Full Double Hölder Regularity of the Pressure in Bounded Domains - Archive ouverte HAL
Article Dans Une Revue International Mathematics Research Notices Année : 2023

Full Double Hölder Regularity of the Pressure in Bounded Domains

Résumé

Abstract We consider Hölder continuous weak solutions $u\in C^{\gamma }(\Omega )$, $u\cdot n|_{\partial \Omega }=0$, of the incompressible Euler equations on a bounded and simply connected domain $\Omega \subset{\mathbb{R}}^{d}$. If $\Omega $ is of class $C^{2,1}$ then the corresponding pressure satisfies $p\in C^{2\gamma }_{*}(\Omega )$ in the case $\gamma \in (0,\frac{1}{2}]$, where $C^{2\gamma }_{*}$ is the Hölder–Zygmund space, which coincides with the usual Hölder space for $\gamma <\frac 12$. This result, together with our previous one in [ 11] covering the case $\gamma \in (\frac 12,1)$, yields the full double regularity of the pressure on bounded and sufficiently regular domains. The interior regularity comes from the corresponding $C^{2\gamma }_{*}$ estimate for the pressure on the whole space ${\mathbb{R}}^{d}$, which in particular extends and improves the known double regularity results (in the absence of a boundary) in the borderline case $\gamma =\frac{1}{2}$. The boundary regularity features the use of local normal geodesic coordinates, pseudodifferential calculus and a fine Littlewood–Paley analysis of the modified equation in the new coordinate system. We also discuss the relation between different notions of weak solutions, a step that plays a major role in our approach.
Fichier principal
Vignette du fichier
fullDoubleHolder.pdf (653.78 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence

Dates et versions

hal-04196566 , version 1 (05-09-2023)

Licence

Identifiants

Citer

Luigi de Rosa, Mickaël Latocca, Giorgio Stefani. Full Double Hölder Regularity of the Pressure in Bounded Domains. International Mathematics Research Notices, 2023, ⟨10.1093/imrn/rnad197⟩. ⟨hal-04196566⟩
18 Consultations
28 Téléchargements

Altmetric

Partager

More