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Abstract

Kleene Algebra with Tests (KAT) provides a framework for algebraic equational reasoning about
imperative programs. The recent variant Guarded KAT (GKAT) allows to reason on non-probabilistic
properties of probabilistic programs. Here we introduce an extension of this framework called ap-
proximate GKAT (aGKAT), which equips GKAT with a partially ordered monoid (real numbers)
enabling to express satisfaction of (deterministic) properties except with a probability up to a certain
bound. This allows to represent in equational reasoning ‘à la KAT’ proofs of probabilistic programs
based on the union bound, a technique from basic probability theory. We show how a propositional
variant of approximate Hoare Logic (aHL), a program logic for union bound, can be soundly encoded
in our system aGKAT. We also show with an example that aGKAT is more general than aHL, in the
sense that it can prove some probability bounds that aHL cannot.

1 Introduction

Kleene algebra with tests (KAT) has been introduced in [20] as an algebraic framework for program
verification. A KAT is a two-sorted structure, consisting of a Kleene algebra and a Boolean algebra
of tests: the Kleene algebra part accounts for programs, with sequential composition, branching and
iteration; the Boolean algebra part accounts for the predicates used to build if-then-else instructions,
while loops and assertions, as well as, being KAT able to subsume propositional Hoare logic [21], for
the pre and post-conditions. This framework allowed to give algebraic proofs corresponding to several
approaches in program verification, see e.g. [21, 1, 23], and has been implemented as a library for the
Coq proof assistant [27]. It has also been followed by several variants, like NetKAT [2], which allows to
reason about software defined networks, Concurrent NetKAT [30] for concurrent networks, CKAO [17]
for concurrent programs and more recently TopKAT for reasoning about incorrectness [31].

Recently the variant Guarded KAT (GKAT) [29] has been proposed as a restriction of KAT where
all sums and iterations are guarded by tests. It offers several advantages over KAT, including the fact
that the complexity of its equational theory is lower (almost linear time, provided that the number of
tests is fixed) and the existence of a probabilistic model. The latter paves the way for using GKAT for
reasoning about probabilistic programs. However an important feature of this system is that the tests of
GKAT remain the same as those of KAT, namely they express Boolean properties on states. Therefore
the framework of GKAT allows to encode probabilistic programs, but the assertions about them are
non-probabilistic.

In this paper our goal is to extend the GKAT approach to reason about probabilistic programs
satisfying properties with a given probability bound β. The objective is not to design an expressive
framework for advanced probabilistic proofs, but instead to allow for simple probabilistic reasoning with
a low technical overhead.

Concretely we target proofs based on the union bound principle, a property from basic probability the-
ory, which can be stated as follows: given some properties A1, . . . , An , one has Pr [∪ni=1Ai ] ≤

∑n
i=1 Pr [Ai ].
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This principle is ubiquitous when reasoning about properties of randomized algorithms [26] and in their
application in security, privacy [9], learning theory [18], etc.

A previous approach for reasoning about probabilistic imperative programs using the union bound
principle had been provided by the union bound program logic aHL [5]. This is a Hoare logic for reasoning
about probabilistic programs with non-probabilistic assertions but with judgements carrying a numeric
index for tracking the failure probability. That is, judgments have the form ⊢β c : ϕ⇒ ψ where β is an
upper bound on the probability that ¬ψ is true after executing c starting from a memory satisfying ϕ.
The authors illustrated how this logic could be used for the verification of accuracy of some algorithms,
in particular in the setting of differential privacy. A relational variant of this logic is handled by the
Easycrypt tool [8, 4] , which can be used for proving properties of cryptographic protocols as well as
differential privacy properties of programs.

A natural idea is thus to adapt the union bound logic aHL to the GKAT framework. To do this
and capture the union bound reasoning in an algebraic framework we extend GKAT with an additional
relation, denoted ◁, relating GKAT expressions with elements of a partially ordered monoid, typically
real numbers on [0, 1]. We call this new system approximate GKAT (aGKAT). An important feature
of this structure is that we want the new setting to subsume standard GKAT, requiring aGKAT to
satisfy the theory of GKAT. A second feature is that we want the probabilistic model of sub-Markov
kernels to be a model of our new structure, when we consider the monoid of real numbers. For this
particular instantiation, the meaning of ◁ will be that c ◁ β holds if the probability of successful execution
of program c is bounded by β. The theory of aGKAT extends the one of GKAT, by a small set of axioms
characterizing the properties of the new relation ◁. We illustrate how this theory allows for a concise
form of equational reasoning for establishing probability bounds on some GKAT programs. Moreover, in
order to demonstrate the expressivity of aGKAT, we encode aHL in it. This is inspired by the classical
result of Kozen [21] showing that propositional Hoare logic can be encoded in KAT.

Outline. In Sect. 2 we will recall GKAT and its probabilistic model, and in Sect. 3 we will recall
the Hoare logic aHL. Then in Sect. 4 we will define our system, aGKAT, its theory and its semantics.
After that in Sect. 5 we will provide an encoding of the logic aHL in aGKAT and prove its soundness.
In Sect. 6 we give an example that can be handled in aGKAT but not in aHL. Sect. 7 is devoted to
another example, the analysis in aGKAT of the accuracy of the probabilistic algorithm Report-noisy-max.
Finally, Sec. 8 overviews related work and Sec. 9 enumerates possible directions for future work.

2 Guarded Kleene algebra with tests

This section recalls the language and the semantics of Guarded Kleene Algebra with Tests (GKAT) [29], an
abstraction of imperative programs where conditionals and loops are encoded as guarded sums (c1+b c2)
and guarded iterations (c(b)), respectively, guarded by Boolean predicates b. The structure is a restriction
of KAT in which we are not allowed to freely use operators + and ∗ to build terms. In other words,
GKAT does not allow nondeterminism.

2.1 Syntax

The syntax of GKAT is defined with a set of actions Σ and a finite set of primitive tests T, which are
disjoint. We denote actions by a and primitive tests by p. The sets of Boolean expressions BExp (also
called tests) and GKAT expressions Exp (also called programs) are then defined by the following gram-
mars:

b, b1, b2 ∈ BExp ::=

| 0 false

| 1 true

| p ∈ T p

| b1 · b2 b1 and b2

| b1 + b2 b1 or b2

| b̄ not b

c, c1, c2 ∈ Exp ::=

| a ∈ Σ do a

| b ∈ BExp assert b

| c1 · c2 c1; c2

| c1 +b c2 if b then c1 else c2

| c(b) while b do c

where, for any b, b1, b2 ∈ BExp, operators ·, + and ¯ denote conjunction, disjunction and negation,
respectively, and, for any c, c1, c2 ∈ Exp, the operator · denotes sequential composition. The notations on
the r.h.s. are given to help intuition and will sometimes be used when writing programs. We introduce
command skip as a shorthand for assert 1, which is encoded by the Boolean expression 1.
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The precedence of the operators is the usual one, i.e. the operator · has higher precedence than operator
+b , and ()(b) has higher precedence that ·1 To simplify the writing, we often omit the operator · by
writing c1c2 for the expression c1 · c2, for any c1, c2 ∈ Exp.

We are interested in using GKAT for representing probabilistic programs. For that, let us first fix
a few definitions. Given a set S , D(S ) is the set of probability sub-distributions2 over S with discrete
support, i.e. the set of functions f : S → [0, 1] such that Supp(f ) = {x ∈ S | f (x ) > 0} is discrete and
f sums up to at most 1, i.e.

∑
s∈S

f (s) ≤ 1 . In particular, the Dirac distribution δs ∈ D(S ) is the map

w → [w = s] =

{
1, if w = s

0, otherwise

Example 2.1 (Imperative programming language). Take a set Var of variables and a set Distr of sub-
distributions over R with discrete support. Consider a simple imperative programming language defined
by the following grammar:

terms t ∈ Terms ::= x ∈ Var | r ∈ R | t1 + t2 | t1 − t2 | t1 × t2

distributions d ∈ Distr

tests b ∈ Tests ::= false | true | t1 < t2 | t1 = t2 | not b | b1 and b2 | b1 or b2

commands c ∈ Comm ::= skip | x ← t | x $← d | c1; c2 | if b then c1 else c2 | while b do c

This language can be modeled in GKAT by taking as sets of actions and primitive tests respectively

Σ = {x ← t , x
$← d | x ∈ Var, t ∈ Terms, d ∈ Distr} and T = {t1 < t2, t1 = t2 | t1, t2 ∈ Terms}. The

first action evaluates term t and assigns the result to x and the second one samples from d and assigns
the result to x . Note that technically speaking according to the definition of GKAT the set T should be
chosen finite, which is not the case here, but as observed in [29] Sect. 2.3 Example 2.5 we can use a finite
subset T′ of T for reasoning on pairwise equivalence of programs which terminate.

Observe that while programs c may be probabilistic, due to the use of samplings, the tests b as for
them are deterministic, i.e. they do not use any probabilistic primitives. In particular the conditional
branching in programs is only done on deterministic tests.

2.2 Semantics

We now present the semantic interpretation of GKAT that we will be using, the Probabilistic model [29]
3. We first review some basic concepts needed for the semantics. The Iverson bracket [b], for b ∈ BExp,
is the function taking value 1 if b is true and 0 otherwise. Typical models of probabilistic imperative
programming languages interpret programs as Markov kernels on a set S , i.e. maps from S to probability
distributions. The semantic model defined below interprets programs as sub-Markov kernels, i.e. Markov
kernels on sub-distributions.

Definition 2.1 (Probabilistic interpretation). Let i = (State, eval , sat) be a triple where:

• State is a set of states,

• for each action a ∈ Σ, eval(a) : State→ D(State) is a sub-Markov kernel,

• for each primitive test p ∈ T, sat(p) ⊆ State is a set of states.

The probabilistic interpretation of an expression c with respect to i is the sub-Markov kernel PiJcK :
State→ D(State) defined as follows:

1. PiJaK := eval(a)

2. PiJbK(σ) := [σ ∈ sat†(b)]× δσ

3. PiJc1 · c2K(σ)(σ′) :=
∑
σ′′
PiJc1K(σ)(σ′′)× PiJc2K(σ′′)(σ′)

4. PiJc1 +b c2K(σ) := [σ ∈ sat†(b)]× PiJc1K(σ) + [σ ∈ sat†(b̄)]× PiJc2K(σ)

1For example the GKAT expression c
(b1)
1 · c2 +b2 c3 reads as ((c

(b1)
1 ) · c2) +b2 c3.

2Some examples of distributions are the tossing of a fair coin, with probability 0.5 for 0 and 1, and the (discrete version of

the) Laplacian distribution Lp(a) centered in a with parameter p. The density function of Lp(a) is given by 1
2p

exp(
|x−a|

p
).

3Note that more interpretations of GKAT are presented in [29], namely a relational model and a trace model.
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5. PiJc(b)K(σ)(σ′) := lim
n→∞

PiJ(c +b 1)
n · b̄K(σ)(σ′)

where sat† : BExp → 2State is the lifting of sat : T → 2State to arbitrary Boolean expressions over BExp,
and × denotes both multiplication on real numbers and the pointwise multiplication on sub-distributions.
For instance the definition of PiJbK(σ) means that it is either δσ if σ belongs to sat†(b), or the constant
sub-distribution equal to 0 otherwise. Intuitively PiJcK(σ)(σ′) is the probability that the execution of c
on initial state σ terminates on state σ′, and

∑
σ′
PiJcK(σ)(σ′) is the probability that the execution of c

on initial state σ terminates on a state (we then also say that it is a successfull execution). Observe thus
that we really need to consider sub-distributions and not only distributions.

Remark 2.1 (Finite state case). In the case where State is a finite set of size n, say {s1, . . . , sn} then
a sub-Markov kernel f can be represented as an n × n matrixM = (ai,j )i,j∈[1,n]. Each coefficient ai,j is
defined as ai,j = f (si)(sj ). So in particular the sum over each line is inferior or equal to 1. We denote
f =M. For tests b, the matrix PiJbK has only diagonal coefficients, with value ai,i = 1 if si ∈ sat†(b),
ai,i = 0 if si not in sat†(b). In the case of c1 · c2, the matrix PiJc1 · c2K is obtained by the matrix product
of PiJc1K and PiJc2K. See Appendix 14 for an example.

In the following we will consider programs over a finite set of variables Var and the set of states will
be the set of memories, that is to say functions in Var→ D where D is the domain of variables (we can
take for instance D = Q, the rational numbers). If x ∈ Var and σ is a memory, then σ[x ← t ] is the
memory identical to σ except that it maps x to the evaluation of t in memory σ. The interpretation of

actions a ∈ Σ as sub-Markov Kernels is then given by eval(x ← t)(σ) := δσ[x←t] and eval(x
$← d)(σ) :=∑

t∈Supp(d)
d(t) · δσ[x←t].

In the sequel memories will often be denoted as m.

2.3 Axioms

The theory of GKAT introduced in [29] is given by the axioms from Fig. 1. Note in particular the

c +b c = c (1)

c1 +b c2 = c2 +b̄ c1 (2)

(c1 +b1
c2) +b2

c3 = c1 +b1·b2 (c2 +b2
c3) (3)

c1 +b c2 = b · c1 +b c2 (4)

c1 · c3 +b c2 · c3 = (c1 +b c2) · c3 (5)

(c1 · c2) · c3 = c1 · (c2 · c3) (6)

0 · c = 0 (7)

c · 0 = 0 (8)

1 · c = c (9)

c · 1 = c (10)

c
(b)

= c · c(b)
+b 1 (11)

(c +b2
1)

(b1)
= (b2 · c)(b1)

(12)

c3 = c1 · c3 +b c2

c3 = c
(b)
1 · c2

if E(c1) = 0 (13)

Figure 1: Axiomatisation of Guarded Kleene algebra with tests

fixpoint axiom (13). Intuitively, it says that if expression c3 chooses (using guard b) between executing
c1 and looping again, and executing c2, then c3 is a b-guarded loop followed by c2. However, the rule
is not sound in general. In order to overcome this limitation, following [29] (Section 3.1, Definition
3.2), the side condition E (c1) = 0 is introduced, ensuring that command c1 is productive, i.e. that it
performs some action. To this end, the function E is inductively defined as follows: E (b) := b, E (a) := 0,
E (c1 +b c2) := b · E (c1) + b̄ · E (c2), E (c1 · c2) := E (c1) · E (c2), E (c(b)) := b̄. We can see E (c) as the
weakest test that guarantees that command c terminates successfully but does not perform any action.

Moreover, note particularly the following observation: in KAT the encoding c1(bc2 + b̄c3) = c1bc2 +
c1b̄c3 is not an if-then-else statement; it is rather a nondeterministic choice between executing c1,
then testing b and executing c2, and executing c1, then testing b̄ and executing c3. The corresponding
encoding in GKAT would be c1(c2+b c3) = c1c2+b c1c3, an equality which is actually not valid in GKAT.
Since GKAT is restricted to deterministic programs, there is no valid correspondence between the KAT
encoding, which is not an if-then-else statement, and the hypothetical correspondent GKAT encoding,
which is not valid. That is why left distributivity does not hold in GKAT for any c ∈ Exp; it only holds
for the particular case of c1 ∈ BExp, i.e. if c1 is a test.

We define the relation ≤ on tests as: b1 ≤ b2 iff b1 + b2 = b2. Contrarily to KAT [20], the relation
≤ is not defined on an arbitrary GKAT expression, only on tests. In Appendix 10 we recall additional
derivable equations in GKAT from [29].
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Since any test is a program (BExp ⊆ Exp), the grammar also allows to write expressions as b1 +b b2,
for any b ∈ BExp. We thus establish the following proposition4 (proof in Appendix 11) which expresses
the guarded sum +b , for any b ∈ BExp, in terms of the disjunction + on tests.

Proposition 2.1. For any tests b, b1, b2 one has: b1 +b b2 = bb1 + b̄b2.

By Boolean reasoning, we can observe that bb + b̄b̄ = 1. This observation will be useful later to prove
the soundness of some aHL rules in aGKAT.

We also state the following proposition (see Appendix 12 for the proof):

Proposition 2.2. For any tests b1, b2 one has: b1 + b2 = b1 +b1 b2.

3 Union bound logic - Approximate Hoare logic

In this section we recall Approximate Hoare logic (aHL) [5], a logic based on the union bound, a tool from
probability theory for analyzing randomised algorithms. A judgment in aHL is of the form ⊢β c : ϕ⇒ ψ
where: ϕ, ψ are first-order formulas representing non probabilistic pre- and post-conditions5, respectively;
β is a value in [0, 1] and it is an upper bound on the probability that the post-condition ψ does not hold
on the output distribution, assuming that ϕ holds on an initial memory m. We assume a probabilistic
interpretation i and we will denote m |= ϕ if ϕ is valid in memory m. The validity of the judgement is
thus stated by:

Definition 3.1 (Validity of aHL judgment). A judgment ⊢β c : ϕ ⇒ ψ is valid if for every memory m
such that m |= ϕ, we have PiJcK(m)[ψ̄] ≤ β.

Figure 2 presents the deduction rules of aHL. Let us comment on some of these rules. The rule (Rand)
handles sampling from a distribution d ; we can assume a postcondition ψ after the sampling, provided
that under the assumption of precondition ϕ, the statement ψ fails with probability at most β.

The other rules are similar to standard Hoare logic rules annotated with suitable probability indexes
β. The rule (Seq) says that when composing two programs c and c′, the failure probabilities of the
two programs with respect to their postconditions add together. The (Cond) rule states that if the two
branches of the conditional have the same index β, then we can keep the index β for the conditional.
In rule (Weak) the premise |= ϕ′ ⇒ ϕ means that, in any model, ϕ′ implies ϕ. This (Weak) rule
allows to strengthen the precondition, weaken the postcondition, and increase the index β (which means
overapproximating the failure probability). The (And) rule can be seen as an application of the union
bound principle. It enables to combine two postconditions by a conjunction, provided we add up the
failure probabilities. As to the (Or) rule, it allows to take the disjunction of two preconditions, if they
have the same failure probability, and keep this index for the disjunction. Note that thanks to the (Weak)
rule we could also in (Or) consider two indexes β and β′ in the premises, and their maximum in the
conclusion (the same is also true for (Cond)). The rule (False) might first seem a bit strange as it allows
to conclude false, but note that its index is 1, which means that false holds in the final memory with
probability 0. Finally, considering the (While) rule, observe that it is slightly more restrictive than the
corresponding classical one of Hoare logic. Its side conditions ensure that the loop terminates in at most
k iterations except with probability kβ. Its first side condition states that the variable bv only takes
non-negative integer values.

4 Approximate Guarded Kleene algebra with tests (aGKAT)

4.1 Definition and theory of aGKAT

Recalling that GKAT encodes only Boolean assertions on probabilistic programs, we want to extend this
kind of reasoning in order to capture aHL properties. We want to define a structure which would allow
to express the fact that a probabilistic program c satisfies a deterministic postcondition, except with a
probability up to a certain bound. For that we will extend GKAT with a relation between a GKAT
expression and a value β from a partially ordered set. Such a set is defined as follows:

Definition 4.1. A preordered double monoid (pod-monoid) is aM = (M ,≤, ·, 1,+, 0) where:
4We thank the anonymous reviewer of another paper for pointing out to us the fact that this property is derivable in

GKAT.
5Note that ϕ and ψ are properties of memories rather that properties of distributions over memories.

5



• Skip:

⊢0 skip : ϕ⇒ ϕ

• Assn:

⊢0 do x ← t : ϕ[t/x ]⇒ ϕ

• Rand:

∀m : m |= ϕ⇒ PiJx
$← dK(m)[ψ̄] ≤ β

⊢β do x
$← d : ϕ⇒ ψ

• Seq:

⊢β c : ϕ⇒ ϕ′ ⊢β′ c′ : ϕ′ ⇒ ϕ′′

⊢β+β′ c; c′ : ϕ⇒ ϕ′′

• Weak :

|= ϕ′ ⇒ ϕ ⊢β c : ϕ⇒ ψ |= ψ ⇒ ψ′ β ≤ β′

⊢β′ c : ϕ′ ⇒ ψ′

• Or :

⊢β c : ϕ⇒ ψ ⊢β c : ϕ′ ⇒ ψ

⊢β c : ϕ ∨ ϕ′ ⇒ ψ

• Cond:

⊢β c : ϕ ∧ b ⇒ ψ ⊢β c′ : ϕ ∧ b̄ ⇒ ψ

⊢β if b then c else c′ : ϕ⇒ ψ

• And:

⊢β c : ϕ⇒ ψ ⊢β′ c : ϕ⇒ ψ′

⊢β+β′ c : ϕ⇒ ψ ∧ ψ′

• False:

⊢1 c : ϕ⇒ ⊥

• While:

bv : N, |= (ϕ ∧ bv ≤ 0→ b̄), ⊢β c : ϕ⇒ ϕ, ∀η>0 : ⊢0 c : ϕ ∧ b ∧ (bv = η)⇒ (bv < η)

⊢k·β while b do c : ϕ ∧ (bv ≤ k)⇒ ϕ ∧ b̄

Figure 2: Approximate Hoare Logic rules (aHL)

• ≤ is a preorder on M ,

• (M , ·, 1) and (M ,+, 0) are two monoid structures, whose operations · and + are monotone w.r.t.
≤.

Note that we do not include any axiom relating · and +. This structure is thus sufficient to model the
probability bounds from aHL. In the sequel we will consider the pod-monoid consisting of the real unit
interval [0, 1] equipped with multiplication and addition truncated to 1, that is to say min ((β1 + β2), 1),
where + is the ordinary addition.

We then give the main definition of this section.

Definition 4.2. Approximate GKAT, denoted as aGKAT, is an extension of GKAT with a pod-monoid
M and a predicate symbol ◁ on Exp×M. The theory of aGKAT is the union of axioms of pod-monoid,
and those of Fig. 1 and Fig. 3.

(c1 = c2 ∧ c1 ◁ β) ⇒ c2 ◁ β (14)

(c ◁ β1 ∧ β1 ≤ β2) ⇒ c ◁ β2 (15)

(c · c1 ◁ β1 ∧ c · c2 ◁ β2) ⇒ c · (c1 +b c2) ◁ β1 + β2 (16)

(c1 ◁ β1 ∧ c2 ◁ β2) ⇒ c1 · c2 ◁ β1 · β2 (17)

(c1 ◁ β ∧ c2 ◁ β) ⇒ c1 +b c2 ◁ β (18)

c ◁ 1 (19)

0 ◁ 0 (20)

Figure 3: Axioms on the relation ◁

Recall that the intended meaning of ◁ in the case whereM = ([0, 1],≤, ·, 1,+, 0) is that c ◁ β holds if
the probability of successful execution of program c is bounded by β. Observe that the ◁-axioms of Fig.
3 are arguably simple, are Horn clauses and that none deals with guarded iteration c(b).

Let us explain some intuitions underlying these axioms. Axiom (19) simply says that any program
has a probability of successful execution bounded by 1, while (20) states that program 0 (which is assert
false) has probability 0 of successful execution. Axiom (15) says that the statement still holds if we
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increase the probability β1. Axiom (14) states that programs which are equal (up to the GKAT axioms
of Fig. 1) admit the same probability of successful execution. Axiom (18) says that if the two branches of
a conditional admit a bound β for their successful execution, so does the conditional itself. As to Axiom
(17), its meaning is that the probability of successful execution of the composition of two programs c1
and c2 is bounded by the product of the probabilities of successful execution of respectively c1 and c2.

Maybe the less intuitive axiom is Axiom (16). Note that the difference with Axiom (18) is that for
Axiom (18) any initial state s either satisfies b or b, and so only one branch of c1 +b c2 is explored. By
contrast in Axiom (16) any initial state s might lead by the probabilistic execution of c both to states
satisfying b and to states satisfying b, so triggering both branches of the conditional. We will come back
to this axiom in Remark 4.2 below.

After these intuitive considerations, we now formally define a semantic interpretation of aGKAT as
follows:

Definition 4.3. A probabilistic interpretation of aGKAT is obtained by extending a probabilistic inter-
pretation Pi of GKAT given in Sect. 2.2 in the following way:

• we consider a triple i = (State, eval , sat) of Def. 2.1 interpreting GKAT,

• the pod-monoidM is interpreted as indicated above by ([0, 1],≤, ·, 1,+, 0) where · is the product and
+ the truncated sum,

• the predicate ◁ is interpreted by the relation between sub-Markov kernels f and [0, 1]-reals β consist-
ing in the pairs (f , β) satisfying ∀ s ∈ State, Σs′∈Statef (s)(s

′) ≤ β, i.e. for any s, the total mass
of the sub-distribution f (s) is bounded by β.

We still denote the interpretation of an expression c as PiJcK.

If i is an interpretation and F a 1st-order formula on the signature consisting of terms in Exp and in
real numbers and predicates = and ◁, we write i |= F if F is valid in the model defined by i . By abuse
we will simply write |= F if i is clear from the context. So by the definition above we have in particular
that i |= c ◁ β if ∀ s ∈ State,

∑
s′∈State

PiJcK(s)(s ′) ≤ β.

We now establish the following proposition.

Proposition 4.1. Any probabilistic interpretation of aGKAT is a model of its theory, i.e.:

1. the interpretation of aGKAT expressions satisfies the axioms of GKAT (Fig. 1) and that of ([0, 1],≤
, ·, 1,+, 0) satisfies the axioms of pod-monoid,

2. the axioms of Fig. 3 (axioms (14) to (20)) are satisfied.

Proof. (Prop. 4.1) See Appendix 13. The most delicate case is that of Axiom (16). 2

Remark 4.1. Proposition 4.1 implies that if i is a probabilistic interpretation and if a statement c ◁ β
is derivable from the aGKAT axioms and possibly some semantic hypothesis of the shape i |= A, then
i |= c ◁ β holds. Note that Prop. 4.1 implies in particular that if i is a probabilistic interpretation and
A ⇒ B is an instance of an axiom in Fig. 3, then if i |= A we can deduce that i |= B. This is because
as i is a model, classical logic rules are sound in it.

Remark 4.2. Note that by analogy with Axiom (18), one could have expected an axiom stronger than
Axiom (16), namely that if (c · c1 ◁ β ∧ c · c2 ◁ β) then one would have c · (c1 +b c2) ◁ β (this would then
generalize Axiom (18) when taking c = 1). However it turns out that this candidate additional axiom is
not valid in the probabilistic model. A counter-example is given in the Appendix 14.

Proposition 4.2. The following property is derivable in aGKAT:

(c · b1 ◁ β1 ∧ c · b2 ◁ β2)⇒ c · (b1 + b2) ◁ β1 + β2

Proof. Observe that b1 + b2 = b1 +b1 b2 by Prop. 2.2 and use Axiom (16). 2

The proposition below refines in some sense Axiom (16).

Proposition 4.3. The following property is derivable in aGKAT:

(c · b · c1 ◁ β1 ∧ c · b̄ · c2 ◁ β2)⇒ c · (c1 +b c2) ◁ β1 + β2

7



Proof. Observe that c1 +b c2 = b · c1 +b b̄ · c2 by Axiom (4), Axiom (2), applied two times. Then apply
Axiom (16) to c, c′1 = bc1 and c′2 = bc2. 2

Remark 4.3 (Axiom (16), left distributivity and union bound). Recall that KAT [20] has an axiom of
left distributivity c · (c1 + c2) = c · c1 + c · c2. It does not hold in GKAT with the guarded sum +b though.
In some sense axiom (16) (or its refinement Prop. 4.3) can be seen as a kind of compensation for this
lack of left distributivity because it allows, when one is reasoning about an expression c · (c1 +b c2) (in
order to establish a bound β), to continue the proof with two branches, respectively on c · c1 and on c · c2.
If one obtains two bounds c · ci ◁ βi , for i = 1, 2 then one can deduce that c · (c1 +b c2) ◁ β1 + β2.

Moreover if c1 and c2 are tests b1 and b2, then by Prop. 2.2 b1 + b2 = b1 +b1 b2. So c · (b1 + b2) =
c · (b1+b1 b2) ◁β1+β2. So the probability that after execution of c the test (b1+ b2) is satisfied is inferior
to the sum of the probability that b1 is satisfied and of the probability that b2 is satisfied. This is the
application of the binary union bound principle on post-conditions, and it can easily be applied to an
arbitrary union bound.

4.2 Semantic reasoning

When reasoning about concrete programs, we want to establish properties on their semantic interpreta-
tions. That might sometimes require, besides the axioms of aGKAT, the use of some semantic properties.
One such example is that some actions can be commuted without changing the semantics of the program.
We establish thus some notations:

Definition 4.4. Given two GKAT program c and c′ and a probabilistic interpretation i, we write c ≡ c′

if i |= c = c′, i.e. PiJcK = PiJc′K.

This definition is required to establish the following proposition.

Proposition 4.4. Consider GKAT programs c and c′, and a probabilistic interpretation i.

1. If b is a test which only depends on the values of some variables x1, . . . , xn and if c leaves the values
of those variables unchanged, then we have c · b ≡ b · c,

2. If c ≡ c′ and i |= c ◁ β, then i |= c′ ◁ β.

Observe that (1) holds because the syntax of programs does not allow any form of aliasing and (2)
because the property i |= c ◁ β only depends on the semantic interpretation PiJcK.

Let us now illustrate the use of aGKAT on a small example.

Example 4.1 (Double tossing). Consider the program c below:

c = (x
$← Coin) · (c1 +(x=1) y ← 0), where c1 = (x

$← Coin) · (y ← 1 +(x=1) y ← 0)

Consider the interpretation i where Coin is the distribution of a fair coin, that takes value 0 (resp. 1) with
probability 1/2 (resp. 1/2). This can be represented either by adding to the theory two axioms describing

the behaviour of Coin, namely axioms (x
$← Coin)·(x = 1)◁1/2 and (x

$← Coin)·(x ̸= 1)◁1/2, or by using

the following semantic properties of i : |= (x
$← Coin) · (x = 1) ◁ 1/2 and |= (x

$← Coin) · (x ̸= 1) ◁ 1/2.
We want to prove that after the execution of c, the probability that y equals 0 is below 3/4, and the
probability that y equals 1 is below 1/4, i.e. |= c · (y = 0) ◁ 3/4 and |= c · (y = 1) ◁ 1/4.

Recall first that as i is a model, by Prop. 4.1, it satisfies all axioms of Fig. 1 and Fig. 3, and all
classical logic rules are sound in it (see Remark 4.1). Now, by using Axiom (5), c · (y = 0) can be
rewritten as follows:

c · (y = 0) = (x
$← Coin) · (c′1 +(x=1) y ← 0(y = 0))

c′1 = (x
$← Coin) · (y ← 1(y = 0) +(x=1) y ← 0(y = 0))

Let us name the following expressions, corresponding to the various possible branches of executions of
c · (y = 0) :

c2 = (x
$← Coin) · (x = 1) · (x $← Coin) · (x = 1) · (y ← 1) · (y = 0)

c3 = (x
$← Coin) · (x = 1) · (x $← Coin) · (x ̸= 1) · (y ← 0) · (y = 0)

c4 = (x
$← Coin) · (x ̸= 1) · (y ← 0) · (y = 0)

8



First, from the model we know that (y ← 1) · (y = 0) ≡ 0, so c2 ≡ 0, so |= c2 ◁ 0.

Then, as |= (x
$← Coin) · (x ̸= 1) ◁ 1/2, by Axioms (19) and (17) we have |= c4 ◁ 1/2.

Then, as |= (x
$← Coin) · (x = 1) ◁ 1/2, by Axioms (17) and (19) we have |= c3 ◁ 1/4.

By applying Prop. 4.3 to c2 and c3 we get: |= (x
$← Coin) · (x = 1) · c′1 ◁ 1/4 (21)

By applying again Prop. 4.3, this time to (21) and by |= c4 ◁ 1/2 we finally obtain |= c · (y = 0) ◁ 3/4 (=
1/4 + 1/2). We give in Appendix 15 a step-by-step fully explicit version of the proof above. The proof
that |= c · (y = 1) ◁ 1/4 holds is similar.

5 Encoding aHL in aGKAT

We want to relate deduction in aHL and reasoning in aGKAT, by following the approach of [21] on the
encoding of propositional Hoare logic in KAT. We consider the programming language of Example 2.1 but
the results remain valid if we consider extended grammars of terms, distributions, tests and commands,
where the class of tests is closed by substitution of terms t (as in Example 2.1). We will encode aHL
derivations consisting of judgements ⊢β c : ϕ⇒ ϕ′ where ϕ and ϕ′ belong to the class of tests.

Concretely the idea will be to encode the aHL judgement ⊢β c : ϕ ⇒ ϕ′ by the aGKAT statement
ϕ · c · ϕ′ ◁ β. Similarly to [21], showing that an aHL rule is sound in aGKAT will consist in proving that
the conjunction of the aGKAT equations encoding the premises of the aHL rule implies the equation
encoding the conclusion of the rule.

Observe that similarly as for Hoare logic, some rules of aHL, namely axiom rules (Assn) and (Rand),
do not depend on aHL judgements as premises but rather on an interpretation of actions and predicates,
and possibly a semantic condition (for (Rand)). Thus we do not expect to derive their encoding as an
equation valid in the theory of aGKAT. Instead, one could add new axioms corresponding to (Assn)
and (Rand) for specific distributions (as mentioned in Example 4.1), or alternatively when dealing with
examples consider a particular interpretation i and thus reason on equalities of expressions in the model.

Fig. 4 lists the interpretations of the rules of aHL (Figure 2) in aGKAT, by encoding aHL judgments
as aGKAT equations. Note that the rule (Assn) uses the test ϕ[t/x ] obtained by substituting the term t
in ϕ, which does belong to the class of tests by definition.

• Skip:
ϕ1ϕ̄ ◁ 0 (22)

• Assn:
ϕ[t/x ](x ← t)ϕ̄ ◁ 0 (23)

• Rand:

(∀m ·m |= ϕ⇒ PiJx
$← dK(m)[ψ̄] ≤ β)⇒ ϕ(x

$← d)ψ̄ ◁ β (24)

• Seq:

(ϕcϕ̄′ ◁ β) ∧ (ϕ
′
c
′
ϕ̄′′ ◁ β

′
)⇒ ϕcc

′
ϕ̄′′ ◁ β + β

′
(25)

• Weak:

(ϕ ≤ ϕ′
) ∧ (ϕcψ̄ ◁ β) ∧ (ψ

′ ≤ ψ) ∧ (β ≤ β′
)⇒ ϕ

′
cψ̄′ ◁ β

′

(26)

• Or:
(ϕcψ̄ ◁ β) ∧ (ϕ

′
cψ̄ ◁ β)⇒ (ϕ+ ϕ

′
)cψ̄ ◁ β (27)

• Cond:

(ϕbcψ̄ ◁ β) ∧ (ϕb̄c
′
ψ̄ ◁ β)⇒ ϕ(c +b c

′
)ψ̄ ◁ β (28)

• And:

(ϕcψ̄ ◁ β) ∧ (ϕcψ̄′ ◁ β
′
)⇒ ϕc ¯ψψ′ ◁ β + β

′
(29)

• False:
ϕc⊥̄ ◁ 1 (30)

• While:

(|= bv ∈ N) ∧ (|= (ϕ ∧ (bv ≤ 0))→ b̄)⇒ (ϕcϕ̄ ◁ β) ∧ (∀η>0 ·ϕb[bv = η]c[bv < η] ◁ 0)⇒ ϕ[bv ≤ k ]c
(b)
ϕb̄ ◁ kβ (31)

Figure 4: Interpretation of aHL rules in aGKAT

The next theorem establishes the main result of the paper.

Theorem 5.1. All the rules of the system aHL, union bound logic, except (Assn) and (Rand), have an
aGKAT interpretation (in Fig. 4) that is derivable from the axioms of aGKAT.

Note that the interpretation of the (While) rule, (31) in Fig. 4, is not a plain aGKAT formula, but
has some semantic premises. This is because the aHL (While) rule itself is expressed with semantic
premises. The proof of Theorem 5.1 can be found in Appendix 16. The most interesting cases are (Seq)
and (And) rules, and the most difficult one is that of (While).
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Observe that an interesting feature of aGKAT is that none of its ◁-axioms (Fig. 3) refers to guarded
iteration c(b), and nevertheless aGKAT is as expressive as aHL and allows to derive its (While) rule.
Another interesting specificity of aGKAT w.r.t. to aHL is that in aGKAT the axioms for reasoning on
program equivalence (those of GKAT, Fig. 1) are disjoint from those for reasoning on probabilities (Fig.
3).

6 An example showing that aGKAT is more expressive than
aHL

We have shown that aGKAT allows to encode aHL, but in this section we will show that aGKAT is more
expressive than aHL, in the sense that in can prove some bounds that aHL cannot.

Example 6.1 (While program). Let d be the distribution corresponding to a fair dice with three outcomes,
that is to say that d has support {0, 1, 2} and d(0) = d(1) = d(2) = 1/3.

We consider the program c below:

c = (x
$← d) · (x $← d)([x=0]) · [x = 1]

So c can be described as follows:
it samples d a first time and assigns the result to x ; then until it obtains (x ̸= 0) it repeats sampling d

and assigning the result to x ; if at some point it obtains (x ̸= 0), then if (x = 1) it terminates successfully,
otherwise (that is to say if (x = 2)) it aborts.

The analysis of the probability of successful termination of c goes as follows:
with the first sample one obtains (x = 1) with probability 1/3 and then the program terminates suc-

cessfully; or one obtains (x = 2) with probability 1/3 and then the program aborts; or one obtains (x = 0)
with probability 1/3 and we execute c again.

So the probability of successful termination is:

Σ+∞
i=1 (

1

3
)i =

1

3
· 1

1− 1
3

=
1

3
· 3
2
=

1

2

Let us now proceed with an analysis in aGKAT. We represent the properties of d with the following 4
axioms:

(x
$← d)[x = i ] ◁ 1/3 for i = 0, 1, 2 , (x

$← d)[x ̸= 0, 1, 2] ◁ 0.

We can then derive the following proof by using GKAT axioms:

c = (x
$← d) · (x $← d)([x=0]) · [x = 1]

= (x
$← d) · ((x $← d) · (x $← d)([x=0]) +[x=0] 1) · [x = 1] by ax. (11)

= (x
$← d) · (1 +[x ̸=0] (x

$← d) · (x $← d)([x=0])) · [x = 1] by ax. (2)

= (x
$← d) · ([x ̸= 0] +[x ̸=0] [x = 0] · (x $← d) · (x $← d)([x=0])) · [x = 1] by ax. (4) and (2)

= (x
$← d) · ([x ̸= 0] · [x = 1] +[x ̸=0] [x = 0] · (x $← d) · (x $← d)([x=0]) · [x = 1]) by ax. (5)

= (x
$← d) · ([x = 1] +[x ̸=0] [x = 0] · (x $← d) · (x $← d)([x=0]) · [x = 1]) by properties of tests

= (x
$← d) · ([x = 1] +[x ̸=0] [x = 0] · c)

We know that (x
$← d) · [x = 1] ◁ 1/3 and (x

$← d) · [x = 0] ◁ 1/3. By using axioms (19) and (17) we

deduce that (x
$← d) · [x = 0] · c ◁ 1/3.

By applying axiom (16) to the last line of the derivation we obtain c ◁ 1/3 + 1/3 = 2/3.
We can then refine this bound by proceeding by recursion. Denote β0 = 1 and βi+1 = 1

3 · (1 + βi) for
i ≥ 0. That is to say that βi = Σi

j=1(
1
3 )

j +( 13 )
i . Let us prove by recursion on i that one can derive c ◁βi

for any i ≥ 0.
The property holds for i = 0. Let us assume it holds for i . By applying as before axiom (16) to the

last line of the derivation and by using the recursion hypothesis we can derive c ◁ 1/3+1/3βi = βi+1. So
by recursion we conclude that for any i ≥ 0 we can derive c ◁ βi .

As moreover the sequence (βi) converges to Σ+∞
i=1 (

1
3 )

i = 1
2 we can deduce meta-theoretically that c ◁ 1

2
(although we cannot derive this limit bound within our system).

However we can verify that one cannot derive in aHL the property c ◁ β2, that is to say c ◁ 5
9 . Indeed

the aHL judgement corresponding to c ◁ 5
9 is ⊢5/9 (x

$← d) · (x $← d)([x=0]) : T ⇒ [x ̸= 1]. However in
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order to be able to apply a (While) rule in aHL one needs to have an integer variable bv that strictly
decreases at each execution of the body of the loop, which is not the case here. So one cannot apply any
(While) rule, and thus one cannot prove this bound.

This example thus shows that aGKAT is more expressive than aHL, in the sense that it can prove
probability bounds that aHL cannot.

7 Example of the Report-noisy-max algorithm

We now consider the example of the Report-noisy-max algorithm, which has been analysed in [5] with
the logic aHL. Our analysis here using aGKAT will be similar, but the equational approach of aGKAT
will simplify some steps. The full proof can be found in Appendix 17.

We consider a finite setR and a quality score function qscore, which takes as input a pair of an element
r of R and a database d , and returns a real number. The goal of the algorithm is to find an element r∗

of R which approximately minimizes the function qscore on d . The algorithm is randomized and only
computes an approximate minimization because it is designed to satisfy a differential privacy property
(see [9]). The algorithm proceeds by computing for each element r of R the quality score qscore(r , d)
and adding to it a Laplacian noise (according to the Laplace mechanism for differential privacy [9]) and
returning the element r∗ with the highest noisy value.

Here we do not deal with the privacy property of this program, but instead our objective is to study its
accuracy, that is to say to bound the difference between the value of qscore(r∗, d) and the real minimum
of qscore(·, d) on R. The algorithm is encoded in GKAT as the program c = (flag ← 1); (best ←
0); (R0 ← R); (R′ ← ∅); c′[R≠∅]; return(r∗) where

c′ = (r ← pick(R)); (noisy [r ] $← Lϵ/2(qscore(r , d))); (c1 +b 1); (R ← R\{r}); (R′ ←R′ ∪ {r})
where c1 = (flag ← 0); (r∗ ← r); (best ← noisy [r ]) b = (noisy [r ] > best) + (flag == 1)

The variable flag has Boolean values ({0, 1}), R, R0 and R′ are sets, r , r∗ range over elements of R,
noisy [r ] and best range over reals. The notation noisy [r ] is an array-like notation for representing n
variables, where n is the size of the set R. Note that variable R′ does not play any role in the algorithm,
it is just used to express properties of the execution.

This program uses the following kinds of actions and tests:

• actions for operations on sets: picking an (arbitrary) element r from a set (r ← pick(R)), removing
( R ← R\{r})) and adding an element (R′ ← R′ ∪ {r}),

• sampling from a Laplacian distribution centered in a with parameter p : (x
$← Lp(a)),

• tests: inequalities for reals, equality for Boolean value, comparison to empty set for sets [R ̸= ∅];
we will also need a finite number of additional tests for expressing properties on the execution, that
we will see later.

We recall the following accuracy property of the Laplace distribution [5]:

Lemma 7.1. Let β ∈ [0, 1], ν a sample from Lp(a). Then PrLp(a)[| ν − a |> 1
p log( 1β )] < β.

Therefore we have |= (x
$← Lp(a))[| x − a |> 1

p log( 1β )] ◁ β. Hence for the sampling in c:

|= (noisy [r ]
$← Lϵ/2(qscore(r , d))) · b1 ◁

β

| R0 |
(32)

where b1 = [ | noisy [r ]− qscore(r , d) |> 2
ϵ log(

|R0|
β )].

Now we want to establish a property for the whole program c′. Observe that b1 only depends on
the values of noisy [r ] and qscore(r , d). Moreover noisy [r ] and qscore(r , d) are not changed by the last 3
actions of c′. Therefore by applying Prop.4.4.1 we get c′; b1 ≡ c′′ , where c′′ is obtained by inserting in c′

the test b1 just after (noisy [r ]
$← Lϵ/2(qscore(r , d))). As we know by (19) that for any c0 we have |= c0◁1,

by combining this with axiom (17) and (32) we get |= c′′◁ β
|R0| . This is a step where aGKAT has provided

us a concise and simple reasoning. Therefore, as c′; b1 ≡ c′′, we get by Prop. 4.4.2: |= c′ · b1 ◁ β
|R0| .

We want to prove an invariant for the body c′ of the while loop in c. For that consider the test b2
corresponding to the predicate ϕ2 = ∀ r ∈ R′, | noisy [r ]− qscore(r , d) |≤ 2

ϵ log(
|R0|
β ).

We have: b2 · b1 · (R′ ← R′ ∪ {r}) · b2 ≡ 0 (33)
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Let c2 be c′ deprived of the last action, i.e. c′ = c2 · (R′ ← R′ ∪ {r}). The reasoning we did on c′

before can be repeated for c2, and so as for c′ we get: |= c2 · b1 ◁ β
|R0| . Therefore by axioms (17) and (19)

we get |= b2 · c2 · b1 ◁ β
|R0| (here again aGKAT helps us with conciseness). Moreover as c2 does not modify

R′, by using Prop.4.4.1 we get |= b2 · c2 · b2 ◁ 0. Thus by using the aGKAT encoding (Theorem 5.1) of
the aHL rule (And) we obtain from the two previous statements: |= b2 · c2 · b1 · b2 ◁ β

|R0| . Equation (33)

gives us |= (b1 · b2) · (R′ ← R′ ∪ {r}) · b2 ◁ 0.
By using the aGKAT encoding of the aHL rule (Seq) we get from the two last statements: |= b2 · c′ ·

b2 ◁
β
|R0| . By using the aGKAT encoding of the aHL rule (While) we get from this last statement, since

the loop runs for | R0 | iterations, |= b2 · c′[R≠∅] · b2 ◁ β.
Finally as (R′ ← ∅) · b2 ≡ 0 we deduce from this statement using (Seq) that |= c · b2 ◁ β. So we have

proven using aGKAT that the property corresponding to the following judgement holds: ⊢β c : ⊤ ⇒
∀ r ∈ R′, | noisy [r ]− qscore(r , d) |≤ 2

ϵ log(
|R0|
β ).

In Appendix 17 we continue the proof to finally obtain an accuracy bound for the algorithm.

8 Related work

Several works have explored the use of program logics for the verification of probabilistic programs.
Some of these works have explored approaches based on Hoare-like logics [15] while some other ones have
developed the approach of weakest-pre-expectations, e.g. [24, 16]. The paper [7] has extended standard
Hoare logic to deal with a language containing a probabilistic choice operator, and in which predicates
express claims about the state of a probabilistic program. In this work, a semantics for the language
is given and a Hoare-style deduction system presented, and proven to be correct w.r.t. the semantics.
Another example is the union bound logic aHL [5] that we already presented. More recently, Graded
Hoare logic (GHL) was introduced in [10] as a parameterisable framework for extending Hoare logic with
a preordered monoidal analysis, with a few examples of applications: the union bound logic aHL [5]; logics
for analysis of computation time; or the logic for reasoning about program counter security [25]. Other
works even explore extensions of propositional dynamic logic to probabilistic programs, as [22]. This
article proposes a probabilistic analog of PDL, which generalises the non-deterministic logical constructs
and proof rules in PDL to arithmetic analogs in the probabilistic version.

Other approaches to probabilistic program verification were also introduced in the literature, relying
on algebraic structures to wrap the apparatus of logical systems into more elegant frameworks. Some
of these approaches are extension of Kleene algebra with tests, of which we give a few examples. A
probabilistic extension of GKAT (ProbGKAT) was introduced in [28] for reasoning about imperative
programs with probabilistic branching. One difference to our approach is the syntactic introduction of
the probability, by the operator ⊕r , where r is a probability; we rather do it semantically, by taking
samplings as basic instructions, more in the style of the probabilistic assignment operator of the language
pIMP [14] for instance. Additionally, [28] provides an non-algebraic axiomatisation for the structure and
proves its completeness.

Another KAT extension was given in [11] which aimed at capturing fuzzy programs by replacing
the Boolean algebra of KAT by a lattice, with the goal of being able to reason on fuzzy (non Boolean)
properties [13].

A variant of GKAT was introduced in [12] as a relational structure to reason about properties of pairs
of probabilistic programs (e.g. non-interference between variables), in the style of the system BiKAT [3]
in the non-probabilistic setting. Still in the domain of relational reasoning, we can mention relational
differential dynamic logic [19], which is specifically designed for the verification of cyber-physical systems,
in a process that the authors called synchronizing the dynamics for comparing two systems.

9 Discussion and future work

We believe that a promising aspect of aGKAT and of the axiomatic presentation we introduced in this
paper, is that they can contribute to extend the range of applicability of (co)-algebraic techniques of
verification illustrated e.g. in [1, 23, 29, 2] to the realm of approximate reasoning on program effects
[5, 6, 10]. This suggests several exciting research directions, which we discuss below.

Towards decision procedures. Recall that the paper [29] has given a decision procedure for the
equivalence of GKAT programs whose complexity is almost linear time, assuming that the number of tests
is fixed. This procedure is based on a new automata construction. One could investigate in an analogous
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way decision problems in aGKAT for statements of the form c ◁ β. The problem could be expressed
with some semantic hypothesis, typically some probabilistic assumptions on the randomized primitives
used by the program. Our axioms on the relation ◁ (Fig. (3)) are quite promising in this respect since
they are Horn clauses. Combining automata methods [29] and Horn clauses deduction techniques might
lead to some efficient procedures. In [28], the authors present a decision procedure for demonstrating the
existence of bisimilarity between two ProbGKAT expressions.

Extension to other effects. In the present paper we restricted ourselves to a specific pod-monoid
with specific interval of values and set of operators, which were enough to capture aHL and handle
the initial intended goals of reasoning on probabilistic properties. However we would like to push this
approach further. By using a generic and external structure to the main algebraic model of programs, we
could follow a parametric approach, and obtain more freedom on the structure chosen to capture a wider
range of quantitative analysis of effects, like for instance: the analysis of computation time model, by
taking the natural numbers and the arithmetic sum as the monoidal composition; the program counter
security model, by taking a set of binary values and the string concatenation as the composition; and
the union bound logic itself. Those are a few concrete models considered for a generic version of Hoare
Logic, analysed in [10].

We want to stress however that it is not trivial to capture in the same generic setting both the union
bound logic and the logic for analysis of computation time. The system aGKAT as it stands does not
allow to do that. In particular axiom (19) implies that the neutral element of the first monoid is also
maximal for the order; this is not the case in the monoid (N,+) (or even (N∞,+)) used for the Hoare
logic for analysis of computation time [10].

The framework of pRHL could also benefit from an algebraic approach, calling for a structure taking
into account the parametric reasoning about judgments themselves. One would need to embed the
parameters into the structure itself, resorting, for example, to a relation between algebraic terms and the
elements from the structure which model these parameters

Towards a stronger completeness. Another possible direction for future work would be to study
completeness of aGKAT with respect to some class of Horn clauses which embed aHL rules. That would
mean to prove that the theory of aGKAT could always derive equations that represent valid aHL rules.
We could draw inspiration from Kozen’s classical work [21], in which an analogous result was proven for
KAT with respect to a class of Horn clauses which embed propositional Hoare logic.

Towards relational properties. In this paper we have considered properties on single executions of
a program, but some important questions can be expressed as relational properties on pairs of execution,
for instance non-interference, continuity or sensitivity properties. An extension of Kleene algebra with
tests called BiKAT for relational properties was introduced in [3] and another framework for probabilistic
relational properties was proposed in [12]. It would interesting to explore if the approximation construc-
tion we defined in the present paper could be applied to the probabilistic relational setting of [12]. This
would be analogous to the move in the relational Hoare logic setting, from pRHL to apRHL.

Non-determinism and probabilities. One of the advantages of the syntactical restriction of
GKAT is to facilitate the inclusion of probabilistic models, by neglecting nondeterminism. While usually
avoided, and always difficult, one possible direction for future work could be to consider a language with
both nondeterminism and probabilities, capturing more application scenarios.
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[13] Leandro Gomes, Alexandre Madeira, and Lúıs Soares Barbosa. A semantics and a logic for fuzzy
arden syntax. Soft Comput., 25(9):6789–6805, 2021. doi:10.1007/s00500-021-05593-9.

[14] Ichiro Hasuo, Yuichiro Oyabu, Clovis Eberhart, Kohei Suenaga, Kenta Cho, and Shin-ya Katsumata.
Control-data separation and logical condition propagation for efficient inference on probabilistic
programs. J. Log. Algebraic Methods Program., 136:100922, 2024. doi:10.1016/J.JLAMP.2023.

100922.

[15] Claire Jones. Probabilistic non-determinism. PhD thesis, University of Edinburgh, UK, 1990. URL:
https://hdl.handle.net/1842/413.

[16] Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph Matheja, and Federico Olmedo. Weakest
precondition reasoning for expected runtimes of randomized algorithms. J. ACM, 65(5):30:1–30:68,
2018. doi:10.1145/3208102.
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Kiu Lau, Catuscia Palamidessi, Lúıs Moniz Pereira, Yehoshua Sagiv, and Peter J. Stuckey, editors,
Computational Logic - CL 2000, First International Conference, London, UK, 24-28 July, 2000,
Proceedings, volume 1861 of Lecture Notes in Computer Science, pages 568–582. Springer, 2000.
doi:10.1007/3-540-44957-4\_38.

[24] Annabelle McIver and Carroll Morgan. Abstraction, Refinement and Proof for Probabilistic Systems.
Monographs in Computer Science. Springer, 2005. URL: https://doi.org/10.1007/b138392, doi:
10.1007/B138392.

[25] David Molnar, Matt Piotrowski, David Schultz, and David A. Wagner. The program counter security
model: Automatic detection and removal of control-flow side channel attacks. In Dongho Won
and Seungjoo Kim, editors, Information Security and Cryptology - ICISC 2005, 8th International
Conference, Seoul, Korea, December 1-2, 2005, Revised Selected Papers, volume 3935 of Lecture
Notes in Computer Science, pages 156–168. Springer, 2005. doi:10.1007/11734727\_14.

[26] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge University Press,
1995. doi:10.1017/cbo9780511814075.

[27] Damien Pous. Kleene algebra with tests and coq tools for while programs. In Sandrine Blazy, Chris-
tine Paulin-Mohring, and David Pichardie, editors, Interactive Theorem Proving - 4th International
Conference, ITP 2013, Rennes, France, July 22-26, 2013. Proceedings, volume 7998 of Lecture Notes
in Computer Science, pages 180–196. Springer, 2013. doi:10.1007/978-3-642-39634-2\_15.
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Appendix

A Derivable GKAT facts

c1 +b1 (c2 +b2 c3) = (c1 +b1 c2) +b1+b2 c3 (34)

c1 +b c2 = c1 +b ¬ b · c2 (35)

b1 · (c1 +b2 c2) = b1c1 +b2 b1c2 (36)

c +b 0 = bc (37)

c1 +0 c2 = c2 (38)

b · (c1 +b c2) = bc1 (39)

c(b) = c(b) · ¬ b (40)

c(b) = (bc)(b) (41)

c(0) = 1 (42)

c(1) = 0 (43)

b
(b2)
1 = ¬ b2 (44)

c(b2) = c(b1b2) · c(b2) (45)

Figure 5: Derivable GKAT facts

B Proof of Proposition 2.1

b · b1 + ¬ b · b2
= { (1)}

(b · b1 + ¬ b · b2) +b (b · b1 + ¬ b · b2)
= { (4) and (35)}

b · (b · b1 + ¬ b · b2) +b ¬ b · (b · b1 + ¬ b · b2)
= { 36}

(b · b · b1 + b · ¬ b · b2) +b (¬ b · b · b1 + ¬ b · ¬ b · b2)
= { B.A. and (7)}

(b · b1 + 0) +b (0 + ¬ b · b2)
= { B.A.}

(b · b1) +b (¬ b · b2)
= { (4) and (35)}

b1 +b b2

C Proof of Proposition 2.2

Because the tests form a Boolean algebra we have:

b1 = b1 + b1b2 (absorption law)

Now we have:

b1 +b1 b2 = b1b1 + b1b2 by Prop. 2.1

= b1 + b1b2 by idempotency

= (b1 + b1b2) + b1b2 by the equation above

= b1 + (b1 + b1)b2

= b1 + b2

D Proof of Proposition 4.1

The fact that the probabilistic interpretation satisfies the axioms of GKAT is known from [29]. It remains
to prove that the interpretation i satisfies the axioms of Fig. 3.

Consider a set of states S . Axioms (14) and (15) are trivial.
Axiom (17):
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By assumption we know that:

∀s∈S ,
∑
s′∈S
PiJc1K(s)(s ′) ≤ β1, ∀s∈S ,

∑
s′∈S
PiJc2K(s)(s ′) ≤ β2

So we have:

∀s∈S ,
∑
s′∈S

PiJc1 · c2K(s)(s ′) =
∑
s′∈S

∑
s′′∈S

PiJc1K(s)(s ′′) · PiJc2K(s ′′)(s ′)

=
∑
s′′∈S

∑
s′∈S

PiJc1K(s)(s ′′) · PiJc2K(s ′′)(s ′)

by commutativity of +

=
∑
s′′∈S

(PiJc1K(s)(s ′′) ·
∑
s′∈S

PiJc2K(s ′′)(s ′))

by distributivity of . over +

≤
∑
s′′∈S

PiJc1K(s)(s ′′) · β2 by assumptions

≤ β1 · β2 by assumptions

We then conclude, by Definition 4.3, c1 · c2 ◁ β1 · β2.
Axiom (18):
Assumptions: c1 ◁ β ⇔ ∀s∈S ,

∑
s′∈S
PiJc1K(s)(s ′) ≤ β and c2 ◁ β ⇔ ∀s∈S ,

∑
s′∈S
PiJc2K(s)(s ′) ≤ β.

Goal: c1 +b c2 ◁ β ⇔ ∀s∈S ,
∑
s′∈S
PiJc1 +b c2K(s)(s ′) ≤ β

∑
s′∈S
PiJc1 +b c2K(s)(s ′) =


∑
s′∈S
PiJc1K(s)(s ′) if s ∈ sat†(b)∑

s′∈S
PiJc2K(s)(s ′) if s ∈ sat†(¬ b)

By assumptions, ∀s∈S ,
∑
s′∈S
PiJc1K(s)(s ′) ≤ β and

∑
s′∈S
PiJc2K(s)(s ′) ≤ β.

Hence we conclude
∑
s′∈S
PiJc1 +b c2K(s)(s ′) ≤ β, i.e. by Definition 4.3 c1 +b c2 ◁ β.

Axiom (16):
By assumption we know that:
∀s∈S ,

∑
s′∈S
PiJcc1K(s)(s ′) ≤ β1 and ∀s∈S ,

∑
s′∈S
PiJcc2K(s)(s ′) ≤ β2.

Now, we have:

∀s∈S ,
∑
s′∈S
PiJc(c1 +b c2)K(s)(s ′)

= { Definition 2.1}∑
s′∈S

∑
s′′∈S

PiJcK(s)(s ′′) · PiJc1 +b c2K(s ′′)(s ′)

= { commutativity of +}∑
s′′∈S

PiJcK(s)(s ′′) ·
∑
s′∈S
PiJc1 +b c2K(s ′′)(s ′)

= { (Definition 2.1)}∑
s′′∈S

PiJcK(s)(s ′′) · (
∑

s′∈sat†(b)

PiJc1K(s ′′)(s ′) +
∑

s′∈sat†(¬ b)

PiJc2K(s ′′)(s ′))

= { distributivity of · over +}∑
s′′∈S

PiJcK(s)(s ′′) ·
∑

s′∈sat†(b)

PiJc1K(s ′′)(s ′)

+
∑
s′′∈S

PiJcK(s)(s ′′) ·
∑

s′∈sat†(¬ b)

PiJc2K(s ′′)(s ′)
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= { commutativity of +}∑
s′∈sat†(b)

∑
s′′∈S

PiJcK(s)(s ′′) · PiJc1K(s ′′)(s ′)

+
∑

s′∈sat†(¬ b)

∑
s′′∈S

PiJcK(s)(s ′′) · PiJc2K(s ′′)(s ′)

= { Definition 2.1}∑
s′∈sat†(b)

PiJcc1K(s)(s ′) +
∑

s′∈sat†(¬ b)

PiJcc2K(s)(s ′)

≤ { assumptions}

β1 + β2

Hence we have proven that c(c1 +b c2) ◁ β1 + β2 holds in the model.
The validity of Axiom (19) comes directly from Definition 4.3.
Axiom (20):
∀s∈S ,

∑
s′∈S
PiJ0K(s)(s ′) = 0 ≤ 0. Hence, by Definition 4.3, 0 ◁ 0.

E Counter-example for Remark 4.2 (Invalid statement in the
probabilistic model)

Let us take as set of states State = {s1, s2}. We use a matrix notation for Markov kernels: the matrix(
a1,1 a1,2
a2,1 a2,2

)
represents the Markov kernel f such that, for all i , j ∈ {1, 2}, f (si)(sj ) = ai,j . Recall

that intuitively this means that the execution of the program (represented by f ) on initial state si has
probability ai,j to terminate on state sj . So in particular the sum over each line is less than or equal to

1. We abusively denote: f =

(
a1,1 a1,2
a2,1 a2,2

)
.

Let us define:

c =

(
1/2 1/2
1/2 1/2

)
c1 =

(
1/2 1/2
0 0

)
c2 =

(
0 0

1/2 1/2

)
Then we have:

c · c1 = c · c2 =

(
1/4 1/4
1/4 1/4

)
So we have: c · c1 ◁ 1/2 and c · c2 ◁ 1/2, because the sum over each line is equal to 1/2.

Let us take for b the test on states s defined by b = [s = s1]. Then we have:

c1 +b c2 =

(
1/2 1/2
1/2 1/2

)
So:

c · (c1 +b c2) =

(
1/2 1/2
1/2 1/2

)
So c · (c1 +b c2) ◁ 1(=

1
2 + 1

2 ) holds, Axiom (16) is satisfied. And the minimum β which satisfies
c · (c1 +b c2) ◁ β is 1, thus the candidate statement of Remark 4.2 is not valid.
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F Proof in the double tossing Example 4.1

We give here a step-by-step explicit proof of the proof in Example 4.1.

c · (y = 0) = (x
$← Coin) · (c′1 +(x=1) y ← 0(y = 0)) by Axiom (5) (46)

c · (y = 0) = (x
$← Coin) · ((x = 1) + (x ̸= 1)) · (c′1 +(x=1) y ← 0(y = 0)) by boolean properties (47)

(x
$← Coin) · (x ̸= 1) · (c′1 +(x=1) y ← 0(y = 0)) = (x

$← Coin) · (x ̸= 1) · (y ← 0) · (y = 0) (48)

by fact (39) in Appendix 10

(x
$← Coin) · (x = 1) · (c′1 +(x=1) y ← 0(y = 0)) = (x

$← Coin) · (x = 1) · c′1 by fact (39) (49)

(x
$← Coin) · (x = 1) · c′1 =

(x
$← Coin) · (x = 1) · (x $← Coin) · ((x = 1) + (x ̸= 1)) · (y ← 1(y = 0) +(x=1) y ← 0(y = 0)) (50)

by boolean properties

(x
$← Coin) · (x = 1) · (x $← Coin) · (x = 1) · (y ← 1(y = 0) +(x=1) y ← 0(y = 0)) =

(x
$← Coin) · (x = 1) · (x $← Coin) · (x = 1) · y ← 1(y = 0) by fact (39) (51)

(x
$← Coin) · (x = 1) · (x $← Coin) · (x ̸= 1) · (y ← 1(y = 0) +(x=1) y ← 0(y = 0)) =

(x
$← Coin) · (x = 1) · (x $← Coin) · (x ̸= 1) · y ← 0(y = 0) by fact (39) (52)

y ← 1(y = 0) ≡ 0 by the model (53)

|= c2 = (x
$← Coin) · (x = 1) · (x $← Coin) · (x = 1) · (y ← 1) · (y = 0) ◁ 0 by (53) and axiom (17) (54)

|= (x
$← Coin) · (x ̸= 1) ◁ 1/2 by the choice of interpretation i (55)

|= c4 = (x
$← Coin) · (x ̸= 1) · (y ← 0) · (y = 0) ◁ 1/2 by (55), axioms (19) and (17) (56)

|= (x
$← Coin) · (x ̸= 1) · (c′1 +(x=1) y ← 0(y = 0)) ◁ 1/2 by (48) and (56) (57)

|= (x
$← Coin) · (x = 1) ◁ 1/2 by the choice of interpretation i (58)

|= c3 = (x
$← Coin) · (x = 1) · (x $← Coin) · (x ̸= 1) · (y ← 0) · (y = 0) ◁ 1/4 by (55), (58), axioms (19) and (17)

(59)

|= (x
$← Coin) · (x = 1) · c′1 ◁ 1/4 by (54), (59), (51), (52) and Prop. 4.3 (60)

|= (x
$← Coin) · (x = 1) · (c′1 +(x=1) y ← 0(y = 0)) ◁ 1/4 by (49) and (60) (61)

|= (x
$← Coin) · ((x = 1) + (x ̸= 1)) · (c′1 +(x=1) y ← 0(y = 0)) ◁ 3/4 by (57), (61) and Prop. 4.3 (62)

|= c · (y = 0) ◁ 3/4 by (47) and (62) (63)

G Proof of Theorem 5.1

• Skip:

Goal: ϕ1¬ ϕ ◁ 0

ϕ1¬ ϕ
= { (9)}

ϕ¬ ϕ
= { B.A.}

0

By axiom (20), 0 ◁ 0.

• Seq:

Assumptions:
ϕc¬ ϕ′ ◁ β (64)
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and
ϕ′c′¬ ϕ′′ ◁ β′ (65)

Goal: ϕcc′¬ ϕ′′ ◁ β + β′

ϕcc′¬ ϕ′′

= { B.A.}
ϕc1c′¬ ϕ′′

= { Proposition 2.1 and B.A.}
ϕc(ϕ′ +ϕ′ ¬ ϕ′)c′¬ ϕ′′

= { (5)}
ϕc(ϕ′c′¬ ϕ′′ +ϕ′ ¬ ϕ′c′¬ ϕ′′)

We have ϕc(ϕ′c′¬ ϕ′′) ◁ β′, by axiom (17) because ϕc ◁ 1 (axiom 19) and (65).

Additionally, we have ϕc(¬ ϕ′c′¬ ϕ′′) = (ϕc¬ ϕ′)c′¬ ϕ′′ ◁ β, by axiom (17) because (64) and
c′¬ ϕ′′ ◁ 1 (axiom 19).

Hence, by axiom (16), ϕc(ϕ′c′¬ ϕ′′ +ϕ′ ¬ ϕ′c′¬ ϕ′′) ◁ β + β′, so ϕcc′¬ ϕ′′ ◁ β + β′.

• Cond:

Assumptions:
ϕbc¬ ψ ◁ β (66)

and
ϕ¬ bc′¬ ψ ◁ β (67)

Goal: ϕ(c +b c
′)¬ ψ ◁ β

By axiom (5) and fact (36), ϕ(c +b c
′)¬ ψ = ϕc¬ ψ +b ϕc

′¬ ψ and by (66), (67) and axiom (18),
we have ϕc¬ ψ +b ϕc

′¬ ψ ◁ β.

• Weak:

Assumptions:
ϕc¬ ψ ◁ β (68)

ϕ′ϕ = ϕ′ (69)

ψψ′ = ψ (70)

and
β ≤ β′ (71)

Goal: ϕ′c¬ ψ′ ◁ β′

By Boolean algebra, we derive
ψψ′ = ψ ⇔ ¬ ψ′¬ ψ = ¬ ψ′ (72)

Hence, we reason,

ϕ′c¬ ψ′

= { (69) and (73)}

ϕ′ϕc¬ ψ′¬ ψ
= { (B.A.)}

ϕ′(ϕc¬ ψ)¬ ψ′
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By axiom (19), ϕ′ ◁ 1, ¬ ψ′ ◁ 1. So, by (68) and axiom (17), we have ϕ′(ϕc¬ ψ)¬ ψ′ ◁ 1 · β · 1 = β.
By (71) and axiom (15), we conclude ϕ′(ϕc¬ ψ)¬ ψ′ ◁ β′.

• And:

Assumptions:
ϕc¬ ψ ◁ β (73)

and

ϕ′c¬ ψ′ ◁ β′ (74)

Goal: ϕc¬ (ψψ′) ◁ β + β′

By Boolean algebra and Proposition 2.1, we reason ϕc¬ (ψψ′) = ϕc(¬ ψ+¬ ψ′) = ϕc(¬ ψ+¬ ψ¬ ψ′)
and by premises (73) and (74), and by axiom (16) we deduce

ϕc(¬ ψ +¬ ψ ¬ ψ′) ◁ β + β′

and by axiom (14) we have ϕc¬ (ψψ′) ◁ β + β′.

• Or:

Assumptions:
ϕc¬ ψ ◁ β (75)

and
ϕ′c¬ ψ ◁ β (76)

Goal: (ϕ+ ϕ′)c¬ ψ ◁ β

(ϕ+ ϕ′)c¬ ψ

= { (4)}

(1 +ϕ ϕ
′)c¬ ψ

= { (5)}

c¬ ψ +ϕ ϕ
′c¬ ψ

= { (4)}

ϕc¬ ψ +ϕ ϕ
′c¬ ψ

By premises (75), (76) and axiom (18), ϕc¬ ψ +ϕ ϕ
′c¬ ψ ◁ β.

• False:

ϕc¬ 0 = ϕc1 = ϕc ◁ 1 by axioms (19), (17) and (14).

• While. We assume that the left-hand side of the implications in (31) hold and we want to prove
for any integer k the following formula: ϕ[bv ≤ k ]c(b)¬ (ϕ¬ b) ◁ kβ. Note in particular that by
assumption, bv only takes integer values.

Let us first show that we can simplify the expression in the property to prove:

ϕ[bv ≤ k ]c(b)¬ (ϕ¬ b) = ϕ[bv ≤ k ]c(b)(¬ ϕ+ b)

= ϕ[bv ≤ k ]c(b)¬ b(¬ ϕ+ b), by (40)

= ϕ[bv ≤ k ]c(b)(¬ b¬ ϕ+ 0)

= ϕ[bv ≤ k ]c(b)¬ b¬ ϕ
= ϕ[bv ≤ k ]c(b)¬ ϕ, by (40) again.
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Therefore we only need to prove for any integer k the following property, which we will do by
induction on k :

IH (k) : ϕ[bv ≤ k ]c(b)¬ ϕ ◁ kβ (77)

– Case k = 0:

As |= ϕ ∧ bv ≤ 0→ ¬ b we have:

ϕ[bv ≤ 0] = ϕ[bv ≤ 0]¬ b.

Moreover ¬ bc(b) = ¬ b, by Axiom (11).

Therefore:
ϕ[bv ≤ 0]c(b)¬ ϕ =
ϕ[bv ≤ 0]¬ bc(b)¬ ϕ =
ϕ[bv ≤ 0]¬ b¬ ϕ =
ϕ¬ ϕ[bv ≤ 0]¬ b = 0 ◁ 0

So IH (0) holds.

– Now, assume IH (k) holds and let us prove IH (k + 1).

As bv takes integer values we have:

[bv ≤ k + 1] = [bv ≤ k ] + [bv = k + 1].

So:
ϕ[bv ≤ k + 1]c(b)¬ ϕ =
ϕ([bv ≤ k ] + [bv = k + 1])c(b)¬ ϕ = by Prop. 2.2
ϕ([bv ≤ k ] +[bv≤k ] [bv = k + 1])c(b)¬ ϕ =
ϕ[bv ≤ k ]c(b)¬ ϕ+[bv≤k ] ϕ[bv = k + 1]c(b)¬ ϕ

We know by IH (k) that: ϕ[bv ≤ k ]c(b)¬ ϕ ◁ kβ.
Assume for the moment the following lemma:

Lemma G.1.
ϕ[bv = k + 1]c(b)¬ ϕ ◁ (k + 1)β

Then by using axioms (15) and (17) we obtain:

ϕ[bv ≤ k + 1]c(b)¬ ϕ ◁ (k + 1)β

So we have proved IH (k + 1).

We now thus only have to prove Lemma 16.1.

By assumption we have:
∀ η > 0, ϕb[bv = η]c[bv ≥ η] ◁ 0 (78)

We obtain by Axiom (11):

bc(b) = bcc(b) (79)

¬ bc(b) = ¬ b (80)

Moreover, since by assumption, bv only takes values in N, we have:

1 = [bv ≥ k + 1] + [bv ≤ k ] (81)

= [bv ≥ k + 1] +[bv≥k+1] [bv ≤ k ], by Prop. 2.2 (82)

Let us now prove the statement of Lemma 16.1:

ϕ[bv = k + 1]c(b)¬ ϕ =
ϕ[bv = k + 1](b + ¬ b)c(b)¬ ϕ = by Prop. 2.2
ϕ[bv = k + 1](b +b ¬ b)c(b)¬ ϕ = by Ax. (5)
ϕ[bv = k + 1](bc(b)¬ ϕ+b ¬ bc(b)¬ ϕ) = by (80)
ϕ[bv = k + 1](bc(b)¬ ϕ+b ¬ ϕ) = by (36)
[bv = k + 1](ϕbc(b)¬ ϕ+b ϕ¬ ϕ) =
[bv = k + 1](ϕbc(b)¬ ϕ+b 0) =
[bv = k + 1]ϕbc(b)¬ ϕ = by (79)
ϕ[bv = k + 1]bcc(b)¬ ϕ,=
ϕb[bv = k + 1]cc(b)¬ ϕ =
ϕb[bv = k + 1]c([bv ≥ k + 1] +[bv≥k+1] [bv ≤ k ])c(b)¬ ϕ =
ϕb[bv = k + 1]c([bv ≥ k + 1]c(b)¬ ϕ +[bv≥k+1] [bv ≤ k ]c(b)¬ ϕ)
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In order to bound with ◁ the expression above, it is sufficient by Axiom (16) to bound with ◁
respectively the two following expressions:

ϕb[bv = k + 1]c[bv ≥ k + 1]c(b)¬ ϕ
ϕb[bv = k + 1]c[bv ≤ k ]c(b)¬ ϕ

For the first expression we can use (78) for η = k + 1 and we obtain:

ϕb[bv = k + 1]c[bv ≥ k + 1]c(b)¬ ϕ ◁ 0 (83)

For the second expression, let us temporarily assume the following lemma:

Lemma G.2.
ϕb[bv = k + 1]c[bv ≤ k ]c(b)¬ ϕ ◁ (k + 1)β

Then by applying Axiom (16) to property (83) and Lemma 16.2 we obtain:

ϕb[bv = k + 1]c([bv ≥ k + 1] +[bv≥k+1] [bv ≤ k ])c(b)¬ ϕ ◁ (k + 1)β (84)

and thus:
ϕ[bv = k + 1]c(b)¬ ϕ ◁ (k + 1)β (85)

which proves Lemma 16.1.

There thus only remains to prove Lemma 16.2.

We have:
ϕb[bv = k + 1]c[bv ≤ k ]c(b)¬ ϕ =
ϕb[bv = k + 1]c(ϕ+ ¬ ϕ)[bv ≤ k ]c(b)¬ ϕ = by Prop. 2.2
ϕb[bv = k + 1]c(ϕ+ϕ ¬ ϕ)[bv ≤ k ]c(b)¬ ϕ = by Ax. (5)
ϕb[bv = k + 1]c(ϕ[bv ≤ k ]c(b)¬ ϕ+ϕ ¬ ϕ[bv ≤ k ]c(b)¬ ϕ)

As before we want to use Axiom (16) to bound the latter expression.

First note that:

ϕ[bv ≤ k ]c(b)¬ ϕ ◁ kβ, by IH (k)

ϕb[bv = k + 1]c ◁ 1, by Axiom 19

From that we obtain:

ϕb[bv = k + 1]cϕ[bv ≤ k ]c(b)¬ ϕ =
(ϕb[bv = k + 1]c)(ϕ[bv ≤ k ]c(b)¬ ϕ) ◁ 1 · (kβ), by Ax. (17)

So

(ϕb[bv = k + 1]c)(ϕ[bv ≤ k ]c(b)¬ ϕ) ◁ kβ (86)

Moreover we have:

[bv = k + 1]b ◁ 1, by Axiom (19) (87)

ϕc¬ ϕ ◁ β, by assumption (premise of the rule) (88)

[bv ≤ k ]c(b)¬ ϕ ◁ 1, by Axiom (19) (89)

And thus:
ϕb[bv = k + 1]c¬ ϕ[bv ≤ k ]c(b)¬ ϕ =
b[bv = k + 1]ϕc¬ ϕ[bv ≤ k ]c(b)¬ ϕ =
(b[bv = k + 1])(ϕc¬ ϕ)([bv ≤ k ]c(b)¬ ϕ) ◁ 1 · β · 1

by (17), (87), (88) and (89)

So

(b[bv = k + 1])(ϕc¬ ϕ)([bv ≤ k ]c(b)¬ ϕ) ◁ β (90)

Now, recall that we had shown previously:

ϕb[bv = k + 1]c[bv ≤ k ]c(b)¬ ϕ =
ϕb[bv = k + 1]c(ϕ[bv ≤ k ]c(b)¬ ϕ+ϕ ¬ ϕ[bv ≤ k ]c(b)¬ ϕ)

By applying Axiom (16) to this latter expression, with (86) and (90) we get:

ϕb[bv = k + 1]c[bv ≤ k ]c(b)¬ ϕ ◁ (k + 1)β (91)

We have thus proven Lemma 16.2 and hence concluded the proof that IH (k) implies IH (k+1).
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Then by induction we can conclude that IH (k) holds for all integers k . The case of rule (While)
is completed.

H Example: Report-noisy-max algorithm

We will now consider the example of the Report-noisy-max algorithm, which has been analysed in [5]
with the logic aHL (see also [9] for more background on this algorithm). Our analysis here using aGKAT
will be similar to the previous one in aHL, but the equational approach of aGKAT will simplify some
steps.

We consider a finite setR and a quality score function qscore, which takes as input a pair of an element
r of R and a database d , and returns a real number. The goal of the Report-noisy-max algorithm is
to find an element r∗ of R which approximately minimizes the function qscore on d . The algorithm is
randomized and only computes an approximate minimization because it is designed to satisfy a differential
privacy property (see [9]).

Report-noisy-max proceeds by computing for each element r of R the quality score qscore(r , d) and
adding to it a Laplacian noise (according to the Laplace mechanism for differential privacy [9]) and
returning the element r∗ with the highest noisy value.

Here we do not deal with the differential privacy property of this program, but instead our objective
is to study its accuracy, that is to say to bound the difference between the value of qscore(r∗, d) and the
real minimum of qscore(·, d) on R.

The algorithm Report-noisy-max can be written as a GKAT program c as follows (we use intermediary
notations c′, c1 and b for readability):

c = (flag ← 1); (best ← 0); (R0 ← R); (R′ ← ∅); c′[R≠∅]; return(r∗)

where

c′ = (r ← pick(R)); (noisy [r ] $← Lϵ/2(qscore(r , d)));
(c1 +b 1);

(R ← R\{r}); (R′ ← R′ ∪ {r})
c1 = (flag ← 0); (r∗ ← r); (best ← noisy [r ]))

b = (noisy [r ] > best) + (flag == 1)

The variable flag has Boolean values ({0, 1}), R, R0 and R′ are sets, r , r∗ range over elements of
R, noisy [r ] and best range over reals. The notation noisy [r ] is an array-like notation for representing
n variables, where n is the size of the set R. Note that the variable R′ does not play any rôle in the
algorithm, it will just be used to express properties of the execution.

This program uses the following kinds of actions and tests:

• actions representing basic operations on sets: picking an (arbitrary) element r from a set (r ←
pick(R)), removing an element ( R ← R\{r})) and adding an element (R′ ← R′ ∪ {r}),

• sampling from a Laplacian distribution centered in a with parameter p : (x
$← Lp(a)),

• tests: inequalities for reals, equality for Boolean value, comparison to empty set for sets [R ≠ ∅];
we will also need three additional tests for expressing properties on the execution, that we will see
later.

We recall the following accuracy property of the Laplace distribution [5]:

Lemma H.1. Assume β belongs to [0, 1] and let ν be a sample from the Laplace distribution Lp(a), then
we have:

PrLp(a)[| ν − a |> 1

p
log(

1

β
)] < β (92)

Therefore the Laplacian distribution satisfies the following property:

|= (x
$← Lp(a))[| x − a |> 1

p
log(

1

β
)] ◁ β (93)
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This corresponds to the following instance of the (Rand) axiom in aHL (see Fig. 2):

∀m,PiJx
$← Lp(a)K(m)[| x − a |> 1

p log( 1β )] ≤ β

⊢β do .(x
$← Lp(a)) : T ⇒| x − a |≤ 1

p log( 1β )

Now, (93) gives us for the sampling in program c′:

|= (noisy [r ]
$← Lϵ/2(qscore(r , d)))[| noisy [r ]− qscore(r , d) |> 2

ϵ
log(
| R0 |
β

)] ◁
β

| R0 |
(94)

We want to establish a property for the whole program c′.

Denote as b1 the test [| noisy [r ]− qscore(r , d) |≤ 2
ϵ log(

|R0|
β )]. Observe that b1 (and thus also b1) only

depends on the values of noisy [r ] and qscore(r , d). Moreover noisy [r ] and qscore(r , d) are not changed by
the last 3 actions of c′. Therefore by applying Prop.4.4.1 we get c′; b1 ≡ c′′ , where c′′ is the expression

obtained by replacing in c′ (noisy [r ]
$← Lϵ/2(qscore(r , d))) by (noisy [r ]

$← Lϵ/2(qscore(r , d))); b1.
So we know that:

|= (noisy [r ]
$← Lϵ/2(qscore(r , d))); b1 ◁

β

| R0 |
(this is (94 )) (95)

|= c0 ◁ 1 for any c0, by axiom (19) (96)

So by applying axiom (17) to (95) and (96) we obtain that |= c′′ ◁ β
|R0| . Therefore as c′; b1 ≡ c′′ we get

by Prop. 4.4.2 that:

|= c′ · b1 ◁
β

| R0 |
(97)

We want to prove an invariant for the body c′ of the while loop in c. For that consider the test b2
corresponding to the following predicate:

ϕ2 = ∀ r ∈ R′, | noisy [r ]− qscore(r , d) |≤ 2

ϵ
log(
| R0 |
β

)

We have:

b2 · b1 · (R′ ← R′ ∪ {r}) · b2 ≡ 0 (98)

Let us denote as c2 the expression c′ deprived of the last action, that is to say: c′ = c2 ·(R′ ← R′∪{r}).
The reasoning we did on c′ before can be done for c2, and so just as (97) we have:

|= c2 · b1 ◁
β

| R0 |
(99)

Therefore by axioms (17) and (19) we get:

|= b2 · c2 · b1 ◁
β

| R0 |
(100)

Moreover as c2 does not modify R′, by using Prop.4.4.1 we get:

|= b2 · c2 · b2 ◁ 0 (101)

Thus by using the aGKAT encoding (Theorem 5.1) of the aHL rule (And) we obtain from (100) and
(101):

|= b2 · c2 · b1 · b2 ◁
β

| R0 |
(102)

Equation (98) gives us:

|= (b1 · b2) · (R′ ← R′ ∪ {r}) · b2 ◁ 0 (103)
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By using the aGKAT encoding of the aHL rule (Seq) we get from (102) and (103):

|= b2 · c′ · b2 ◁
β

| R0 |
(104)

By using the aGKAT encoding of the aHL rule (While) we get from (104), as the loop runs for | R0 |
iterations:

|= b2 · c′[R̸=∅] · b2 ◁ β (105)

Finally as (R′ ← ∅) · b2 ≡ 0 we deduce from (105) using (Seq) that:

|= c · b2 ◁ β (106)

So we have proven in aGKAT the encoding of:

⊢β c : T ⇒ ∀ r ∈ R′, | noisy [r ]− qscore(r , d) |≤ 2

ϵ
log(
| R0 |
β

) (107)

In order to obtain a property relating qscore(r∗, d) to the values of qscore(r , d) in order to have
an accuracy result, we need to relate noisy [r∗] to the noisy [r ]. For that we will consider the following
predicate:

ϕ3 = ∀ r ∈ R′, (noisy [r∗] ≥ noisy [r ]) ∧ (best = noisy [r∗]) (108)

Denote as b3 the corresponding test. We have:

|= b3 · c′ · b3 ◁ 0 (109)

|= b3 · c′[R̸=∅] · b3 ◁ 0 by (While) rule (110)

|= c · b3 ◁ 0 because (R′ ← ∅) · b3 = 0 (111)

Then from (106) and (111) we get with rule (And):

|= c · b2 · b3 ◁ β (112)

By arithmetical reasoning we have that ϕ2 ∧ ϕ3 implies that for any r in R′ we have:

qscore(r∗, d) > qscore(r , d)− 2

ϵ
log(
| R0 |
β

) (113)

Therefore if b4 denotes the test corresponding to

ϕ4 = ∀ r ∈ R′, qscore(r∗, d) > qscore(r , d)− 2

ϵ
log(
| R0 |
β

) (114)

we have:

b2 · b3 ≡ (b2 · b3) · b4 (115)

Therefore from (112) and (115) we get by rule (Weak):

|= c · b4 ◁ β (116)

So we have proven using aGKAT that the property corresponding to the following judgement holds::

⊢β c : T ⇒ ∀ r ∈ R′, qscore(r∗, d) > qscore(r , d)− 2

ϵ
log(
| R0 |
β

) (117)

This shows an accuracy property for c: with failure probability β, the result r∗ of c gives a quality score
which is not far below the quality score of any other element r of R′ (that is to say R0).
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