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Abstract—Two models are proposed to optimize unmanned
aerial vehicles (UAVs) traffic offloading in cellular networks. The
first model optimizes the realtime traffic service, while delaying
non-realtime traffic in the cell buffers (BS and the currently
serving drone). Delayed traffic is then transmitted later when free
resources are available and has a maximum service delay limit.
The proposed model provides a heuristic solution to minimize the
losses in non-realtime traffic based on the maximum delay and
the size of the cell buffers. The second model completes the work
by providing an optimal Integer Linear Programming solution
to minimize the number of needed UAV assuming no data loss
and buffering availability. It is also parameterized with the same
delay limits as the first model.

The performance of the proposed models is studied using the
call detail record (CDR) dataset of the city of Milan cellular
network provided by Telecom Italia. The two models showed
great QoS performance based on the maximum delay of non-
realtime traffic and cell buffer size compared to models that do
not include the buffering and the delay limits.

Index Terms—Realtime traffic, QoS, unmanned aerial vehicle,
offloading, machine learning, placement optimization

I. INTRODUCTION

UAVs (Drones) can be exploited for communications, and
can serve as a flying base station (BS) to temporarily cover a
specific location [1] and help in offloading traffic. In addition,
it can be used to increase the cell bandwidth (BW) when there
is high traffic due to an event (anomaly) [2], [3].

On the other hand, since users’ traffic can be classified based
on its time dependence, cellular resources must be utilized in
an efficient manner. Accordingly, while cellular resources used
to send realtime traffic, non-realtime traffic will be buffered
waiting for free resources to be sent. Even non-realtime traffic
has a maximum delay or it will be discarded. Therefore, we
need to optimize the needed number of drones and its buffer
to serve realtime traffic and reduce non-realtime traffic loss.

In this contribution, we aim to solve optimization problems
when deploying UAVs that can deal with both realtime and
non realtime traffic. We first design two models: one heuristic

and one optimal to model our deployment case. We then show
that buffering non-realtime traffic in cells having periods of
anomalies brings improvements in reducing required UAVs
while maintaining same quality of service. So, the first model
aims at minimizing the non-realtime traffic losses for a certain
buffer size of both BS and UAVs. It provides a heuristic
solution for such problems. The second model is integer linear
programming (ILP) based and gives the minimum number of
drones required assuming the buffer size is fixed of the BS
integrated with the drones’ buffer and a time limit on non-
realtime traffic assuming there is no losses in this data. The
results of both solutions are compared to the perfect prediction
and long-term memory (LSTM) prediction as will be shown
in the performance section.

The paper is organized according to the following sections;
related work is in surveyed in section II. In section III, the
problem statement is described. Section IV is dedicated for
the performance evaluation. Paper is finalized by section V
that presents the conclusion and future work.

II. RELATED WORK

The work of [4] proposed the proactive deployment of
drones to offset the overload of unplanned events in 5G
networks. The authors proposed using the prediction and
control model to solve the deployment of drones in an efficient
manner. Also, propose to use the Software Defined Network
(SDN) to easily integrate/reintegrate the drones with the net-
work by reconfiguring the SDN.

Then, the work of [5] proposed an optimization model for
deploying drones at active sites in the cellular network in a
proactive mode. The parameters of the model are designed
to increase coverage while reducing the communication load
between drones. This work is based on the creation of a
connection diagram, a street graph, and a density function.
Even the problem statement is not the same, typical leaks of
the clear model and reference results.



Another two papers [3] and [6] targeted the same prob-
lem statement of proposing the use of drones to overcome
unplanned events in the cellular network. The first work
suggested using long-term memory (LSTM) to detect un-
planned events and to satisfy the additional BW required in
cells. Another work, improving the deployment of drones in
the network using LSTM as well. Both operations do not
differentiate the type of traffic based on time.

Several works proposed improving the placement of the
drones in the cellular network. In [7], authors of focused on
optimizing the placement of the drones in cells using mixed-
integer non-convex program in order to maximize coverage.
While in 2021, the published work of [8] and [9]. The first
work optimizes drones positions in 3D based on realtime
measurements to make continuous dynamic adjustments for
load based management. While the other work study the effect
of the drones positions in terms of altitude and horizontal and
incentive selection on the network performance.

The work of [10] studied the effect of the use of drones
in the 5G cellular network in terms of capacity, quality,
robustness, and correlation stability between the used drones
and the ground station. In [11] proposed the use of D2D to
alleviate the failure of vehicular communication.

The main contribution of these papers is the proposal to
use drones in the cellular network to enhance the coverage.
while others propose an optimal model for the position of the
drones. These contributions didn’t mention the use of drones
to overcome the rapid increase of BW demands in the specific
cells during unplanned events except the work of [4], [3], and
[6]. But these mentioned works didn’t take into consideration
the different traffic types based on the time.

III. MODEL I: MINIMIZING DATA LOSS

A. Assumptions

• Dp
t : the demand at t of priority traffic. It is realtime up to

a certain extent: it must be served within a time window
τ . Before to be served, it is put in a queue considered
as infinite (since the corresponding traffic is delivered
within τ and since we assume the system is dimensionned
correctly, that is the bandwidth capacity C is sufficient
to serve the priority traffic only, a buffer size of Cτ is
sufficient to store priority traffic excess).

• Dnp
t : non-realtime traffic demand at t. It is always put

in a FIFO dedicated queue, the maximum size of which
being B.

• Xp
t : queue size of the priority buffer;

• Xnp
t : queue size of the non priority buffer;

• Sp
t : the amount of data served at t for the priority traffic;

• Snp
t : the amount of data served at t for the non priority

traffic;

• δpt =

{
−Sp

t if Xp
t > 0

0 otherwise ;

• δnpt =

{
−Snp

t if Xnp
t > 0

0 otherwise .

Our goal is (T being the operation duration):

min
Sp
t ,S

np
t

T∑
t=0

max [Dnp
t − (B −Xnp

t ), 0]

s.c. ∀t,Xp
t+1 <

τ∑
k=0

Sp
t+k (1)

∀t,Xp
t+1 = Dp

t − δpt +Xp
t (2)

∀t,Xnp
t+1 = min [B,Dnp

t − δnpt +Xnp
t ] (3)

∀t, Sp
t + Snp

t ≤ C. (4)

The constraint (1) means that the priority demand at t must be
served at least in the next τ time units (remember the queues
are FIFO). The constraints (2) and (3) model the classic FIFO
queue processes. The last constraint (4) represents the fact
that the sum of the services at time t cannot exceed the total
bandwidth capacity.

B. Heuristic

As a solution of the above problem, we propose a heuristic
based on a prediction of the priority demand: P t+i

t is the
prediction at time t of the amount of bandwidth demand
at time t + i for the priority traffic. The parameters ξ and
ε are respectively a fixed time horizon for the prediction
and a bandwidth security parameter to ”absorb” predictions
errors: we keep a bandwidth margin to be sure to have
sufficient bandwidth reserved for the priority traffic in case
of prediction underestimation and thus not assigning all the
remaining bandwidth to the non priority traffic. The overall
idea is that since the priority traffic will be sent in the τ
future time slots, we can delay it a little bit to empty as much
as possible the non priority traffic.

At each time t, if Xp
t + Dp

t +
∑ξ

k=1 P
t+k
t < Cε,

and if X
(np)
t > 0, then serve the priority class up to

Sp
t =

Xp
t +Dp

t +
∑ξ

k=1 P t+k
t

ξ + ε and the non priority class up to
Snp
t = C − Sp

t .

The performance criteria to observe are the loss rate of non
priority traffic and the response time of the priority one.

This algorithm must be compared with the best effort one
without prediction: the traffics are served in best effort fashion
where the priority traffic is first served, and then the non
priority one if possible.

C. LSTM Prediction Model

Long Short-Term Memory is used in time series prediction
problems which is one of the difficult predictive modeling type
problems. LSTM is a Recurrent Neural Network (RNN) that is
trained using BackPropagation (BP) through time. Therefore,
it fits the problem of predicting time series of cells traffic. It
has three layers. Input layer, hidden layer, and output layer.
Each layer consists of memory blocks which have the same
function as neurons with a smarter component that makes it
more efficient than the classic neurons. These memory blocks



contain three types of gates; Forget, input and output gates.
These blocks gates use the sigmoid activation units to control
their triggering, state change and the information flow through
its conditional block.

We implemented our model in Python using the Keras
library. The model was trained by 67% of the data set, and
33% used for testing. Figure 1 shows the prediction of cell
traffic where the predictive training set has orange color and
the predictive test set has green color and blue color represents
the real data set. The results of the is measured in terms of
route mean square error (RMSE).

Figure 1: LSTM traffic prediction

IV. MODEL II: MINIMIZING NEEDED DRONES

A. Definitions

• T : duration of time frame in terms of slots.
• ∆: slot duration.
• τ : maximum delay of non-realtime traffic in terms of

slots.
• BSBW : BS bandwidth.
• RC

t : predicted bandwidth requirements from critical traf-
fic to be served during slot t.

• RD
t : predicted bandwidth requirements of non-realtime

traffic that has reached its time limit in slot t
• SD

t : amount of RD
t served in previous slots

• nt: number of UAVs that must be dispatched in slot t
• N : total number of UAVs
• UBW : bandwidth provided by a UAV
• ζDt : binary variable which is 1 if and only if the RD

t is
served completely before slot t

B. Optimization Problem Formulation

Objective Function

Minimize the total number of used UAVs.

Minimize

T∑
t=1

nt

Constraints

BSBW ·∆+ nt · UBW ·∆−RC
t − (RD

t − SD
t ) ≥ 0 (5)

We must use a number of UAVs in slot t, nt, to serve the
remaining non-realtime traffic with a deadline in slot t. This
remaining non-realtime traffic is RD

t − SD
t since part of this

traffic, SD
t , may have been served in earlier slots.

t+τ∑
i =t+1

SD
i ≤ BSBW ·∆+ nt · UBW ·∆− (RC

t −RD
t + SD

t )

(6)

This means that any remaining bandwidth from the BS and
the UAVs can be used to serve non-realtime traffic with future
due dates.

We need to give priority in service for RD
i over RD

j for
i < j, that is, SD

i must take place before SD
j , for i < j. This

is implemented in two parts:
1) ζDt is 1 if SD

t = RD
t , and is 0 if SD

t < RD
t , i.e., ζDt = 1

means that RD
t was completely served in earlier slots.

ζDt ≤ SD
t

RD
t

(7)

Notice that if SD
t < RD

t then ζDt = 0. But, when SD
t =

RD
t then 0 ≤ ζDt ≤ 1. However, since the optimization

problem tries to minimize the sum of nt, then it will try
to maximize ζDt in order to allow non-realtime traffic to
be served early if there is sufficient bandwidth (without
using additional UAVs), hence reducing the number of
UAVs that might be needed in the future. The above
equation is nonlinear. In order to linearize it, we rewrite
it as

ζDt ·RD
t ≤ SD

t (8)

Then, we define V D
t = ζDt · RD

t , and we rewrite the
equation again as

V D
t ≤ SD

t (9)

which is a linear equation. V D
t can be evaluated using

the following set of linear equations:

V D
t ≤ ζDt ·K (10)

V D
t ≥ 0 (11)

V D
t ≤ RD

t (12)
V D
t ≥ K · ζDt −K +RD

t (13)

where K is a very large number.
2)

SD
t+1 ≤ ζDt ·K (14)

Also, K is a very large number. This means that if RD
t is

not totally served early, then RD
t+1 can be served early at

all. Only if RD
t is served early, then RD

t+1 can be served
early, partially of totally.



0 ≤ SD
t ≤ RD

t (15)
nt ≥ 0 (16)
nt ≤ N (17)

V. PERFORMANCE EVALUATION

In this section, the performance of the two proposed models
is validated. We used a communications dataset consisting of
two months of call data records (CDR) for voice calls, Internet
data and SMS. This data set is provided by Telecom Italia
in Milan [12]. In our simulation, we select one of the most
crowded cells (cell id=5060) in the city center of Milan city.
The simulation results is obtained using Python version 3.8.

The distributions of the voice calls, Internet and sms are
shown in Fig.2.

Figure 2: Traffic distribution of November

The performance of the first proposed model of objective
minimizing non-realtime data loss is studied. The performance
is studied for the cases of no prediction, perfect prediction and
prediction using LSTM. We call the BS’s BW and the drone
BW the cell BW. We consider the cell BW is 1, 2, 3 of the
average. Furthermore, due to the limited paper space, we will
not provide all figures for unpredictability, perfect prediction,
and prediction using LSTM.

A. Model 1: Heuristic

In this subsection, the performance of Model 1 will be
illustrated in the following scenarios.

Scenario 1: The effect of cell BW on non-realtime data loss
is studied in case of no prediction and a buffer size of constant
value = 1. As shown in Fig. 3, As the cell’s BW increases,
the ability to send more traffic increases and thus data loss
decreases. Cell BW has the same effect on non-realtime data
for perfect and LSTM predictions but its figures are not shown
due to limited space.

(a) Cell BW = 1, Buffer Size = 1

(b) Cell BW = 2, Buffer Size = 1

(c) Cell BW = 3, Buffer Size = 1

Figure 3: The effect of cell BW on the non-realtime data losses

Scenario 2: The effect of the maximum delay of non-
realtime data τ on the data losses has been studied for perfect
and LSTM predictions. The effect is shown in Fig. 4 and 5 for
τ changes from 2 to 5, for cell BW and buffer size constant
value = 1. As shown in the figures, the losses of the non-
realtime data decreases with the increase of τ . It has a little
effect on data losses as cell BW and buffer size are constant.



(a) τ = 2, Cell BW = 1, Buffer Size = 1

(b) τ = 5, Cell BW = 1, Buffer Size = 1

Figure 4: Effect of τ on the data loss of perfect prediction

(a) τ = 2, Cell BW = 1, Buffer Size = 1

(b) τ = 5, Cell BW = 1, Buffer Size = 1

Figure 5: Effect of τ on the data loss of LSTM prediction

Scenario3: The effect of the buffer size on the non-realtime
data is studied of LSTM prediction traffic. The buffer has a

size of 1, 3, 5 and 10 of cell BW. As shown in Fig. 6, with the
increase of the buffer size, the losses of the non-realtime data
decreases. As expected, the buffer size has the same effect on
the traffic of no predictions and perfect prediction.

(a) τ = 5, Cell BW = 3, Buffer Size = 1

(b) τ = 5, Cell BW = 3, Buffer Size = 3

(c) τ = 5, Cell BW = 3, Buffer Size = 5

(d) τ = 5, Cell BW = 3, Buffer Size = 10

Figure 6: Effect of buffer on the data loss of LSTM prediction



Scenario 4: In this scenario, we consider the major influ-
encing parameter that affects the data losses between cell BW,
τ and the size of the buffer that does not cause losses in non-
realtime data. As shown in Fig. 7, the major influence param-
eter is the cell BW. The conclusion behind this scenario, does
not mean that τ and buffer size have no effect, on the contrary,
it means that the data has a finite lifetime corresponding to its
maximum delay, so increasing tau and buffer size will not
save data without resources to transmit. Therefore, increasing
the buffer size will save the data temporary until reaching its
maximum delay, then it will be dropped.

Figure 7: Cell BW for zero losses

B. Model II:MILP

The optimization model described before is needed to de-
termine the precise minimal number of drones for each dataset
slice representing one day of realtime and non-realtime traffic.
It calculates the number of drones but helps also in measuring
the effect of the buffering in the reduction of requested drones.
All the scenario assumes a zero loss in the total traffic. We
have evaluated the model for several days in the dataset of
Rome. We show in Fig. 8 the effect of allowing longer delays
and hence a greater buffer in drones on the required minimal
number of drones for several days in the dataset. Logically,
when the τ value is larger, hence enabling non-realtime to wait
for opportunities of less realtime traffic in the future time slots,
and be sent without the need of extra drones. If τ is shorter,
the non-realtime traffic has to leave early and cannot wait for
eventual empty realtime traffic slots. The more sporadic the
realtime traffic is, the less drones we will need.

VI. CONCLUSION

In this work, we proposed two models for maintaining
QoS of the cellular network with UAV dealing with realtime
and non realtime traffic. Assuming realtime data is sent
immediately, the first model proposed a heuristic solution to
minimize non-realtime data losses by buffering this data to be
sent when cellular resources become available. The results of
this model demonstrated that non-real time data loss decreases
with increasing cell BW, maximum delay τ and cell buffer
size.

The second model aims to provide an optimal ILP model by
providing an optimal solution to minimize and calculate the

Figure 8: The effect of τ on the number of drones

number of required UAVs. It is also based on the same mix
of realtime and non realtime traffic. It includes a maximum
delay variable to let non-realtime traffic be sent after a certain
delay. The results show that with an increase in the maximum
delay τ of non-realtime data, the optimal number of required
UAVs is reduced.
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