
(ϕ ≤ ϕ′) ∧ (ϕc¬ ψ ◁ β) ∧ (ψ′ ≤ ψ) ∧ (β ≤ β′)⇒ ϕ′c¬ ψ′ ◁ β′ (35)

• And:
(ϕc¬ ψ ◁ β) ∧ (ϕc¬ ψ′ ◁ β′)⇒ ϕc¬ (ψψ′) ◁ β + β′ (36)

• Or:

(ϕc¬ ψ ◁ β) ∧ (ϕ′c¬ ψ ◁ β)⇒ (ϕ+ ϕ′)c¬ ψ ◁ β (37)

• False:

ϕc¬ ⊥ ◁ 1
(38)

• While:

(bv : N |= ϕ) ∧ (bv ≤ 0 → ¬ b) ∧ (ϕc¬ ϕ ◁ β) ∧ (∀η>0 ·ϕb[bv = η]c¬ [bv < η] ◁ 0) ⇒ ϕ[bv ≤ k ]c(b)¬ (ϕ¬ b)
(39)

Figure 4: Interpretation of aHL rules in aGKAT
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tests as for the predicates. The aHL rule (31) uses a predicate ϕ[t/x ] obtained by substitution of a term
t in the formula ϕ. By abuse of notation we will also write as ϕ[t/x ] the test e ′ obtained by evaluating
the formula ϕ[t/x ] in the model. Therefore, as already stressed above, the aGKAT interpretation (31) of
this rule depends on the interpretation in the model. Similarly the rule (32) for handling sampling and
corresponding to aHL rule (Rand) also depends on a semantic condition from the model.

Theorem 5.1. All the rules of the system aHL, union bound logic, except (Assn) and (Rand), i.e.
(30)-(39) have an aGKAT interpretation (given in Fig. 4) valid in any aGKAT.

Proof. We give here the proof for the rule (Seq). The cases of the other rules are given in Appendix F.
By assumption we have: ϕc¬ ϕ′ ◁ β and ϕ′c′¬ ϕ′′ ◁ β′. Then we have:

ϕcc′¬ ϕ′′ = ϕc1c′¬ ϕ′′

= ϕc(ϕ′ +ϕ′ ¬ ϕ′)c′¬ ϕ′′ by Prop. 2.1

= ϕc(ϕ′c′¬ ϕ′′ +ϕ′ ¬ ϕ′c′¬ ϕ′′) by (5)

We have ϕc(ϕ′c′¬ ϕ′′) ◁ β′, by axiom (18) because ϕc ◁ 1 (axiom 21) and ϕ′c′¬ ϕ′′ ◁ β′.
Additionally, we have ϕc(¬ ϕ′c′¬ ϕ′′) = (ϕc¬ ϕ′)c′¬ ϕ′′ ◁ β, by axiom (18) because ϕc¬ ϕ′ ◁ β and

c′¬ ϕ′′ ◁ 1 (axiom 21).
Hence, by axiom (20), ϕc(ϕ′c′¬ ϕ′′+ϕ′ ¬ ϕ′c′¬ ϕ′′) ◁β+β′, so ϕcc′¬ ϕ′′ ◁β+β′, by using axiom (16).

2

6 Example

We now consider the example of the Report-noisy-max algorithm, which has been analysed in [4] with the
logic aHL. Our analysis here using aGKAT will be similar to the previous one in aHL, but the equational
approach of aGKAT will simplify some steps. We only sketch the main steps, but the full proof can be
found in Appendix G.

We consider a finite set R and a quality score function qscore, which takes as input a pair of an
element r of R and a database d , and returns a real number. The goal of the algorithm is to find an
element r∗ of R which approximately minimizes the function qscore on d . The algorithm is randomized
and only computes an approximate minimization because it is designed to satisfy a differential privacy
property (see [6]).

The algorithm proceeds by computing for each element r of R the quality score qscore(r , d) and
adding to it a Laplacian noise (according to the Laplace mechanism for differential privacy [6]) and
returning the element r∗ with the highest noisy value.

Here we do not deal with the privacy property of this program, but instead our objective is to study its
accuracy, that is to say to bound the difference between the value of qscore(r∗, d) and the real minimum
of qscore(·, d) on R. The algorithm is written in GKAT as program c:

c = (flag ← 1); (best ← 0); (R0 ← R); (R′ ← ∅); c′[R̸=∅]; return(r∗)

where c′ = (r ← pick(R)); (noisy [r ] $← Lϵ/2(qscore(r , d)));
(c1 +b 1);

(R ← R\{r}); (R′ ← R′ ∪ {r})
c1 = (flag ← 0); (r∗ ← r); (best ← noisy [r ]))

b = (noisy [r ] > best) + (flag == 1)

The variable flag has boolean values ({0, 1}), R, R0 and R′ are sets, r , r∗ range over elements of
R, noisy [r ] and best range over reals. The notation noisy [r ] is an array-like notation for representing n
variables, where n is the size of the set R.

This program uses the following kinds of actions and tests:

• actions for operations on sets: picking an (arbitrary) element r from a set (r ← pick(R)), removing
( R ← R\{r})) and adding an element (R′ ← R′ ∪ {r}),

• sampling from a Laplacian distribution centered in a with parameter p : (x
$← Lp(a)),

• comparison tests: inequalities for reals, equality for boolean value, comparison to empty set for sets
[R ≠ ∅].
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We recall the following accuracy property of the Laplace distribution [4]:

Lemma 6.1. Assume β ∈ [0, 1] and ν be a sample from Lp(a), then:
PrLp(a)[| ν − a |> 1

p log( 1β )] < β.

Therefore the Laplacian distribution satisfies (x
$← Lp(a))[| x − a |> 1

p log( 1β )] ◀ β. This gives us for

the sampling in program c′:

(noisy [r ]
$← Lϵ/2(qscore(r , d)))[| noisy [r ]− qscore(r , d) |> 2

ϵ
log(
| R0 |
β

)] ◁
β

| R0 |
(40)

Now we want to establish a property for the whole program c′. Denote as b1 the test [| noisy [r ] −
qscore(r , d) |≤ 2

ϵ log(
|R0|
β )]. Observe that b1 only depends on the values of noisy [r ] and qscore(r , d).

Moreover noisy [r ] and qscore(r , d) are not changed by the last 3 actions of c′. Therefore by applying

Prop.4.4.24 we get c′; b1 ≡ c′′ , where c′′ is obtained by inserting in c′ the test b1 just after (noisy [r ]
$←

Lϵ/2(qscore(r , d))). So we know that:

(noisy [r ]
$← Lϵ/2(qscore(r , d))); b1 ◁

β

| R0 |
(this is (40)) (41)

c0 ◁ 1 for any c0, by axiom (21) (42)

So by applying axiom (18) to (41) and (42) we obtain that c′′ ◁ β
|R0| . This is a step where aGKAT has

provided us a concise and simple reasoning. Therefore as c′; b1 ≡ c′′ we get by Prop. 4.4.2:

c′ · b1 ◁
β

| R0 |
(43)

We want to prove an invariant for the body c′ of the while loop in c. For that consider the test b2
corresponding to the following predicate:

ϕ2 = ∀ r ∈ R′, | noisy [r ]− qscore(r , d) |≤ 2

ϵ
log(
| R0 |
β

)

Observe that ϕ2 is equivalent to a finite conjunction ranging over the elements r of R′ of primitive tests,
therefore b2 is a valid test. We have:

b2 · b1 · (R′ ← R′ ∪ {r}) · b2 = 0 (44)

Let us denote as c2 the expression c′ deprived of the last action, that is to say: c′ = c2 ·(R′ ← R′∪{r}).
The reasoning we did on c′ before can be repeated for c2, and so just as (43) we have: c2 · b1 ◁ β

|R0| .

Therefore by axioms (18) and (21) we get: b2 ·c2 ·b1 ◁ β
|R0| (here again aGKAT helps us with conciseness).

Moreover as c2 does not modify R′, by using Prop.4.4.24 we get: b2 ·c2 ·b2 ◁0. Thus by using the aGKAT
encoding (Theorem 5.1) of the aHL rule (And) we obtain from the two previous statements

b2 · c2 · b1 · b2 ◁
β

| R0 |
(45)

Equation (44) gives us: (b1 · b2) · (R′ ← R′ ∪ {r}) · b2 ◁ 0 (46)

By using the aGKAT encoding of the aHL rule (Seq) we get from (45) and (46): b2 · c′ · b2 ◁ β
|R0| . By

using the aGKAT encoding of the aHL rule (While) we get from this last statement as the loop runs for
| R0 | iterations: b2 · c′[R≠∅] · b2 ◁ β.

Finally as (R′ ← ∅) · b2 = 0 we deduce from this statement using (Seq) that: c · b2 ◁ β. So we have

proven in aGKAT the encoding of: ⊢β c : T ⇒ ∀ r ∈ R′, | noisy [r ]− qscore(r , d) |≤ 2
ϵ log(

|R0|
β ).

In Appendix G we show to combine this result with another invariant to obtain finally an accuracy
bound for the algorithm.
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7 Related work

A probabilistic extension of GKAT was introduced in [18] for reasoning on imperative programs with
probabilistic branching. The main difference to our approach consists on the way the probability is
introduced. The authors introduce the probability syntactically, by extending the set of actions with a
biased coin flip ⊕r , where r is a probability; we rather do it semantically, by taking samplings as basic
programs. They need naturally an additional set of axioms for the introduced operator.

Another extension of KAT was given in [8] which aimed at capturing computations with some notion
of uncertainty, namely fuzzy programs. While in the present paper we have deterministic (boolean) tests
to reason on deterministic properties on states, in the approach mentioned the Boolean algebra of KAT
was replaced by a lattice, with the goal of being able to reason on fuzzy (non Boolean) properties [10].

Concerning GKAT again, [9] introduced a variant of GKAT to reason on properties of pairs of prob-
abilistic programs. Instead of being an approach to deal with unary executions of programs, this frame-
work is rather a relational structure in the style of [3], able to reason, for example, on properties of
non-interference between variables of pairs of distinct programs or two executions of the same program.

Some other related works are in the area of Hoare logics. In the present paper we refered to union
bound logic [4]. A more general notion of Graded Hoare logic (GHL) was actually introduced in [7], as
a parameterisable framework for augmenting Hoare logic with a preordered monoidal analysis. A logic
of this framework is defined by a monoidal structure of grades; some examples of such logics are: the
union bound logic aHL [4] that we considered here; logics for analysis of computation time; or the logic
for reasoning about program counter security [15].

A Hoare style logic for reasoning about differential privacy was introduced in [5], named Approximate
probabilistic relational Hoare logic. It allows to reason on two probabilistic programs (or two executions
of the same program). The term ‘approximate’ refers here to the parameters associated to reasoning on
judgments, which are related to the distance between the probabilistic distributions generated by the
probabilistic programs.

Both frameworks could benefit from an algebraic approach, by the introduction of Kleene algebra with
tests kind of structures which could encode the deductive apparatus from the logical systems, simplifying
it into a a quasi-equational style of reasoning. For the first case, one would want a Kleene algebra
with tests parametric on a monoidal structure in order to capture the different examples addressed with
Graded HL. Such a structure would be a generalisation of the one presented in this paper, capturing
a wider range of situations. The second case calls for a structure taking into account the parametric
reasoning on judgments themselves. One would need to embed the parameters into the structure itself,
resorting, for example, to a relation between algebraic terms and the elements from the structure which
gives corps to the parameters.

8 Discussion and future work

In our approach, we restricted ourselves to a specific pod-monoid with specific interval of values and set
of operators, which were enough to capture aHL and handle the initial intended goals. However we would
like to push this approach further. By using a generic and external structure to the main algebraic model
of programs, we could follow a parametric approach, and obtain more freedom on the structure chosen
to capture a wider range of examples: the analysis of computation time model, by taking the natural
numbers and the arithmetic sum as the monoidal composition; the program counter security model, by
taking a set of binary values and the string concatenation as the composition; and the union bound logic
itself. Those are a few concrete models considered for a generic version of Hoare Logic, analysed in [7].

We want to stress however that it is not trivial to capture in the same generic setting both the union
bound logic and the logic for analysis of computation time. The system aGKAT does not allow to do
that. In particular axiom (21) requires that the neutral element of the first monoid is also maximal for
the order; this is not the case in the monoid (N,+) (or even (N∞,+)) used for the Hoare logic for analysis
of computation time.

One of the advantages of the syntactical restriction of GKAT is to facilitate the inclusion of proba-
bilistic models, by neglecting nondeterminism. While usually avoided, and always difficult, one possible
direction for future work could be to consider a language with both nondeterminism and probabilities,
capturing more application scenarios.
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[18] Wojciech Rozowski, Tobias Kappé, Dexter Kozen, Todd Schmid, and Alexandra Silva. Probabilistic
guarded KAT modulo bisimilarity: Completeness and complexity. In Kousha Etessami, Uriel Feige,
and Gabriele Puppis, editors, 50th International Colloquium on Automata, Languages, and Program-
ming, ICALP 2023, July 10-14, 2023, Paderborn, Germany, volume 261 of LIPIcs, pages 136:1–
136:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPIcs.ICALP.

2023.136.

[19] Steffen Smolka, Nate Foster, Justin Hsu, Tobias Kappé, Dexter Kozen, and Alexandra Silva. Guarded
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Appendix

A Derivable GKAT facts

c1 +b1 (c2 +b2 c3) = (c1 +b1 c2) +b1+b2 c3 (47)

c1 +b c2 = c1 +b ¬ b · c2 (48)

b1 · (c1 +b2 c2) = b1c1 +b2 b1c2 (49)

c +b 0 = bc (50)

c1 +0 c2 = c2 (51)

b · (c1 +b c2) = bc1 (52)

c(b) = c(b) · ¬ b (53)

c(b) = (bc)(b) (54)

c(0) = 1 (55)

c(1) = 0 (56)

b
(b2)
1 = ¬ b2 (57)

c(b2) = c(b1b2) · c(b2) (58)

Figure 5: Derivable GKAT facts

B Proof of Proposition 2.1

b · b1 + ¬ b · b2
= { (1)}

(b · b1 + ¬ b · b2) +b (b · b1 + ¬ b · b2)
= { (4) and (48)}

b · (b · b1 + ¬ b · b2) +b ¬ b · (b · b1 + ¬ b · b2)
= { 49}

(b · b · b1 + b · ¬ b · b2) +b (¬ b · b · b1 + ¬ b · ¬ b · b2)
= { B.A. and (7)}

(b · b1 + 0) +b (0 + ¬ b · b2)
= { B.A.}

(b · b1) +b (¬ b · b2)
= { (4) and (48)}

b1 +b b2

C Proof of Proposition 2.2

Because the tests form a boolean algebra we have:

b1 = b1 + b1b2 (absorption law)

Now we have:

b1 +b1 b2 = b1b1 + b1b2 by Prop. 2.1

= b1 + b1b2 by idempotency

= (b1 + b1b2) + b1b2 by the equation above

= b1 + (b1 + b1)b2

= b1 + b2

D Proof of Proposition 4.1

We prove that axioms (16)-(22) are valid in the probabilistic model. Consider a set of states S . Axioms
(16) and (17) are trivial.

• Axiom (18):
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Assumptions: c1 ◁ β1 ⇔ ∀s∈S ,
∑
s′∈S
PiJc1K(s)(s ′) ≤ β1

and c2 ◁ β2 ⇔ ∀s∈S ,
∑
s′∈S
PiJc2K(s)(s ′) ≤ β2.

Goal: c1 · c2 ◁ β1 · β2 ⇔ ∀s∈S ,
∑
s′∈S
PiJc1 · c2K(s)(s ′) ≤ β1 · β2.

∀s∈S ,
∑
s′∈S
PiJc1 · c2K(s)(s ′)

= { Definition 2.1}∑
s′∈S

∑
s′′∈S

PiJc1K(s)(s ′′) · PiJc2K(s ′′)(s ′)

= { commutativity of +}∑
s′∈S

(PiJc1K(s)(s ′) ·
∑
s′′∈S

PiJc2K(s ′′)(s ′))

≤ { assumptions}∑
s′∈S
PiJc1K(s)(s ′) · β2

≤ { assumptions}

β1 · β2

We then conclude, by Definition 4.2, c1 · c2 ◁ β1 · β2.

• Axiom (19):

Assumptions: c1 ◁ β ⇔ ∀s∈S ,
∑
s′∈S
PiJc1K(s)(s ′) ≤ β

and c2 ◁ β ⇔ ∀s∈S ,
∑
s′∈S
PiJc2K(s)(s ′) ≤ β.

Goal: c1 +b c2 ◁ β ⇔ ∀s∈S ,
∑
s′∈S
PiJc1 +b c2K(s)(s ′) ≤ β

∑
s′∈S
PiJc1 +b c2K(s)(s ′) =


∑
s′∈S
PiJc1K(s)(s ′) if s ∈ sat†(b)∑

s′∈S
PiJc2K(s)(s ′) if s ∈ sat†(¬ b)

By assumptions, ∀s∈S ,
∑
s′∈S
PiJc1K(s)(s ′) ≤ β and

∑
s′∈S
PiJc2K(s)(s ′) ≤ β.

Hence we conclude
∑

s′∈State
PiJc1 +b c2K(s)(s ′) ≤ β, i.e. by Definition 4.2 c1 +b c2 ◁ β.

• Axiom (20):

Assumptions: cc1 ◁ β1 ⇔ ∀s∈State ,
∑
s′∈S
PiJcc1K(s)(s ′) ≤ β1

and cc2 ◁ β2 ⇔ ∀s∈State ,
∑
s′∈S
PiJcc2K(s)(s ′) ≤ β2.

Goal: c(c1 +b c2) ◁ β1 + β2 ⇔ ∀s∈State ,
∑
s′∈S
PiJc(c1 +b c2)K(s)(s ′) ≤ β1 + β2

∀s∈S ,
∑
s′∈S
PiJc(c1 +b c2)K(s)(s ′)

= { Definition 2.1}∑
s′∈S

∑
s′′∈S

PiJcK(s)(s ′′) · PiJc1 +b c2K(s ′′)(s ′)
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= { commutativity of +}∑
s′′∈S

PiJcK(s)(s ′′) ·
∑
s′∈S
PiJc1 +b c2K(s ′′)(s ′)

= { (Definition 2.1)}∑
s′′∈S

PiJcK(s)(s ′′) · (
∑

s′∈sat†(b)

PiJc1K(s ′′)(s ′) +
∑

s′∈sat†(¬ b)

PiJc2K(s ′′)(s ′))

= { distributivity of · over +}∑
s′′∈S

PiJcK(s)(s ′′) ·
∑

s′∈sat†(b)

PiJc1K(s ′′)(s ′)

+
∑
s′′∈S

PiJcK(s)(s ′′) ·
∑

s′∈sat†(¬ b)

PiJc2K(s ′′)(s ′)

= { commutativity of +}∑
s′∈sat†(b)

∑
s′′∈S

PiJcK(s)(s ′′) · PiJc1K(s ′′)(s ′)

+
∑

s′∈sat†(¬ b)

∑
s′′∈S

PiJcK(s)(s ′′) · PiJc2K(s ′′)(s ′)

= { Definition 2.1}∑
s′∈sat†(b)

PiJcc1K(s)(s ′) +
∑

s′∈sat†(¬ b)

PiJcc2K(s)(s ′)

≤ { assumptions}

β1 + β2

Hence, by Definition 4.2, c(c1 +b c2) ≤ β1 + β2.

The validity of Axiom (21) comes directly from Definition 4.2.

• Axiom (22):

∀s∈S ,
∑
s′∈S
PiJ0K(s)(s ′) = 0 ≤ 0. Hence, by Definition 4.2, 0 ◁ 0.

E Counter-example for Remark 4.1 (Invalid statement in the
probabilistic model)

Let us take as set of states States = {s1, s2}. We use a matrix notation for Markov kernels: the matrix(
a1,1 a1,2
a2,1 a2,2

)
represents the Markov kernel f such that, for all i , j ∈ {1, 2}, f (si)(sj ) = ai,j . So in

particular the sum over each line is inferior or equal to 1. We denote abusively: f =

(
a1,1 a1,2
a2,1 a2,2

)
.

Let us define:

c =

(
1/2 1/2
1/2 1/2

)
c1 =

(
1/2 1/2
0 0

)
c2 =

(
0 0

1/2 1/2

)
Then we have:

c · c1 = c · c2 =

(
1/4 1/4
1/4 1/4

)
So we have: c · c1 ◁ 1/2 and c · c2 ◁ 1/2, because the sum over each line is equal to 1/2.
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Let us take for b the test on states s defined by b = [s = s1]. Then we have:

c1 +b c2 =

(
1/2 1/2
1/2 1/2

)
So:

c · (c1 +b c2) =

(
1/2 1/2
1/2 1/2

)
So c · (c1 +b c2) ◁ 1(=

1
2 + 1

2 ) holds, Axiom (20) is satisfied. And the minimum β which satisfies
c · (c1 +b c2) ◁ β is 1, thus the candidate statement of Remark 4.1 is not valid.

F Proof of Theorem 5.1

• Skip:

Goal: ϕ1¬ ϕ ◁ 0

ϕ1¬ ϕ
= { (9)}

ϕ¬ ϕ
= { B.A.}

0

By axiom (22), 0 ◁ 0.

• Seq:

Assumptions:
ϕc¬ ϕ′ ◁ β (59)

and
ϕ′c′¬ ϕ′′ ◁ β′ (60)

Goal: ϕcc′¬ ϕ′′ ◁ β + β′

ϕcc′¬ ϕ′′

= { B.A.}
ϕc1c′¬ ϕ′′

= { Proposition 2.1 and B.A.}
ϕc(ϕ′ +ϕ′ ¬ ϕ′)c′¬ ϕ′′

= { (5)}
ϕc(ϕ′c′¬ ϕ′′ +ϕ′ ¬ ϕ′c′¬ ϕ′′)

We have ϕc(ϕ′c′¬ ϕ′′) ◁ β′, by axiom (18) because ϕc ◁ 1 (axiom 21) and (60).

Additionally, we have ϕc(¬ ϕ′c′¬ ϕ′′) = (ϕc¬ ϕ′)c′¬ ϕ′′ ◁ β, by axiom (18) because (59) and
c′¬ ϕ′′ ◁ 1 (axiom 21).

Hence, by axiom (20), ϕc(ϕ′c′¬ ϕ′′ +ϕ′ ¬ ϕ′c′¬ ϕ′′) ◁ β + β′, so ϕcc′¬ ϕ′′ ◁ β + β′.

• Cond:

Assumptions:
ϕbc¬ ψ ◁ β (61)
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and
ϕ¬ bc′¬ ψ ◁ β (62)

Goal: ϕ(c +b c
′)¬ ψ ◁ β

By axiom (5) and fact (49), ϕ(c +b c
′)¬ ψ = ϕc¬ ψ +b ϕc

′¬ ψ and by (61), (62) and axiom (19),
we have ϕc¬ ψ +b ϕc

′¬ ψ ◁ β.

• Weak:

Assumptions:
ϕc¬ ψ ◁ β (63)

ϕ′ϕ = ϕ′ (64)

ψψ′ = ψ (65)

and
β ≤ β′ (66)

Goal: ϕ′c¬ ψ′ ◁ β′

By Boolean algebra, we derive
ψψ′ = ψ ⇔ ¬ ψ′¬ ψ = ¬ ψ′ (67)

Hence, we reason,

ϕ′c¬ ψ′

= { (64) and (68)}

ϕ′ϕc¬ ψ′¬ ψ
= { (B.A.)}

ϕ′(ϕc¬ ψ)¬ ψ′

By axiom (21), ϕ′ ◁ 1, ¬ ψ′ ◁ 1. So, by (63) and axiom (18), we have ϕ′(ϕc¬ ψ)¬ ψ′ ◁ 1 · β · 1 = β.
By (66) and axiom (17), we conclude ϕ′(ϕc¬ ψ)¬ ψ′ ◁ β′.

• And:

Assumptions:
ϕc¬ ψ ◁ β (68)

and

ϕ′c¬ ψ′ ◁ β′ (69)

Goal: ϕc¬ (ψψ′) ◁ β + β′

By Boolean algebra and Proposition 2.1, we reason ϕc¬ (ψψ′) = ϕc(¬ ψ+¬ ψ′) = ϕc(¬ ψ+¬ ψ¬ ψ′)
and by premises (68) and (69), and by axiom (20) we deduce

ϕc(¬ ψ +¬ ψ ¬ ψ′) ◁ β + β′

and by axiom (16) we have ϕc¬ (ψψ′) ◁ β + β′.

20



• Or:

Assumptions:
ϕc¬ ψ ◁ β (70)

and
ϕ′c¬ ψ ◁ β (71)

Goal: (ϕ+ ϕ′)c¬ ψ ◁ β

(ϕ+ ϕ′)c¬ ψ

= { (4)}

(1 +ϕ ϕ
′)c¬ ψ

= { (5)}

c¬ ψ +ϕ ϕ
′c¬ ψ

= { (4)}

ϕc¬ ψ +ϕ ϕ
′c¬ ψ

By premises (70), (71) and axiom (19), ϕc¬ ψ +ϕ ϕ
′c¬ ψ ◁ β.

• False:

ϕc¬ 0 = ϕc1 = ϕc ◁ 1 by axioms (21), (18) and (16).

• While:

Assumptions:
ϕc¬ ϕ ◁ β (72)

ϕb[bv = η]c¬ [bv < η] ◁ 0 (73)

bv : N |= ϕ ∧ (bv ≤ 0)⇒ ¬ e (74)

Goal: phi [bv ≤ k ]c(b)¬ (ϕ¬ b) = ϕ[bv ≤ k ]c(b)(¬ phi + b) = ϕ[bv ≤ k ]c(b)¬ ϕ ◁ kβ
We proof by induction on k .

– k = 0:

ϕ[bv ≤ k ]c(b)¬ (ϕ¬ b)

= { B.A. and (53)}

ϕ[bv ≤ k ]c(b)¬ ϕ

= { (11) and (2)}

ϕ[bv ≤ k ](1 +¬ b cc
(b))¬ ϕ

= { (2) and (4)}

ϕ[bv ≤ k ](1 +¬ b ecc
(b))¬ ϕ

= { (5)}

ϕ[bv ≤ k ](¬ ϕ+¬ b ecc
(b)¬ ϕ)

We can conclude, by axiom (22), ϕ[bv ≤ k ]¬ ϕ = 0 ◁ 0, and, by premise (74) and axiom (18),
ϕ[bv ≤ k ]bcc(b) ◁ 0.
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– k :

ϕ[bv ≤ k ]c(b)¬ (ϕ¬ b)

= { B.A. and (53)}

ϕ[bv ≤ k ]c(b)¬ ϕ

= { (11)}

ϕ[bv ≤ k ](cc(b) + 1)¬ ϕ

= { (2)}

ϕ[bv ≤ k ](1 +¬ b cc
(b))¬ ϕ

= { definition of (b)}

ϕ[bv ≤ k ](1 +¬ b c(1 +¬ b c(1 +¬ b . . . c(1+¬ bcc(b)))))¬ ϕ

Repeating k times, by (72) and (Seq) we have

ϕ[bv ≤ k ](1 +¬ b c(1 +¬ b c(1 +¬ b . . . c(1+¬ bcc(b)))))¬ ϕ ◁ kβ

Hence we assume H (k) : ϕ[bv = k ]c(b)¬ ϕ ◁ kβ.
– k + 1:

ϕ[bv = k + 1]c(b)¬ ϕ

= { (11), (2) and (4)}

ϕ[bv = k + 1](1 +¬ b ecc
(b))¬ ϕ

= { (5)}

ϕ[bv = k + 1](¬ ϕ+¬ b ecc
(b)¬ ϕ)

We observe that ϕ[bv = k + 1]¬ ϕ = 0 ◁ 0 by B.A. and axiom (22).

G Example: Report-noisy-max algorithm

We will now consider the example of the Report-noisy-max algorithm, which has been analysed in [4]
with the logic aHL (see also [6] for more background on this algorithm). Our analysis here using aGKAT
will be similar to the previous one in aHL, but the equational approach of aGKAT will simplify some
steps.

We consider a finite setR and a quality score function qscore, which takes as input a pair of an element
r of R and a database d , and returns a real number. The goal of the Report-noisy-max algorithm is
to find an element r∗ of R which approximately minimizes the function qscore on d . The algorithm is
randomized and only computes an approximate minimization because it is designed to satisfy a differential
privacy property (see [6]).

Report-noisy-max proceeds by computing for each element r of R the quality score qscore(r , d) and
adding to it a Laplacian noise (according to the Laplace mechanism for differential privacy [6]) and
returning the element r∗ with the highest noisy value.

Here we do not deal with the differential privacy property of this program, but instead our objective
is to study its accuracy, that is to say to bound the difference between the value of qscore(r∗, d) and the
real minimum of qscore(·, d) on R.

The algorithm Report-noisy-max can be written as a GKAT program c as follows (we use intermediary
notations c′, c1 and b for readability):

c = (flag ← 1); (best ← 0); (R0 ← R); (R′ ← ∅); c′[R≠∅]; return(r∗)

where
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c′ = (r ← pick(R)); (noisy [r ] $← Lϵ/2(qscore(r , d)));
(c1 +b 1);

(R ← R\{r}); (R′ ← R′ ∪ {r})
c1 = (flag ← 0); (r∗ ← r); (best ← noisy [r ]))

b = (noisy [r ] > best) + (flag == 1)

The variable flag has boolean values ({0, 1}), R, R0 and R′ are sets, r , r∗ range over elements of
R, noisy [r ] and best range over reals. The notation noisy [r ] is an array-like notation for representing n
variables, where n is the size of the set R.

This program uses the following kinds of actions and tests:

• actions representing basic operations on sets: picking an (arbitrary) element r from a set (r ←
pick(R)), removing an element ( R ← R\{r})) and adding an element (R′ ← R′ ∪ {r}),

• sampling from a Laplacian distribution centered in a with parameter p : (x
$← Lp(a)),

• comparison tests: inequalities for reals, equality for boolean value, comparison to empty set for sets
[R ≠ ∅].

We recall the following accuracy property of the Laplace distribution [4]:

Lemma G.1. Assume β belongs to [0, 1] and let ν be a sample from the Laplace distribution Lp(a), then
we have:

PrLp(a)[| ν − a |> 1

p
log(

1

β
)] < β (75)

Therefore the Laplacian distribution satisfies the following property:

(x
$← Lp(a))[| x − a |> 1

p
log(

1

β
)] ◀ β (76)

This corresponds to the following instance of the (Rand) axiom in aHL (see Fig. 2):

∀m,PiJx
$← Lp(a)K(m)[| x − a |> 1

p log( 1β )] ≤ β

⊢β do .(x
$← Lp(a)) : T ⇒| x − a |≤ 1

p log( 1β )

Now, (76) gives us for the sampling in program c′:

(noisy [r ]
$← Lϵ/2(qscore(r , d)))[| noisy [r ]− qscore(r , d) |> 2

ϵ
log(
| R0 |
β

)] ◁
β

| R0 |
(77)

We want to establish a property for the whole program c′.

Denote as b1 the test [| noisy [r ]− qscore(r , d) |≤ 2
ϵ log(

|R0|
β )]. Observe that b1 (and thus also b1) only

depends on the values of noisy [r ] and qscore(r , d). Moreover noisy [r ] and qscore(r , d) are not changed by
the last 3 actions of c′. Therefore by applying Prop.4.4.24 we get c′; b1 ≡ c′′ , where c′′ is the expression

obtained by replacing in c′ (noisy [r ]
$← Lϵ/2(qscore(r , d))) by (noisy [r ]

$← Lϵ/2(qscore(r , d))); b1.
So we know that:

(noisy [r ]
$← Lϵ/2(qscore(r , d))); b1 ◁

β

| R0 |
(this is (77 )) (78)

c0 ◁ 1 for any c0, by axiom (21) (79)

So by applying axiom (18) to (78) and (79) we obtain that c′′ ◁ β
|R0| . Therefore as c′; b1 ≡ c′′ we get by

Prop. 4.4.2 that:

c′ · b1 ◁
β

| R0 |
(80)

We want to prove an invariant for the body c′ of the while loop in c. For that consider the test b2
corresponding to the following predicate:

ϕ2 = ∀ r ∈ R′, | noisy [r ]− qscore(r , d) |≤ 2

ϵ
log(
| R0 |
β

)
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Observe that ϕ2 is equivalent to a finite conjunction ranging over the elements r of R′ of primitive tests,
therefore b2 is a valid test. We have:

b2 · b1 · (R′ ← R′ ∪ {r}) · b2 = 0 (81)

Let us denote as c2 the expression c′ deprived of the last action, that is to say: c′ = c2 ·(R′ ← R′∪{r}).
The reasoning we did on c′ before can be done for c2, and so just as (80) we have:

c2 · b1 ◁
β

| R0 |
(82)

Therefore by axioms (18) and (21) we get:

b2 · c2 · b1 ◁
β

| R0 |
(83)

Moreover as c2 does not modify R′, by using Prop.4.4.24 we get:

b2 · c2 · b2 ◁ 0 (84)

Thus by using the aGKAT encoding (Theorem 5.1) of the aHL rule (And) we obtain from (83) and (84):

b2 · c2 · b1 · b2 ◁
β

| R0 |
(85)

Equation (81) gives us:

(b1 · b2) · (R′ ← R′ ∪ {r}) · b2 ◁ 0 (86)

By using the aGKAT encoding of the aHL rule (Seq) we get from (85) and (86):

b2 · c′ · b2 ◁
β

| R0 |
(87)

By using the aGKAT encoding of the aHL rule (While) we get from (87), as the loop runs for | R0 |
iterations:

b2 · c′[R̸=∅] · b2 ◁ β (88)

Finally as (R′ ← ∅) · b2 = 0 we deduce from (88) using (Seq) that:

c · b2 ◁ β (89)

So we have proven in aGKAT the encoding of:

⊢β c : T ⇒ ∀ r ∈ R′, | noisy [r ]− qscore(r , d) |≤ 2

ϵ
log(
| R0 |
β

) (90)

In order to obtain a property relating qscore(r∗, d) to the values of qscore(r , d) in order to have
an accuracy result, we need to relate noisy [r∗] to the noisy [r ]. For that we will consider the following
predicate:

ϕ3 = ∀ r ∈ R′, (noisy [r∗] ≥ noisy [r ]) ∧ (best = noisy [r∗]) (91)

Denote as b3 the corresponding test. We have:

b3 · c′ · b3 ◁ 0 (92)

b3 · c′[R≠∅] · b3 ◁ 0 by (While) rule (93)

c · b3 ◁ 0 because (R′ ← ∅) · b3 = 0 (94)

Then from (89) and (94) we get with rule (And):

c · b2 · b3 ◁ β (95)
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By arithmetical reasoning we have that ϕ2 ∧ ϕ3 implies that for any r in R′ we have:

qscore(r∗, d) > qscore(r , d)− 2

ϵ
log(
| R0 |
β

) (96)

Therefore if b4 denotes the test corresponding to

ϕ4 = ∀ r ∈ R′, qscore(r∗, d) > qscore(r , d)− 2

ϵ
log(
| R0 |
β

) (97)

we have:

b2 · b3 = (b2 · b3) · b4 (98)

Therefore from (95) and (98) we get by rule (Weak):

c · b4 ◁ β (99)

So we have proven in aGKAT the encoding of:

⊢β c : T ⇒ ∀ r ∈ R′, qscore(r∗, d) > qscore(r , d)− 2

ϵ
log(
| R0 |
β

) (100)

This shows an accuracy property for c: with failure probability β, the result r∗ of c gives a quality score
which is not far below the quality score of any other element r of R′ (that is to say R0).
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