Estimating surface water availability in high mountain rock slopes using a numerical energy balance model

Matan Ben-Asher ${ }^{1}$, Florence Magnin ${ }^{1}$, Sebastian Westermann², Josué Bock ${ }^{1}$,
Emmanuel Malet ${ }^{1}$, Johan Berthet ${ }^{3}$, Ludovic Ravanel ${ }^{1}$, Philip Deline ${ }^{1}$.
${ }^{1}$ EDYTEM lab., Université Savoie Mont Blanc, CNRS, Le Bourget-du-Lac, 73376, France.
${ }^{2}$ Department of Geosciences, University of Oslo, Oslo, Norway.
${ }^{3}$ Styx 4D, Le Bourget du Lac, France.

Water in steep high mountains

L. Ravanel

Mechanical + thermal effect

Krautblatter et al., 2013

Rockfall car on the Trident du Tacul rock fall (Mont Blanc), $26^{\text {th }}$ September 2018.

'Natural laboratory' - Aiguille du Midi (3842 m), Mont Blanc massif

Numerical model setup (CryoGrid)

$4 \times 10 \mathrm{~m}$ deep boreholes installed in 2009
Time lapse camera
Snow accumulation measurements poles
Surface temperature: i-buttons
3D high resolution surveys using a drone

Results - snow accumulation

Slope angle
Snow accumulation decreases from 80 cm to 0 cm between slope angles $40^{\circ}-70^{\circ}$

snow accumulation factor
Only $\sim 25 \%$ of the snowfall accumulates in our study site (slope angle $45^{\circ}-55^{\circ}$)

Model results - Annual water balance

High sublimation rate

Sublimation
\square Net snowmelt
\square Direct rainfall
Effective snowmelt

Model results - Annual water balance

High annual variability of water availability

\square
Sublimation
\square Net snowmelt
\square Direct rainfall
Effective snowmelt

Ice crust at snowpack - rock interface

Results - Water availability during the year

Model results - Changing elevation

Results - Changing elevation

Rockfalls in the Mont Blanc massif 2007-2021
(courtesy of L. Ravanel)

Results - Surface temperatures

Go see poster \#B39 for more - tomorrow

Vallon d'Etache rock fall, June 2020

Aspect $320^{\circ}-3115 \mathrm{~m}$ a.s.I - Slope 45°

Summary

* Our results provide new information about water balance at the surface of steep alpine rock slopes.
* The combined application of the S2M-SAFRAN dataset with the CryoGrid and CROCUS models is a powerful tool to study cryogenic and hydrologic processes in high alpine landscapes.
* Sublimation is systematically the main process of snow mass loss in our study site.
* Snowmelt occurs between late spring and late summer, and most of it may not reach the rock surface directly due to a formation of an impermeable ice layer at the base of the snowpack.
* The annual effective snowmelt that is available for infiltration is highly variable and ranges between 0.05 and 0.28 m in our study site.
* Snowmelt is the main source of water for infiltration at elevation $>3600 \mathrm{~m}$ a.s.l.
* Below 3600 m , direct rainfall is becoming more dominant, and sublimation reduce. water availability increases rapidly - making this transition elevation highly sensitive to climate change, as snowmeltdominated permafrost-affected slopes experience an abrupt increase in water input

All models are wrong but some are useful

Field experiment - real-time monitoring of snowmelt using fluorescent dyes

Figure 3 - Comparison of near surface \mathbf{T} data from model and borehole measurements

A) Comparison of modelled near-surface T (orange) at depth 0.3 m , with borehole measurement from the SE face study site (blue).
B) Correlating modelled near-surface T with borehole measurements on the SE face after calibration of snow fraction factor (0.25) and maximum snow depth $(0.8 \mathrm{~m})$.
C) Validating the modelled near surface T at depth 0.14 m , with near-surface T data from a second borehole on the E face of AdM .

Model results - North vs. south

Figure 4 -Comparison of modelled snow

 accumulation with field measurementsA) Comparison of modeled snow depth (black line + light blue area) with snow depth measurement in proximal stations (See Fig. 1 for locations) in the Mont Blanc massif and its area: Aiguilles Rouges (blue) and Refuge du Requin (orange). Measurements were normalized to $0-0.8 \mathrm{~m}$ depth range for comparison.
B) Snow depth pole installed on the SE facing rock slope to monitor snow depth time series with a time lapse camera.
C) Comparing modeled snow depth, under different snow fraction values used in calibration, with measurements made in-situ using snow poles and time lapse camera. Note the optimum results with snow fraction value of 0.25 (25% accumulation).

Figure 9 - North vs. south comparison of average monthly distribution of water fluxes at elevations of 2700 - 4800 m a.s.l.

Top - Comparison of average annual water fluxes, at elevations of $2700,3000,3300,3600,3900,4200,4500,4800 \mathrm{~m}$ a.s.l. on north (left) and south (right) facing rock slopes.

Bottom - The ratio between north to south of each water of the water fluxes described above, in each of the modelled elevations. A value of 1 represents equal flux on both aspects and values decreasing toward 0 represent larger ratio between S to N face (for example, a value of 0.5 corresponds to $\times 2$ higher flux on the S face). The bottom right image shows the flux of net water availability at the rock surface, that is available for infiltration (effective snowmelt + direct rain). Note that at elevations $<3000 \mathrm{~m}$ a.s. 1 fluxes are similar on both aspects and the ratio decreases at higher elevations but the water fluxes magnitudes decrease.

Figure 11 - Slope distribution and hypsometric curve
Spatial analysis of a digital elevation model with a resolution 0.2 m cell size and an area of 100 km 2 around the AdM. A) Average slope at elevation bins on 300 m between 1200-4800 m a.s.l. Analysis was made on pixel with slope angle $>40^{\circ}$ which was shown to be the threshold value for the slope influence on snow accumulation. B) Elevation distribution in the Mont Blanc massif.

Figure S1 - Ice crust

Field photos showing ice crust at the bottom of the snowpack exposed during fieldwork at the Aiguille du Midi SE face. Photos were taken on $26^{\text {th }}$ January 2022.

Figure S6 - Example of time-lapse images of a snow depth pole installed on the east face. Pole height is 1 m with black/white scales of 10 cm .

