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0 Abstract—Recently, there has been a growing trend
in AI testing toward developing new test prioritization
algorithms for deep learning systems. These algorithms
aim to reduce the cost and time needed to annotate test
datasets by prioritizing instances with a higher chance of
exposing faults. Various metrics have been used to evaluate
the effectiveness of these algorithms, e.g., APFD, RAUC,
and ATRC. However, there is a lack of research to confirm
their validity. The results indicate that the existing metrics
have severe limitations. For example, some metrics ignore
the labeling budget and prioritize the fault detection rate
instead of the fault detection ratio. Moreover, others overlook
the prioritization difficulty in the evaluation.

As a solution, we develop a new metric (WFDR), which
solves the deficiencies of previous metrics. We also draw
attention to a new research area, known as severity prior-
itization, which emphasizes the importance of prioritizing
misclassified instances according to the severity level, par-
ticularly in critical situations. Our experiments reveal that
instances with high severity make up more than 20% of
all misclassified instances. Thus, these instances should be
prioritized when it comes to labeling. Consequently, we
proposed a new metric known as (SFDR) that evaluates
the effectiveness of algorithms in prioritizing high-severity
instances. Our evaluations show that our proposed metrics
are more effective than other existing metrics. Besides, our
two metrics re-evaluate some recent algorithms and indicate
that these algorithms perform poorly.

Index Terms—Test Prioritization Algorithms, Evaluation
Metrics, Severity Prioritization, Effective Labeling.

I. INTRODUCTION

We are witnessing an unprecedented increase in the
volume of big data. Nevertheless, this swift growth
presents a significant challenge: the demand for data
labeling. Manual labeling can be excessively costly in
terms of both time and resources. The labeling process
can be more challenging in multi-label classification,
object detection, and segmentation.

Test prioritization is a research area where algorithms
alleviate the issue of manual labeling in big data. Prior-
itization algorithms also help deep learning specialists
to evaluate the performance of the trained model on a
carefully selected test dataset rather than a randomly
selected one. More specifically, these techniques mainly
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focus on prioritizing error-revealing examples which
expose the vulnerabilities of the trained neural network.
As a result, these techniques reduce the labeling cost and
also make the testing process more effective and efficient.

A plethora of test prioritization algorithms have been
recently published, e.g., DeepGini [1],[2], Neurons Pat-
tern [3], TestRank [4], TPFL [5], PRIMA [6], ActGraph [7],
Predictive Mutation [8], and DeepAbstraction [9]. These
algorithms are evaluated by the following metrics:
APFD [10], RAUC [11], and ATRC [4]. These metrics
are widely adopted, however, they suffer from critical
limitations, leading to misleading conclusions.

For instance, the APFD metric is widely used to
evaluate the prioritization algorithms in software test-
ing. More importantly, there are significant differences
between deep learning and software systems, e.g., the
bug nature and the system structure. Since there is no
labeling for test cases in software testing, the APFD
metric neglects the cost of labeling in its formula. This
critical oversight leads to consistently overestimating the
algorithm’s effectiveness in deep learning systems.

In addition, RAUC and ATRC metrics mainly evaluate
the algorithms on the fault detection rate, not the fault
detection ratio. In other words, algorithms prioritizing
quickly a few error-revealing instances are more effec-
tive than the ones prioritizing numerous error-revealing
instances slowly. These metrics also neglect the prioriti-
zation difficulty, which varies during the prioritization.

Thus, we propose a metric called WFDR to solve the
drawbacks of the existing metrics. The WFDR metric
evaluates the algorithms according to both criteria: the
fault detection ratio and rate. Also, WFDR is a weighted
metric, which involves the prioritization difficulty for-
mally represented by the adaptive weights.

In critical safety and security scenarios, algorithms
should prioritize misclassified instances with high pre-
diction probability over all misclassified ones. But the
proceeding metrics handle all prioritized error-revealing
instances similarly, despite the various levels of severity.
Hence, we present a novel metric (SFDR) that evaluates
how effectively the algorithms prioritize high-severity
instances. In the real world, these instances can lead to
devastating outcomes since we often rely on classifica-
tions with high certainty.



In this paper, we summarize our significant contribu-
tions as follows:

• We conduct the first intensive study to investigate
the effectiveness of the existing metrics.

• We develop a novel metric (WFDR) that solves the
limitations of the predecessors.

• We develop a new metric (SFDR) that evaluates
algorithms in the context of severity prioritization.

We structure the paper as follows: Sec. II describes
the limitations of current metrics. Sec. III introduces the
new metrics with equations and examples, and Sec. IV
details the experiments conducted to evaluate the met-
rics and algorithms. The results of these experiments are
discussed in Sec. V, and Sec. VI summarizes the findings
and suggests potential next steps.

The interchangeable use of the terms: misclassified
instances, error-revealing examples, faults, and bugs.

II. PRELIMINARIES

This section introduces an essential background to
understand the existing metrics and explains the draw-
backs of each metric through some scenarios.

A. APFD
The Average Percentage of Faults Detection (APFD)

is a metric that primarily evaluates the performance of
prioritization algorithms in the software testing domain
[10]. We compute the APFD value by the following
equation:

APFD = 1 − ∑m
i=1 TFi

mn
+

1
2n

(1)

where n is the total number of test cases, and m is the
number of faults in the test dataset. TFi is the order of
a test case that exposes the fault(i).

The APFD value ranges between 0 and 1. When the
ATPF value is zero, the algorithm works ineffectively,
i.e., the order of the test cases which expose faults (TPi)
at the end of the test dataset and vice versa. For instance,
if the number of faults is 10 in the 10000-test dataset and
the order of the test cases that expose the faults is the last
ten between 9990 and 10000. The ATPF is almost zero,
which indicates the slow faults detection rate.

Since there is no labeling for test cases in software
testing, the APFD metric completely ignores the labeling
budget. The following example shows how ineffectively
APFD evaluates the algorithm with a predefined budget.

Example 1: Unlabeled test dataset has 1000 test cases
in which 100 error-revealing test cases are prioritized
between 101 and 200. The APFD value is calculated as
follows:

APFD1 = 1 − 101+...+200
100∗1000 + 1

2∗1000 = 0.85

According to the labeling budget (100), we should
label the first 100 test cases which expose faults. Thus,
the correct value of APFD should be zero. Therefore, the
APFD over-evaluates erroneously the performance of the
prioritization algorithm from 0.0 to 0.85.

Fig. 1: RAUC metric evaluates 2 test prioritization algo-
rithms: Practical (1) & Practical (2)

B. RAUC
The Ratio Area Under the Curve (RAUC) is the ratio

between the area under the actual performance curve to
the area under the ideal curve. We compute the RAUC
value by the following formula:

RAUC =
∑m

i=1 Practicali
∑m

i=1 Ideali
∗ 100% (2)

where m is the labeling budget. The RAUC ratio is
between 0% and 100%, where 0% indicates that all error-
revealing test cases are not prioritized within the budget
and vice versa.

The main issue with the RAUC metric is that it
evaluates the prioritization algorithm on how quickly an
algorithm prioritizes the faults, namely, Faults Detection
Rate (FDRE). However, the faults detection rate should
not be the only contributing factor in evaluating the per-
formance. But the metric should also involve how many
erroneous test cases the algorithm prioritizes, namely,
Faults Detection Ratio (FDRO). The following example
shows the importance of the latter factor.

Example 2: A 100-unlabeled test dataset has ten error-
revealing test cases. The labeling budget is 15 test
cases. We have two different algorithms: Practical-1 and
Practical-2. The former algorithm has a high FDRE,
and the latter has a high FDRO. The RAUCS for both
algorithms are as follows:

RAUC1 = 78
105 = 74.29% , RAUC2 = 60

105 = 57.14%

Figure 1 demonstrates that the first algorithm prior-
itizes the first six test cases that expose faults quickly.
On the other hand, the second algorithm starts poorly
prioritizing test cases. But after the 6th test case, all
test cases expose the faults. Hence, the latter algorithm
has a higher FDRO than the former. However, the
RAUC metric incorrectly evaluates the first algorithm as
more effective, with a substantial margin reaching up to
17.15%. Therefore, the evaluation of RAUC is misleading
and should be corrected.
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C. ATRC

The Average Test Relative Coverage (ATRC) is for-
mulated by TestRank[4]. The ATRC metric involves the
labeling budget in the calculation. We compute the ATRC
value by the following formula:

TRC =
#Detected Faults

min(#Labeling Budget, #Total Faults)

ATRC =
1
m

m

∑
i=1

TRCi ∗ 100% (3)

where TRC is the ratio between the number of de-
tected faults to the minimum of the labeling budget and
the total number of faults in the test dataset. The ATRC
is the average of TRC when the labeling budget (m)
is less than or equal to the total number of faults in
the dataset. The ATRC metric is more effective than the
APFD metric since the ATRC evaluates the performance
of an algorithm under a limited budget rather than the
entire dataset. In other words, the ATRC metric is a stress
test within a limited budget. The following example
demonstrates how the ATRC metric behaves over two
datasets: (i) Dataset A has a high FDRE, and (ii) Dataset
B has a high FDRO.

Example 3: A 100-unlabeled test dataset has ten error-
revealing test cases, and the labeling budget is 30. More-
over, two algorithms prioritize the test dataset, which
results in two prioritized datasets, namely A and B.
Dataset A is [1, 1, 1, 1, 1, 1, 0, 0, 0, 0], and dataset B
is [1, 0, 0, 1, 1, 1, 1, 1, 1, 1] where one represents faults,
and zero represents non-faults. We compute the ATRC
for both datasets as follows:

ATRC1 = 1
10 ∗

[
1
1 + 2

2 + ... + 6
7 + 6

8 + 6
9 + 6

10

]
= 88.74%

ATRC2 = 1
10 ∗

[
1
1 + 1

2 + 1
3 + 2

4 + 3
5 + ... + 8

10

]
= 66.42%

We should calculate the ATRC value when the labeling
budget is less than or equal to the number of faults
(10). We can see that the ATRC metric suffers from the
same problem as the RAUC metric. More specifically, the
ATRC metric evaluates algorithms only on FDRE, not
FDRO. Thus, the ATRC metric evaluates the first and
second algorithms with 88.74%, and 66.42%, respectively.
We can also observe clearly how the ATRC metric falsely
over-evaluates the first algorithm over the second algo-
rithm, with a significant difference up to 22.32%. Thus,
the current metrics are inadequate, and new metrics
should be developed.

III. APPROACH

In this section, we introduce the idea of the misclassi-
fication ratio with multiple examples. Then, we propose
our two new metrics with the corresponding properties.

A. Misclassification ratio

The misclassification ratio is the ratio between the num-
ber of misclassified instances and the size of the test
dataset, ranging from 0 to 1. A low ratio indicates that
there are relatively few misclassified instances compared
to the overall size of the dataset, making it difficult
for the algorithm to prioritize these few instances and
vice versa. As a result, the difficulty of prioritization is
inversely proportional to the misclassification ratio. As
such, it is unfair to evaluate the algorithm’s prioritization
capability without considering the misclassification ratio.
For instance, a 100-test dataset has 20 misclassified in-
stances. The initial misclassification ratio is 20/100. If the
first prioritized instance is an error-revealing instance,
the misclassification ratio becomes 19/99. If the first 19
instances are misclassified, it is challenging to prioritize
the last misclassified instance among the 81-test dataset.

B. Motivational Example

Example 4: Datasets A and B have 14 and 1000 test
instances, respectively. Each dataset has eight misclas-
sified instances. A particular algorithm prioritizes both
datasets as follows: [1,1,1,1,0,0,0,0]. We find that RAUCA
and RAUCB are 77.22%, and ATRCA and ATRCB are
81.73%.

However, datasets A and B have different misclassi-
fication ratios, each metric evaluates the performance
equally in both datasets. Typically, the algorithm per-
formance in dataset B should be higher than in dataset
A since the prioritization process is more difficult. As
a result, we need to develop an evaluation metric that
considers the misclassification ratio.

C. Weighted Faults Detection Ratio

The process of prioritization typically becomes more
challenging as it progresses. Thus, it is necessary to
assign weights at each step of the process. These weights
should gradually increase with each successful step
and decrease with each unsuccessful one. Accordingly,
the last misclassified instance should have the largest
weight. Therefore, we develop a new metric that in-
volves the prioritization difficulty, called Weighted Fault
Detection Ratio (WFDR).

We compute the WFDR percentage by the following
equation:

f (x) =

{
1 if x is misclassified
0 otherwise

Actual =
m

∑
i=1

f (xi) ∗
[
1 − m−di−1

n−(i−1)

]
︸ ︷︷ ︸

Weights

(4)

Ideal =
m

∑
i=1

n−m
n−i+1 (5)

WFDR = Actual
Ideal ∗ 100% (6)
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where m is the labeling budget, which equals the total
number of faults, and n is the size of the test dataset.
Also, di is the total number of the detected faults within
the labeling budget (i). Under the ideal case, all faults
are detected within the budget (i), hence, all f (xi) = 1.
Initially, no faults are detected, i.e., d0 = 0.

Example 5: We revisit example 3 to evaluate datasets
A and B by WFDR. We have m = 10, and n = 100. The
prioritized datasets are A = [1, 1, 1, 1, 1, 1, 0, 0, 0, 0], and
dataset B =[1, 0, 0, 1, 1, 1, 1, 1, 1, 1]. The WFDR evaluates
both approaches as follows:

ActualA =
[
1 − 10

100

]
+

[
1 − 9

99
]
+

[
1 − 8

98
]
+ ...+

0 ∗
[
1 − 4

93

]
+ 0 ∗

[
1 − 4

92

]
+ 0 ∗

[
1 − 4

91

]
= 5.54

IdealA = 9.433, WFDRA = 58.73%

ActualB = 7.456, IdealB = 9.433, WFDRB = 79.05%

Algorithm performance in dataset A reduces from
88.74% by ATRC and 81.82% by RAUC to 58.73% by
WFDR. Likewise, the performance in dataset B increases
from 69.09% by RAUC and 66.42% by ATRC to 79.05%
by WFDR.

Property 1: WFDR approaches its upper bound limit
(FDRO) when the misclassification ratio is very small.

Example 5 demonstrates that FDROA is 60% and
FDROB is 80%. We see that the WFDR values are close
to the FDRO values in datasets A and B, i.e., 58.78% and
79.05%, respectively. On the other hand, other metrics
inaccurately over-evaluate the algorithm performance
larger than the fault detection ratio. For example, the
ATRC value in dataset A is 88.74% larger than 80%, and
the RAUC value in dataset B is 69.09% larger than 60%.

In addition, we revisit example 3 to study how the
misclassification ratio strongly affects the WFDR per-
centage. Figure 2 shows that the WFDR percentage
approaches the FDRO percentage exponentially as the
test dataset size increases from 14 (the minimum size
of dataset A) to 200 and from 12 (the minimum size
of dataset B) to 200. We conclude that as the dataset
gets larger, the weights increase and the prioritization
difficulty becomes higher accordingly. In other words,
each weight approaches 1 in eq. 4, and the sum of the
weights is roughly the number of detected faults. In the
ideal case, all f (xi) = 1 in eq. 5, thus, the sum of all
weights is roughly the total number of faults in the test
dataset. From eq. 6, we obtain a WFDR value close to
the FDRO, as shown in Fig. 2.

Property 2: If two prioritized datasets have the same
FDRO, the one with a higher FDRE has a greater WFDR.

The property 2 holds when the misclassification ratio
is a large value. When the misclassification ratio is
small, the difference between the WFDR values of the
two datasets diminishes drastically. For instance, if there
are two prioritized datasets: A=[1,1,1,1,1,1,1,0,0,0] and

B=[1,0,0,0,1,1,1,1,1,1] and the total number of faults in
both datasets is constant (10). Figure 3 shows that dataset
A significantly outperforms dataset B under small sizes
of the test dataset, i.e., large misclassification ratios.
The difference between the WFDRs of A & B reduces
exponentially as the size of the test dataset increases.
We justify property 2 by the weights change in the
WFDR equation. The test dataset contains 13 instances:
10 misclassified and 3 incorrectly classified. We compute
the WFDR value for dataset B by the following equation:

ActualB =
[
1 − 10

13

]
+ 0 ∗

[
1 − 9

12
]
+ 0 ∗

[
1 − 9

11
]
+ ...

+
[
1 − 9

9
]
+

[
1 − 8

8
]
+ ... +

[
1 − 4

4

]
= 0.231

IdealB = 4.04, WFDRB = 5.72%
ActualA = 2.19, IdealA = 4.04, WFDRA = 54.21%

Since the algorithm in dataset B prioritizes all correctly
classified instances, the remaining in the 13-test dataset
has to be misclassified instances. Thus, there is no need
for prioritization as the difficulty is zero, i.e., the weights
(shown in blue) are zero. In dataset A, as the algo-
rithm prioritizes the misclassified instances successfully,
weights get larger.
From Fig. 3, we can conclude that when the size of the
test dataset size is:

• small (e.g., between 13 and 40): the misclassification
ratio is large, and the weights are small. Hence, the
WFDR metric evaluates the algorithms according to
the FDRE since both FDROs are the same.

• medium (e.g., 40 and 100): the misclassification ratio
tends to be low, and the weights and the difficulty
get larger. Hence, there is much importance for
FDRO.

• large (more than 100): in both datasets, the mis-
classification ratio is very small, and the difficulty
is very high. Since both datasets have almost the
same weights and difficulty, the WFDR evaluates
the algorithms according to the FDRO rather than
the FDRE.

Fig. 2: The effect of the dataset size on the WFDR under
different FDROs.
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Fig. 3: The effect of the dataset size on the WFDR under
similar FDROs.

D. Severe Faults Detection Rate

The existing algorithms prioritize all misclassified in-
stances equally. In situations where the budget is limited
or when safety and security are critical, it is insufficient
to prioritize all misclassified instances similarly. Thus,
the algorithm should consider the severity when prior-
itizing highly severe instances over other misclassified
ones.

We estimate the severity level by the potential harm
that can occur when the neural network misclassifies a
particular instance. As a result, we quantify the severity
by the prediction probability. For example, instances
with a low-probability prediction of less than 50% are
low-severity instances. Accordingly, we should plan
safety precautions before model deployment to prevent
damaging consequences. Contrarily, instances with a
high prediction probability of more than 80% are con-
sidered highly severe. No proactive actions are taken
since intelligent systems heavily rely on high-probability
predictions.

Figure 4 illustrates some highly-severe examples from
the CIFAR dataset. These instances reveal the main
weaknesses of the trained neural network. As corrective
actions, we should retrain the neural network with the
following: a) boats with mainsail reflection, b) dogs at
different zoom levels, and c) planes in various positions,
not only flying.

In severity prioritization, algorithms should priori-
tize high-severity instances at the top of the list. In
this context, the order among misclassified instances is
more important. For example, prioritizing low-severity
examples at the beginning negatively impacts the per-
formance of the algorithm. The penalty is greater when
the algorithm prioritizes correctly classified ones, which
are completely safe. Therefore, the rate of prioritization
is more important than the ratio.

An ideal list A has all misclassified instances in de-
scending order according to the prediction probability.
An algorithm prioritizes instances in a specific order in
list B. To evaluate list B against A, we develop a new
metric, namely Severe Fault Detection Rate (SFDR). We

(a) label: ship
predicted: airplane
probability: 99.99%

(b) label: dog
predicted: horse

probability: 99.99%

(c) label: airplane
predicted: vehicle

probability: 99.70%

Fig. 4: High severe images in the CIFAR dataset.

compute the SFDR percentage by the following equation:

f (x) =

{
1 if x is correctly classified
0 otherwise

SFDR =
1
m

m

∑
i=1

γ f (xi) ∗
|A[0:i] ∩ B[0:i]|

i
∗ 100% (7)

where γ ranges ]0, 1[, and γ controls the degree of the
penalty. Moreover, the γ value and the penalty degree
are inversely proportional. Thus, we select γ = 0.5
in our evaluations. Furthermore, the SFDR percentage
ranges between 0% and 100% from worst to optimal
performance, respectively. Lastly, the intersection oper-
ator allows for duplicated severe cases because some
misclassified instances have the same severity degree.
More importantly, the SFDR is a top-weighted metric,
i.e., the metric imposes more weight on the top of the
prioritized list. Thus, the cost of incorrect prioritization
decays gradually along with the prioritized list.

We partition equally the degree of severity, i.e., the
prediction probability, into 10 levels between 0% and
100%. For example, misclassified instances with a pre-
diction probability of 90s% should be at the head of the
prioritization list. On the other side, all correctly classi-
fied instances and misclassified instances with prediction
probability between 1% and 10% should be at the tail of
the list. It is worth noting that the prioritization among
all misclassified instances of the same severity level does
not matter, as illustrated by the following examples.

Example 6: An ideal list A = [99, 91, 85, 83, 64, 24], A
contains all misclassified instances in a small test dataset,
and the prioritized list B = [99, 0, 91, 83, 64, 0]. The
labeling budget m = 10 and γ = 0.5. Since the severity
of correctly classified instances is zero, we replace the
prediction probability with zero. Let xi be |A[0:i] ∩ B[0:i]|.

The first step to evaluate the prioritization list by
SFDR metric is to encode the prediction probabilities into
severity levels between 1 and 10, where 10 is the highest
degree of severity (prediction probability between 90%
and 100%) and 1 is the lowest degree of severity. More
particularly, we replace all prediction probabilities with
the corresponding level of severity. Thus, A becomes [10,
10, 9, 9, 7, 3] and B becomes [10,0,10,9,7,0].
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TABLE I: The SFDR metric evaluates the list B.

i A[0:i] B[0:i] xi f (xi) yi

1 [10] [10] 1 0 1.00

2 [10, 10] [10, 0] 1 1 0.25

3 [10, 10, 9] [10, 0, 10] 2 0 0.67

4 [10, 10, 9, 9] [10, 0, 10, 9] 3 0 0.75

5 [10, 10, 9, 9, 7] [10, 0, 10, 9, 7] 4 0 0.80

6 [10, 10, 9, 9, 7, 3] [10, 0, 10, 9, 7, 0] 4 1 0.33

SFDR = 1
m ∑m

i=1 yi ∗ 100% 63.33%

Table I shows the step-by-step computation for the
SFDR percentage. If the prioritized instance is correctly
classified, the f (xi) value is one, and γ is 0.5. Thus, the
SDFR value drastically declines when i is 2, and the
value of yi = γ f (xi) ∗ (xi/i) largely decreases from 1 to
0.25. When i is 3, the intersection between the two lists
allows duplication in the severity degree (10).

Table II demonstrates how the SFDR metric evalu-
ates effectively different prioritization lists against A
= [99, 90, 88, 81, 75, 70, 69, 62]. For example, in list
B, the second incorrect prioritization heavily penalizes
the performance with a significant drop from 100% to
80.09%. Moreover, the performance in C is worse than
in B since the algorithm prioritizes falsely the last four
instances that are non-fault instances. In scenarios D
and E, the first four instances are incorrectly prioritized.
The main difference between the two scenarios is the
type of instances: misclassified instances with lower
severity in scenario D and correctly classified instances
in scenario E. As a result, there is an 18.28% drop in the
SFDR percentage between the two scenarios. Note that
calculations are not included for the sake of brevity, and
only SFDR values are presented.

TABLE II: SFDR evaluates different prioritization lists.

Name List SFDR (%)

B [90, 88, 81, 75, 70, 69, 62, 99] 80.09

C [99, 90, 88, 81, 0, 0, 0, 0] 65.86

D [75, 70, 69, 62, 99, 90, 88, 81] 36.55

E [0, 0, 0, 0, 99, 90, 88, 81] 18.27

IV. EXPERIMENTAL SETUP

The experiments were conducted using a machine
with an Nvidia K80 GPU and 12 GB of RAM, imple-
mented using the PyTorch v1.9.0 framework. Table III
provides a summary of the details of the main experi-
ments. We detail our main setup as follows:

• Datasets: MNIST [12], Fashion-MNIST [13], CI-
FAR10 [14], SVHN [15].

• Pretrained Model: ResNet18 [16], GoogLeNet [17],
ResNet34 [16], ResNet50 [16], ResNet101 [16],
ResNet152 [16], and EfficientNet-B0 [18].

• Prioritization Algorithms: DeepGini, Neurons pat-
tern, and DeepAbstraction.

TABLE III: Details of the datasets and pretrained models.
Exp
ID Dataset Training

Dataset
Test

Dataset
Pretained

Model
Training
Acc. (%)

Test
Acc. (%)

Exp 1 CIFAR-10 50,000 10,000 Efficient-B0 94.95 92.86

Exp 2 CIFAR-10 50,000 10,000 ResNet101 88.83 86.97

Exp 3 F-MNIST 60000 10000 Efficient-B0 94.94 94.17

Exp 4 F-MNIST 60,000 10,000 ResNet50 93.11 91.12

Exp 5 MNIST 60,000 10,000 ResNet18 99.36 99.16

Exp 6 MNIST 60,000 10,000 ResNet34 99.29 98.84

Exp 7 SVHN 73,257 26,032 GoogLeNet 95.51 95.07

Exp 8 SVHN 73,257 26,032 ResNet152 94.63 94.10

• Research Questions:

❶ (Metrics Effectiveness): How effective are the
existing and proposed metrics in evaluating the
prioritization algorithms?

❷ (Algorithms Effectiveness): How effective are
the existing algorithms evaluated by the WFDR
and SFDR metrics?

❸ (Severity Distribution): What is the distribution
of highly severe instances among the widely
used benchmarks?

V. EXPERIMENTAL EVALUATION

This section addresses the research questions outlined
in Sec. IV. The results are in the repository, which will
be publicly available upon the paper’s acceptance.

A. RQ1: Metrics Effectiveness

Figure 5 shows that the APFD metric overestimates
the performance of all algorithms. For example, the
APFD values for all experiments involving the DeepGini
algorithm are between 94.14% and 99.64%. The APFD
values are significantly larger than the other metrics
(RAUC, ATRC) with differences up to 74%. Additionally,
a comparison of APFD and ARTC was conducted to
understand the impact of the labeling budget and found
that APFD values are greater than ARTC values with
significant differences, reaching up to 47.19%, 82.91%,
and 27.26% for each algorithm (a,b, and c). Since APFD
does not consider the misclassification ratio, it incor-
rectly exceeds the evaluation of WFDR by a considerable
margin of more than 70%.

RAUC and ARTC are not weighted metrics. Thus, they
overestimate the performance, which exceeds the FDRO.
For example, when comparing the evaluations of RAUC
and WFDR for the DeepAbstraction algorithm among
all experiments, the difference reaches 13.89%. Similarly,
the difference between the evaluations of ATRC and
WFDR reaches 20.04%, as shown in Fig.5. Furthermore,
RAUC and ARTC values among all experiments exceed
the FDRO shown in Table IV. On the other hand, all
values of the WFDR metric are either below or close to
FDRO. For instance, in Exp 8, the FDRO of the DeepGini
algorithm is 47.33%, while the RAUC, ARTC, and WFDR
values are 53.05%, 57.08%, and 46.55%, respectively.
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Fig. 5: Evaluations of the different test prioritization metrics on various experiments.

TABLE IV: Fault detection ratio for several algorithms.

Fault Detection Ratio (%)Exp
ID No. Bugs

DeepGini Neurons Pattern DeepAbstraction

Exp 1 714 46.22 26.61 60.22

EXP 2 1303 50.50 31.70 58.17

Exp 3 583 45.63 23.84 59.86

Exp 4 888 47.75 21.85 56.42

Exp 5 84 51.19 17.86 65.48

Exp 6 116 45.69 14.66 60.34

Exp 7 1284 45.64 35.44 65.81

Exp 8 1538 47.33 37.06 64.50

TABLE V: Fault Detection Ratio (%) for different algo-
rithms according to the severity levels.

FDRO of Severe Bugs FDRO of Moderate BugsExp
ID No.

Bugs
Deep
Gini

Pattern
Algor.

Deep
Abst.

No.
Bugs

Deep
Gini

Pattern
Algor.

Deep
Abst.

1 315 0.00 13.65 47.62 312 77.88 31.73 55.45

2 325 0.00 10.15 40.00 656 51.22 29.42 45.58

3 233 0.00 13.30 54.51 285 70.53 23.86 50.53

4 262 0.00 11.07 72.52 504 59.92 19.44 44.44

5 36 0.00 5.56 69.44 38 86.84 15.79 18.42

6 49 0.00 10.20 63.27 50 72.00 12.00 44.00

7 409 0.00 3.91 74.82 534 45.88 33.90 41.01

8 331 0.00 3.02 78.55 662 29.76 27.04 36.71

Lastly, Fig. 5 shows that SFDR evaluates the DeepGini
algorithm as better than the neurons pattern algorithm.
Table V shows the FDRO of two levels of severity:
high level in which the prediction probability is greater
than or equal to 80%, and moderate level in which the
probability is between 50% and 80%. For instance, in
Exp 5, 84 misclassified instances have different levels
of severity: 36-high, 38-moderate, and 10-low. DeepGini
prioritizes 0-high, and 33-moderate severity instances,
while the neurons pattern algorithm prioritizes 2-high
and 6-moderate severity instances. Hence, the SFDR
values for DeepGini and neurons pattern algorithms are
8.3%, and 2.7%, respectively.

We can also observe that DeepAbstraction outper-
forms DeepGini, as the former algorithm prioritizes 25
highly severe instances, while the latter fails to prioritize
any such instances. Nonetheless, DeepGini and DeepAb-
straction prioritize 86.84%, and 18.42% of the moderately
severe examples, respectively. As a result, the SFDR
metric evaluates DeepAbstraction with (21.28%) as better
than DeepGini with (8.05%). To sum up, the SFDR metric
evaluation is consistent with the results in Table V.

RQ 1 Answer :

The existing metrics are ineffective and also over-
evaluate the performance more than the FDRO. On
the other hand, the experiments show the validity
of WFDR and SFDR evaluations.

B. RQ2: Algorithms Effectiveness
The answer to RQ1 confirms that the proposed metrics

effectively evaluate the performance of algorithms.
The evaluation of the WFDR metric shows that Deep-

abstraction performs significantly better than other al-
gorithms in all experiments, as demonstrated in Fig. 6.
For example, Deepabstraction outperforms DeepGini by
a significant margin (up to 20.23%) as shown in Fig. 6.
Since the WFDR metric relies heavily on the FDRO, the
WFDR metric indicates that DeepGini performs better
than the neurons pattern algorithm, which is consistent
with the FDRO values in Table IV.

Figure 6 illustrates that all algorithms perform poorly
in prioritizing highly-severe instances, with SFDR values
at most 30%. However, DeepAbstraction performs signif-
icantly better than other algorithms (DeepGini, Neurons
Pattern), with margins of 23.8% and 27.7%, respectively.

The Gini score is inversely proportional to the cer-
tainty of the model, which is estimated by the predic-
tion probability. DeepGini prioritizes high Gini instances
with low certainty. i.e., low probability prediction. In
other orders, low Gini instances with high prediction
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Fig. 6: WFDR & SFDR evaluate different algorithms.

probability (high severity) are at the bottom of the
priority list, resulting in poor performance in the severity
prioritization. Table V confirms this by showing that
DeepGini does not prioritize any highly severe instances
with prediction probability greater than 80%. But Deep-
Gini prioritizes many moderate-severity instances.

The neurons pattern algorithm heavily relies on the
Familiarity score (FD+) to measure the conformance de-
gree between the established pattern during the training
and the test instance. High-severity instances have a
deceptive similarity to the established pattern and thus
have a high FD+ score, resulting to be at the bottom of
the prioritization list.

Lastly, DeepAbstraction uses monitors to prioritize all
rejected test instances at the beginning of the list. How-
ever, using the Gini score to prioritize these instances
degrades the performance of DeepAbstraction as shown
in Fig. 6. Table V confirms the good performance of
DeepAbstraction by detecting many high and moderate-
severity instances. Since the rate matters more than the
ratio in the severity prioritization, the performance of
DeepAbstraction cannot exceed 30%.

RQ 2 Answer :

The performance of all studied algorithms needs to
be improved, with poor WFDR of less than 70%
and SFDR values of no more than 30.5%. However,
DeepAbstraction algorithm shows significant im-
provement compared to the others in both measures.

C. RQ3: Severity Distribution
We investigate the significance of severity prioritiza-

tion. In this regard, we evaluate the ratio of high-severity
instances in relation to the overall count of misclassified

Fig. 7: The distribution of different levels of severity.

instances. Figure 7 provides a visual representation of
this distribution, showing that high-severity instances
are the most prevalent among the five experiments.

Moreover, the data shows that a considerable per-
centage, over 20% in fact, of instances in every bench-
mark, are of high severity. These figures underscore the
prevalence of high-severity instances in our datasets,
thus highlighting the depth of the problem. As a result,
there is a pressing need to develop new algorithms that
prioritize only highly-severe instances at the top of the
priority list.

RQ3 Answer :

Many instances in all benchmarks are highly severe,
highlighting the need for new prioritization algo-
rithms that specifically address the severity issue.
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VI. CONCLUSION AND FUTURE WORK

This paper confirms that commonly used metrics
for evaluating prioritization algorithms, such as APFD,
RAUC, and ATRC, are ineffective. For instance, the
APFD metric neglects the labeling cost, leading to over-
evaluating the performance. Also, the RAUC and ATRC
metrics mainly evaluate the algorithms based on FDRE
instead of FDRO. All existing metrics also neglect the
misclassification ratio that represents the difficulty of pri-
oritization. Therefore, we developed the WFDR metric,
which is a weighted metric that assigns weights to each
prioritization step according to the prioritization diffi-
culty. The experiments also reveal that highly severe test
instances make up a large portion of all studied datasets,
highlighting the importance of severity prioritization.
Accordingly, we developed the SFDR metric, which is a
top-weighted metric that evaluates the algorithm more
heavily on the top of the list. Eventually, the empirical
experiments validate the effectiveness of the WFDR and
SFDR metrics and the poor performance of the studied
algorithms.

Future work should aim to develop new prioritiza-
tion algorithms with higher WFDR values. Moreover,
more focus should be on algorithms that prioritize high-
severity instances quickly. Further studies should also
examine the applicability of proposed metrics to evaluate
active learning algorithms. Lastly, more work should
investigate why the neural network misclassifies the
highly severe instances with the aid of any techniques of
explainable AI (XAI) such as LIME [19], DeepLIFT[20],
and SHAP[21].
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