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ON DOUBLE HÖLDER REGULARITY OF THE HYDRODYNAMIC
PRESSURE IN BOUNDED DOMAINS

LUIGI DE ROSA, MICKAËL LATOCCA, AND GIORGIO STEFANI

Abstract. We prove that the hydrodynamic pressure p associated to the velocity u ∈
Cθ(Ω), θ ∈ (0, 1), of an inviscid incompressible fluid in a bounded and simply connected
domain Ω ⊂ Rd with C2+ boundary satisfies p ∈ Cθ(Ω) for θ ≤ 1

2 and p ∈ C1,2θ−1(Ω) for
θ > 1

2 . This extends the recent result of [4] obtained in the planar case to every dimension
d ≥ 2 and it also doubles the pressure regularity for θ > 1

2 . Differently from [4], we do
not introduce a new boundary condition for the pressure, but instead work with the
natural one. In the boundary-free case of the d-dimensional torus, we show that the
double regularity of the pressure can be actually achieved under the weaker assumption
that the divergence of the velocity is sufficiently regular, thus not necessarily zero.

1. Introduction

Let d ≥ 2 and let Ω ⊂ Rd be a bounded and simply connected domain of class C2. The
time evolution in Ω of an incompressible inviscid fluid is described by the Euler equations

∂tu+ div(u⊗ u) + ∇p = 0 in Ω × (0, T )
div u = 0 in Ω × (0, T )
u · n = 0 on ∂Ω × (0, T )

u(·, 0) = u0 in Ω,

(1.1)

where u : Ω × (0, T ) → Rd and p : Ω × (0, T ) → R are the velocity of the fluid and its
hydrodynamic pressure respectively, n : ∂Ω → Rd the outward unit normal to ∂Ω and
u0 : Ω → Rd is a given divergence free vector field. The boundary condition u(·, t) · n = 0
on ∂Ω is the usual no-flow condition, which prohibits the fluid to escape from the spatial
domain Ω, being it always tangential to the boundary.

1.1. The pressure equation. In this article, we focus on the pressure p. Taking the
divergence of the first equation in (1.1), we get

− ∆p(·, t) = div div(u(·, t) ⊗ u(·, t)) in Ω (1.2)
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for all t ∈ (0, T ). Being interested in the spatial regularity of p, from now on we will fix
a time slice t and consider the vector field u(·, t). Thus, for simplicity, we will drop the
explicit time dependence and we will just write u = u(x). In particular, our results can
be applied for every fixed t-time slice.

In a bounded domain Ω, we clearly need to complement the (interior) elliptic equa-
tion (1.2) with an appropriate boundary condition, which in the case of tangential bound-
ary condition takes the form

∂np = u⊗ u : ∇n on ∂Ω, (1.3)
where we implicitly assumed the normal n to be extended to a C1 vector field in a
neighborhood of ∂Ω in order to compute its gradient. Note the this makes sense if the
domain is of class C2.

The Neumann-type boundary condition (1.3) can be obtained if we scalar multiply
by n the first equation in (1.1). Indeed, since u is divergence-free and tangential to the
boundary, at least in the case in which the velocity is regular enough, we can compute

∂np = ∇p · n = − div(u⊗ u) · n = −∂i(uiuj)nj = −ui∂i(uj)nj

= −ui∂i(ujnj) + uiuj∂inj = −u · ∇(u · n) + u⊗ u : ∇n
= u⊗ u : ∇n.

(1.4)

Here and in the rest of the paper, we adopt the Einstein summation convention with
repeated indexes. In the last equality in the above chain, we used that ∂Ω is a level set
of the scalar function u · n, and thus ∇(u · n)|∂Ω is parallel to n. Thus, at least in the
regular setting, the pressure p solves −∆p = div div(u⊗ u) in Ω

∂np = u⊗ u : ∇n on ∂Ω.
(1.5)

In order to deal with u ∈ Cθ(Ω), we need to interpret (1.5) in the weak sense, that is,
we consider a scalar function p ∈ C0(Ω) such that

−
∫

Ω
p∆φdx+

∫
∂Ω
p ∂nφdx =

∫
Ω
u⊗ u : Hφdx, for all φ ∈ C2(Ω), (1.6)

where we denoted by Hφ the Hessian matrix of the scalar function φ. Relation (1.6) is
obtained as usual by multiplying the first equation in (1.5) by the test function φ and
then integrating by parts.

At this point one may wonder if the pressure p coming from the Euler equations
solves (1.5) only if the velocity is regular enough, say u(t) ∈ C1(Ω). Indeed the lat-
ter regularity has been crucially used in order to derive the boundary condition in (1.4).
However, it can be easily shown that the weak formulation of the pressure equation (1.6)
can be always derived whenever u ∈ Cθ(Ω), θ ∈ (0, 1). Indeed, if the couple (u, p) weakly
solves (1.1), then∫ T

0

(∫
Ω

(u · ψ η′ + η u⊗ u : ∇ψ + η p divψ) dx− η
∫

∂Ω
pψ · n dx

)
dt = 0

whenever η ∈ C∞
c ((0, T )) and ψ ∈ C1(Ω;Rd). In particular, choosing ψ = ∇φ, we get

that ∫ T

0
η
(∫

Ω
(u⊗ u : Hφ+ p∆φ) dx−

∫
∂Ω
p∂nφdx

)
dt = 0
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for all φ ∈ C2(Ω), so that, for any fixed time slice t ∈ (0, T ), the couple (u(t), p(t)) must
solve (1.6).

1.2. Regularity of the pressure. From the heuristic standard elliptic regularity theory
applied to the Neumann problem (1.5), one is tempted to say that the pressure p has
(at least) the same Hölder regularity of u up to the boundary. However, as noticed
in [4], this regularity property does not directly come from any known elliptic regularity
result. Moreover, it is also known [10, 23] that, if Ω is either the whole space Rd or
the d-dimensional torus Td (i.e., no boundary is involved), then the pressure enjoys the
following regularity properties

p ∈

 C2θ if 0 < θ < 1
2

C1,2θ−1 if 1
2 < θ < 1.

(1.7)

Moreover, as observed in [12], in the critical case θ = 1
2 , the pressure p is log-Lipschitz,

namely
|p(x1) − p(x2)| ≤ C|x1 − x2| | log |x1 − x2||

for all x1, x2 ∈ Ω, with |x1 − x2| < 1
2 . Similar results can be also shown in the classes of

Besov and Sobolev solutions, see [11].
The regularity in (1.7) basically means that p is twice as regular as u. Thus, even in a

bounded domain Ω, by a standard localization argument, one immediately gets that the
pressure still enjoys an interior double regularity property.

On the other hand, in the recent work [4], the authors proved that, in the 2-dimensional
case, the pressure satisfies p ∈ Cθ(Ω), thus providing the θ-Hölder regularity of the
pressure up to the boundary.

1.3. Main results. The aim of this work is to extend the boundary regularity of the
pressure to every dimension d ≥ 2. Moreover, in the case θ > 1

2 , we improve the boundary
regularity to the 2θ-Hölder regularity known for domains without boundary. Note that,
when θ > 1

2 , in order to hope for a regularity property p ∈ C1,2θ−1(Ω), we are forced to
require that ∂Ω is of class C2,2θ−1. In particular, this implies that ∇n ∈ C2θ−1, so that
also the Neumann boundary data satisfies

u⊗ u : ∇n ∈ Cmin{θ,2θ−1} = C2θ−1.

In a bounded domain with a C2 boundary this would clearly not be possible in general,
since in this case the Neumann boundary condition u⊗ u : ∇n ∈ C0 is inconsistent with
the fact that p has Hölder continuous first derivatives up to the boundary.

Our main result reads as follows.

Theorem 1.1 (Regularity of the pressure). Let d ≥ 2 and let Ω ⊂ Rd be a bounded simply
connected open set with boundary of class C2,α, for some α > 0. Let θ ∈ (0, 1) and let
u ∈ Cθ(Ω) be a weakly divergence-free vector field such that u·n|∂Ω = 0. Then, there exists
a unique zero-average solution p ∈ C0(Ω) of (1.6) with the following regularity properties.

(i) If θ ∈
(
0, 1

2

]
, then p ∈ Cθ(Ω) and there exists a constant C > 0 such that

∥p∥Cθ(Ω) ≤ C∥u∥C0(Ω)∥u∥Cθ(Ω).
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(ii) If θ ∈
(

1
2 , 1

)
, then p ∈ C1,min(α,2θ−1)(Ω) and there exists a constant C > 0 such that

∥p∥C1,min{α,2θ−1}(Ω) ≤ C∥u∥2
Cθ(Ω).

In particular, if Ω is of class C2θ−1, then p ∈ C1,2θ−1(Ω).

The stability estimate in (i) clearly indicates that only one of the two vectors u in the
right-hand side is used to transfer the Cθ regularity to p. In fact, we expect that the other
vector could be exploited in a better way in order to double the regularity of the pressure.

The assumption on the C2,α smoothness of ∂Ω for some (arbitrary small) α > 0 is just
technical. Indeed, this regularity is only needed to provide a suitable approximation for
the vector field u and to prove the asymptotic estimates for the Green–Neumann function,
see Lemma 2.1 and Theorem B.1 below. We believe that this assumption might not be
sharp, since the C2 smoothness of the boundary of the domain (at least heuristically)
seems to be sufficient for proving (i).

Actually, as noticed in [4] in the planar case d = 2, the approximation of the velocity
field can be performed in a C2 domain by using the stream function of u, which plays
the role of a potential. In the case d > 2, we do not know how to provide an appropriate
corresponding d-dimensional version of the stream-function approach. We refer the reader
to Section 2.3 below for a precise discussion about the issue of the boundary regularity of
the domain together with a possible strategy to solve it.

The approach used in [4] is based on a suitable geodesic parametrization of the boundary
(together with the aforementioned regularization of u) which, in turn, strongly relies on
the 2-dimensional structure.

Our approach is different and follows the main idea of [10]. Indeed, we rewrite p as a
singular integral operator applied to a suitable data of the form (u− a) ⊗ u, where a is a
d-dimensional vector needed to desingularize the kernel. More precisely, we can state the
following result.

Proposition 1.2 (Representation formula). Let d ≥ 2 and let Ω ⊂ Rd be a bounded
simply connected open set of class C2. Let u ∈ C∞(Ω) ∩C1(Ω) be such that div u = 0 and
u · n|∂Ω = 0. If p is a weak solution of (1.5), then

p(x) − 1
|Ω|

∫
Ω
p(y) dy =

∫
Ω
∂yiyj

G(x, y) (ui(y) − ui(x))uj(y) dy (1.8)

for all x ∈ Ω, where G = G(x, y) is the Green–Neumann function on Ω.

Note that the right-hand side of (1.8) makes sense since the singularity of the kernel
y 7→ ∂yiyj

G(x, y) at y = x can be resolved by the term ui(y) − ui(x).
We also remark that looking at weak solutions in the sense of (1.6) plays a crucial

role in our approach, since in this way there is no need to introduce any other boundary
condition apart from the natural one as in (1.5). This is in fact different from what
happens in [4], where the authors need to define and deal with a specific notion of trace
of the normal derivative of the pressure ∂np at the boundary of Ω.

We apply Proposition 1.2 to the regular approximation of u ∈ Cθ(Ω) given by the
approximation Lemma 2.1. We then show that the corresponding Hölder norm of p is
uniformly bounded by the norm of u, thus getting the regularity estimates claimed in
Theorem 1.1 for the solution p of (1.6).
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Last but not least, we show that the quadratic desigularisation of the kernel allowing
for the double regularity result (1.7) on the d-dimensional torus Td holds even if div u ̸= 0,
provided that div u is suitably regular. In more precise terms, we can prove the following
result.

Theorem 1.3 (Double regularity on Td for general div u). Let θ ∈ (0, 1) and u ∈ Cθ(Td).
The unique zero-average solution p ∈ Cθ(Td) of the problem

− ∆p = div div(u⊗ u) in Td (1.9)
enjoys the following regularity properties.

(i) If θ ∈
(
0, 1

2

)
and div u ∈ Lq(Td) for some q ∈

[
2d

1−2θ
,+∞

]
, then p ∈ C2θ(Td) and

there exists a constant C > 0 such that
∥p∥C2θ(Td) ≤ C

(
∥u∥2

Cθ(Td) + ∥ div u∥2
Lq(Td)

)
.

(ii) If θ ∈
(

1
2 , 1

)
and div u ∈ C2θ−1(Td), then p ∈ C1,2θ−1(Td) and there exists a constant

C > 0 such that
∥p∥C1,2θ−1(Td) ≤ C

(
∥u∥2

Cθ(Td) + ∥ div u∥2
C2θ−1(Td)

)
.

1.4. Hölder solutions and turbulence. Hölder-continuous weak solutions to the Euler
equations have attracted a lot of interest in the last decades, mainly because of their
natural connection with the K41 Theory of Turbulence [26] and the related Onsager’s
conjecture on anomalous energy dissipation. Indeed, in 1949, the theoretical physicist
Onsager [29], while considering solutions u ∈ L∞([0, T ];Cθ(Td)), conjectured that θ = 1

3
may be the threshold for the existence of inviscid fluid flows exhibiting an anomalous
dissipation of the kinetic energy. He in fact claimed—and actually even mathematically
motivated—that kinetic energy dissipation would only happen in the range θ < 1

3 , while
for θ > 1

3 the existence of such badly behaved solutions would not be possible due to some
intrinsic rigidity properties of the equations.

Energy conservation for θ > 1
3 was rigorously proved in [13], after the earlier first

attempt [20], in the even more general class of Besov solutions. We also refer to [9] for
sharper criteria and a deeper discussion about the topic. On the other side, building upon
the convex integration techniques introduced in the context of incompressible fluids by De
Lellis and Székelyhidi, the existence of dissipative Hölder continuous weak solutions was
finally shown. We refer to [8,16,17,24] and to the references therein for the most updated
available results on Hölder continuous dissipative weak solutions.

Everything that has been discussed above is known to be true in the absence of bound-
aries. If a physical boundary is present, then the mathematical (and also physical) descrip-
tion of turbulence becomes much more intricate, due to the non-trivial effects made by
the boundary itself. For a detailed physical description of the importance of the boundary
effect in modeling turbulent flows, we refer the reader to the monograph [21].

The lack of a manageable description of turbulence in the presence of a boundary is the
main motivation of the current research on conditions prohibiting anomalous dissipation,
see [3, 5, 30,31].

The energy conservation analogous to [13] in the case of a bounded domain was proved
in [3], where the Hölder regularity of the pressure plays a crucial role, see [3, Proposi-
tion 2.1] for instance. However, such a regularity does not easily come as a consequence
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of the usual Schauder boundary regularity theory for elliptic PDEs. For this reason,
we believe that this article gives a solid proof of the pressure regularity which, to our
knowledge, is not otherwise precisely traceable in the current mathematical literature.

1.5. Organization of the paper. The paper is organized as follows. In Section 2, we
prove an approximation result for the velocity, see Lemma 2.1. Section 3 is dedicated to
the proof of the representation formula given in Proposition 1.2. The proof of our main
result Theorem 1.1 can be found in Section 4. We then end the paper with two appendices.
In Appendix A, we collect all the technical results we need on Schauder regularity theory.
In Appendix B, we provide a proof of some estimates on the Green–Neumann function.

2. Approximation of the velocity and reduction to the regular case

2.1. Hölder norms. We begin with the definition of the norms we are going to use
throughout the paper. In the following, we let N0 = N∪{0}, k ∈ N0, θ ∈ (0, 1) and β ∈ Nk

0
be a multi-index. Let Ω ⊂ Rd and let f : Ω → Rm for m ∈ N. We introduce the usual
Hölder norms as follows. The supremum norm is denoted by ∥f∥C0(Ω) = supx∈Ω |f(x)|.
We define the Hölder seminorms as

[f ]Ck(Ω) = max
|β|=k

∥Dβf∥C0(Ω) ,

[f ]Ck,θ(Ω) = max
|β|=k

sup
x,y∈Ω, x ̸=y

|Dβf(x) −Dβf(y)|
|x− y|θ

.

The Hölder norms are then given by

∥f∥Ck(Ω) =
k∑

j=0
[f ]Cj(Ω),

∥f∥Ck,θ(Ω) = ∥f∥Ck(Ω) + [f ]Ck,θ(Ω).

In order to shorten the notation, for k = 0 we simply write Cθ(Ω) instead of C0,θ(Ω).

2.2. Approximation of the velocity. Now we provide the regular approximation of
the velocity u that remains divergence-free and tangential to the boundary. These two
constraints are both important in order to get the representation formula (1.8).
Lemma 2.1 (Approximation of the velocity). Let d ≥ 2 and let Ω ⊂ Rd be a bounded and
simply connected domain of class C2,α for some α > 0. Let θ ∈ (0, 1) and let u ∈ Cθ(Ω) be
such that div u = 0 and u ·n|∂Ω = 0. Then, there exists a family (uε)ε>0 ⊂ C∞(Ω)∩C1(Ω)
such that uε → u in C0(Ω) as ε → 0+, div uε = 0 and uε · n|∂Ω = 0 for all ε > 0, and

sup
ε>0

∥uε∥Cθ(Ω) ≤ C∥u∥Cθ(Ω)

for some constant C > 0.
In the proof of Lemma 2.1, we exploit the following extension result for Hölder contin-

uous solenoidal vector fields, see [25, Section 5].
Lemma 2.2 (Extension lemma). Let Ω be a bounded and simply connected domain of
class C2 and let θ ∈ (0, 1). If u ∈ Cθ(Ω) is such that div u = 0, then there exists
ũ ∈ Cθ(Rd) with compact support such that ũ|Ω = u, div ũ = 0 in Rd, and

∥ũ∥Cθ(Rd) ≤ C∥u∥Cθ(Ω)
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for some constant C > 0.

Proof of Lemma 2.1. Let ũ be the extension given by Lemma 2.2 and consider the molli-
fication ũε := ũ ∗ ρε for some approximation of the unity (ρε)ε>0. Notice that ũε does not
satisfy the required boundary condition in general. Hence, we modify it by considering
the solution φε (unique up to constants) of the system{

∆φε = 0 in Ω
∂nφ

ε = ũε · n on ∂Ω.
Notice that, since div ũε = 0, the compatibility condition

0 =
∫

∂Ω
ũε · n =

∫
Ω

div ũε

is satisfied, and thus the previous boundary value problem admits a solution.
Since Ω is of class C2,α, we have n ∈ C1,α and thus, by Schauder boundary regular-

ity theory (see [28]) we get φε ∈ C∞(Ω) ∩ C2,α(Ω) ⊂ C∞(Ω) ∩ C2(Ω). Moreover, by
Theorem A.2, we also get

∥∇φε∥Cθ(Ω) ≤ C∥ũε · n∥Cθ(∂Ω) ≤ C∥ũε∥Cθ(Rd) ≤ C∥ũ∥Cθ(Rd) ≤ C∥u∥Cθ(Ω), (2.1)
where in the last inequality we used the continuity of the extension operator given by
Lemma 2.2.

We now define uε := ũε − ∇φε for all ε > 0. Note that, by definition, uε ∈ C∞(Ω) ∩
C1(Ω), div uε = 0 in Ω and uε · n = 0 on ∂Ω for all ε > 0. It remains to check the
convergence uε → u in C0(Ω) as ε → 0+.

We first note that ũε → ũ in C0(Rd) as ε → 0+, which implies ũε → u in C0(Ω) as
ε → 0+, because ũ|Ω = u. We are thus to show that ∇φε → 0 in C0(Ω) as ε → 0+.
By (2.1), we know that the family (φε)ε>0 is bounded in C1,θ(Ω). Therefore, we can find
a subsequence εk → 0 and a limit function φ ∈ C1,θ(Ω) such that φεk → φ in C1(Ω) as
k → +∞. Finally, since ũε · n → 0 in C0(∂Ω) as ε → 0+, the limit function φ solves{

∆φ = 0 in Ω
∂nφ = 0 on ∂Ω.

As a consequence, φmust be a constant function on Ω and thus ∇φεk → ∇φ ≡ 0 uniformly
on Ω as k → +∞. From (2.1), we also get the (uniform in ε) continuity estimate

∥uε∥Cθ(Ω) ≤ ∥ũε∥Cθ(Ω) + ∥∇φε∥Cθ(Ω) ≤ C∥u∥Cθ(Ω),

concluding the proof. □

2.3. A possible strategy to get approximation in the C2 case. In the proof of
Lemma 2.1, the regularity ∂Ω ∈ C2,α is only used to deduce that φε ∈ C2(Ω), which in
turn implies that uε ∈ C1(Ω).

It is clear that, in order to get an approximation (uε)ε ⊂ C1(Ω) with the properties
given in Lemma 2.1, one is forced to ensure that ∇φε ∈ C1(Ω) which, in turn, is a
consequence of standard Schauder’s boundary regularity estimate provided that Ω is of
class C2,α for some α > 0, see [22, Theorem 6.30] for instance.

Thus, to prove the same approximation under the weaker assumption that Ω is of
class C2 only, one has to follow a different approach. Below we propose a possible strategy
which we believe could be helpful for further developments in this direction.
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The idea is to write u ∈ Cθ(Ω) in terms of a potential with some precise properties.
Let us assume the existence of a d× d matrix A such that

A ∈ C1,θ(Ω), AT = −A, A|∂Ω = 0, divA = u. (2.2)
Note that the latter condition is clearly compatible with the divergence-free constraint
on u, since div divA = 0 whenever A is skew-symmetric.

In order to regularize A, one may proceed as follows. In the interior of Ω, one can
simply mollify the potential A. At the boundary Ω, one first reduces to the case Ω is the
half-space {x ∈ Rd : xd > 0} through local charts, and then extend the local expression
of A for xd < 0 in an odd-symmetric way. Let us now call such a local extension Ã.
At least in a local chart, one can mollify Ã with a radial smooth convolution kernel,
getting a new potential Ãε. Since Ã was odd with respect to xd = 0 (in each local system
of coordinates), from A|∂Ω = 0 we get Ãε|xd=0 = 0. All in all, via a suitable smooth
partition of the unity subordinated to the local boundary charts and the interior, one can
go back to the original coordinates in Ω and just glue all those local potentials together,
getting a new d× d matrix Aε in (an open neighborhood of) Ω such that

Aε ∈ C2(Ω), (Aε)T = −Aε, Aε|∂Ω = 0, (2.3)
the first property being a consequence of the fact that the domain Ω is of class C2.

At this point, one can define
uε = divAε ∈ C1(Ω)

and we claim that the family (uε)ε>0 provides the desired approximation. By construction,
we clearly have that uε → u in C0(Ω) as ε → 0+ and ∥uε∥Cθ(Ω) ≤ C∥u∥Cθ(Ω) for some
constant C > 0 which does not depend on ε > 0. In addition, from (2.3), one immediately
gets that div uε = 0. Finally, one also gets uε · n = 0 on ∂Ω thanks to the following
straightforward computation

n · divAε = ni ∂jA
ε
ji = niα

ε
jinj = −niα

ε
ijnj = −n · divAε on ∂Ω,

where we used that Aε is skew-symmetric and that ∂Ω is a level set for Aε, so that
∂jA

ε
ji = αε

jinj for some suitable constants αε
ji, being ∇Aε

ij|∂Ω parallel to n for all i, j.
At the present moment, we do not know how to provide a potential A as in (2.2) in a

general d-dimensional domain Ω of class C2. Having in mind the closely related works [6,
7], the existence of such a potential seems quite delicate and this is why we instead decided
to rely on the the simpler argument leading to Lemma 2.1. Nonetheless, in the planar
case d = 2, one can overcome the problem and provide the suitable approximation (uε)ε>0
by simply relying on the well-known stream function Ψ ∈ C1,θ(Ω) vanishing on ∂Ω,
see [4, Lemma 1] for the details.

3. Proof of Proposition 1.2

In this section, we prove Proposition 1.2, that is, we establish the representation for-
mula (1.8). To this aim, let u ∈ C∞(Ω) ∩ C1(Ω) be such that div u = 0 and u · n|∂Ω = 0
and let p be a weak solution of (1.5). We start by rewriting the right-hand side of (1.5)
as

div div(u⊗ u) = ∂ij(uiuj) = ∂jui ∂iuj = ∂j(ui − ui(x)) ∂iuj = ∂ij

(
(ui − ui(x))uj

)
,



ON DOUBLE HÖLDER REGULARITY OF PRESSURE IN BOUNDED DOMAINS 9

where x ∈ Ω is any given point. It is well known (see [32, Theorem 3.39] for instance)
that p can be represented via the formula

p(x) − 1
|Ω|

∫
Ω
p(y) dy =

∫
Ω
G(x, y) ∂ij

(
(ui − ui(x))uj

)
dy +

∫
∂Ω
G(x, y)ui uj ∂jni dσ(y),

(3.1)
where G = G(x, y) is the Green–Neumann function on Ω as defined in Appendix B and
dσ is the surface measure on ∂Ω.

Integrating by parts the first term in the above representation, we get∫
Ω
G(x, y) ∂ij

(
(ui − ui(x))uj(y)

)
dy =

∫
∂Ω
G(x, y) ∂j

(
(ui − ui(x))uj

)
ni dσ(y)

−
∫

Ω
∂yi
G(x, y) ∂j

(
(ui − ui(x))uj

)
dy

=
∫

∂Ω
G(x, y)uj ∂jui ni dσ(y) −

∫
∂Ω
∂yi
G(x, y)

(
(ui − ui(x))uj

)
nj dy

+
∫

Ω
∂yiyj

G(x, y) (ui − ui(x))uj dy

= −
∫

∂Ω
G(x, y)u⊗ u : ∇n dσ(y) +

∫
Ω
∂yiyj

G(x, y) (ui − ui(x))uj dy,

(3.2)

where in the last equality we used that u · n = 0 and ((u · ∇)u) · n = −u⊗ u : ∇n on ∂Ω,
as already done to recover the boundary condition in (1.4). Thus, by combining (3.1)
with (3.2), we obtain

p(x) − 1
|Ω|

∫
Ω
p(y) dy =

∫
Ω
∂yiyj

G(x, y)(ui − ui(x))uj dy

proving the desired representation formula (1.8).

4. Proof of Theorem 1.1

In this section, we prove Theorem 1.1, dealing with the two cases θ ≤ 1
2 and θ > 1

2
separately. We remark that, since in Theorem 1.1 the pressure is assumed to have zero
average, we just need to prove a bound on the seminorm [p]Cθ(Ω). This is in fact a simple
consequence of the Poincare-type inequality

∥f∥C0(Ω) ≤ C[f ]Cθ(Ω)

valid for all f : Ω → R such that
∫

Ω f(x) dx = 0, where C > 0 is a constant depending
on θ and Ω only.

We start by noticing that, for every fixed ε > 0, by the classical theory there exists
a unique zero average solution pε ∈ C1,α(Ω) to (1.5), with right-hand side given by the
approximation uε of Lemma 2.1 in place of u.

In the case θ ≤ 1
2 , as a consequence of the estimates on the Green–Neumann function

established in Appendix B, we show that such pε satisfies the estimate in (i) of Theorem 1.1
uniformly with respect to ε > 0. Therefore, since Cθ(Ω) is compactly embedded in C0(Ω),
up to subsequences as ε → 0+, we get the existence of limit function p still satisfying the
estimate in Theorem 1.1(i) which is also a weak solution of (1.5) in the sense of (1.6).

In the case θ > 1
2 , we notice that the normal derivative of the pressure on the boundary

is a well-defined C2θ−1 function. Thus, we can just extend u to the whole space Rd and



10 L. DE ROSA, M. LATOCCA, AND G. STEFANI

then exploit the double regularity proved in [10, Proposition 3.1] together with some
standard Schauder regularity estimates.

4.1. Case θ ≤ 1
2 . In order to keep the notation short, we write u in place of the approx-

imation uε given by Lemma 2.1, that is, we have u ∈ C1(Ω) ∩C∞(Ω), div u = 0 in Ω and
u · n = 0 on ∂Ω.

Since we assumed that the pressure is average-free, by Proposition 1.2, we can write

p(x) =
∫

Ω
∂yiyj

G(x, y) (ui(y) − ui(x))uj(y) dy

for any given x ∈ Ω. Now let x1, x2 ∈ Ω, x̄ := x1+x2
2 and λ := |x1 − x2|. Since by [10] we

already know that p ∈ Cθ in the interior of Ω, we can just focus on the case in which one
between the two points, say x1 is close to ∂Ω. Without loss of generality, up to possibly
enlarge the constants appearing in the final estimate, we can assume that λ ≤ λ0 for some
λ0 > 0 so small that such that B(x̄, λ0) ∩ ∂Ω is the graph of a C2,α function. In addition,
possibly choosing λ0 > 0 smaller, we can assume that, for all λ ≤ λ0, the intersection
B(x̄, λ) ∩ Ω is a simply connected open set with Lipschitz boundary (so that, in the
following computations, the Divergence Theorem always applies). We start by writing

p(x1) − p(x2) =
∫

Ω
∂yiyj

G(x1, y) (ui(y) − ui(x1))uj(y) dy

−
∫

Ω
∂yiyj

G(x2, y) (ui(y) − ui(x2))uj(y) dy = A+B,

where

A :=
∫

Ω∩B(x̄,λ)
∂yiyj

G(x1, y) (ui(y) − ui(x1))uj(y) dy

−
∫

Ω∩B(x̄,λ)
∂yiyj

G(x2, y) (ui(y) − ui(x2))uj(y) dy

and

B :=
∫

Ω\B(x̄,λ)
∂yiyj

G(x1, y) (ui(y) − ui(x1))uj(y) dy

−
∫

Ω\B(x̄,λ)
∂yiyj

G(x2, y) (ui(y) − ui(x2))uj(y) dy.

We start by estimating the terms in A. We provide the detailed computations for
the case d ⩾ 3, then case d = 2 being similar with minor differences due to the different
expression of the Newtonian potential and, consequently, of the Green–Neumann function.

By using the Green–Neumann function estimates in (B.2), we can bound∣∣∣∣∣
∫

Ω∩B(x̄,λ)
∂yiyj

G(xk, y) (ui(y) − ui(xk))uj(y) dy
∣∣∣∣∣

≲ ∥u∥Cθ(Ω)∥u∥C0(Ω)

∫
Ω∩B(x̄,λ)

dy

|xk − y|d−θ

for k = 1, 2. Since ∫
Ω∩B(x̄,λ)

dy

|xk − y|d−θ
≤
∫

B(xk,2λ)

dy

|xk − y|d−θ
≲ λθ,
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we get
|A| ≲ λθ ∥u∥Cθ(Ω)∥u∥C0(Ω). (4.1)

To handle the terms in B, we write

B =
∫

Ω\B(x̄,λ)

(
∂yiyj

G(x1, y) − ∂yiyj
G(x2, y)

)
(ui(y) − ui(x1))uj(y) dy

+
∫

Ω\B(x̄,λ)
∂yiyj

G(x2, y) (ui(x2) − ui(x1))uj(y) dy

=: B1 +B2.

Since ∣∣∣∂yiyj

(
G(x1, y) −G(x2, y)

)∣∣∣ ≲ |x1 − x2|
|x̄− y|d+1

thanks to (B.3), we can estimate B1 as

|B1| ≲ λ ∥u∥Cθ(Ω)∥u∥C0(Ω)

∫
Ω\B(x̄,λ)

1
|x̄− y|d+1−θ

dy.

Since ∫
Ω\B(x̄,λ)

dy

|x̄− y|d+1−θ
dy ≲ λθ−1,

we conclude that
|B1| ≲ λθ ∥u∥Cθ(Ω)∥u∥C0(Ω). (4.2)

We are thus left to estimate B2. To this aim, we integrate by parts another time
to further desingularize the Green–Neumann kernel (otherwise, we would only obtain a
logarithmic Cθ regularity). By the Divergence Theorem, we can write

B2 = −
∫

Ω\B(x̄,λ)
∂yi
G(x2, y) (ui(x2) − ui(x1)) ∂juj(y) dy

+
∫

∂(Ω\B(x̄,λ))
∂yi
G(x2, y) (ui(x2) − ui(x1))uj(y)nj(y) dσ(y),

where σ stands for the (d − 1)-dimensional Hausdorff measure on the boundary. Now,
since u is divergence-free, the first integral in B2 vanishes. Moreover, we can decompose

∂(Ω \B(x̄, λ)) = (∂Ω \B(x̄, λ)) ∪ (Ω ∩ ∂B(x̄, λ)),
where the two sets on the right-hand side are disjoint. The integral on ∂Ω \ B(x̄, λ)
vanishes because u · n = 0 on ∂Ω. We hence have to estimate

B2 =
∫

Ω∩∂B(x̄,λ)
∂yi
G(x2, y) (ui(x2) − ui(x1))uj(y)nj(y) dσ(y).

By using (B.2), we get

|B2| ≲ λθ ∥u∥Cθ(Ω)∥u∥C0(Ω)

∫
Ω∩∂B(x̄,λ)

dσ(y)
|x2 − y|d−1 .

Since |x2 − y| ≳ λ whenever y ∈ ∂B(x̄, λ), we can bound∫
Ω∩∂B(x̄,λ)

dσ(y)
|x2 − y|d−1 ≲

1
λd−1 σ(∂B(x̄, λ)) ≲ 1,

so that
|B2| ≲ λθ ∥u∥Cθ(Ω)∥u∥C0(Ω). (4.3)
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Gathering (4.1), (4.2) and (4.3) and recalling that λ = |x1 − x2|, we finally obtain that

|p(x1) − p(x2)| ≲ ∥u∥Cθ(Ω)∥u∥C0(Ω) |x1 − x2|θ

as soon as |x1 − x2| ≤ λ0. The proof of Theorem 1.1(i) is thus complete.

4.2. Case θ > 1
2 . Let ũ ∈ Cθ(Rd) be the divergence-free and compactly supported ex-

tension of u given by Lemma 2.2. We let p̃ be the unique potential-theoretic solution
of

−∆p̃ = div div(ũ⊗ ũ) in Rd.

Then, by [10, Proposition 3.1], we get

∥p̃∥C1,2θ−1(Rd) ≤ C∥ũ∥2
Cθ(Rd) ≤ C∥u∥2

Cθ(Ω). (4.4)

In particular, the normal derivative ∂np̃ is of class C2θ−1 on ∂Ω. Now, the function

q := p− p̃+
∫

Ω
p̃ dx

satisfies the compatibility condition
∫

∂Ω ∂nq dσ = 0 by the definition and is thus the unique
(zero-average) solution of{

−∆q = 0 in Ω
∂nq = u⊗ u : ∇n− ∂np̃ on ∂Ω.

Note that the Neumann boundary datum satisfies

u⊗ u : ∇n− ∂np̃ ∈ Cmin{α,2θ−1}(∂Ω),

since u ∈ Cθ(Ω) ⊂ C2θ−1(Ω) and ∇n ∈ Cα(∂Ω), because Ω is of class C2,α. Thus, from
Theorem A.2, we get

∥q∥C1,min{α,2θ−1}(Ω) ≤ C
(
∥u⊗ u∥Cθ(∂Ω) + ∥∂np̃∥C2θ−1(∂Ω)

)
≤ C∥u∥2

Cθ(Ω), (4.5)

where in the last inequality we also used (4.4). Rewriting

p = q + p̃−
∫

Ω
p̃ dx

and exploiting (4.4) and (4.5), we hence get that

∥p∥C1,min{α,2θ−1}(Ω) ≤ ∥q∥C1,min{α,2θ−1}(Ω) + ∥p̃∥C1,2θ−1(Ω) ≤ C∥u∥Cθ(Ω),

concluding the proof of Theorem 1.1(ii).

5. Proof of Theorem 1.3

In this section, we prove Theorem 1.3. To keep the notation short, we set g = div u
and we let f be the unique zero-average solution of the problem

∆f = g in Td.

We hence set v = ∇f . We can now deal with the two cases θ < 1
2 and θ > 1

2 separately.
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5.1. The case θ < 1
2 . Without loss of generality, we can assume that q < +∞. Since

g ∈ Lq(Td), by the standard Calderón–Zygmund theory we have

∥v∥W 1,q(Td) ≤ C∥g∥Lq(Td) (5.1)

which, in combination with the usual Sobolev embedding, being q ≥ 2d
1−2θ

> d
1−θ

, gives

∥v∥Cθ(Td) ≤ C∥v∥W 1,q(Td) ≤ C∥g∥Lq(Td). (5.2)

Now, rewriting

u⊗ u = (u− v) ⊗ (u− v) + (u− v) ⊗ v + v ⊗ (u− v) + v ⊗ v,

we can decompose the pressure as

p = p1 + p2 + p3,

where the pi’s are the unique zero-average solutions of

−∆p1 = div div(w ⊗ w),
−∆p2 = 2 div((w · ∇)v),
−∆p3 = div div(v ⊗ v),

where we set w = u − v. Notice that, by definition of v, we have divw = 0 and, thanks
to (5.2), w ∈ Cθ(Td).

We now estimate the C2θ norm of each pi, i = 1, 2, 3, separately. First, by [10, Theo-
rem 1.1], we have

∥p1∥C2θ(Td) ≤ C∥w∥2
Cθ(Td) ≤ C

(
∥u∥2

Cθ(Td) + ∥v∥2
Cθ(Td)

)
≤ C

(
∥u∥2

Cθ(Td) + ∥g∥2
Lq(Td)

)
(5.3)

thanks to (5.2). Moreover, again by standard Calderón–Zygmund estimates, we can infer

∥p2∥W 1,q(Td) ≤ C∥(w · ∇)v∥Lq(Td) ≤ C∥w∥Cθ(Td)∥v∥W 1,q(Td) ≤ C
(
∥u∥2

Cθ(Td) + ∥g∥2
Lq(Td)

)
which, together with the Sobolev embedding W 1,q(Td) ⊂ C2θ(Td) valid for q ≥ d

1−2θ
, gives

∥p2∥C2θ(Td) ≤ C∥p2∥W 1,q(Td) ≤ C
(
∥u∥2

Cθ(Td) + ∥g∥2
Lq(Td)

)
. (5.4)

Finally, in a similar way, we have

∥p3∥W 1,
q
2 (Td)

≤ C∥v ⊗ v∥
W 1,

q
2 (Td)

≤ C∥v∥2
W 1,q(Td) ≤ C∥g∥2

Lq(Td)

which, again in combination with the Sobolev embedding W 1, q
2 (Td) ⊂ C2θ(Td) valid for

q ≥ 2d
1−2θ

, leads to

∥p3∥C2θ(Td) ≤ C∥p3∥W 1,
q
2 (Td)

≤ C∥g∥2
Lq(Td). (5.5)

Combining (5.3), (5.4) and (5.5) all together, we complete the proof of Theorem 1.3(i).
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5.2. The case θ > 1
2 . By standard Schauder estimates, we infer that

∥v∥C1,2θ−1(Td) ≤ C∥g∥C2θ−1(Td). (5.6)
We now split p = p1 + p2 + p3 exactly as in the previous case and estimate the Hölder
norm of each piece separately. First, by [10, Theorem 1.1], together with (5.6), we can
bound

∥p1∥C1,2θ−1(Td) ≤ C
(
∥u∥2

Cθ(Td) + ∥v∥2
Cθ(Td)

)
≤ C

(
∥u∥2

Cθ(Td) + ∥g∥2
C2θ−1(Td)

)
.

Moreover, again by standard Schauder estimates, we have
∥p2∥C1,2θ−1(Td) ≤ C∥(w · ∇)v∥C2θ−1(Td) ≤ C∥w∥C2θ−1(Td)∥v∥C1,2θ−1(Td)

≤ C
(
∥u∥2

Cθ(Td) + ∥g∥2
C2θ−1(Td)

)
,

where the last inequality follows from the embedding Cθ(Td) ⊂ C2θ−1(Td). Finally, once
again by Schauder estimates, we can write

∥p3∥C1,2θ−1(Td) ≤ C∥v∥2
C1,2θ−1(Td) ≤ C∥g∥2

C2θ−1(Td).

The validity of Theorem 1.3(ii) then follows by combining the above estimates and the
proof is complete.

Appendix A. Schauder regularity estimates

A.1. Elliptic regularity estimates. For the reader’s convenience, below we state some
well-known elliptic regularity estimates that are used throughout the paper.

We start with the following local regularity estimates. For the proofs, we refer the
reader to [22, Theorem 4.15 and Theorem 6.26].

Theorem A.1 (Local estimates). Let α ∈ (0, 1), f ∈ Cα(B(0, 2)) and g ∈ C1,α(Γ(0, 2)),
where

Γ(0, 2) = ∂B+(0, 2) ∩ {xd = 0}, B+(0, 2) = B(0, 2) ∩ {xd > 0}.
(i) If ∆u = f in B(0, 2), then

∥u∥C2,α(B(0,1)) ≤ Cd

(
∥u∥L∞(B(0,2)) + ∥f∥Cα(B(0,2))

)
, (A.1)

where Cd > 0 is a dimensional constant.
(ii) Let A ∈ C1,α(B(0, 2);Rd×d) be a uniformly elliptic matrix with

Aξ · ξ ≥ ν|ξ|2 ξ ∈ Rd, ν > 0,
and let b ∈ C1,α(Γ(0, 2);Rd) be such that b(x) · ed ̸= 0 for all x ∈ Γ(0, 2). If
u ∈ C2,α(B(0, 2) ∪ Γ(0, 2)) is a solution of{

div(A∇u) = f in B+(0, 2)
b · ∇u = g on Γ(0, 2),

then

[u]C2,α(B+(0,1)) ≤ C
(
∥u∥L∞(B+(0,2)) + ∥f∥Cα(B+(0,2)) + ∥g∥C1,α(Γ(0,2))

)
, (A.2)

where the constant C > 0 depends on ν > 0 and the C1,α norms of A and b only.
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The following result can be seen as a ‘one-derivative-less’ counterpart of the Schauder
estimates for the Poisson problem with Neumann boundary condition established in [28].
We also refer the reader to [27, Section 4] for more general results in this direction.

Theorem A.2 (Global estimates with Neumann boundary condition). Let α ∈ (0, 1) and
let Ω ⊂ Rd be a bounded simply connected open set of class C1,α. Let g ∈ Cα(∂Ω) be such
that ∫

∂Ω
g dσ(x) = 0.

There exists a solution u ∈ C1,α(Ω) (unique up to an additive constant) of the problem{
−∆u = 0 in Ω
∂nu = g on ∂Ω.

Moreover, every solution of this problem verifies the estimate∥∥∥∥∥u− 1
|Ω|

∫
Ω
u dx

∥∥∥∥∥
C1,α(Ω)

≤ C(d, α,Ω) ∥g∥Cα(∂Ω).

Proof. From [1, Theorem 7.3] we get a solution u ∈ C1,α(Ω) such that

∥u∥C1,α(Ω) ≤ C
(
∥g∥Cα(∂Ω) + ∥u∥C0(Ω)

)
.

Removing the ∥u∥C0(Ω) from the right-hand side of the previous estimate is a standard
contradiction argument, see for instance [28, First proof of Theorem 4.1]. □

We also recall some local Calderón–Zygmund type estimates for Neumann elliptic prob-
lems.

Theorem A.3 (Local Lp regularity estimates). Let p ∈ (1,+∞), ρ ∈ (1, 2] and f ∈
Lp(B(0, 2)).

(i) If −∆u = f in B(0, 2) then

∥u∥W 2,p(B(0,1)) ≤ C(d, ρ)
(
∥u∥Lp(B(0,ρ)) + ∥f∥Lp(B(0,ρ))

)
. (A.3)

(ii) Let A ∈ C1,α(B(0, 2);Rd×d) be a uniformly elliptic matrix with
Aξ · ξ ≥ ν|ξ|2 ξ ∈ Rd, ν > 0,

and let b ∈ C1,α(Γ(0, 2);Rd) be such that b(x) · ed ̸= 0 for all x ∈ Γ(0, 2). Let
g ∈ W 1− 1

p
,p(Γ(0, 2)). If u ∈ W 2,p(B(0, 2)) is a solution of{

div(A∇u) = f in B+(0, 2)
b · ∇u = g on Γ(0, 2),

then

∥u∥W 2,p(B(0,1)) ≤ C(d, ρ, ν)
(

∥u∥Lp(B(0,ρ)) + ∥f∥Lp(B(0,1)) + ∥g∥
W

1− 1
p ,p(Γ(0,ρ))

)
. (A.4)

Proof. For the proof of (i), we refer to [22, Theorem 9.11]. To prove (ii) in the case g = 0,
one can first use an extension procedure as in [22, Theorem 9.13], where the same estimate
is derived for Dirichlet boundary conditions. The general case can be reduced to the case
g = 0 by considering u−G instead of u, where G ∈ W 2,p(B+(0, 2)) satisfies ∂nG = g and
∥G∥W 2,p(B+(0,2)) ≤ C(d, p)∥g∥W 1−1/p,p(Γ(0,2)). □
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We will also need the following global Lp regularity estimate. For the proof, we refer
the reader to [1, Theorem 5.12] (for a more general context, see [2]).

Theorem A.4 (Global Lp regularity estimates). Let Ω ⊂ Rd be a C2,α bounded domain
for some α ∈ (0, 1). Let p ∈ (1,+∞) and let f ∈ Lp(Ω) be such that div f ∈ L1(Ω). If u
is a weak solution of  −∆u = div f − 1

|Ω|

∫
Ω

div f dx in Ω

∂nu = 0 on ∂Ω,
(A.5)

then
∥u∥W 1,p(Ω) ≤ C(p,Ω) (∥f∥Lp + 1) . (A.6)

The following consequence of Theorem A.4 will be of particular importance in the proof
of the pointwise estimates for the Neumann–Green function in Appendix B below. For
the proof, we refer to [19, Lemma 1].

Corollary A.5 (Global Lp,∞ regularity estimates). Let Ω ⊂ Rd be a C2,α domain for
some α ∈ (0, 1). Let p ∈ (1,+∞) and f ∈ Lp,∞(Ω). If u is a weak solution of −∆u = div f − 1

|Ω|⟨div f, 1⟩ in Ω

∂nu = 0 on ∂Ω,
then

∥∇u∥Lp,∞(Ω) ≤ C(p,Ω)
(
∥f∥Lp,∞(Ω) + 1

)
. (A.7)

A.2. An interpolation inequality. We close this section with the following simple
interpolation inequality. Although we need to apply Lemma A.6 only to the ball or to (a
smooth regularization of) the half-ball, we state it in the general case.

Lemma A.6 (Interpolation). Let Ω ⊂ Rd be a bounded connected open set of class C2,α

for some α ∈ (0, 1). There exists a constant C > 0, depending on Ω only, with the
following property. If f ∈ C2,α(Ω) and k ∈ {0, 1, 2}, then

[f ]Ck(Ω) ≤ C∥f∥
k

2+α

C0(Ω)∥f∥1− k
2+α

C2,α(Ω). (A.8)

Appendix B. Pointwise estimates on the Green–Neumann function

In this section, we establish some estimates on the Green–Neumann function on a
sufficiently regular domain Ω ⊂ Rd for d ≥ 2 we need in the paper. Basically, these
estimates assert that the behavior of Green–Neumann function is comparable to that of
the corresponding Newtonian potential

ϕ(x) =


1

ωd(d− 2)
1

|x|d−2 for d ≥ 3

− 1
2π log |x| for d = 2

(B.1)

with x ∈ Rd, x ̸= 0.
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On a bounded connected open set Ω ⊂ Rd of class C1, the Green–Neumann function
G = G(x, y) (see [18, Chapter 3]) is a solution of −∆G(x, · ) = δx − 1

|Ω| in Ω
∂nG(x, · ) = 0 on ∂Ω,

whenever x ∈ Ω, where as usual δx denotes the Dirac measure at x. Possibly replacing
G(x, y) with G(x, y) − v(x), where

v(x) = 1
|Ω|

∫
Ω
G(x, y) dy,

it is not restrictive to assume that G is a symmetric function, see [18, Chapter 3,
Lemma 7.1] for the proof of this statement. We refer the reader to [18, Chapter 3,
Section 7] for more details on the main properties of the Green–Neumann function.

The main estimates on the Green–Neumann function G we use in this paper are gath-
ered in the following result.
Theorem B.1 (Pointwise estimates of the Green function). Let Ω ⊂ Rd, d ≥ 2, be a
bounded connected open set of class C2,α for some α ∈ (0, 1). There exists a constant
C > 0, depending on Ω only, with the following properties.

(i) If β ∈ Nd
0 is such that |β| ≤ 2, then

|∂β
yG(x, y)| ≤ C(Ω, β)

|x− y|d−2+|β| (B.2)

for all x, y ∈ Ω.
(ii) If x1, x2 ∈ Ω, x̄ := x1+x2

2 and h := |x1 − x2|, then

|∂yiyj
G(x1, y) − ∂yiyj

G(x2, y)| ≤ Ch

|x̄− y|d+1 (B.3)

for all y ∈ Ω \B(x̄, h) and i, j = 1, . . . , d.

The proofs of (i) and (ii) are very similar and follow the simple argument outlined
in [19], which we readapt to the Neumann boundary case. To keep this article short, we
prove Theorem B.1 for d ≥ 3 only. The proof of Theorem B.1 for d = 2 follows the same
strategy with the usual minor adaptations depending on the different expression of the
Newtonian potential (B.1).
Proof of Theorem B.1. For r0 > 0, we let

Ωr0 =
{
x ∈ Ω : dist(x, ∂Ω) ≤ r0

}
.

By compactness, we can cover Ω with balls of radius r0. This yields a finite covering of
the set Ωr0 , {

B(ck, r0) : ck ∈ Ω, k = 1, . . . , K
}

depending on the chosen r0. Possibly choosing a smaller r0 if needed, one can ensure that,
for each k = 1, . . . , K, there exists a C2,α-diffeomorphism

Φk : Uk → B(ck, 16r0) ∩ Ω, Uk ⊂ Rd open,
such that

Φ−1
k (ck) = 0, B+(0, 8r0) ⊂ Uk ⊂ B+(0, 32r0).



18 L. DE ROSA, M. LATOCCA, AND G. STEFANI

Without loss of generality, we can further assume that
3
4 ≤ |Φk(x) − Φk(y)|

|x− y|
≤ 5

4
for all x, y ∈ Uk, x ̸= y.

Now let x, y ∈ Ω and set r = |x− y|. In the following, we assume that r ≤ r0/2. This
condition will be removed in the last part of the proof.
Proof of (i) for r ≤ r0/2. We distinguish two cases.
Case 1 B(y, r/34) ⊂ Ω. Since the function

ψx = ψ(x, ·) = G(x, ·) − ϕ(x− ·)
solves

∆ψx = 1
|Ω|

in B(y, r/34),

the function
ψ̃(z) := ψx(y + rz/68), for z ∈ B(0, 2),

solves
∆ψ̃x = C(Ω) r2 in B(0, 2),

where C(Ω) > 0 is a constant depending on Ω only (that may change from line to line in
what follows). We now distinguish two subcases, β = 0 and |β| ≥ 1.
Subcase 1.1 β = 0. Let p0 >

d
2 , such that W 2,p0 ↪→ L∞. Using the W 2,p regularity

estimate (A.3) applied to ψx with exponent p0 and ρ ∈ (1, 2) sufficiently close to 1;
followed by the Sobolev embedding W 2,p1(B(0, ρ)) ↪→ Lp0(B(0, ρ)) where 1

p1
∈
(

1
p0

+ 2
d
, 1
)

to obtain
∥ψ̃x∥W 2,p0 ((B(0,1)) ≤ C(d, p0, ρ)

(
∥ψ̃x∥Lp0 (B(0,ρ)) + 1

)
≤ C(d, p0, ρ)

(
∥ψ̃x∥W 2,p1 (B(0,ρ)) + 1

)
.

We are now in a position to iterate this application of Theorem A.3, constructing a
decreasing sequence pn > 1. One only needs to iterate theses estimates n = n(d) times so
that pn ∈ (1, d

d−2) and therefore

∥ψ̃x∥W 2,p0 ((B(0,1)) ≤ C(d, p0, ρ)
(
∥ψ̃x∥Lpn (B(0,ρn)) + 1

)
.

We choose ρ = ρ(d) such that ρn < 2. Now observe that, because pn <
d

d−2 , there is ε > 0
such that Ẇ 1, d

d−1 −ε(B(0, 2)) ↪→ Lpn(B(0, 2)). Using this and the inequality
∥∇ψ̃x∥

L
d

d−1 −ε(B(0,2))
≤ C(d)∥∇ψ̃x∥

L
d

d−1 ,∞(B(0,2))
,

we arrive at

∥ψ̃x∥W 2,p0 ((B(0,1)) ≤ C(d, p0, ρ)
(

∥∇ψ̃x∥
L

d
d−1 ,∞(B(0,2))

+ 1
)
.

Using the Sobolev embedding W 2,p0(B(0, 1)) ↪→ L∞(B(0, 1)) and undoing the scaling, we
finally have

∥ψx∥L∞(B(y,r/68)) ≤ C(d)
( 1
rd−2 ∥∇ψx∥

L
d

d−1 ,∞(Ω)
+ 1

)
. (B.4)
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Since ∥∇ϕ(x− ·)∥
L

d
d−1 ,∞(Ω)

< ∞, it follows that

∥∇ψx∥
L

d
d−1 ,∞(Ω)

≤ C + ∥∇G(x, ·)∥
L

d
d−1 ,∞(Ω)

.

Observe that  −∆G(x, · ) = div f − 1
|Ω| in Ω

∂nG(x, · ) = 0 on ∂Ω,

with f(y) = (x−y)
dωd|x−y|d ∈ L

d
d−1 ,∞, so that Corollary A.5 yields

∥∇G(x, ·)∥
L

d
d−1 ,∞(Ω)

≤ C(d)
(

∥f∥
L

d
d−1 ,∞(Ω)

+ 1
)
,

hence
∥∇ψx∥

L
d

d−1 ,∞(Ω)
≤ C(d) < +∞. (B.5)

Combining the above inequality with (B.4), we obtain

∥ψx∥L∞(B(y,r/68)) ≤ C(d)
rd−2 .

which ends the proof.
Subcase 1.2 |β| ≥ 1. By the elliptic regularity estimate (A.1) in Theorem A.1, it follows
that

∥ψ̃x∥C2,α(B(0,1)) ≤ Cd

(
∥ψ̃x∥L∞(B(0,2)) + C(Ω) r2

)
. (B.6)

Note that, by the zero-order estimates on G, that is, by (B.2) for β = 0, one has

|ψx(z)| ≤ |G(x, z)| + |ϕ(x− z)| ≤ C(Ω)
|x− z|d−2 ≤ C(Ω)

rd−2

for all z ∈ B(y, r/34), so that

∥ψ̃x∥L∞(B(0,2)) ≤ C(Ω)
rd−2 . (B.7)

The above inequality, combined with (B.6), gives

∥ψ̃x∥C2,α(B(0,1)) ≤ C(Ω)
rd−2 . (B.8)

Interpolating (B.7) and (B.8) using (A.8), one obtains [ψ̃x]C|β|(B(0,1)) ≤ C(Ω)
rd−2 , that is

[ψx]C|β|(B(y,r/68)) ≤ C(Ω)
rd−2+|β| ,

which is enough to conclude.
Case 2 B(y, r/34) ∩ ∂Ω ̸= ∅. Let us pick any point a ∈ B(y, r/34) ∩ ∂Ω. We observe
that, since r ≤ r0/2, there holds that y ∈ B(ck, r0) for some 1 ≤ k ≤ K that we fix.
Because |y − a| ≤ r/34, we have

B(a, r/17) ∩ Ω ⊂ B(ck, r0 + r/17) ⊂ B(ck, 2r0).
Note that Y := Φ−1

k (a) ∈ B+(0, 4r0), so that B+(Y, 8r/17) ⊂ B+(0, 8r0) ⊂ Uk. We also
note that B(y, r/34)∩Ω ⊂ B(a, r/17)∩Ω ⊂ Φk(B(Y, 2r/17)). In Figure 1 we have drawn
some balls appearing in the analysis.



20 L. DE ROSA, M. LATOCCA, AND G. STEFANI

x

Y = Φ−1
k (a)

y

a

B(a, 16r/17)

B(a, r/17)

Uk

Φk

B(Y, 8r/17)
B(Y, 2r/17)

Figure 1. Some balls appearing in the analysis. The goal is to estimate
the function ψx on the shaded ball.

We are now ready to start the proof. Since ∆ψx = 1
|Ω| =: C in B(y, r/2) ∩ Ω

∂nψx = −∂nϕ(x− ·) on B(y, r/2) ∩ ∂Ω,
the function θx := θ ◦ Φk satisfies div(A(z)∇θx(z)) = C in B+(Y, 8r/17)

b(z) · ∇θx(z) = −∂nϕ(x− Φk(·)) on Γ(Y, 8r/17),

where the matrix A and the vector b depend only on the C2,α diffeomorphism Φk, in
particular A and b does not depend on r. Note that by our premiliminary remarks we can
ensure that B+(Y, 8r/17) ⊂ Uk. Let us set Ã(z) = A(Y +4rz/17) and b̃(z) = b(Y +4rz/17)
which are also of class C1,α uniformly in r (and y) since r ≤ r0/2, which is fixed. Letting
θ̃x = θx(Y + 4r · /17) and g̃ := −r∂nϕ(x− Φk(Y + 4r · /17)), we can write div(Ã∇θ̃x) = Cr2 in B+(0, 2)

b̃ · ∇θ̃x = g̃ on Γ(0, 2).
We now again distinguish two subcases, β = 0 and |β| ≥ 1.
Subcase 2.1 β = 0. We start with an application of the W 2,p regularity estimate (A.4)
applied to θ̃x, ρ ∈ (1, 2) and p0 >

d
2 , which, in turn, is such that we have the Sobolev

embedding W 2,p0(B(0, ρ)) ↪→ L∞(B(0, ρ)). This writes

∥θ̃x∥W 2,p0 (B+(0,1)) ≤ C(d, ρ)
(

∥θ̃x∥Lp0 (B+(0,ρ)) + ∥g̃∥
W

1− 1
p0

,p0 (B+(0,ρ))
+ 1

)
. (B.9)

Observe that
∥g̃∥

W
1− 1

p0
,p0 (B+(0,ρ))

≤ ∥g̃∥W 1,p0 (B+(0,ρ)) ≤ ∥g̃∥Lp0 (B+(0,ρ)) + ∥∇g̃∥Lp0 (B+(0,ρ)).

We have
∥∇g̃∥Lp0 (B+(0,ρ)) ≤ r2∥∇2ϕ(x− Φk(Y + 4r · /17))∥Lp0 (B+(0,2))
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≤ C(Ω)r2− d
p0 ∥∇2ϕ(x− ·)∥Lp0 (B(y, 33r

34 )),

where we used that
Φk(B+(Y, 8r/17)) ⊂ B(a, 16r/17) ⊂ B(y, 33r/34) ∩ Ω (B.10)

and the properties of Φk as well as a scaling change of variable. Now since |x − z| ≥ r
34

for any z ∈ B(y, 33r/34) and that |∇2ϕ(x− z)| ≤ C(d)
|x−z|d , we finally obtain that

∥∇g̃∥Lp0 (B+(0,ρ)) ≤ C(Ω)
rd−2 ,

and similarly the same estimate holds for ∥g̃∥Lp0 (B+(0,ρ)), so that ultimately we get

∥g̃∥
W

1− 1
p0

,p0 (B+(0,ρ))
≤ C(Ω)

rd−2 .

Importantly our computations do not depend on the value of p0. For this reason we are
in a position to iterate (B.9) sufficiently many time just as we did in Subcase 1.1. and
obtain

∥θ̃x∥W 2,p0 (B+(0,1)) ≤ C(Ω)
(

∥θ̃x∥Lpn (B+(0,2))) + 1
rd−2 + 1

)
,

where n = n(d) is chosen so that pn ∈ (1, d
d−2) (note that we also need to chose ρ such

that ρn ≤ 2). Using the Sobolev embedding Ẇ 1, d
d−1 −ε(B+(0, 2)) ↪→ Lpn(B+(0, 2)) and the

embedding L
d

d−1 ,∞(B+(0, 2)) ↪→ L
d

d−1 −ε(B+(0, 2)), one finally obtains that

∥θ̃x∥W 2,p0 (B+(0,1)) ≤ C(Ω)
(

∥∇θ̃x∥
L

d
d−1 ,∞(B+(0,2)))

+ 1
rd−2 + 1

)
.

Going back to the original variables and undoing the scaling we get

∥∇θ̃x∥
L

d
d−1 ,∞(B+(0,2)))

≤ C(Ω)
rd−2 ∥∇ψx∥

L
d

d−1 ,∞(Ω)
,

and thanks to the L
d

d−1 ,∞ bound on ψx given by (B.5) we arrive at

∥θ̃x∥W 2,p0 (B+(0,1)) ≤ C(Ω)
rd−2 . (B.11)

To conclude, observe that
∥ψx∥L∞(B(y,r/34)∩Ω) ≤ ∥ψx∥L∞(B(a,r/17)∩Ω)

≤ C(Ω)∥θx∥L∞(B+(Y,2r/17))

≤ C(Ω)∥θ̃x∥L∞(B+(0,1/2)),

which combined with the Sobolev embedding W 2,p0 ↪→ L∞ and (B.11) provides us with
the desired estimate

∥ψx∥L∞(B(y,r/34)∩Ω) ≤ C(Ω)
rd−2 .

Subcase 2.2 |β| ≥ 1. An application of (A.2) to θ̃x yields

∥θ̃x∥C2,α(B+(0,1) ≤ C(Ω)
(
∥θ̃x∥L∞(B+(0,2)) + ∥Cr2∥Cα(B+(0,2)) + ∥g∥C1,α(Γ(0,2))

)
.
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Note that ∥Cr2∥Cα(B+(0,2)) ≤ Cr2. Then, using that
Φ(B+(Y, 8r/17)) ⊂ B(a, 16r/17) ⊂ B(y, 33r/34) ∩ Ω

and also that Φk is a C2,α diffeomorphism, it follows that

∥θ̃x∥L∞(B+(0,2)) = ∥θx∥L∞(B+(Y,8r/17)) ≤ C(Ω)∥ψx∥L∞(B(y,33r/34)) ≤ C(Ω)
rd−2 , (B.12)

where in the last step we have used the zero-order estimate. Similarly, to estimate g̃, by
rescaling and using that Φk is a C2,α diffeomorphism, one obtains

[g̃]C1,α(Γ+(0,2)) = Cr2+α[∂nϕ(x− Φk(·))]C1,α(Γ(Y,8r/17))

≤ Cr2+α∥∂nϕ(x− ·)∥C1,α(B(y,33r/34)∩∂Ω)

≤ Cr2+α∥ϕ(x− ·)∥C2,α(B(y,33r/34)∩∂Ω).

Now, we observe that
∥ϕ(x− ·)∥C2,α(B(y,33r/34)∩∂Ω) ≤ ∥ϕ(x− ·)∥L∞(B(y,33r/34)∩∂Ω)

+ [ϕ(x− ·)]C2,α(B(y,33r/34)∩∂Ω)

≤ C(Ω)
rd−2 + [ϕ(x− ·)]C2,α(B(y,33r/34)∩∂Ω).

Moreover, we have

|∂j∂mϕ(x− z1) − ∂j∂mϕ(x− z2)| ≤ C(d)
rd+α

|z1 − z2|α,

for all z1, z2 ∈ B(y, 33r/34) and all j,m ∈ {1, . . . , d}, which is obtained by explicit
computations on ϕ(x− z) = C(d)

|x−z|d−2 . Gathering all these estimates, it follows that

∥θ̃x∥C2,α(B+(0,1)) ≤ C

rd−2 . (B.13)

Interpolating (B.13) with (B.12) exploiting (A.8) on a smooth domain U+(0, 1) such that
B+(0, 1/2) ⊂ U+(0, 1) ⊂ B+(0, 1), we obtain

[θ̃x]C|β|(B+(0,1/2)) ≤ [θ̃x]C|β|(U+(0,1)) ≤ C(Ω)
rd−2 .

Also, note that ∥θ̃x∥L∞(B+(0,1/2)) ≤ C(Ω)
rd−2 , so that we can finally write

[ψx]C|β|(B(y,r/34)∩Ω) ≤ [ψx]C|β|(B(a,r/17)∩Ω) ≤ C(Ω)∥θx∥C|β|(B+(Y,2r/17))

≤ C(Ω)
r|β| [θ̃x]C|β|(B+(0,1/2)) + C(Ω)∥θ̃x∥L∞(B+(0,1/2))

≤ C(Ω)
rd−2+|β| ,

which is sufficient to conclude the proof.
Proof of (ii) for r ≤ r0/2. Let us denote |x1 − x2| = h and r := |x̄ − y|. Let gx1,x2 :=
ψ(x1, ·) − ψ(x2, ·). Since (B.3) is true for ϕ in place of G (by direct computations), the
proof of (B.3) directly follows from the inequality

[gx1,x2 ]C2(B(y,r/68)∩Ω) ≤ h

rd+1 , (B.14)
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for some global constant c > 0. As in the proof of (i), we distinguish between the case
where y is far from the boundary or close to it.

We can assume that h ≤ r
34 . Indeed, if h > r

34 , then we can just apply the triangle
inequality and (i) to obtain

|∂i∂jg(x1, y) − ∂i∂jg(x2, y)| ≤ |∂i∂jg(x1, y)| + |∂i∂jg(x2, y)|

≤ C(Ω)
(

1
|x1 − y|d

+ 1
|x2 − y|d

)

≤ C(Ω)
rd

≤ C(Ω) h

rd+1 .

As in the proof of (i), we distinguish two cases.
Case 1 B(y, r/34) ⊂ Ω. The function gx1,x2 satisfies the equation

∆zgx1,x2 = 0 in B(y, r/34),
therefore the function g̃(z) := gx1,x2(y + rz/68) satisfies

∆g̃ = 0 in B(0, 2),
so that, using the interior Schauder estimates (A.1) on g̃, one has

∥g̃∥C2,α(B(0,1)) ≤ C(Ω)∥g̃∥L∞(B(0,2)).

Assuming the estimate
∥gx1,x2∥L∞(B(y,r/34)) ≤ C(Ω) h

rd−1 , (B.15)
it follows that

∥g̃∥L∞(B(0,2)) ≤ C(Ω) h

rd−1 ,

so that
∥g̃∥C2,α(B(0,1)) ≤ C(Ω)h

rd−1 . (B.16)

Interpolating (B.15) and (B.16) using (A.8) and then undoing the scaling, one obtains
the estimate (B.14). Therefore the proof of (B.3) boils down to the proof of (B.15).
Case 2 B(y, r/34) ∩ ∂Ω ̸= ∅. Let us fix 1 ≤ k ≤ K such that y ∈ B(ck, r0). The
argument follows the same line as in (i), so that we should only sketch the argument
below. The equation satisfied by gx1,x2 on B(y, r/2) ∩ Ω is ∆zgx1,x2 = 0 in B(y, r/2) ∩ Ω

∂ngx1,x2 = ∂nϕ(x2 − ·) − ∂nϕ(x1 − ·) in B(y, r/2) ∩ ∂Ω.

Let a ∈ B(y, r/34) ∩ ∂Ω and set Y = Φ−1
k (a). The function θ := gx1,x2(Φk(Y + 4r · /17))

satisfies the equation  div(A∇θ) = 0 in B+(0, 2)
b · ∇θ = G in Γ(0, 2),

where A is some uniformly elliptic matrix and b a vector both with C1,α norms independent
of r, and

G = r (∂nϕ(x2 − Φk(Y + 4r · /17)) − ∂nϕ(x1 − Φk(Y + 4r · /17))) .
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In particular, an application of (A.2) yields

∥θ∥C2,α(B+(0,1)) ≤ C(Ω)
(
∥θ∥L∞(B+(0,2)) + ∥G∥C1,α(Γ(0,2))

)
.

Observe that, by rescaling and using that Φk is a C2,α diffeomorphism, one has
[G]C1,α(Γ(0,2)) = r2+α[∂nϕ(x2 − Φk(·)) − ∂nϕ(x1 − Φk(·))]C1,α(B+(Y,8r/17))

≤ C(Ω)r2+α∥∂nϕ(x2 − ·) − ∂nϕ(x1 − r·)∥C1,α(B(a,16r/17)∩∂Ω)

≤ C(Ω)r2+α∥∂nϕ(x2 − ·) − ∂nϕ(x1 − r·)∥C1,α(B(y,33r/34)∩∂Ω).

By explicit computations on ϕ and by recalling that h ≤ r
34 , one has

[∂nϕ(x2 − ·) − ∂nϕ(x1 − ·)]C1,α(B(y,33r/34)∩∂Ω) ≤ C(Ω) h

rd+1+α
,

so that
[G]C1,α(Γ(0,2)) ≤ C(Ω) h

rd−1 .

Similarly, one can estimate

∥G∥L∞(Γ(0,2)) ≤ C(Ω) h

rd−1 ,

so that we finally have
∥G∥C1,α(Γ(0,2)) ≤ C(Ω) h

rd−1 .

Similarly, we have
∥θ∥L∞(B+(0,1)) ≤ C(Ω)∥gx1,x2∥L∞(B(y,33r/34)∩Ω).

Assuming the validity of the bound

∥gx1,x2∥L∞(B(y, 33r/34) ∩ Ω) ≤ C(Ω) h

rd−1 , (B.17)

the above inequalities lead to the estimate

∥θ∥C2,α(B+(0,1)) ≤ C(Ω) h

rd−1 . (B.18)

Interpolating the rescaled version of (B.17) with (B.18) using Lemma A.6, and following
the same arguments as in the proof of (i), one obtains (B.14), provided that (B.17) holds.
Proof of (B.15) and (B.17). We need to prove that the function ψ(x, ·) = ψx satisfies

|ψ(x1, z) − ψ(x2, z)| ≤ C(Ω) h

rd−1 for all z ∈ Ω ∩B(y, 33r/34). (B.19)

First, let us observe that, by the triangle inequality, one has

|ψ(x1, z) − ψ(x2, z)| ≤ |ψ(x1, z)| + |ψ(x1, z)| ≤ C(Ω) 1
rd−2 ≤ C(Ω) h

rd−1 ,

as soon as r ≤ C(Ω)h. Therefore, we can assume that r ≥ 3h. Note that, since ψ(x1, z)−
ψ(x2, z) is a difference, we can assume that x1 and x2 are either both in the same ball of
radius r0 of the chosen covering of Ω, or in two different but neighboring balls. Hence,
we can assume that x1, x2 ∈ B(ck, r0) for some k. We first explain how to construct a
path γ : [0, 1] → Ω ∩ B(x̄, h) joining x1 to x2. Recall that Φk : Uk → B(ck, 16r0) ∩ Ω is a
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X1

X2

x1 x2
Φk

Φ−1
k (B(x̄, h))

B(x̄, h)
x̄

γ(t)

(1− t)X1 + tX2

y

Figure 2. Construction of the path γ(t).

diffeomorphism such that Φ−1
k (B(x̄, h)) is contained in the convex set B+(0, 8r0) ⊂ Uk.

Therefore, we can set Xj = Φ−1
k (xj) for j = 1, 2 and define the path

γ(t) = Φk((1 − t)X1 + tX2),

t ∈ [0, 1], which has length less than 2|x1 −x2| since Φk is a diffeomorphism, see Figure 2.
Also, again because Φk is a diffeomorphism, we have that |x′−y| ≥ r/3 for all x′ ∈ γ([0, 1]),
being r ≥ 3h according to our initial assumption. We can now start the proof by observing
that, by the Mean Value Theorem,

ψ(x1, z) − ψ(x2, z) =
∫ 1

0
∇xψ(γ(t), z) · γ′(t) dt,

and thus
|ψ(x1, z) − ψ(x2, z)| ≤ C(Ω)|x1 − x2|∥∇xG(·, z)∥L∞(B(x̄,h)).

Because of the symmetry G(x, z) = G(z, x) we see that ∇xG(x, z) = ∇yG(z, x), so that
by (i) we have the uniform bound

|∇xG(x′, z)| ≤ C(Ω)
|x′ − z|d−1 ≤ C(Ω)

rd−1

for all z ∈ B(y, 33r/34) and x′ ∈ γ([0, 1]), which finally gives (B.19).

To conclude the proof, we are thus left to prove (i) and (ii) for r ≥ r0/2. In this case,
one can write all the estimates in the proofs of (i) and of (ii) with r0 instead of r and end
up with bounds in terms of negative powers of r0, which are then bounded by negative
powers of r up to enlarging the constants. □

Remark B.2. One may wonder if the estimates on ψx = ψ(x, ·) given in the above proof
are optimal. In fact, the argument presented above should be interpreted as a scaling
obstruction for a larger growth than |x− · |−d+2−|β| for ψx. Since this bound has the same
order of the one that can be computed for the Newtonian potential, this is enough to
conclude.
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