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Introduction

In this article we revisit the results of [Benoit, 2016] about geometric optics expansions for hyperbolic boundary value problems in the quarter-space. The problems considered in this article read under the form

         L(∂)u ε := ∂ t u ε + A 1 ∂ 1 u ε + A 2 ∂ 2 u ε = 0 for (t, x) ∈ R × R 2 + := Ω B 1 u ε |x1=0 = g ε for (t, x 2 ) ∈ R × R + := ∂Ω 1 , B 2 u ε |x2=0 = 0 for (t, x 1 ) ∈ R × R + := ∂Ω 2 , u |t≤0 = 0 for x ∈ R 2 + := Γ, (1) 
where the interior coefficient matrices A 1 , A 2 ∈ M N ×N (R) for some fixed N ≥ 1 and where the boundary matrix B 1 (resp. B 2 ) lies in M p1×N (R) (resp. M p2×N (R)) and encodes the good number of boundary conditions. These numbers are made precise in Assumption 2.2.

In the problem (1) the parameter 0 < ε ≪ 1 stands for a parameter describing the typical wavelength of the boundary term g ε and construct a geometric optics expansion aims to give an approximate solution to (1) in the high frequencies limit. Moreover if the approximated solution is sufficiently good then one can expect to show some qualitative phenomenon on it, phenomenon that should also be satisfied by the exact solution u ε .

Before to describe precisely the extensions of the present article compared to [Benoit, 2016] let us recall briefly the interesting points encounter in the analysis of [Benoit, 2016].

Let us however point that even if the study of hyperbolic boundary value problems is a rather old question starting from [Osher, 1973] for the strong well-posedness question and [Sarason and Smoller,7475] about formal geometric optics expansions then such problems remain widely open in spite of the recent works of [Halpern and Rauch, ]- [START_REF] Huang | The linear hyperbolic initial and boundary value problems in a domain with corners[END_REF]]- [Benoit, 2015] or [Benoit, ]. Indeed at present time the full characterization of well-posed boundary value problems in the quarter-space is not achieved yet and such well-posedness result is only known to hold for the (particular) class of problems with (strictly) dissipative boundary conditions (see [Halpern and Rauch, ] or [Benoit, ]).

However having a good idea of the behaviour of the (expected to be) approximate solutions given by geometric optics expansions may help in the establishment of such a characterization.

The result of [Benoit, 2016] gives geometric optics expansions for (1) justifying the seminal work of [Sarason and Smoller,7475] and highlights some new behaviors of the problem compared to the more classical geometry of the half-space. A new phenomenon of interest is the so-called selfinteraction of the phases.

More precisely, for quarter-space problems a phase can be regenerated by iterative reflections against the two sides of the quarter-space. That is to say that we can find at least four phases φ 1 , φ 2 , φ 3 and φ 4 such that φ 1 generates φ 2 , φ 2 generates φ 3 , φ 3 generates φ 4 and finally that φ 4 generates the first phase φ 1 .

The existence of such phases for quarter-space problems is linked with the geometry of the characteristic variety of the problem (1) (we refer to Paragraph 3.1 for more details) and they may seem to be rather anecdotal in the quarter-space (in the sense that except for constructed toy models, the existence of such modes is not so clear). But as pointed in [Benoit, 2020] these phases are in fact generic in the strip geometry in which any phase is a selfinteracting one. In fact selfinteracting phases seem to be generic for problem whose boundary involve several components. In the future we aim to construct geometric optics expansions for problems defined in some (bounded) set whose boundary contains several components so that understand precisely the influence of selfinteracting phases for the quarter-space toy model is a good starting point.

Selfinteracting phases have a real impact on geometric optics expansions. The existence of such phases complicates a little the construction of the geometric optics expansions. Indeed solving the geometric optics cascade of equations amounts to solve an upper triangular system of equations so that in particular we should find an equation that can be solved before all the others in order to initialize the whole resolution of the cascade.

Clearly when selfinteracting phases come into play then it is not so clear that we can start by solving the equation for φ 1 (the first generated phase) then solve φ 2 and so on because the phase φ 1 depends on itself via its descendants.

However in [Benoit, 2016] it is shown that in order to determine the amplitude, u 1 , associated to the phase φ 1 is it sufficient to solve some equation reading under the form (I -T)u 1 = g, where T is some (explicit) linear operator and where g depends (explicitly) on the boundary term g ε .

It is quite interesting to point that in his work aiming to characterize strong well-posedness for quarterspace hyperbolic boundary value problems, Osher (see [Osher, 1973]) exhibits a condition reading under the form (I -T)u |x1=0 = F (g), but where T and F stand for explicit (but complicated) Fourier integral operators.

Such a phenomenon already occurs in the classical geometry of the half-space in which the condition characterizing the strong well-posedness of the problem, namely the uniform Kreiss-Lopatinskii condition of [Kreiss, 1970], also appears at a microlocalized level when one wants to construct the associated geometric optics expansion.

So that, we have good reasons to believe that the condition for the operator T in [Benoit, 2016] is a microlocalized of the corner condition involving T in [Osher, 1973]. As a consequence, the better we understand the simplest microlocalized version, the better we will understand the corner condition of [Osher, 1973] from which we can hope to characterize the strong well-posedness of hyperbolic boundary value problems in the quarter-space.

The first extension of the present article compared to [Benoit, 2016] is directly linked to this question.

Indeed in [Benoit, 2016] the geometric optics expansion is constructed under the assumption that in the phase generation process, glancing phases never appear. Without enter into technical details (we refer to [Benoit, 2016] for a more precise definition) let us indicate that we have to consider in the expansions three kinds of phases in the expansion, the elliptic ones associated to some boundary layers, the hyperbolic ones associated to transport phenomenon and the glancing ones associated to some tangential (along one of the side of the boundary) transport phenomenon.

The selfinteraction operator T of [Benoit, 2016] involves hyperbolic modes and not elliptic modes and because they are excluded from the assumptions it can, of course, not include glancing mode.

In this work we add glancing modes in the geometric optics expansions of (1) and we show in particular that the operator T used to initialize the resolution of the geometric optics expansion cascade do not involve the glancing modes. This phenomena has already been encounter in the strip geometry [Benoit, 2020].

In the author's opinion this fact is a good argument in the direction that the corner condition of [Osher, 1973], if we believe that it is a condition preventing an exponential growth of the solution with respect to time due to iterative reflections against the sides of the domain, may possibly be weakened on some functional space only involving the hyperbolic modes. This is however behind of the scope of the present article and it is left for future studies.

Moreover it is rather fair to say that in [Benoit, 2016] the assumption ensuring that glancing modes never appear is a very restrictive assumption which is really difficult to check effectively. Indeed compared to the half-space geometry, the phase generation process for quarter-space problems is much more elaborate.

We refer to Section 3 or to [Benoit, 2016] for a precise exposition. But because all the possible iterative reflections against the sides of the quarter-space of the phase initially included in g ε have to be considered then it is clear that starting from a non glancing phase is not sufficient to prevent the appearance of such glancing modes at some iteration, we refer for example to Section ??.

So that by including glancing modes the result of the present article is much more applicable than the one of [Benoit, 2016].

The others extensions compared to [Benoit, 2016] are linked to the nature of selfinteraction that are allowed to appear in the phase generation process. Indeed in [Benoit, 2016] we only consider the simplest possible selfinteraction phenomenon that is to say only one selfinteraction phenomenon which only involve four elements φ 1 , φ 2 , φ 3 and φ 4 .

Here we extend the expansions to problems which can admit several selfinteraction phenomenon with more than four elements.

As pointed before, because selfinteracting phases are rather anecdotal1 for quarter-space problems this extension may sound a little artificial and cosmetic.

We however believe that it is not. Indeed, if one wants to construct geometric optics expansions in more complex (bounded) geometries than the quarter-space or the strip then because the selfinteraction phenomenon becomes generic then he/she needs to consider such complicated selfinteraction phenomenon.

So that a good understanding of the problem in the toy model of the quarter-space can be see as a first step to consider such more complicated (and possibly more physically relevant) problems.

The paper is organized as follows. In Section 2 we give some notations, recall some classical definitions for geometric oprics expansions and state the main result of the article, namely the construction of geometric optics expansions for quarter-space problems with glancing modes and "elaborate" selfinteraction phenomenon.

In Section 3 we describe precisely the phase generation process and then collect all the expected phases in the geometric optics expansion. In Section 4 we study the obtained set of phases and we show that we can define on this set some kind of partial order relation even if we have several selfinteraction phenomena.

This relation is then used in Section 5 and 6 as a natural order of resolution of the geometric optics cascade of equations. We first apply this (partial) order of resolution in the simplest framework where we have uniqueness of the selfinteraction phenomenon in Section 5. Then we reach the whole generality of our main result, that is to say that we allow several selfinteraction phenomena in Section 6 by using Section 5.

Section 7 gives some extra materials linked to the justification of the expansion. The first one deals with finite time problems and the consequences on the number of phases in the expansion. The second one is a justification of the expansion if we had a good enough well-posedness theory for the quarter-space problem

(1).

At last Section ?? gives some toy-models exhibiting complicated selfinteraction phenomena considered above and insisting on the possible appearance of glancing modes at any step of the phase generation process.

Notations, definitions and main result

Let us first introduce some generic notations used throughout the text: The notation δ •,• stands for Kronecker symbol.

For some set A the notation #A stands for the cardinal of A.

For z ∈ C we write z := ℜz + iℑz, where ℜz, ℑz ∈ R

Definitions and Assumptions

This paragraph recall some standard definitions which are commonly used in geometric optics expansion and list the main assumptions used in this article.

About the hyperbolic operator

As in [Benoit, 2016] in the following we will consider strictly hyperbolic operators2 in the following sense:

Assumption 2.1 (Strictly hyperbolic operator) The operator L(∂) is strictly hyperbolic that is to say that there exist N real-valued functions λ 1 , ..., λ N analytic on R 2 \ {0} such that

det L (τ, ξ) = N j=1 (τ + λ j (ξ)), ∀ ξ ∈ S 1 ,
where L (τ, ξ) := τ I + 2 j=1 ξ j A j stands for the symbol of L(∂) and where the eigenvalues

λ j satisfy λ 1 (ξ) < λ 2 (ξ) < • • • < λ N (ξ).
We also assume, for simplicity, that the two sides of the boundary, ∂Ω 1 and ∂Ω 2 are non characteristic that is to say that we assume the following Assumption 2.2 [Non characteristics boundary] The matrices A 1 and A 2 are non singular meaning that det A 1 , det A 2 ̸ = 0. We also assume that p 1 (resp. p 2 ), the number of lines of B 1 (resp. B 2 ), equals the number of positive eigenvalues of A 1 (resp. A 2 ).

With Assumptions 2.1 and 2.2 in hand we can perform some frequency analysis of the hyperbolic boundary value problem (1). In order to do so we first introduce the frequency space

Ξ := {ζ := (σ := γ + iτ, η) ∈ C × R, γ ≥ 0} \ {(0, 0)},
and its boundary Ξ 0 := Ξ ∩ {γ = 0}.

We will consider the classical half-space problems associated to (1) namely

     L(∂)u = 0 for (t, x 1 , x 2 ) ∈ R × R × R + , B 2 u |x2=0 = g 2 for (t, x 1 ) ∈ R 2 , u |t≤0 = 0 for (x 1 , x 2 ) ∈ R × R + and      L(∂)u = 0 for (t, x 1 , x 2 ) ∈ R × R + × R, B 1 u |x1=0 = g 1 for (t, x 2 ) ∈ R 2 , u |t≤0 = 0 for (x 1 , x 2 ) ∈ R + × R.
(2)

Performing a Laplace transform t ↭ σ and a Fourier transform with respect to the tangential variable in (2) x 1 ↭ η or x 2 ↭ η leads us to consider the ordinary differential equations

d dx2 u = A 2 (ζ) u for x 2 ≥ 0, B 2 u |x2=0 = g 2 ,
and

d dx1 u = A 1 (ζ) u for x 1 ≥ 0, B 1 u |x1=0 = g 1 , (3) 
where the so-called resolvent matrices A 1 and A 2 are defined by

A 1 (ζ) := -A -1 1 (σI + iηA 2 ) and A 2 (ζ) := -A -1 2 (σI + iηA 1 ). ( 4 
)
The behaviour of the spectrum of the resolvent matrix has a major impact on the solution to (3). As long as the Laplace variable σ admits non vanishing real part then the following lemma due to Hersh ensures that the elements in the spectrum of the resolvent matrix are signed. More precisely Lemma 2.1 (Hersh [Hersh, 1963]) Under Assumptions 2.1 and 2.2 for j = 1, 2 and ζ ∈ Ξ \ Ξ 0 then the resolvent matrix A j (ζ) does not have any purely imaginary eigenvalue. We denote by E s j (ζ) (resp. E u j (ζ)) the stable (resp. unstable) subspace that is the eigenspace associated to eigenvalues with strictly negative (resp. positive) real part. Then we have dim E s j (ζ) = p j and dim E u j (ζ) = N -p j in such a way that

C N = E s j (ζ) ⊕ E u j (ζ). (5) 
In order to define precisely the different kind of phases that we will have to consider to perform the geometric optics expansion of (1) we recall the following theorem which refines Lemma 2.1. This result known as the block structure lemma has first been demonstrated in the seminal work of Kreiss [Kreiss, 1970] for strictly hyperbolic systems and then been extended by Métivier in [Métivier, 2000] to constantly hyperbolic systems:

Theorem 2.1 (Block structure, [Kreiss, 1970], [Métivier, 2000]) Under Assumptions 2.1 and 2.2 for all ζ ∈ Ξ there exists a neighbourhood V of ζ in Ξ, strictly positive integers L 1 and L 2 , two partitions

N = µ 1,1 + µ 1,2 + • • • µ 1,L1 = µ 2,1 + µ 2,2 + • • • µ 2,L2
and two invertible matrices T 1 and T 2 regular on V such that for all ζ ∈ V we have

T -1 1 (ζ)A 1 (ζ)T 1 (ζ) =diag(A 1,1 (ζ), A 1,2 (ζ), ..., A 1,L1 (ζ)), T -1 2 (ζ)A 2 (ζ)T 2 (ζ) =diag(A 2,1 (ζ), A 2,2 (ζ), ..., A 2,L2 (ζ)),
where for j = 1, 2 and l ∈ 1, L j the block A j,l (ζ) ∈ M µ j,l ×µ j,l (C) satisfies one of the following alternatives:

1. all the elements in the spectrum of A j,l (ζ) have negative real part.

2. All the elements in the spectrum of A j,l (ζ) have positive real part.

3. We have

µ j,l = 1, A j,l (ζ) ∈ iR, ∂ γ A j,l (ζ) ∈ R \ {0} and finally A j,l (ζ) ∈ iR for all ζ ∈ V ∩ Ξ 0 .
4. We have µ j,l > 1 and there exists some k j,l ∈ iR such that

A j,l (ζ) =    k j,l i 0 . . . i 0 k j,l    ,
where the coefficient in the lower left corner of

∂ γ A j,l (ζ) ∈ R \ {0}. Moreover for all ζ ∈ V ∩ Ξ 0 we have A j,l (ζ) ∈ M µ j,l ×µ j,l (iR).
Thanks to this theorem we can define precisely the four kinds of frequencies that we will consider in the following.

Definition 2.1 For j = 1, 2 the boundary Ξ 0 decomposes into

Ξ 0 := E j ∪ EH j ∪ H j ∪ G j ,
where we introduced 1. E j , the set of elliptic frequencies, that is to say the set of boundary frequencies ζ ∈ Ξ 0 such that Theorem 2.1 for the matrix A j is satisfied with blocks of 1. and 2. only.

2. EH j , the set of mixed frequencies, that is to say the set of boundary frequencies ζ ∈ Ξ 0 such that Theorem 2.1 for the matrix A j is satisfied with blocks of 1., 2., and at least one block of type 3. but zero block of type 4..

3. H j , the set of hyperbolic frequencies, that is to say the set of boundary frequencies ζ ∈ Ξ 0 such that Theorem 2.1 for the matrix A j is satisfied with blocks of 3. only.

4. G j , the set of glancing frequencies, that is to say the set of boundary frequencies ζ ∈ Ξ 0 such that Theorem 2.1 for the matrix A j is satisfied with at least one block of type 4..

The study made for instance in [Kreiss, 1970] shows that the stable subspaces E s 1 (ζ) and E s 2 (ζ) which are well-defined for ζ ∈ Ξ \ Ξ 0 because of Lemma 2.1 can be extended by continuity (without any change of notation for the extension) up to the boundary Ξ 0 . In the following we need to describe with enough precision these extended stable subspaces

E s 1 (ζ) and E s 2 (ζ).
We start by the simplest case where

ζ ∈ Ξ 0 \ (G 1 ∪ G 2 ).
In such a framework, decomposition (5) still holds in the limit and we have

C N = E s 1 (ζ) ⊕ E u 1 (ζ) = E s 2 (ζ) ⊕ E u 2 (ζ) (6) 
where we can decompose for j = 1, 2:

E s j (ζ) := E s,e j (ζ) ⊕ E s,h j (ζ) and E u j (ζ) := E u,e j (ζ) ⊕ E u,h j (ζ), (7) 
where E s,e j (ζ) (resp. E u,e j (ζ)) is the generalized eigenspace associated to generalized eigenvalues of A j (ζ)

with negative (resp. positive) real part; and where E s,h j (ζ) and E u,h j (ζ) are sums of eigenspaces associated to purely imaginary eigenvalues of A j (ζ).

We will give a more precise description of the hyperbolic subspaces namely E s,h j (ζ) and E u,h j (ζ). Let iω m,j be a purely imaginary eigenvalue of A j (ζ) so that we have det(τ I +ηA 1 +ω m,2 A 2 ) = det(τ I +ω m,1 A 1 +ηA 2 ) = 0. From the hyperbolicity Assumption 2.1 one can find an index k m,j ∈ 1, N such that we have

τ + λ km,2 (η, ω m,2 ) = τ + λ km,1 (η, ω m,1 ).
Because the eigenvalues λ •,• are assumed to be regular we introduce Definition 2.2 (Group velocities) We define:

The set of incoming (resp. outgoing) phases for the side ∂Ω 1 denoted by I 1 (resp. O 1 ) is the set of indices m such that the group velocity

v m := ∇λ km,1 (ω m,1 , η) satisfies v m,1 = ∂ 1 λ km,1 (ω m,1 , η) > 0 (resp. v m,1 = ∂ 1 λ km,1 (ω m,1 , η) < 0).
The set of incoming (resp. outgoing) phases for the side ∂Ω 2 denoted by I 2 (resp. O 2 ) is the set of indices m such that the group velocity

v m := ∇λ km,2 (η, ω m,2 ) satisfies v m,2 = ∂ 2 λ km,2 (η, ω m,2 )) > 0 (resp. v m,2 = ∂ 2 λ km,2 (η, ω m,2 ) < 0).
The set of glancing modes for the side ∂Ω 1 (resp. ∂Ω 2 ) denoted by G 1 (resp. G 2 ) is the set of indices m such that the group velocity v m satisfies v m,1 = 0 (resp. v m,2 = 0).

We can now describe more precisely the hyperbolic subspaces. The following decompositions hold: Proposition 2.1 Let j = 1, 2 then for all ζ ∈ H j ∪ EH j we have the decompositions

E s,h 1 (ζ) = ⊕ m∈I1 ker L (τ , ω m,1 , η), E u,h 1 (ζ) = ⊕ m∈O1 ker L (τ , ω m,1 , η), (8) 
E s,h 2 (ζ) = ⊕ m∈I2 ker L (τ , η, ω m,2 ), E u,h 2 (ζ) = ⊕ m∈O2 ker L (τ , η, ω m,2 ), (9) 
where we recall that L (•) stands for the symbol of L(∂).

Because we are working in a quarter-space we have to refine a little the above definition Definition 2.3 (Kinds of hyperbolic phases) Let v := (v 1 , v 2 ) ∈ R 2 be a placeholder for some group velocity to some index. We say that the group velocity v (and by extension that the index) is

outgoing-outgoing if v 1 , v 2 < 0. outgoing-incoming if v 1 < 0 and v 2 > 0. incoming-outgoing if v 1 > 0 and v 2 < 0. incoming-incoming if v 1 , v 2 > 0.
glancing for the side

∂Ω 1 if v 1 = 0, independently of v 2 .
glancing for the side ∂Ω 2 if v 2 = 0, independently of v 1 .

We now consider the case where the frequency ζ ∈ G j for j = 1, 2. In such a situation because we have

E s j (ζ) ∩ E u j (ζ) ̸ = {0}
then the decomposition (6) does not hold any more. We thus give the description

E s j (ζ) := E s,h j (ζ) ⊕ E s,e j (ζ) ⊕ E s,g j (ζ) and E u j (ζ) := E u,h j (ζ) ⊕ E u,e j (ζ) ⊕ E u,g j (ζ), (10) 
where E •,h j (ζ) and E •,e j (ζ) are as above and where E s,g j (ζ) and E u,g j (ζ) are sums of eigenspaces associated to the Jordan block(s) of A j (ζ) and thus satisfying E s,g j (ζ) ∩ E u,g j (ζ) ̸ = {0}. Like for hyperbolic modes the glancing subspaces E s,g j (ζ) and E u,g j (ζ) can be described in terms of the group velocities and of the kernel of the symbol of L(∂) we have

E s,g 1 (ζ) := ⊕ m∈G1 ker L (τ , ω m,1 , η) and E s,g 2 (ζ) := ⊕ m∈G2 ker L (τ , η, ω m,2 ). (11) 
In this article we will use the same assumption as in [Williams, 2000] about the size of the glancing modes. Indeed for glancing modes of size more than two then the construction of the geometric optics expansions for half-space problems is a rather open question. It is possibly an impossible question because in [Williams, 2000], Williams gives examples of systems with glancing modes of order more than two which behave badly (at least for the L ∞ -norm).

So that we assume in the following that the glancing modes are all of size two. More precisely, we assume Assumption 2.3 (Size of glancing modes) Let j = 1, 2 and consider ζ ∈ G j then any block of type 4.

in Theorem 2.1 is of size two.

With this assumption in hand we have that the subspaces E s,g

1 (ζ) = E u,g 1 (ζ) and E s,g 2 (ζ) = E u,g 2 (ζ) are one dimensional eigenspaces of A 1 (ζ) and A 2 (ζ) respectively.
In such a framework, using Proposition 2.1 we can precise the decomposition (10) as:

Proposition 2.2 Let j = 1, 2 and ζ ∈ G j then we have the decompositions

E s 1 (ζ) = ⊕ m∈I1 ker L (τ , ω m,1 , η) ⊕ m∈G1 ker L (τ , ω m,1 , η) ⊕ E s,e 1 (ζ), E u 1 (ζ) = ⊕ m∈O1 ker L (τ , ω m,1 , η) ⊕ m∈G1 ker L (τ , ω m,1 , η) ⊕ E u,e 1 (ζ), E s 2 (ζ) = ⊕ m∈I2 ker L (τ , η, ω m,2 ) ⊕ m∈G2 ker L (τ , η, ω m,2 ) ⊕ E s,e 2 (ζ), E u 2 (ζ) = ⊕ m∈O2 ker L (τ , η, ω m,2 ) ⊕ m∈G2 ker L (τ , η, ω m,2 ) ⊕ E u,e 2 (ζ).

About the boundary conditions

Hereinafter we assume that each side of the boundary ∂Ω satisfies the condition ensuring the strong wellposedness of each half-space problems in (2), that is to say that each boundary condition B 1 and B 2 satisfies the so-called uniform Kreiss-Lopatinskii condition of [Kreiss, 1970].

The results of [Osher, 1973] indicate that choose such boundary conditions is a necessary (but not sufficient) condition for the strong well-posedness of the quarter-space problem (1). We refer to Section 7 for more details about strongly well-posed boundary value problems in the quarter-space.

Assumption 2.4 (Uniform Kreiss-Lopatinskii condition) For all ζ ∈ Ξ, we assume that

ker B 1 ∩ E s 1 (ζ) = ker B 2 ∩ E s 2 (ζ) = {0}.
In particular, the restriction of the boundary matrix B 1 (resp. B 2 ) to the (extended) stable subspace

E s 1 (ζ) (resp. E s 2 (ζ)) is invertible. Its inverse being denoted by ϕ 1 (ζ) := B -1 1 |E s 1 (ζ) (resp. ϕ 2 (ζ) := B -1 2 |E s 2 (ζ) ).

Main result

The main result of the article are stated below see Theorem 2.2 and Corollary 2.1. They extend the results of [Benoit, 2016] To state precisely our main result we need first to introduce the following set of profiles. We first define

H ∞ ♮ (R × R + ) := u ∈ H ∞ (R × R + ) \ ∀ n ∈ N, (∂ n y u) |y=0 = 0 ,
the set of flat functions at the corner. Then we introduce the following set for hyperbolic profiles

H ∞ ♮ (Ω) := u ∈ H ∞ (Ω) \ u |x1=0 , u |x2=0 ∈ H ∞ ♮ (R × R + ) .
For glancing and elliptic modes because they are linked to boundary layers we define P as the set of functions u p = u(t, x 3-p , Y p ) with fast decay with respect to the fast variable Y p (we refer to Definition 5.1 for a more precise statement).

Theorem 2.2 Under the Assumptions 2.1,2.2,2.4 and 2.3 on the problem (1). If the frequencies set, F , associated to (1) is complete for the reflections and satisfies the structure Assumption 4.2 and if we have the invertibility Assumption 6.1 then for all n ∈ N the geometric optics expansion cascade of equations (26),( 31) and (32) admits solutions in a suitable space of profiles.

If the problem (1) is defined in

Ω T := ]-∞, T [ × R 2
+ for some T > 0, instead of Ω then one has that Assumption 6.1 is automatically satisfied.

At last, if #F < ∞ so that the ansatz (25) makes sense (as a finite sum). In particular, it can be truncated at the order n = N 0 to define u ε app,N0 (see ). If moreover the problem (1) is strongly well-posed in L 2 then u ε app,N0 is an approximate solution to (1) in the sense that

∀ N 0 ∈ N, ∥u ε -u ε app,N0 ∥ L 2 (Ω T ) ≤ C √ ε N0+1 ,
where we stress that C > 0 does not depend on ε. 3 The phase generation process

In this paragraph we recall for a sake of completeness the main ideas in the phase generation process for geometric optics expansion in a quarter-space. More precisely, we will use the analysis of [Benoit, 2016] to describe the generation of phases coming from the reflection of an incoming/outgoing or, an outgoing/incoming phase by repeated reflections against the sides of the boundary. This is the subject of Paragraph 3.1.

However compared to [Benoit, 2016] we also have to include the possible reflections of glancing modes.

In order to do so we will use the first order approximation of [Williams, 1996] to justify that glancing modes do not create any new phases in the process. This is not clear at first glance because we know from [Williams, 1996] and [Williams, 2000] that glancing modes create boundary layer localized along the side for which they are glancing modes.

More precisely if we have a glancing mode for the side ∂Ω 1 then we have to consider in the expansion a term reading χ(x 1 / √ ε) g(t, x 2 ) where χ has fast decay and where g depends explicitly on the source g. As a consequence if we consider the contribution on the side ∂Ω 2 we have two cases to separate:

On the one hand, because of the fast decay of χ, the boundary term χ g(t, 0) can not contribute on the

side ∂Ω 2 when {x 1 ≥ C √ ε} because it is O( √ ε ∞ ).
But on the other hand, near the corner that is that for {x 1 < C √ ε} then the boundary term χ g(t, 0) is a priori O(1) so that it can give a non trivial contribution in the boundary on ∂Ω 2 . We will however justify that using the flatness assumption on the boundary datum g this contribution is zero.

A precise discussion is made in Paragraph 3.2

3.1 The phase generation process of [Benoit, 2016] 3.1.1 The phase generation process for hyperbolic phases

To describe the phase generation process we start from the boundary value problem (1) in which we fix for oscillating boundary term a term g ε reading under the form

g ε (t, x 2 ) := e i ε ψ(t,x2) g(t, x 2 ), (12) 
where the amplitude g is sufficiently regular, vanishes for negative times and let us say that it has its support away from {x 2 = 0}. In (12) the phase function ψ is linear and is given by

ψ(t, x 2 ) := τ t + ξ 2 x 2 ,
for given real frequencies numbers τ , ξ 2 .

Because L(∂) is assumed to be hyperbolic then it comes with some finite speed of propagation property 3 then the solution turned on by the supported source g ε can not hit the side ∂Ω 2 immediately. So that, at least during a small time, the problem does not see its boundary condition on ∂Ω 2 and we can thus consider the half-space boundary problem

     L(∂)u ε = 0 in R × R + × R, B 1 u ε |x1=0 = g ε on R 2 , u ε |t≤0 = 0 on R + × R. ( 13 
)
3 Indeed construct geometric optics expansions for linear operator amounts to solve transport equations

It is thus natural to choose for first ansatz the one associated to (13). Following [Williams, 1996] and [Williams, 2000] this ansatz can contain three different kinds of terms depending on the nature of the initial boundary frequency (iτ , ξ 2 ) ∈ Ξ 0 (we refer to Definition 2.1) and it reads

u ε ∼ n≥0 √ ε n k∈I ∪O e i ε φ k u n,k + k∈G1 e i ε φ k u n,k + e i ε ψ U ev,n (14) 
where I , O and G stand respectively for the incoming, outgoing and glancing sets of indices for the boundary value problem (13). The phases functions φ k for such k are then defined by φ k (t, x) := ψ(t, x 2 ) + ξ k 1 x 1 , where the ξ k 1 denote the real roots in the ξ 1 variable of the dispersion relation det

L (τ , ξ 1 , ξ 2 ). ( 15 
)
Consequently in ( 14) the so-called evanescent amplitudes U ev,n are linked with the (purely) complex roots of the dispersion relation. It gives rise to a boundary layer at scale ε. Similarly following [Williams, 2000] the glancing amplitudes, namely the u n,k for k ∈ G give rise to boundary layer at scale √ ε. The influence of such layers are investigated in Paragraph 3.2.

To end up this paragraph we recall the main ideas to determine the descendants of the hyperbolic amplitudes u n,k for k ∈ I ∪ O. We refer to [Benoit, 2016] for a complete exposition.

In order to determine the future of the amplitudes u n,k for k ∈ I ∪ O we have to consider the distinction introduced in Definition 2.3. We thus have four cases to consider

If k ∈ O and if v k is outgoing-outgoing, then the associated amplitude is automatically zero without forcing term in the interior. So that such an index can be excluded from the ansatz ( 14).

If k ∈ O and if v k is outgoing-incoming, because there is no non trivial source term in the interior or on the boundary ∂Ω 2 such an index can be initially excluded from ( 14). However because of the selfinteraction phenomenon nothing prevents that such a phase comes back in the generated phases by the incoming modes which are described bellow.

If k ∈ I and if v k is incoming-incoming, then the transported information will never hit the boundary ∂Ω 2 . It spreads to infinity, it will never be reflected back. As a consequence incoming-incoming group velocities are ending points in the phase generation process.

If k ∈ I and if v k is incoming-outgoing then by definition the transported information hits, after some (strictly) positive time of travel, the boundary ∂Ω 2 . It will create some new phases during the reflection and we have to describe these phases.

In order to do so we fix one incoming-outgoing phase φ k . Let us remark that because g has its support away from the corner the same property holds for the impacted term (by resolution of a transport equation) so that the finite time of propagation argument applies and we are thus leading to consider the boundary value problem in the upper half-space:

     L(∂)u ε = 0 in R × R × R + , B 2 u ε |x2=0 = F (g ε ) on R 2 , u ε |t≤0 = 0 on R × R + , (16) 
where F (g ε ) is some (explicit) source term depending on the trace on {x 2 = 0} of the considered incomingoutgoing phase. In term of phase functions this term oscillates with respect to the new boundary phase ψ(t, x 1 ) := τ t + ξ 1 x 1 . So that, the reflected amplitudes oscillate with respect to the phase functions φ k ′ (t, x)

where the real parameters ξ k ′ 2 are determined as the (real) roots in the ξ 2 variable of the dispersion relation

det L (τ , ξ k 1 , ξ 2 ). ( 17 
)
If this relation admits (purely) complex roots we also have to consider an evanescent profile during the reflection. Similarly during this reflection glancing modes for the side ∂Ω 2 may appear.

We thus add to (14) the terms obtained so far so that it reads under the form

u ε ∼ n≥0 √ ε n   k∈I hyp e i ε φ k u n,k + k∈G1∪G2 e i ε φ k u n,k + e i ε ψ U ev,1,n + e i ε ψ U ev,2,n   ( 18 
)
where I hyp stands for a shorthand notation for the collection of the above incoming-incoming, incomingoutgoing and outgoing-incoming; where G 2 contains the (possible) new glancing modes and where U ev,2,n stands for the amplitude associated to the (possible) new evanescent mode.

Repeating the same arguments as for the boundary value problem (13) we have to determine the reflections against the side ∂Ω 1 of the new outgoing-incoming amplitudes in (18). We then repeat the procedure until that to some reflection the obtained hyperbolic phases are all incoming-incoming, evanescent or as it will be justified below glancing. This stops the determination of the descendants of the first considered incoming-outgoing phase. We then repeat the same process for all initial incoming/outgoing phases.

In terms of the section of the characteristic variety V defined by

V := {(ξ 1 , ξ 2 ) ∈ R 2 \ det L (τ , ξ 1 , ξ 2 ) = 0},
the phase generation procedure is easily to represent. Indeed we first consider the roots in the ξ 1 variable of the dispersion relation ( 15). So that we select the intersections of V with the horizontal line ξ 2 = ξ 2 .

Possible complex roots can be seen as points at infinity.

Then for each incoming-outgoing4 intersection we consider the roots in the ξ 2 variable of ( 17) so that we now select the intersections of V with the vertical line ξ 1 = ξ k 1 . This procedure is repeated as long as we obtain incoming-outgoing or outgoing-incoming modes.

We refer to [ [Benoit, 2015]-Chapitre 6] for some examples describing in all details this procedure (see also [Benoit, 2016]).

Selfinteraction and loops in a nutshell

Selfinteraction loops In the above paragraph selfinteraction has been totally ignored. However as shown in [Benoit, 2016] see also [?] as soon as the boundary of the domain admits several components the phases can regenerate themselves after a suitable number of the reflections described above.

The simplest selfinteraction phenomenon is the one described in [Benoit, 2016] and it involves only four phases. Let use denote by φ 1 an incoming-outgoing phase turned on by the boundary source term g ε . Also assume that this source comes with an outgoing-incoming phase φ 4 .

We said in the above discussion that we neglect all the outgoing-incoming phases turned on by the source term, so that in particular we neglect φ 4 . In fact, we should not. Indeed, consider that the phase φ 1 is reflected against ∂Ω 2 according to the above phenomena into an outgoing-incoming φ 2 . Assume then that φ 2 is reflected against ∂Ω 1 into an incoming-outgoing phase φ 3 .

Then the amplitude associated to φ 3 travels. It hits the side ∂Ω 2 and nothing prevents that in the reflected phases one recovers the initially excluded outgoing-incoming phase φ 4 . So that this phase, as a reflection of φ 3 , must be considered in the ansatz. When one studies the reflection of the phase φ 4 against the side ∂Ω 1 then according to the above discussion about reflections he/she recovers the first considered phase φ 1 . We thus say that the phase φ 1 regenerates itself or is selfinteracting because it is regenerated by itself during the reflections against the sides of the domain.

In terms of the geometry of V we can thus find a rectangle whose vertex namely s 1 , s 2 , s 3 and s 4 are points of V , see Figure 1 where the red points are associated to incoming-outgoing phases, the blue points being associated to outgoing-incoming phases.

Of course, nothing prevents the initially neglected phase to appear after more than three reflections so that if we want to consider generic selfinteraction phenomenon we should consider in the geometry of V

s 2 s 3 s 4 s 1 Figure 1:
The simplest possible loop more generic figures than rectangles that is to say some "stairway like" configurations. Such configurations are called loops and are precisely described in Definition 4.5. We give two illustrations in Figures 2 and3. ticular they require some new initialization condition in the geometric optics expansions. However, let us point that other "stairway" like loops in V can also appear. These kind of loops was excluded [Benoit, 2016] to have the simplest possible proof.

s 2p-2 s 2p-1 s 1 2p s 1 s 2 s 3 s 4 Figure 2: A "stairway" like loop s 2p-2 s 2p-1 s 2p s 1 s 2 s 3 s 4
We describe in the following two kinds of such loops:

The first one involves an incoming-incoming phase. Let us remark that in the phases generation process such phases can appear during reflections against the side ∂Ω 1 or also ∂Ω 2 as a consequence nothing prevents a priori one incoming-incoming amplitude, let us say associated to the phase φ ii , to be generated once against the side ∂Ω 1 and once against the side ∂Ω 2 . We illustrate the following situation on Figure 4. On this figure we see that there exist two paths of phases leading to the incoming-incoming amplitude φ ii one starting by the first descendant of the selfinteracting phase s 1 , the second starting by the second descendant.

We will see that the existence of such multiple paths of phases to generate the considered incomingincoming phase will be particularly important in the order of determination of the leading order amplitudes.

s 2 s 1 • • • • φ ii • Figure 4: Non selfinteraction loop with incoming-incoming phase
And consequently also in the order of resolution of the whole cascade of equations.

The same kind of behaviour can also arise for non incoming-incoming phases. Indeed, let us consider the two following possible situations.

In the first one we consider an incoming-outgoing phase φ i which has been obtained after three reflections of the first (outgoing-incoming) descendant i of s 1 and a direct incoming-outgoing descendant, namely φ j , of the second descendant j of s 1 . Then nothing prevents that the phases φ i and φ j verify ξ i 1 = ξ j 1 so that we have again a loop in V . We refer to Figure 5 for a description.

Let us however point that such a situation is not at all an issue because we can easily determine φ i and φ j independently the one from the other. Indeed, these phases are both incoming-outgoing so that for their resolutions the amplitudes u i and u j associated to the above phases only require the trace value on {x 1 = 0} where the coupling condition

ξ i 1 = ξ j 1 disappears.
The situation becomes a little more complicated in the following example depicted on Figure 6. It is In such a configuration the outgoing-incoming indices j and ℓ are in the situation of Figure 5 so that the determination of such amplitudes is not really an issue. The point of interest is now the determination of the incoming-outgoing phase φ j .

s 2 s 1 • j • i • • • • φ i φ j
Indeed it is now generated by two distinct path of phases. Firstly directly as a reflection of j. Secondly we obtain j as a descendent of i via the path (i, k, ℓ). So that, in order to determine φ j , we will have to determine all the above amplitudes first and thus in the presence of several (non selfinteracting) loops the determination of a specific amplitude can necessitate the determination of several (independent) sequences The main idea used to overcome this difficulty is that in each of the different paths leading to φ j the indices are not (yet) concerned with this loop issue so that they can be determined before to proceed to the resolution of φ j . [Williams, 1996] as a guide for understand the influence of glancing modes

s 2 s 1 • j • i • • • • φ i φ j • k • ℓ

The work of

In this paragraph we justify that in the phase generation process described in Paragraph 3.1 we can effectively neglect the possible descendants of glancing phases. The main idea for doing this is that these terms are boundary layers so that they can be neglected away for the boundary where they are O(ε ∞ ). Near the boundary they behave like the source g so that they are zero because of the support assumption on g or by any flatness assumption.

To precise the above remark we will show the affirmation on the simplified first order approximation proposed by Williams in [Williams, 1996]. We thus consider the crude ansatz

u ε app :=   1 n=0 ε n k∈I hyp e i ε φ k u n,k + k∈Ig 1 ∪Ig 2 e i ε φ k u n,k   , (19) 
where I hyp stands for the set of all hyperbolic indices and where I g1 ∪ I g2 collects the glancing indices (we refer to Definiton 4.1 for more precise definitions). To simplify the exposition, we also assume that the ansatz does not contain any evanescent modes. Indeed these modes can be determined independently on the oscillating ones. We refer to Paragraph 5.2.2 for more details.

By crude we mean that in order to obtain an higher order approximation the scaling should be refined in √ ε as in [Williams, 2000] and we also need to add some extra correctors.

However the analysis of [Williams, 1996] shows that such a candidate is a good first order approximation so that if we can justify on this first order approximation that the glancing boundary layers do not have any descendants then the same should hold for the high order approximation ansatz (18).

We assume without loss of generality that the initial frequency (iτ , ξ 2 ) ∈ G 1 , let k ∈ G 1 be a glancing index associated to one of the glancing phases. To save some notations we also assume that it is the only glancing phase appearing in the process. We explain at the end of the paragraph how the discussion can be generalized when several glancing modes appear.

Plugging the ansatz (19) in the interior equation of (1) leads us to solve (for the considered glancing leading order amplitude) the (usual) equations

L (dφ k )u 0,k = 0, iL (dφ k )u 1,k + L(∂)u 0,k = 0.
The first equation is the classical polarization condition while using Lax lemma [Lax, 1957] (see also Paragraph 5.2 for more details) the second equation is equivalent to the transport equation

(∂ t + v k • ∇ x )u 0,k = 0, ( 20 
)
where v k is the (glancing) group velocity introduced in Definition 2.2 and thus it satisfies v k,1 = 0.

Injecting the ansatz ( 19) in the boundary conditions of (1) gives

B 1 u 0,k + k∈Iio∪Iii u 0,k |x1=0 = g -B 1 k∈Ioi u 0,k |x 1 =0 , B 2 k∈Ioi∪Iii u 0,k |x2=0 = -B 2 k∈Iio u 0,k |x 2 =0 -B 2 u 0,k |x 2 =0 , (21) 
where the sets of indices I • are introduced in Definition 4.1. The precise definition is however of little interest for the following discussion. The only thing to keep in mind when we read ( 21) is that the left-hand side of the first (resp. second) is sum of elements of

B 1 E s 1 (resp. B 2 E s 2 ).
For glancing modes we are thus face to an extra difficulty compared to hyperbolic modes. Indeed we have some overdetermination issue in the equations.

On the one hand, we have from the definition that in (20), the normal velocity v k,1 = 0 so that the transport is tangent to the boundary ∂Ω 1 and consequently no boundary condition on ∂Ω 1 has to be imposed.

On the other hand, we have to satisfy the boundary condition on ∂Ω 1 given by ( 21).

In other words, one has to choose between Charybdis and Scylla by solving the interior equation or the boundary condition. The other equation been unsatisfied.

Following [Williams, 1996] it is however not a real choice. Indeed, from the error analysis (see Section 7 for more details) in order that (19) approximates the exact solution u ε we have to solve the boundary condition exactly. Indeed, if it not solved then we have an error at scale O(1) in the error estimate and thus the ansatz (19) does not give an approximate solution. While if we have some error in the interior then one can construct some corrector that is to say choose u 1,k in (19) in such a way that this O(1) error term in the interior vanishes.

Using the uniform Kreiss-Lopatinskii condition (see Definition 2.4 and Paragraph 5.2.1 for more details) the boundary condition on ∂Ω 1 shows that the trace of the glancing mode is

u 0,k |x 1 =0 = Π k ϕ 1 (ζ) g -B 1 k∈Ioi u 0,k |x 1 =0 , (22) 
where Π k := Π k (ζ) is just a projection selecting the component of the trace associated to the glancing mode.

It is clearly defined in Definition 4.6.

If we assume first for simplicity that the frequency ζ is not selfinteracting so that there is no outgoingincoming amplitude in the right-hand side, then (22) uniquely determines the trace of the glancing amplitude. Because we are not interested in solving the equation in the interior we are free to extend this trace in the interior as a boundary layer and we define

u 0,k (t, x) := χ x 1 √ ε Π k ϕ 1 (ζ)g(t, x 2 ), (23) 
where χ has fast decay so that we have ∥u 0,k ∥ L 2 (Ω) = O( √ ε) which is sufficient for the error analysis in the interior.

We are now interested in the trace on ∂Ω 2 of such a glancing amplitude we have, directly from (23), using the fact that g vanishes near the corner that u 0,k (t, x 1 , 0) = 0, as a consequence this term vanishes in the right-hand side of the second equation of ( 21). It can thus not give rise to some non trivial information on ∂Ω 2 .

In other words, the boundary layer turned on by the glancing index k can not be reflected against ∂Ω 2 and thus this term has no descendants in the phase generation process by reflections. Exactly as incomingincoming phases, glancing modes are ending point in the phase generation process.

If now the frequency ζ is selfinteracting then the right-hand side of ( 22) contains a term indexed by k ∈ I oi . Then the same arguments apply because we know from the analysis of [Benoit, 2016] that the obtained traces for selfinteracting modes inherit the flatness at the origin from the source g.

Once the leading order glancing amplitude u 0,k has been constructed then following [Williams, 1996] we can define a suitable first order corrector u 1,k in such a way that

∥u ε -u ε app ∥ L 2 (Ω) is O(ε 1/4 ).
The same kind of arguments can then be extended for glancing modes appearing after some reflections against the side ∂Ω 1 or ∂Ω 2 . The only required ingredient is that the hyperbolic amplitudes encounter to generate the glancing mode have vanishing traces near the corner (or are at least flat at the origin). This is again a consequence of the fact that g vanishes near the corner and that hyperbolic modes are solution to transport equations.

Structures of the set of indices

Now that the phase generation process for ( 1) is described and that we have all the expected phases in the ansatz then we have to find some structure in the set of indices in order to find an ordered way to solve the geometric optics expansion cascade of equations.

In the following because we want to consider several loops the order of resolution will not be as simple as in [Benoit, 2016] for which the uniqueness of the selfinteraction loop implies that we can:

1. Firstly, find some necessary condition to determine the amplitudes of the elements of the loop.

2. Secondly, determine the amplitudes of the elements in a direct vicinity of the loop.

3. Finally, define a partition of the remaining indices, partition composed of trees whose roots are in the direct vicinity of the loop and solve inductively in the trees.

This ideal situation is depicted on Figure 4. In particular we see that for example the situation of Figure 4 is a counter-example to the tree structure of Figure because in such a setting the trees are intersecting so that we do not have a partition any more.

The order of determination used in [Benoit, 2016] is then not defined any more soon as the set of indices contains a loop (not necessarily a selfinteraction one) in addition of the first considered selfinteraction loop.

Indeed as depicted in Figures 4 or 6 the determination of an element in the vicinity of the loop may require the knowledge of some elements that have been reflected several times.

As a consequence, we will adopt as an order of resolution for the indices an ordered based on the number of distinct ways to generate the index i from s 1 (namely the selfinteraction loop element turned on by the source).

From a structure of the set of indices point of view this leads us to consider all the sequences (we refer to Definition 4.4 for a precise statement) linking s 1 1 to the index i. We insist on the fact that we do not have as in [Benoit, 2016] uniqueness of such sequences.

In order to make this order precise we recall in Paragraph 4.1 some elements borrowed from [Benoit, 2016].

Then we adapt these objects to the framework where there only exists a unique selfinteraction loop but to multiple non-selfinteraction loops in Paragraph 4.2 and to multiple (simple) interaction loops (or not) in Paragraph 4.3. 
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Structure of the set of indices

We recall the following definitions from [Benoit, 2016]. The second one is just the generalization of Definition 4.2 of [Benoit, 2016] to frequencies set containing glancing modes.

Definition 4.1 [Frequencies set]

Let I ⊂ N and τ ∈ R we say that a set, F , indexed by

I F := {f i := (τ , ξ i 1 , ξ i 2 ) \ i ∈ I },
is a frequencies set for the quarter-space problem (1) if for all i ∈ I we have first

det L (f i ) = 0, f i ̸ = 0,
meaning that f i = dφ i solves the eikonale equation of (1). And if moreover we have one of the following alternatives

1. ξ i 1 , ξ i 2 ∈ R. 2. ξ i 1 ∈ C \ R, ξ i 2 ∈ R and ℑξ i 1 > 0. 3. ξ i 2 ∈ C \ R, ξ i 1 ∈ R and ℑξ i 2 > 0.
For a frequencies set F we define the partition

F := F os ∪ F ev1 ∪ F ev2 ,
where

-F os is the set of f i ∈ F satisfying 1. -F ev1 is the set of f i ∈ F satisfying 2.
-F ev2 is the set of f i ∈ F satisfying 3.

The set of oscillating frequencies, namely F os is decomposed as follows

F os := F ii ∪ F io ∪ F oi ∪ F oo :=F hyp ∪F g1 ∪ F g2
where

-F ii := {f i ∈ F os \ v i,1 , v i,2 > 0} -F io := {f i ∈ F os \ v i,1 > 0 and v i,2 < 0} -F oi := {f i ∈ F os \ v i,1 < 0 and v i,2 > 0} -F oo := {f i ∈ F os \ v i,1 , v i,2 > 0} -F g1 := {f i ∈ F os \ v i,1 = 0} -F g2 := {f i ∈ F os \ v i,2 = 0}
where we recall that v i := (v i,1 , v i,2 ) ∈ R 2 stands for the group velocity introduced in Definition 2.2.

Finally for one of the above subspaces of F , namely F ⋆ , we define I ⋆ the subspace of I of indices i

such that f i ∈ F ⋆ .
We precise the previous definition by a refinement ensuring that we take into account all the terms in the phases generation process of Section 3.

Definition 4.2 (Complete for reflection frequencies set) The corner problem (1) is said to be complete for the reflections if there exists a set of frequencies F satisfying the following properties:

1. The set F contains all the real roots (in the ξ 1 variable) associated to incoming-outgoing or incomingincoming group velocities, the real roots associated to glancing modes for the side ∂Ω 1 and the complex roots with positive imaginary part of the (initial 3. If (τ , ξ i 1 , ξ i 2 ) ∈ F oi , then F contains all the roots (in the ξ 1 variable), denoted by ξ p 1 , of the dispersion relation det L (τ , ξ 1 , ξ i 2 ) = 0 satisfying one of the following two alternatives (a) ξ p 1 ∈ R and the frequency (τ , ξ p 1 , ξ i 2 ) is associated to an incoming-outgoing group velocity, an incoming-incoming group velocity or is glancing for the side ∂Ω 1 .

) dispersion relation det L (τ , ξ 1 , ξ 2 ) = 0. 2. If (τ , ξ i 1 , ξ i 2 ) ∈ F io ,
(b) ℑξ p 1 > 0.

4. The set F is minimal (for the inclusion) for the preceding properties.

As in [Benoit, 2016], once that we have a complete for reflections set of frequencies we define the functions Φ, Ψ which associate to an index i ∈ I the indices which are in a "direct vicinity" of i. By direct vicinity of an index i we understand both the indices obtained during a reflection of i or the indices containing i in their descendants during a reflection.

More precisely, let P N (I ) be the power set of I with at most N elements then we define Φ, Ψ : I → P N (I ) by the relations: for i ∈ I associated to the frequency

f i = (τ , ξ i 1 , ξ i 2 ); Φ(i) := j ∈ I \ ξ j 2 = ξ i 2 and Ψ(i) := j ∈ I \ ξ j 1 = ξ i 1 .
The following properties being independent of the existence of loops in the frequencies set they follow the proof of [Benoit, 2016].

Proposition 4.1 Let F be complete for the reflections frequencies set then the applications Φ and Ψ satisfy the properties:

1. ∀ i ∈ I we have i ∈ Φ(i) and i ∈ Ψ(i). 2. ∀ i ∈ I , ∀ j ∈ Ψ(i) and ∀ k ∈ Φ(i) we have Ψ(i) = Ψ(j) and Φ(k) = Φ(i). 3. ∀ i ∈ I we have Φ(i) ∩ I ev2 = Φ(i) ∩ I g2 = ∅ and Ψ(i) ∩ I ev1 = Φ(i) ∩ I g1 = ∅; moreover 4. ∀ i ∈ I os we have #(Φ(i) ∩ I ev1 ∩ I io ∩ I ii ∩ I g1 ) ≤ p 1 and #(Ψ(i) ∩ I ev2 ∩ I oi ∩ I ii ∩ I g2 ) ≤ p 2 .
Thanks to the applications Φ and Ψ we can borrow from [Benoit, 2016] the notion of linked indices. Let us stress that we add to the definition of [Benoit, 2016] the notion of linked indices for glancing modes.

Two indices i and j are linked in I if the index j is obtained from i after a suitable number of reflections following the heuristic rules described in Section 3.

Definition 4.3 [Linked indices]

Let i ∈ I io we say that the index

-j ∈ I io ∪ I ev1 ∪ I g1 (resp. j ∈ I oi ∪ I ev2 ∪ I g2 ) is linked to the index i if there exists p ∈ 2N + 1 (resp. p ∈ 2N
) and a sequence of indices ℓ := (ℓ 1 , ℓ 2 , ..., ℓ p ) ∈ I p satisfying the following property:

α) ℓ 1 ∈ Ψ(i) ∩ I oi , ℓ 2 ∈ Ψ(ℓ 1 ) ∩ I io ,...,j ∈ Φ(ℓ p ) (resp. j ∈ Ψ(ℓ p )).
j ∈ I ii is linked to the index i if there exists a sequence ℓ := (ℓ 1 , ℓ 2 , ..., ℓ p ) ∈ I p such that:

β) ℓ 1 ∈ Ψ(i) ∩ I io , ℓ 2 ∈ Φ(ℓ 1 ) ∩ I io ,..., j ∈ Φ(ℓ p ) p odd, j ∈ Ψ(ℓ p ) p even.
Let i ∈ I oi we say that the index

-j ∈ I io ∪ I ev1 ∪ I g1 (resp. j ∈ I oi ∪ I ev2 ∪ I g2
) is linked to the index i is there exists p ∈ 2N (resp. p ∈ 2N + 1) and a sequence of indices ℓ := (ℓ 1 , ℓ 2 , ..., ℓ p ) ∈ I p satisfying the following property:

α ′ ) ℓ 1 ∈ Φ(i) ∩ I io , ℓ 2 ∈ Ψ(ℓ 1 ) ∩ I oi ,...,j ∈ Φ(ℓ p ) (resp. j ∈ Ψ(ℓ p )).
j ∈ I ii is linked to the index i if there exists a sequence ℓ := (ℓ 1 , ℓ 2 , ..., ℓ p ) ∈ I p such that:

β ′ ) ℓ 1 ∈ Φ(i) ∩ I io , ℓ 2 ∈ Ψ(ℓ 2 ) ∩ I oi ,..., j ∈ Ψ(ℓ p ) p odd, j ∈ Φ(ℓ p ) p even.
By convention we say that every index i ∈ I is linked to itself by the void sequence.

Finally if i ∈ I ev1 ∪ I ev2 ∪ I g1 ∪ I g2 then there is no index linked to i except i.

With this definition in hand we can define the notion of type V (for vertical) and type H (for horizontal) sequences. Type V sequences refer to the ones that start by the reflection of an incoming-outgoing phase (namely i) against the side ∂Ω 2 which is reflected into the outgoing-incoming phase ℓ 1 against ∂Ω 2 and so on until we reach j. Type H sequences that we encountered in [Benoit, 2016] will not be used in the following.

They refer to sequences that start by the reflection of the outgoing-incoming phase i against the side ∂Ω 2 , reflected against ∂Ω 1 into the incoming-outgoing phase ℓ 1 and so on until we obtain the phase j. The following Proposition also comes from [Benoit, 2016] so that the proof is omitted. It asserts that the set of indices is the one obtains if one considers all the linked indices to the phases that have been turned

on by the source term g ε . More precisely Proposition 4.2 Let F be a complete for reflections set of frequencies indexed by the set of indices I . We introduce I 0 the set of indices turned on by the source g ε that is to say So that, at this stage of the description we have justified that any index in I is in fact linked to one of the phases turned on by the source term. In the following we will need to be a little more precise about how any index i is linked to the "initial" phases. This refinement will be more convenient to state once the notion of selfinteracting indices (or loop) has been introduced. This is why in the following paragraphs we state our assumptions governing loops, first by assuming the uniqueness of the selfinteraction loop in Paragraph 4.2 and then by considering multiple selfinteraction loops in Paragraph 4.3.

I 0 := {i ∈ I io ∪ I ii ∪ I ev1 ∪ I g1 \ det L (τ , ξ i 1 , ξ 2 ) =

Unique selfinteraction loop

Let us recall (and modify a little) the notion of loop from [Benoit, 2016]. Loops arise when in the section of the characteristic variety V with the hyperplane {τ = τ } one can find at least a rectangle and more generically some kind of "stair" whose vertex are in the session of V and have suitable group velocities (that is to say that the group velocity changes from one vertex to the other from incoming-outgoing to outgoing-incoming) (we refer to Figures 1-2 or 3).

More precisely we define

Definition 4.5 (Loops) Let i ∈ I , p ∈ 2N + 1 and ℓ := (ℓ 1 , ℓ 2 , ..., ℓ p ) a sequence of elements of I we say that the index i ∈ I admits (i, ℓ, i) as a loop if ℓ satisfies

ℓ 1 ∈ Φ(i), ℓ 2 ∈ Ψ(ℓ 1 ), ..., i ∈ Ψ(ℓ p ),
and if moreover the sequence (i, ℓ) does not contain any subsequence periodically repeated.

An index i ∈ I io (resp. i ∈ I oi ) admits a selfinteraction loop if it admits a loop and if moreover the sequence (i, ℓ, i) is of type V (resp. H) in the sense of Definition 4.4.

The selfinteraction loop (i, ℓ, i) is said to be simple if the above sequence ℓ is unique. Contrarily if there exist several sequences such that the above hold then the loop is said to be complex or composite.

We note that compared to the definition of loops given in [Benoit, 2016] the requirement that the sequence ℓ does not contain periodically repeated subsequences which was referred as simple loop is now stated in the definition of a loop. This requirement is made to avoid to have to consider all the sequences of the form (i, ℓ, i, ℓ, i...) which naturally appear if (i, ℓ, i) is a loop.

So that, in the following we will always assume that if ℓ ′ is a sequence containing a loop index i (the loop sequence being denoted by ℓ) at the position, let us say p, then ℓ ′ has been simplified from

(ℓ ′ 1 , ℓ ′ p-1 , i, ℓ, i, ..., i ℓ, i, ℓ ′ p+1 , ..., ℓ ′ q ) into ℓ ′ .
Compared to [Benoit, 2016] the term "simple" now referred to selfinteraction loops for which there exists a unique way to regenerate an index of the loop by repeated reflections against the sides of the quarter-space.

We believe that this new use of the word "simple" is more meaningful than in [Benoit, 2016].

In the remaining of the article we assume that selfinteraction loops are always simple in the sense of Definition 4.5. This has the advantage to simplify the analysis. In Paragraph ?? we give an example of system admitting a composite loop and describe how we can handle it. A complete analysis for composite loops is however left for future studies. But let us stress that non-selfinteraction loops are authorized to be composite.

In this paragraph we assume for simplicity that there exists a unique selfinteraction loop. This loop is assumed to be simple, of full size p ∈ 2N while it was only of size four in [Benoit, 2016]. However the main difference with [Benoit, 2016] is not the size of the loop, it is that Assumption 4.1 authorizes nonselfinteracting loops that were excluded in [Benoit, 2016]. Thus the applicability of the result is wilder.

More precisely we assume the following Assumption 4.1 (Uniqueness of the selfinteraction loop) The frequencies set F indexed by I admits a unique selfinteraction loop of size p ∈ 2N. This loop is simple in the sense of Definition 4.5. That is to say that the following properties are satisfied:

1. there exists s 1 ∈ I io and a unique sequence s := (s 2 , ..., s p ) such that

s 2q+1 ∈ I io ∀ q ∈ 1, p -1 and s 2q ∈ I oi ∀q ∈ 1, p , and 
s 2p ∈ Φ(s 1 ), s 2p-1 ∈ Ψ(s 2p ), s 2p-2 ∈ Φ(s 2p-1 ), ..., s 1 ∈ Ψ(s 2 ),
that is to say that (s 1 , s 2 , ..., s 2p , s 1 ) is a simple selfinteraction loop.

2. Let i ∈ I be an index admitting a selfinteraction loop with sequence ℓ := (ℓ 1 , ...ℓ 2q-1 ) then q = p and moreover {i, ℓ} = {s}.

The following proposition is the keystone of the order of determination of the amplitudes in the geometric optics cascade of equations. It claims that every index in I is linked to the "first" selfinteraction index s 1 , that is to say that the selfinteraction index turned on by the source term g ε . In the following, for simplicity, we assume that such selfinteraction phenomenon is directly turned on by the source. As a consequence we choose a source term reading under the form

g ε (t, x 2 ) := e i ε (τ t+ξ s 1 2 x2) g(t, x 2 ), (24) 
s 1 being the index of the selfinteraction loop given in Assumption 4.1, so that (iτ , ξ s1 1 , ξ s1 2 ) ∈ Ξ 0 is the frequency associated to s 1 . This simplifying assumption can however easily be removed (up to the price of the resolution of some extra transport equations).

The proposition of interest is thus the following Proposition 4.3 For all i ∈ I there exists at least one type V sequence linking i to s 1 . We write

s 1 ↣ V i
The proof of the above property is independent of the possible (multiple) loops that we are considering (see [Benoit, 2016]) in the session of the characteristic variety. The only difference is that in [Benoit, 2016] due to the uniqueness of the loop assumption (that is that we exclude in particular non-selfinteraction loops)

by working a little more we can in fact show the uniqueness of the type V sequence. Such a uniqueness then define a natural order to determine the amplitude associated to i.

When non selfinteraction loops occur then the above uniqueness of the type V sequence clearly breaks down as we can see on Figure 4. So that we can have uniqueness of the type V sequence or not. This will however still give the order of determination of the amplitude. We first determine the elements for which this uniqueness property holds then we determine the indices which are linked by two distinct type V sequences and so on.

Multiple selfinteraction loops

In this paragraph we state the assumption dealing with loops in Theorem 2.2. As already mentioned we authorize multiple selfinteraction loops but for simplicity we require that all these loops are simple in the sense of Definition 4.5. The assumption is then the following: 1. for all a ∈ 1, A there exists s a 1 ∈ I io and a unique sequence s a := (s a 2 , ..., s a 2ba ) such that

s a 2q+1 ∈ I io ∀ q ∈ 1, 2b a -1 and s a 2q ∈ I oi ∀q ∈ 1, 2b a ,
and

s a 2p ∈ Φ(s a 1 ), s a 2p-1 ∈ Ψ(s a 2p ), s a 2p-2 ∈ Φ(s a 2p-1 ), ..., s a 1 ∈ Ψ(s a
2 ), that is to say that (s a 1 , s a 2 , ..., s a 2p , s a 1 ) is a simple selfinteraction loop. We denote by {s a } := s a 1 , ...s a 2ba .

We then have that the {s a } a∈ 1,A form a partition of S .

2. Let i ∈ I be an index admitting a selfinteraction loop with sequence ℓ := (ℓ 1 , ...ℓ 2q-1 ) then there exists a ∈ 1, A such that q = 2b a and moreover {i, ℓ} = {s a }.

As a consequence, we may now have several selfinteraction loops in W but all these loops need to be separate the ones of the others by some indices which are not selfinteracting. We depict this configuration on Figure 8, Figure ?? gives an example of a characteristic variety W for which Assumption 4.2 fails. We assume in such a framework that the source term g ε turns on one of the loops elements we note this element s 1 1 associated to the frequency (iτ , ξ s 1 1 1 , ξ s 1 1 2 ). The source thus reads under the form

s 1 2 s 1 1 s 1 3 s 1 4 • • • s 2 1 s 2 2 s 2 3 s 2 4 • s 3 2 s 3 3 s 3 4 s 3 1
g ε (t, x 2 ) := e i ε (τ t+ξ s 1 1 2 x2 g,
where the amplitude g ∈ H ∞ ♮ (R × R + ) vanishes for negative times.

Under the structure Assumption 4.2 the proof of Proposition 4.3 being independent of the number of loops (we stress that we do not have the uniqueness of the sequence), this proposition still holds. The number of type V sequences linking an index i to s 1 1 will still give a natural order of determination of the amplitudes. However, compared to the uniqueness framework of Assumption 4.1, the order must be refine in the following way:

1. We first determine the indices linked to s 1 1 by types V sequence(s) which does not contain any selfinteraction indices differing from the one of the first loop {s 1 }. We reproduce here the order used under Assumption 4.1 that is to say that we start by the indices linked by a unique type V sequence, then we proceed to those linked by two sequences and so on.

2. In a second time, we determine the indices linked to s 1 1 by several type V sequences but where only one of them contains selfinteracting indices differing from the ones of {s 1 }. Note in particular that this sequence is authorized to visit several loops.

3. We then conclude iteratively by determing the indices linked to s 1 1 by several loops but where two of them contain selfinteracting indices differing from the ones of {s 1 } (not necessarily the same) and so on.

Some notations to conclude

We conclude the present section with some notations that will be intensively used in the following construction of the geometric optics expansions.

Firstly for an index i ∈ I we write Φ * (i) (resp. Ψ * (i) for the sets Φ(i) \ {i} (resp. Ψ(i) \ {i}).

For an index i ∈ I associated to some boundary frequency f i := (iτ , ξ i 1 , ξ i 2 ), we will use ϕ i 1 (resp. ϕ i 2 ) as a shorthand notation for ϕ 1 (iτ , ξ i 2 ) (resp. ϕ 2 (iτ , ξ i 2 )) where we recall that ϕ 1 and ϕ 2 are the inverses given by the uniform Kreiss-Lopatinskii condition (see Assumption 2.4).

Then we define the following projections that will be intensely used in the following 

Let k ∈ R 1 (resp. k ∈ R 2 ) we introduce Π k s,1 = Π k s,1 (ζ) (resp. Π k s,2 := Π k s,2 (ζ)) the projection on E s,e 1 (ζ) (resp. E s,e 2 (ζ))
with respect to the decomposition (10).

For k ∈ I hyp ∪ I g1 ∪ I g2 we define the pseudo-inverse Υ k of L (τ , ξ k 1 , ξ k 2 ) caracterized by the relations

Υ k L (τ , ξ k 1 , ξ k 2 ) = I -Π k , Π k Υ k = Υ k Π k = 0.
To conclude we finally define the following sets and relations on the set of indices in order to state the ansatz properly. We choose to follow the method of [Lescarret, 2007] and we aim to treat the evanescent modes in a "monoblock" way. More precisely if i ∈ I ev1 (resp. i ∈ I ev2 ), then all the indices j ∈ Φ(i) ∩ I ev1 (resp. j ∈ Ψ(i) ∩ I ev2 ) contribute to the same amplitude. This permits to avoid the resolution of transport equation with complex coefficients of [Williams, 2000].

To do so, we first need to define some equivalence relations on the set of indices which regroup the elements in terms of their coordinates in V . From Proposition 4.1, we can define the equivalence relations on

I × I i ∼ Φ j ⇔ j ∈ Φ(i) and i ∼ Ψ j ⇔ j ∈ Ψ(i).
We define C 1 (resp. C 2 ) the set of equivalence classes for the relation ∼

Φ (resp. ∼ Ψ ) and R 1 (resp. R 2 ) a set of class representative for C 1 (resp. C 2 ).
As a consequence, R 1 (resp. R 2 ) is a set of indices describing all the possible values of the ξ 2 (resp. ξ 1 ) appearing in F . We end up with the definition of the values of the ξ 1 and of the ξ 2 which give rise to some evanescent modes. More precisely we define

R 1 := {i ∈ R 1 \ Φ(i) ∩ I ev1 ̸ = ∅} and R 2 := {i ∈ R 1 \ Ψ(i) ∩ I ev2 ̸ = ∅} .

Construction of the geometric optics expansion under Assumption 4.1

This section is devoted to the construction of geometric optics expansions when we have a unique selfinteraction loop in V that is to say that Assumption 4.1 holds. It thus gives the main part of the proof of Corollary 2.1 that is to say the construction part. The justification part is then postponed to Section 7.

The ansatz and the cascade of equations

With such definitions in hand we choose for an ansatz the following expansion

u ε (t, x) ∼ n≥0 √ ε n k∈I hyp e i ε φ k (t,x) u n,k (t, x) (25) 
+ n≥0 √ ε n k∈Ig 1 e i ε φ k (t,x) u n,k (t, x 2 , x 1 √ ε ) + k∈Ig 2 e i ε φ k (t,x) u n,k (t, x 1 , x 2 √ ε ) + n≥0 √ ε n k∈R1 e i ε ψ k,1 (t,x2) U n,k,1 (t, x 2 , x 1 ε ) + k∈R2 e i ε ψ k,2 (t,x1) U n,k,2 (t, x 1 , x 2 ε ),
where the phases functions are defined by

∀ k ∈ I hyp ∪ I g1 ∪ I g2 , φ k (t, x) := τ t + ξ k 1 x 1 + ξ 2 k x 2 ,
and

∀ k ∈ R 1 , ψ k,1 (t, x 2 ) := τ t + ξ 2 k x 2 and ∀ k ∈ R 2 , ψ k,2 (t, x 1 ) := τ t + ξ k 1 x 1 .
In the ansatz (25) we aim to construct the hyperbolic profiles, namely the u n,k for k ∈ I os , in the Sobolev space H ∞ (Ω T ). We also want them to satisfy some flatness properties for their traces.

The boundary layers linked to the evanescent modes, namely the terms U n,k,1 and U n,k,2 , and glancing modes, namely the u n,k for k ∈ I g1 ∪ I g2 , will be functions with rapid decay with respect to the fast (last) variable. More precisely we introduce the following set of profiles Definition 5.1 (Boundary layers profiles) For p = 1, 2, the set of evanescent and glancing profiles P p for the side ∂Ω p is defined as the set of functions f (t, x 3-p , Y p ) ∈ H ∞ (∂Ω p,T × R + ) for which we can find

δ p > 0 such that e δpYp f (t, x 3-p , Y p ) ∈ H ∞ (∂Ω p,T × R + ).
As we can see in (25), the ansatz includes two different scales for boundary layers. In the following for p = 1, 2, we will denote by χ p := xp √ ε the "fast" boundary layer scale, associated to glancing modes, and by X p := xp ε the "slow" one, describing evanescent modes.

Plugging the ansatz in the evolution equation of (1), identifying in terms of powers of ε and use the linear independence of the phase functions in order to decouple the equations leads us to essentially the same cascade of equations as in [Williams, 2000] (up to the treatment of the evanescent modes). More precisely we obtain

                                       L (dφ k )u 0,k = L (dφ k )u 1,k = 0 ∀ k ∈ I os , iL (dφ k )u n+2,k + L(∂)u n,k = 0 ∀ k ∈ I hyp , ∀ n ∈ N, L k (∂ X1 )U 0,k,1 = L k (∂ X1 )U 1,k,1 = 0 ∀ k ∈ R 1 , L k (∂ X1 )U n+2,k,1 + L ′ 1 (∂)U n,k,1 = 0 ∀ k ∈ R 1 , ∀ n ∈ N, L k (∂ X2 )U 0,k,2 = L k (∂ X2 )U 1,k,2 = 0 ∀ k ∈ R 2 , L k (∂ X2 )U n+2,k,2 + L ′ 2 (∂)U n,k,2 = 0 ∀ k ∈ R 2 , ∀ n ∈ N, L (dφ k )u 0,k = iL (dφ k )u 1,k + A 1 ∂ χ1 u 0,k = 0 ∀ k ∈ I g1 , iL (dφ k )u n+2,k + A 1 ∂ χ1 u n+1,k + L ′ 1 (∂)u n,k = 0 ∀ k ∈ I g1 , ∀ n ∈ N, L (dφ k )u 0,k = iL (dφ k )u 1,k + A 2 ∂ χ2 u 0,k = 0 ∀ k ∈ I g2 , iL (dφ k )u n+2,k + A 2 ∂ χ2 u n+1,k + L ′ 2 (∂)u n,k = 0 ∀ k ∈ I g2 , ∀n ∈ N, (26) 
where the operators of differentiation with respect to the fast variables L k (∂ Xp ) are defined by

L k (∂ X1 ) := A 1 (∂ X1 -A 1 (τ , ξ k 2 )) for k ∈ R 1 and L k (∂ X2 ) := A 2 (∂ X2 -A 2 (τ , ξ k 1 )) for k ∈ R 2 ,
where we recall that A p (τ , ξ 3-p ) stands for the resolvant matrix introduced in (4). We also defined the truncated differentiation operators L ′ p (∂) by

L ′ 1 (∂) := ∂ t + A 2 ∂ 2 and L ′ 2 (∂) := ∂ t + A 1 ∂ 1 .
The main difficulty here compared to [Williams, 2000] for the half-space is that the boundary conditions couple the traces of the amplitudes in a rather complicated way. Indeed injecting the ansatz (25) in the boundary conditions gives the boundary conditions

B 1 k∈I hyp e i ε (τ t+ξ k 2 x2) u n,k |x 1 =0 + k∈Ig 1 e i ε (τ t+ξ k 2 x2) u n,k |χ 1 =0 + k∈Ig 2 e i ε (τ t+ξ k 2 x2) u n,k |x 1 =0 (27) + k∈R1 e i ε (τ t+ξ k 2 x2) U n,k,1 |X 1 =0 + k∈R2 e i ε τ t U n,k,2 |x 1 =0 = δ n,0 e i ε (τ t+ξ 2 x2) g, and 
B 2 k∈I hyp e i ε (τ t+ξ k 1 x1) u n,k |x 2 =0 + k∈Ig 1 e i ε (τ t+ξ k 1 x1) u n,k |x 2 =0 + k∈Ig 2 e i ε (τ t+ξ k 1 x1) u n,k |χ 2 =0 (28) + k∈R1 e i ε τ t U n,k,1 |x 2 =0 + k∈R2 e i ε (τ t+ξ k 1 x1) U n,k,2 |X 2 =0 = 0.
In particular, the boundary conditions ( 27) and ( 28) are satisfied if we manage to solve the boundary conditions

   B 1 k∈I hyp e i ε ψ 1,k u n,k |x 1 =0 + k∈Ig 1 e i ε ψ 1,k u n,k |χ 1 =0 + k∈R1 e i ε ψ 1,k U n,k,1 |X 1 =0 = δ n,0 e i ε (τ t+ξ 2 x2) g, k∈Ig 2 e i ε (τ t+ξ k 2 x2) u n,k |x 1 =0 = k∈R2 e i ε τ t U n,k,2 |x 1 =0 = 0, (29) and  
  B 2 k∈I hyp e i ε ψ 2,k u n,k |x 2 =0 + k∈Ig 2 e i ε ψ 2,k u n,k |χ 2 =0 + k∈R2 e i ε ψ 2,k U n,k,2 |X 1 =0 = 0, k∈Ig 1 e i ε (τ t+ξ k 1 x1) u n,k |x 2 =0 = k∈R1 e i ε τ t U n,k,1 |x 2 =0 = 0. (30) 
Using the linear independence of the phases 5 , the boundary conditions ( 29) and (30) amount to solve:

∀ n ∈ N,                                                B 1 j∈Φ(s1)∩I hyp u n,j |x 1 =0 + j∈Φ(s1)∩Ig 1 u n,j |χ 1 =0 + U n,s1,1 |X 1 =0 = δ n,0 g if s 1 ∈ R 1 , B 1 j∈Φ(s1)∩I hyp u n,j |x 1 =0 + j∈Φ(s1)∩Ig 1 u n,j |χ 1 =0 = δ n,0 g if s 1 ̸ ∈ R 1 , B 1 j∈Φ(k)∩I hyp u n,j |x 1 =0 + j∈Φ(k)∩Ig 1 u n,j |χ 1 =0 + U n,k,1 |X 1 =0 = 0 ∀ k ∈ (R 1 \ {s 1 }) ∩ R 1 , B 1 j∈Φ(k)∩I hyp u n,j |x 1 =0 + j∈Φ(k)∩Ig 1 u n,j |χ 1 =0 = 0 ∀ k ̸ ∈ (R 1 \ {s 1 }) ∩ R 1 , B 2 j∈Ψ(k)∩I hyp u n,j |x 2 =0 + j∈Ψ(k)∩Ig 2 u n,j |χ 2 =0 + U n,k,2 |X 2 =0 = 0 ∀ k ∈ R 2 , B 2 j∈Ψ(k)∩I hyp u n,j |x 2 =0 + j∈Ψ(k)∩Ig 2 u n,j |χ 2 =0 = 0 ∀ k ̸ ∈ R 2 , u n,k |x 1 =0 = 0 ∀ k ∈ I g2 , u n,k |x 2 =0 = 0 ∀ k ∈ I g1 , U n,k,1 |x 2 =0 = 0 ∀ k ∈ R 1 , U n,k,2 |x 1 =0 = 0 ∀ k ∈ R 2 .
(31) Finally, injecting the ansatz (25) in the initial condition leads us to impose the following homogeneous initial conditions

     u n,k |t≤0 = 0 ∀ n ∈ N, ∀ k ∈ I hyp ∪ I g1 ∪ I g2 , U n,k,1 |t≤0 = 0 ∀ n ∈ N, ∀ k ∈ R 1 , U n,k,2 |t≤0 = 0 ∀ n ∈ N, ∀ k ∈ R 2 .
(32) 5 Let us point that we do not solve exactly the same boundary conditions as in [Benoit, 2016] where in order to use the linear independence we used an extra technical Assumption () in order to deal with the terms k∈R 2 U n,k,2 |x 1 =0 and

k∈R 1 e i ε τ t U n,k,1 |x 2 =0
. Because we impose these terms to vanish in the boundary conditions ( 29) and ( 30) this extra assumption is not required any more. It makes the proof more straightforward.

The aim of the remaining of this section is to show that we can solve the cascades of equations ( 26), ( 31) and (32). In order to do so we first reformulate the interior equations in Paragraph 5.2, reformulation in which we pay a special attention to the values of the traces.

The leading order terms are then constructed in Paragraph 5.3 and we conclude the discussion by a sketch of proof for higher orders terms in Paragraph ??.

Reformulation of the equations

In this paragraph we reformulate the interior cascade of equations ( 26) to determine precisely which trace is required for the determination of each amplitude depending on its kind in (25).

The reformulation for hyperbolic modes is classical in geometric optics expansions. It relies on Lax lemma [Lax, 1957] and it is made in Paragraph 5.2.1. The one for evanescent modes follows the method, based upon Duhamel formula, introduced in [Lescarret, 2007]. It is described in Paragraph 5.2.2. Finally the reformulation of the equations involving glancing modes in (26) follows the method of [Williams, 2000], it is given in Paragraph 5.2.3. As a consequence, the reformulations in themselves are rather well-understood and are not not new. The main point here is to clearly determine which trace(s) is (are) required for the resolution of the interior equations.

Reformulation for hyperbolic amplitudes

In this paragraph we consider the equations of ( 26) involving hyperbolic modes namely we consider

     L (dφ k )u 0,k = 0 ∀ k ∈ I hyp , L (dφ k )u 1,k = 0 ∀ k ∈ I hyp , iL (dφ k )u n+1,k + L(∂)u n,k = 0 ∀ k ∈ I hyp , ∀ n ∈ N. (33)
The first equations of (33) imply that the two first amplitudes for hyperbolic modes are in ker L (dφ k ) so that we have the well-known polarization conditions:

∀ k ∈ I hyp , Π k u 0,k = u 0,k and Π k u 1,k = u 1,k . ( 34 
)
Consequently, composing the third equation of (33) (written for n = 0 and n = 1) by Π k in order to make the first term vanish gives

∀ k ∈ I hyp , Π k L(∂)Π k u 0,k = Π k L(∂)Π k u 1,k = 0,
and we are in position to use Lax lemma which is recalled below for a sake of completeness.

Lemma 5.1 (Lax [Lax, 1957]) Under Assumption 2.1, then for all k ∈ I hyp we have the equality

Π k L(∂)Π k = (∂ t + v k • ∇ x )Π k ,
where we recall that v k stands for the group velocity introduced in Definition 2.2.

So that, as expected, to determine the first orders amplitudes associated to hyperbolic modes we have to solve transport equations. Depending on the kind of the group velocity these transport equations require boundary condition(s). One on ∂Ω 1 (resp. ∂Ω 2 ) for incoming-outgoing (resp. outgoing-incoming) modes and one on ∂Ω 1 combined with one on ∂Ω 2 for incoming-incoming modes.

The following proposition then shows that if you know such traces then the transport equations can be explicitly solved by integration along the characteristics in the suitable functional spaces.

Proposition 5.1

Let k ∈ I io (resp. k ∈ I oi ) and let g be a given function in

H ∞ ♮ (R × R + ) then the transport equation      (∂ t + v k • ∇ x )u = 0 in Ω, u |x1=0 = g on ∂Ω 1 , u |t≤0 = 0 on Γ,   resp.      (∂ t + v k • ∇ x )u = 0 in Ω, u |x2=0 = g on ∂Ω 2 , u |t≤0 = 0 on Γ,    admits a unique solution u ∈ H ∞ (Ω) satisfying that u |x2=0 ∈ H ∞ ♮ (R × R + ) (resp. u |x1=0 ∈ H ∞ ♮ (R × R + )).
Let k ∈ I ii and let ( g 1 , g 2 ) be given in

H ∞ ♮ (R × R + ) × H ∞ ♮ (R × R + ) then the transport equation          (∂ t + v k • ∇ x )u = 0 in Ω, u |x1=0 = g 1 on ∂Ω 1 , u |x2=0 = g 2 on ∂Ω 2 , u |t≤0 = 0 on Γ, admits a unique solution u ∈ H ∞ (Ω). It moreover satisfies u |x1=0 , u |x2=0 ∈ H ∞ ♮ (R × R + ).
Proof : We consider the case of an incoming-outgoing amplitude. The case of an outgoing-incoming amplitude being similar. We integrate the equation along the characteristics to obtain that

u(t, x) = g t - 1 v k,1 x 1 , x 2 - v k,2 v k,1 x 1 . ( 35 
)
We can read on equation ( 35) that u ∈ H ∞ (Ω) and that it vanishes for t ≤ x1 v k,1 . The right-hand side of the above inequality being positive because k ∈ I io . Then we have

u |x2=0 (t, x 1 ) = g t - 1 v k,1 x 1 , - v k,2 v 1,k x 1 , so that for n ≥ 0, ∂ n 1 u |x2=0 reads ∂ n 1 u |x2=0 (t, x 1 ) = (-1) n n p=0 n p 1 v k,1 n-p v k,2 v k,1 p ∂ n-p t ∂ p 2 g t - 1 v k,1 x 1 , - v k,2 v 1,k x 1 .
So that when evaluated at x 1 = 0 all the terms in the sum for

p ̸ = n vanish because g ∈ H ∞ ♮ (R × R + ). For n = p we thus have (∂ n t g(t -1 v k,1 x1 , - v k,2 v k,1 x 1 )) |x1=0 = ∂ n t g(t, 0) = 0, because g ∈ H ∞ ♮ (R × R + ).
We now consider the incoming-incoming transport equation. By linearity we decompose the solution u = u 1 + u 2 where u 1 and u 2 solves respectively the boundary value problems

         (∂ t + v k • ∇ x )u 1 = 0 in Ω, u 1 |x 1 =0 = g 1 on ∂Ω 1 , u 1 |x 2 =0 = 0 on ∂Ω 2 , u 1 |t≤0 = 0 on Γ, and 
         (∂ t + v k • ∇ x )u 2 = 0 in Ω, u 2 |x 1 =0 = 0 on ∂Ω 1 , u 2 |x 2 =0 = g 2 on ∂Ω 2 , u 2 |t≤0 = 0 on Γ.
Following the analysis of the incoming-outgoing case we obtain

u(t, x) = g 1 t - 1 v k,1 x 1 , x 2 - v k,2 v k,1 x 1 + g 2 t - 1 v k,2 x 2 , x 1 - v k,1 v k,2 x 2 ,
where g i stands for the extension of g i by zero for x 3-i < 0. Let us point that because the boundary terms are in H ∞ ♮ such extension are in H ∞ . The traces regularity is then obtained as in the incoming-outgoing case so that we omit the details here.

□

For later purpose we also describe the required modifications to determine the hyperbolic amplitudes of order two and more. The main difference for these terms is that they are not polarized any more. However in a classical setting the unpolarized part depends explicitly on the previous term in the expansion. Indeed, we apply the pseudo-inverse Υ k (see Definition 4.6) to the third equation of (33) (written for n = 1) to obtain that

(I -Π k )u 2,k = iΥ k L(∂)u 1,k . ( 36 
)
Then we use this relation by writing u 2,k = Π k u 2,k + (I -Π k )u 2,k in the third equation of (33) (written for n = 2), we apply Π k and Lax lemma [Lax, 1957] to obtain the same, up to the source term, transport equation as before for the polarized part Π k u 2,k :

(∂ t + v k • ∇ x )Π k u 2,k = -iΠ k L(∂)Υ k L(∂)u 1,k .
(37)

The same relations hold at the order n ≥ 2. Depending on the kind of the group velocity v k we thus have to consider the transport equation ( 37) with boundary condition(s). This is the subject of the following proposition Proposition 5.2 Let k ∈ I io (resp. k ∈ I oi ) and let f , g be given functions in

H ∞ ♮ (R × R + )        (∂ t + v k • ∇ x )u = f t -1 v k,1 x 1 , x 2 - v k,2 v k,1 x 1 in Ω, u |x1=0 = g on ∂Ω 1 , u |t≤0 = 0 on Γ,     resp.        (∂ t + v k • ∇ x )u = f t -1 v k,2 x 2 , x 1 - v k,1 v k,2 x 2 in Ω, u |x2=0 = g on ∂Ω 2 , u |t≤0 = 0 on Γ,     admits a unique solution u ∈ H ∞ (Ω) satisfying that u |x2=0 ∈ H ∞ ♮ (R × R + ) (resp. u |x1=0 ∈ H ∞ ♮ (R × R + )). Let k ∈ I ii and let ( f 1 , f 2 , g 1 , g 2 ) be given functions in (H ∞ ♮ (R × R + )) 4 then the transport equation          (∂ t + v k • ∇ x )u = f in Ω, u |x1=0 = g 1 on ∂Ω 1 , u |x2=0 = g 2 on ∂Ω 2 , u |t≤0 = 0 on Γ, with f (t, x) := f 1 t - 1 v k,1 x 1 , x 2 - v k,2 v k,1 x 1 + f 2 t - 1 v k,2 x 2 , x 1 - v k,1 v k,2 x 2 , admits a unique solution u ∈ H ∞ (Ω). Moreover it satisfies u |x1=0 , u |x2=0 ∈ H ∞ ♮ (R × R + ).
Proof : For the first statement we only consider the incoming-outgoing framework. Once again integrate along the characteristics gives, because of the special form of the interior source, the explicit formula

u(t, x) = g t - 1 v k,1 x 1 , x 2 - v k,2 v k,1 x 1 + x 1 v k,1 f t - 1 v k,1 x 1 , x 2 - v k,2 v k,1 x 1 . ( 38 
)
The regularity of u and the one of its trace u |x2=0 are then obtained from (38) exactly as in the proof of Proposition 5.1.

To treat the incoming-incoming case, as in the proof of Proposition 5.1, we decompose u := u 1 + u 2 where u i is a solution to the transport equation associated to the sources (f i , g i ) and then use the previous analysis. The details are omitted here.

□

As a consequence, the previous discussion states that to determine the values of the hyperbolic amplitudes (at any order) it is in fact sufficient to determine the values of the suitable traces. We thus sum up the previous discussion in the following proposition Proposition 5.3 To solve the cascade of equations (33) that is to say to determine the hyperbolic contribution in the cascade (26) it is sufficient to determine the following traces: for all n ≥ 0

The trace

u n,k |x 1 =0 if k ∈ I io . The trace u n,k |x 2 =0 if k ∈ I oi . The traces u n,k |x 1 =0 and u n,k |x 2 =0 if k ∈ I ii .

Reformulation for evanescent modes

In this paragraph we show that to determine the evanescent modes for ∂Ω 1 (resp. ∂Ω 2 ) it is sufficient to determine the value of their traces on ∂Ω 1 (resp. ∂Ω 2 ). We recall that for evanescent modes we have to solve the equations

for p = 1, 2,      L k (∂ Xp )U 0,k,p = 0 ∀ k ∈ R p , L k (∂ Xp )U 1,k,p = 0 ∀ k ∈ R p , L k (∂ Xp )U n+1,k,p + L ′ p (∂)U n,k,p = 0 ∀ k ∈ R p , ∀ n ∈ N, (39) 
The main point is the following lemma due to [Lescarret, 2007].

Lemma 5.2 (Lescarret [Lescarret, 2007]) Let p = 1, 2 and k ∈ R k we define

P k ev,p U (X p ) :=e XpAp(τ ,ξ k 3-p ) Π k s,p U (0), ( 40 
)
Q k ev,p U (X p ) := Xp 0 e (Xp-y)Ap(τ ,ξ k 3-p ) Π k s,p A -1 p F (y) dy - ∞ Xp e (Xp-y)Ap(τ ,ξ k 3-p ) Π k u,p A -1 p F (y) dy. ( 41 
)
Then for all F ∈ P the equation

L k (∂ Xp )U = F,
admits a unique solution U ∈ P. It reads under the form

U = P k ev,p U + Q k ev,p F.
As a consequence, the two first equations of (39) imply that we have a kind of polarization condition for the first evanescent modes. They verify U 0,k,p = P k ev,p U 0,k,p and U 1,k,p = P k ev,p U 1,k,p and from the definition of the operator P k ev,p it is thus sufficient to determine the value of the trace on {X p = 0} that corresponds to {x p = 0}.

For higher order evanescent amplitudes the third equation of (39) combined with Lemma 5.2 show that they read under the form

∀n ≥ 2, U n,k,p = P k ev,p U n,k,p -Q k ev,p L ′ p (∂)U n-1,k,p ,
where the second term in the right-hand side is a known function so that to determine the full amplitude

U n,k,p it is sufficient to determine P k ev,p U n,k,p that is to say the value of the trace U n,k,p |xp =0 .
We sum up the previous discussion in the following proposition Proposition 5.4 To solve the cascade of equations (39) that is to say to determine the evanescent contributions in the cascade (26) it is sufficient to determine the values of the traces U n,k,p |xp =0 for p = 1, 2 and for all k ∈ R p , for all n ≥ 0.

Because we want to solve the extra boundary conditions ensuring that evanescent modes verify U n,k,1 |x 2 =0 = U n,k,2 |x 1 =0 = 0 we also have to justify that the evanescent modes given by Lemma 5.2 satisfy these conditions.

It is effectively the case because of the following Lemma whose proof is readable from the explicit formulas ( 40) and ( 41).

Lemma 5.3 Let p = 1, 2, F ∈ P and U (0) be given functions satisfying F |x3-p=0 = U (0) |x3-p=0 = 0. Then the solution U to (39) given by Lemma 5.2 satisfies U |x3-p=0 = 0.

Reformulation for glancing modes

Finally, we reformulate the equations for glancing modes in order to show that to determine these amplitudes it is sufficient to know the values of the traces on ∂Ω 1 or ∂Ω 2 depending on the nature of the glancing mode.

The analysis exposed bellow follows closely the one of [Williams, 2000].

We recall that for glancing modes we have the equations

for p = 1, 2,      L (dφ k )u 0,k = 0 ∀ k ∈ I gp , iL (dφ k )u 1,k + A p ∂ χp u 0,k = 0 ∀ k ∈ I gp , iL (dφ k )u n+2,k + A p ∂ χp u n+1,k + L ′ p (∂)u n,k = 0 ∀ k ∈ I gp , ∀ n ∈ N. ( 42 
)
The first equation of ( 42) gives the polarization condition Π k u 0,k = u 0,k , for all k ∈ I gp . We then consider the second equation of ( 42), we apply Π k to obtain thanks to the polarization condition

Π k A p Π k ∂ χp u 0,k = 0. ( 43 
)
From Lax lemma [Lax, 1957], the matrix Π k A p Π k simplifies into v k,p Π k but for glancing modes for the side ∂Ω p we have v k,p = 0. As a consequence, ( 43) is trivially satisfied for the polarized part. In order to make it satisfied for the unpolarized part we apply the partial inverse Υ k to determine the unpolarized part of u 1,k . We have:

(

I -Π k )u 1,k = iΥ k A p Π k ∂ χp u 0,k . (44) 
Finally, we consider the third equation of ( 42) written for n = 0. We apply Π k , we decompose 44), in order to obtain the equation determining u 0,k . We end up with

u 1,k = Π k u 1,k + (I -Π k )u 1,k , we use Π k A p Π k = 0 and (
iΠ k A p Υ k A p Π k ∂ 2 χp u 0,k + (∂ t + v k • ∇ x )Π k u 0,k = 0
, where we used once again Lax lemma.

We have the following result from [Williams, 2000] Proposition 5.5 For p = 1, 2, for k ∈ I gp then we have the relation

Π k A p Υ k A p Π k := 1 c p Π k , where c p ∈ R \ {0}.
As a consequence, for glancing modes we are leading to consider the Schrödinger type equation (see [Williams, 2000] for more details about this name)

-∂ 2 χp Π k u 0,k + ic p (∂ t + v k • ∇ x )Π k u 0,k = 0. ( 45 
)
We can repeat the same procedure for higher order terms, the only difference being that because the amplitudes are not polarized any more some extra source terms involving the unpolarized part, which can be express using the preceding terms like in (44) come into play. We borrow the following Proposition to [Williams, 2000] which gives an explicit solution to the equation ( 45)

Proposition 5.6 Let f ∈ H ∞ ♮,x ′ (R × R 2 + )
having exponential decay with respect to the last variable and

g ∈ H ∞ ♮ (R × R + ) be given functions then for c ∈ R \ {0} the equation      -∂ 2 χ u + ic(∂ t + v ′ ∂ x ′ )u = f for (t, x ′ , χ) ∈ R × R 2 + , u |χ=0 = g on R × R + , u |t≤0 = 0 on R 2 + , (46) 
admits a unique solution u ∈ H ∞ ♮,x ′ (R × R + × R)
so that in particular it satisfies the homogeneous boundary condition u |x ′ =0 = 0.

Proof : The proof relies on the explicit solution given by equation (8.40) of [Williams, 2000]. We consider

• the extension of • by zero for x ′ < 0. Because g ∈ H ∞ ♮ (R × R + ) and f ∈ H ∞ ♮,x ′ (R × R 2 + ) we have that g ∈ H ∞ (R 2 ) and f ) ∈ H ∞ (R 2 × R + ).
We thus consider u the solution to

     -∂ 2 χ u + ic(∂ t + v ′ ∂ x ′ )u = f for (t, x ′ , χ) ∈ R × R × R + , u |χ=0 = g on R × R + , u |t≤0 = 0 on R 2 + . (47) 
For γ, µ > 0 we introduce the new unknown v := e -γt e -µx ′ u, we perform a Fourier transform with respect to (t, x ′ ). Let • denotes this transform and (τ, η) be the dual variable of (t, x ′ ) then (47) becomes

       -∂ 2 χ v + ic(γ + v ′ µ + iτ + iv ′ η) :=X(ζ) v = e -γt e -µx ′ f for (t, x ′ , χ) ∈ R × R × R + , v |χ=0 = e -γt e -µx ′ g on R × R + , (48) 
where ζ collects the parameters γ, µ and the dual variables. We also define in the following e γ,µ := e -γt e -µx ′ .

From [Williams, 2000], equation (8.40), the solution to the interior equation of (48) reads

v(ζ, χ) = e χ √ X v |χ=0 (ζ) + ic χ 0 e (χ-χ ′ ) √ X ∞ χ ′ e -(χ ′ -χ ′′ ) √ X e γ,µ f (ζ, χ ′′ ) dχ ′′ dχ ′ ,
where √ X stands for the square root of X with strictly negative real part so that v ∈ L 2 χ (R + ). Reversing the Fourier transform then gives the following explicit formula for u

e γ,µ u(t, x ′ , χ) = F -1 (τ,η)→(t,x ′ ) e χ √ X e γ,µ g(ζ) + ic χ 0 e (χ-χ ′ ) √ X ∞ χ ′ e -(χ ′ -χ ′′ ) √ X e γ,µ f (ζ, χ ′′ ) dχ ′′ dχ ′ , (49) 
where F -1 stands for the reverse Fourier transform.

Clearly the restriction of u to x ′ > 0 solves the interior equation of (46). To conclude, it remains to justify that u is regular, that ∂ n x ′ u |x ′ ≤0 = 0, for all n ∈ N and finally that the restriction of u satisfies the initial condition.

The regularity of u can be read directly on the explicit formula (49). So that we only consider the traces values. In order to do so we will proceed by causality using the following energy estimate Lemma 5.4 For all γ, µ sufficiently large, chosen in such a way that γ + v ′ µ ̸ = 0, and for all g ∈ H ∞ (R 2 ) and f ∈ H ∞ (R 2 × R + ) with fast decay we have the energy estimate: there exists C > 0 such that

∥e γ,µ u∥ 2 L 2 (R 2 ×R+) ≤ C |γ + v ′ µ| 1 |γ + v ′ µ| ∥e γ,µ f ∥ 2 L 2 (R 2 ×R+) + ∥e γ,µ g∥ 2 L 2 (R 2 ) . (50) 
We also refer to [ [Williams, 2000] equations (8.40) and (8.41)] for similar estimates.

With Lemma 5.4 in hand the fact that u |x ′ <0 = 0 if the source f and g do is clear. Indeed if f |x ′ <0 , g |x ′ <0 ≡ 0 then the right-hand side of (50) is o(e εµ ) for all ε > 0. The same holds for ∥e γ,µ u∥ 2 L 2 (R 2 ×R+) and this implies that u |x ′ <0 vanishes. We obtain the desired result by continuity.

The same arguments apply to the initial condition.

Proof of Lemma 5.4 Let γ, µ > 0 to be specify below. Using Plancherel identity in (49) we have

∥e γ,µ u∥ 2 L 2 (R 2 ×R+) ≤ ∥e χ √ X e γ,µ g(ζ)∥ 2 L 2 (R 2 ×R+) + C χ 0 e (χ-χ ′ ) √ X F (ζ, χ ′ ) dχ ′ L 2 (R 2 ×R+) (51) 
where to save some notations we defined

F (ζ, χ ′ ) := ∞ χ ′ e -(χ ′ -χ ′′ ) √ X e γ,µ f (ζ, χ ′′ ) dχ ′′ .
The estimate for the first term in the right-hand side of ( 51) is straightforward. Indeed we have

∥e χ √ X e γ,µ g(ζ)∥ 2 L 2 (R 2 ×R+) = R 2 | e γ,µ g(ζ)| 2 ∞ 0 e 2χℜ √ X dχ dτ dη = R 2 - 1 2ℜ √ X | e γ,µ g(ζ)| 2 dτ dη ≤ C |γ + v ′ µ| ∥e γ,µ g∥ 2 L 2 (R 2 ) .
where we used again Plancherel formula to conclude combined with the estimate of the real part of √ X

obtained in [Benoit and Loyer, ].

We then estimate the second term in the right-hand side of (51). We first by an estimate for F . We have

|F (ζ, χ ′ )| 2 = ∞ χ ′ e -(χ ′ -χ ′′ ) √ X e γ,µ f (ζ, χ ′′ ) dχ ′′ 2 ≤| e γ,µ f (ζ)| 2 e -2χ ′ ℜ √ X ∞ χ ′ e χ ′′ ( √ X-δ) dχ ′′ 2 ≤ 1 2|ℜ √ X -δ| 2 | e γ,µ f (ζ)| 2 e -2χ ′ δ , ≤ C |γ + v ′ µ| 2 | e γ,µ f (ζ)| 2 e -2χ ′ δ ,
where we used the fact that the source f has fast decay with respect to χ ′′ so that so do f and we have [Benoit and Loyer, ]. With this estimate in hand from Jensen inequality we thus have

| f (ζ, χ ′′ )| ≤ f (ζ)e -δχ ′′ , combined with the estimate |ℜ √ X| ≥ |γ + v ′ µ| of
χ 0 e (χ-χ ′ ) √ X F (ζ, χ ′ ) dχ ′ L 2 (R 2 ×R+) = R 2 ∞ 0 χ 0 e (χ-χ ′ ) √ X F (ζ, χ ′ ) dχ ′ 2 dχ dτ dη ≤ C |γ + v ′ µ| 2 R 2 | e γ,µ f (ζ)| 2 ∞ 0 χ 2 1 0 e 2(χ-χχ ′ )ℜ √ X e -2δχχ ′ dχ ′ dχ dτ dη.
We have

∞ 0 χ 2 1 0 e 2(χ-χχ ′ )ℜ √ X e -2δχχ ′ dχ = 1 2(ℜ √ X + δ) ∞ 0 χ 2 e -2χδ -e 2χℜ √ X dχ. ( 52 
)
From the bound ℜ √ X ≥ -C|γ + v ′ µ| we choose γ, µ large enough such that ℜ √ X + δ ≥ -δ 2 so that the right-hand side of ( 52) is finite and does not depend on the Fourier variables. This ends up the desired estimate for the second term in the right-hand side of (51).

□

To complete the proof it only remains to justify that the derivatives ∂ n x ′ u vanish on {x ′ < 0}. This is made exactly as for the zero order term u |x ′ <0 by using the explicit formula (49) for which we can obtain high order Sobolev estimates in the spirit of Lemma 5.4 (we also refer to [ [Williams, 2000] equations (8.40) and (8.41)]). We omit the details here.

□ □

As a consequence we obtain (see Proposition 5.3) the following value for u 0,s1 in terms of the supposed to be known term u 0,s 2b |x 1 =0 :

u 0,s1 (t, x) = Π s1 ϕ s1 1 g -B 1 u 0,s 2b |x 1 =0 t - 1 v s1,1 x 1 , x 2 - v s1,2 v s1,1 x 1 , (54) 
so that in particular

u 0,s1 |x 2 =0 (t, x 1 ) = Π s1 ϕ s1 1 g -B 1 u 0,s 2b |x 1 =0 t - 1 v s1,1 x 1 , - v s1,2 v s1,1 x 1 . (55) 
We now show that we can determine u 0,s2 from (55). Because s 2 ∈ I oi we only require the trace value on ∂Ω 2 . From (30) the trace on ∂Ω 2 satisfies the boundary condition

B 2   u 0,s2 + k∈Ψ * (s2)∩(Iii∪Ioi) u 0,k   |x2=0 + B 2 U 0,s2,2 |X 2 =0 +B 2 k∈Ψ(s2)∩Ig 2 u 0,k |χ 2 =0 = -B 2 k∈Ψ(s2)∩Iio u 0,k |x 2 =0 , if s 2 ∈ R 2 and B 2   u 0,s2 + k∈Ψ * (s2)∩(Iii∪Ioi) u 0,k   |x2=0 + B 2 k∈Ψ(s2)∩Ig 2 u 0,k |χ 2 =0 = g -B 2 k∈Φ(s2)∩Iio u 0,k , if s 2 ̸ ∈ R 2 .
Reiterating the same kind of arguments as for u 0,s1 (in particular we require some straightforward adaptation of Lemma 5.5) we obtain the trace value

u 0,s2 |x 2 =0 = -Π s2 ϕ s2 2 B 2 u 0,s1 |x 2 =0 , so that u 0,s2 (t, x) = Π s2 ϕ s2 2 B 2 Π s1 ϕ s1 1 g-B 1 u 0,s 2b |x 1 =0 t - 1 v s1,1 x 1 - 1 v s2,2 1 - v s2,1 v s1,1 x 2 , - v s1,2 v s1,1 x 1 - v s2,1 v s2,2 x 2 , (56) 
and in particular

u 0,s2 |x 1 =0 (t, x) = Π s2 ϕ s2 2 B 2 Π s1 ϕ s1 1 g -B 1 u 0,s 2b |x 1 =0 t - 1 v s2,2 1 - v s2,1 v s1,1 x 2 , - v s1,2 v s1,1 v s2,1 v s2,2 x 2 . ( 57 
)
We can repeat the same computations for all indices of the selfinteraction loop. They can all be expressed in terms of u 0,s 2b |x 1 =0 at the last step of the process we determine u 0,s 2b so that we obtain the value of its trace on ∂Ω 1 in terms of itself. This compatibility condition reads under the form

(I -T)u 0,s 2b |x 1 =0 = Tg, (58) 
where the operator T is defined by (Tu)(t, y) := Su(t -αy, βy),

where we defined

S :=Π s 2b ϕ s 2b 2 B 2 Π s 2b-1 ϕ s 2b-1 1 B 1 • • • Π s2 ϕ s2 2 B 2 Π s1 ϕ s1
and where α > 0 can be made explicit in terms of the group velocities v k . Its precise value is however of little interested in the following of the discussion. Only its sign is interesting.

In the following in order to determine u 0,2b |x 1 =0 and thus to deduce all the amplitudes for the indices in the selfinteraction loop from the relations like ( 54) and (56) we will make the following assumption which is just a generalization of the one of [Benoit, 2016] to loops with an arbitrary number of elements.

Assumption 5.1 We assume that the operator I -T where T is defined in

(59) is invertible from H ∞ ♮ (R × R + ) into H ∞ ♮ (R × R + ).
Under this assumption we can use (58) in order to obtain u 0,s 2b |x 1 =0 ∈ H ∞ ♮ (R × R + ) in an unique way.

We then use the explicit formulas (see ( 54) and ( 56)) to determine the values of the selfinteracting elements.

We remark that in particular for k

∈ I io ∩ {s} (resp. k ∈ I io ∩ {s}) u 0,k |x 2 =0 ∈ H ∞ ♮ (R × R + ) (resp. u 0,k |x 1 =0 ∈ H ∞ ♮ (R × R + )
) so that in the following these terms can be used as boundary terms in Proposition 5.1.

Determination of the other amplitudes

Let i ∈ I be some index then we know from the results of Section 4 that i is linked to the index s 1 by (possibly many) type V sequences. The order of determination of the amplitudes will be the following:

1. we start by determining all the indices i which are linked to s 1 by exactly one type V sequence.

2. Then we proceed to the determination of the ones which are linked by two distinct sequences of type

V and so on.

The following proposition, whose proof follows essentially the same lines as the determination of the amplitudes in the so-called trees of [Benoit, 2016] states that if i ∈ I is linked to s 1 by with a unique sequence, then it can be determinate from the knowledge of the loop elements.

Proposition 5.7 In a complete for reflections frequencies set F satisfying the uniqueness Assumption 4.1, let i ∈ I be such that there exists a unique type V sequence ℓ such that s 1 ↣ V i then the amplitude u 0,i solving the cascades of equations ( 26)-( 31)-( 32) can be uniquely determined from the values of the u 0,sp where s p ∈ {s}.

Proof : Let i ∈ I be linked to s 1 by only one sequence of type V . In the following we have to consider several case depending on the nature of the index i.

Firstly we assume that i ∈ I io . Because of the definition of type V sequence, the index i is linked to s 1 by a (unique) sequence ℓ admitting an odd number of elements so that ℓ = (ℓ 1 , ℓ 2 , ..., ℓ 2p+1 ) for some p ∈ N.

By definition of type V sequence we have ℓ 2p+1 ∈ I oi ∩ Φ(i) and in order to use the uniform Kreiss-Lopatinskii condition in the boundary condition determining u 0,i |x 1 =0 (and thus it determines u 0,i from Proposition 5.3) we have to justify that Φ(i) ∩ I oi = {ℓ 2p+1 }.

By contradiction, let us assume that there exists some j ∈ I oi ∩ Φ(i), j ̸ = ℓ 2p+1 . Then because the frequencies set F is complete for the reflections, it is minimal and thus the index j comes from some reflection.

As a consequence there exists k ∈ I io ∩ Ψ(j). From Proposition 4.3, the index k is linked to s 1 so that there exists a type

V sequence ℓ ′ = (ℓ ′ 1 , ..., ℓ ′ 2p ′ +1 ) such that s 1 ↣ V k.
We can not exclude at first glance that we can have i ∈ ℓ ′ that is to say that the sequence linking k to s 1 passes by i. In fact, it is not possible. Indeed if we have i = ℓ ′ 2r+2 for some r ∈ N then the sequence (ℓ ′ 2r+2 , ℓ ′ 2r+3 , ..., ℓ ′ 2p ′ +1 , k, j, i) forms a selfinteraction loop for i which is excluded from Assumption 4.1.

So that we have i ̸ ∈ ℓ ′ . The above discussion is summarized in Figure 9.

Consequently the sequence (ℓ ′ , k, j) is a type V sequence which links s 1 to i. The sequence (ℓ ′ , k, j, i) can be simplified to (ℓ, i) if and only if ℓ ′ = (ℓ, i, q) for some sequence q linking i to k. This is however
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Figure 10: Illustration of the proof 2 impossible because i ̸ ∈ ℓ ′ . We have thus found two distinct sequences of type V linking s 1 to i which is a contradiction. We refer to Figure 10. At this step of the proof we have justified that Φ(i) ∩ I oi = {ℓ 2p+1 } so that to construct u 0,i it is sufficient to construct u 0,ℓ2p+1 .

To construct u 0,ℓ2p+1 we proceed similarly. We now justify that Ψ(ℓ 2p+1 ) ∩ I io = {ℓ 2p }. By contradiction assume that there exists j ∈ Ψ(ℓ 2p+1 ) ∩ I io , j ̸ = ℓ 2p , then the minimality of the frequencies set F implies that there exists k ∈ I oi ∩ Φ(ℓ 2p ). From Proposition 4.3, this index is linked to s 1 by some type V sequence namely ℓ ′ . Reiterating the same arguments as for the first step of the proof, we easily show that i ̸ ∈ ℓ ′ because there exists a unique selfinteraction loop in F . As a consequence there exists two distinct sequences linking s 1 to ℓ 2p and thus s 1 to i which is exclude from our special choice of i.

We then proceed inductively for each terms in the sequence ℓ. At the end of the day we obtain the value of the desired trace u 0,i in terms of (some) of the u 0,sp for s p ∈ {s} which have been determined in Paragraph 5.3.1. As a consequence, we can construct u 0,i thanks to Propositions 5.1 and 5.3. The first one applies because we have already verified that the traces of the loop elements admit some flatness at the corner.

If i ∈ I oi . The determination of such u 0,i is similar to the one where i ∈ I io except that we require the trace on ∂Ω 2 and that this index is linked to s 1 by a sequence with an even number of terms. We start by showing that Ψ(i) ∩ I io = {ℓ 2p } exactly like the property Ψ(ℓ 2p+1 ) ∩ I io = {ℓ 2p } has been shown for incoming-outgoing modes. We then proceed iteratively for each terms of the sequence as for the incoming-outgoing modes so that we feel free to skip the details here.

If i ∈ I ii then such index can appear after an odd or an even number of reflections. In order to determine the amplitude u 0,i we have to know the two traces u 0,i |x 1 =0 and u 0,i |x 2 =0 .

Let ℓ = (ℓ 1 , ..., ℓ p ) be the type V sequence linking i to s 1 . By definition of such a sequence (see Definition 2.1) we have ℓ p ∈ I oi and ℓ p ∈ Φ(i) if p is odd, ℓ p ∈ I io and ℓ p ∈ Ψ(i) if p is even.

Consequently if p is odd (resp. even) we can use the boundary condition (29) (resp. ( 30)) combined with the uniform Kreiss-Lopainskii condition to write

u 0,i |x 1 =0 = -Π i ϕ i 1 B 1 u 0,ℓp |x 1 =0 -Π i ϕ i 1 k∈Φ * (ℓp)∩Ioi B 1 u 0,k |x 1 =0 , (60) 
  resp. u 0,i |x 2 =0 = -Π i ϕ i 2 B 2 u 0,ℓp |x 2 =0 -Π i ϕ i 2 k∈Ψ * (ℓp)∩Iio B 1 u 0,k |x 2 =0   .
We can reiterate the same kind of arguments as for the case where i ∈ I io in order to show that because of the uniqueness of the type V sequence linking i to s 1 then in both cases Ψ * (ℓ p ) ∩ I io = Φ * (ℓ p ) ∩ I oi = ∅. So that depending on the parity of p one of the traces of u 0,i is determined in terms of the one of u 0,ℓp . The amplitude u 0,ℓp and then its trace can be determined from the case i ∈ I io or i ∈ I oi . As a consequence, it is sufficient to determine the value of the second trace to construct the whole u 0,i . To fix the ideas let us assume that p is odd so that u 0,i |x 1 =0 is known and u 0,i |x 2 =0 has to be determined.

We claim that Ψ(i) ∩ I io = ∅ so that the boundary condition (30) after application of the uniform Kreiss-Lopatinskii condition gives u 0,i |x 2 =0 = 0.

Indeed by contradiction assume that there exists j ∈ I io ∩ Ψ(i) then from Proposition 4.3 there exists a type V sequence ℓ ′ linking s 1 to j. Because i ∈ I ii the sequence (ℓ ′ , j) can not be simplified into ℓ as a consequence i is linked to s 1 by two distinct sequences which is impossible by choice of i.

We then have the two values of the traces u 0,i |x 1 =0 and u 0,i |x 2 =0 so that we can use Proposition 5.3 to determine the amplitude u 0,i .

If i ∈ R 1 or i ∈ R 2 .
We expose here the determination of some U 0,ev,i with i ∈ R 1 the determination for i ∈ R 2 being essentially similar. Let ℓ denotes the type V sequence such that s 1 ↣ V i, then because of the definition of type V sequence we have that ℓ contains an odd number of elements. From the boundary condition (29) where we applied the uniform Kreiss-Lopatinskii condition we obtain that the trace of U 0,ev,i is given by

U 0,ev1,i |X 1 =0 = Π s,e ϕ i 1 B 1 u 0,ℓ2p+1 |x 1 =0 -Π s,e ϕ i 1 B 1 k∈Ioi∩Φ * (ℓ2p+1) u 0,k |x 1 =0 ,
where we recall that Π s,e is the projection introduced in Definition 4.6.

We can show, by using the same arguments as in the framework i ∈ I io that I oi ∩ Φ * (ℓ 2p+1 ) = ∅ so that we have U 0,ev,i |X 1 =0 in terms of u 0,ℓ2p+1 |x 1 =0 which is known from the framework i ∈ I oi .

Proposition 5.4 applies and completes the construction of U 0,ev1,i . Once again from the flatness of the traces of the loop element we can apply Lemma 5.3 so that the extra boundary conditions in (31) are satisfied.

some sequence ℓ ′′ . Using the same arguments as in the proof of Proposition 5.7 we obtain that because of the uniqueness of the selfinteraction loop i ̸ ∈ ℓ ′′ .

Consequently the sequence (ℓ ′′ , k, j) links s 1 to i. The fact that i ̸ ∈ ℓ ′′ implies that the sequence (ℓ ′′ , k, j, i) can not be simplified into (ℓ, i) or (ℓ ′ , i). We thus have constructed three type V sequences linking s 1 to i which is excluded by definition of i. It gives the first point of the claim.

For the second one we proceed by contradiction and assume that there exists a sequence ℓ ′′ differing from ℓ such that s 1 ↣ V ℓ 2p+1 then the sequences (ℓ ′′ , ℓ 2p+1 ), ℓ and ℓ ′ are three distinct sequences linking s 1 to i which is again a contradiction6 . The previous proofs are summarized in Figures 11 and12. (ℓ 1 , ..., ℓ 2p-1 ) and (ℓ ′ 1 , ..., ℓ ′ 2p ′ -1 ), so that Proposition 5.7 does not apply directly to determine the right-hand side of (61). We refer to Figure 13.
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We thus need to make the determination of u 0,ℓ2p+1 more precise. Because ℓ 2p+1 ∈ I oi , using Proposition 5.3 it is sufficient to determine u 0,ℓ2p+1 |x 2 =0 . From the definition of the type V s 1

s 2 ℓ ′ 1 ℓ 1 ℓ 2 ℓ 3 i ℓ ′ 2 ℓ ′ 3 ∅ Figure 14: Illustration for i ∈ I ii
We are in position of the case i ∈ I io , see Figure 14. So, from Proposition 5.7 the amplitudes associated to ℓ p and ℓ ′ p ′ are known and then the boundary condition ( 29) combined with the uniform Kreiss-Lopatinskii condition gives the following relation of u 0,i |x 1 =0 in terms of the traces of the above amplitudes:

u 0,i |x 1 =0 = -Π i ϕ i 1 B 1 u 0,ℓp |x 1 =0 + u 0,ℓ ′ p ′ |x 1 =0 . ( 63 
)
To conclude it remains to determine the value of the trace on ∂Ω 2 . Reiterating the same arguments as the ones exposed in the proof of Proposition 5.7 we can then show that Ψ(i) ∩ I io = ∅ because if not we can easily construct a third sequence of type V linking s 1 to i. As a consequence, the second trace is given by u 0,i |x 2 =0 = 0. Propositions 5.1 and 5.3 apply and the amplitude u 0,i is determined.

-If p and p ′ are both even then the same arguments apply except that it is now the trace of u 0,i on ∂Ω 2 which is non trivial and given by the analogous of (63), the one on ∂Ω 1 being trivial.

-If p is odd and p ′ is even (the other case being similar), then we have on the one hand ℓ p ∈ Φ(i),

ℓ p ∈ I oi and ℓ ′ p ′ ∈ Ψ(ℓ ′ p ′ ), ℓ ′ p ′ ∈ I io . The claim is now that (Φ(i) ∩ I oi ) \ {ℓ p } = ∅ = (Ψ(i) ∩ I io ) \ {ℓ ′ p ′ }, s 1 ↣ V ℓ p and s 1 ↣ V ℓ ′
p ′ by exactly one sequence of type V.

The proof of the claim follows the same lines as the ones of the case i ∈ I io of Proposition 5.7 and we feel free to omit the details. Consequently, applying the boundary conditions ( 29) and ( 30) with the uniform Kreiss-Lopatinskii condition for each side gives

u 0,i |x 1 =0 = -Π i ϕ i 1 B 1 u 0,ℓp |x 1 =0 , u 0,i |x 2 =0 = -Π i ϕ i 2 B 2 u 0,ℓ ′ p ′ |x 2 =0
, the right-hand side being determined elements in H ∞ ♮ (R × R + ) from Proposition 5.7 so that Proposition 5.3 applies and gives u 0,i . The above situation has already been depicted on Figure 4.

Using Proposition 5.7 we can assume that all the indices linked to s 1 by at most two sequences of type V has been determined and reiterating the same kind of proof as the one of Proposition 5.8 we can construct iteratively all the elements linked to s 1 by at most P sequences of type V for any P ≥ 0 and thus determine all the leading order amplitudes in the geometric optics expansion.

The proof is similar to the one where i was linked to s 1 by two distinct type V sequences. Indeed, the proofs of the claims only require that by contradiction we obtain 2 + 1 type V sequences. We feel free to omit the details for a sake of brevity.

We have thus shown the following concluding Proposition:

Proposition 5.9 Under Assumptions 2.1, 2.2, 2.4 and 2.3, consider a complete for reflections frequencies set satisfying the uniqueness Assumption 4.1. Finally, assume that the inversibility assumption 5.1 holds then there exist (u 0,k ) k∈Ios , (U 0,1,k ) k∈R1 and (U 0,k,2 ) k∈R2 satisfying the cascades of equations ( 26), ( 31)

and (32) at the first order.

Once that the leading order of the geometric optics expansion is contructed then it is a simple classical exercise to construct the higher order corrector terms. Indeed the only difference being that the hyperbolic and evanescent terms of order more than two are not polarized any more. As a consequence, these terms will be determined by the same equations as in Paragraphs 5.2.1 and 5.2.2 up to some extra interior terms depending on the above non-vanishing unpolarized part. However, the unpolarized part is determined uniquely from the preceding terms so that these source terms are known and Proposition 5.2 and Lemma 5.2 apply.

Similarly the construction of high order terms for glancing mode is rather classical. It follows the ones

given in [Williams, 2000].

Consequently we omit the details here for a sake of brevity. It concludes the proof of Corollary 2.1.

6 Construction of the geometric optics expansion under Assumption 4.2

The construction for geometric optics expansion when the set of frequencies admits an arbitrary number of selfinteraction loops looks like the one when we have uniqueness of the selfinteraction loop but we have to be a little more precise about the order of determination of the amplitudes.

Let us first stress that the ansatz when the set of frequencies contains several loops is the same as the one when we have uniqueness of the selfinteraction loop that is to say

u ε (t, x) ∼ n≥0 √ ε n k∈Ios e i ε φ k (t,x) u n,k (t, x) + n≥0 √ ε n k∈Ig1 e i ε φ k (t,x) u n,k (t, x 2 , x 1 √ ε ) + k∈Ig2 e i ε φ k (t,x) u n,k (t, x 1 , x 2 √ ε ) + n≥0 √ ε n k∈R1 e i ε ψ k,1 (t,x2) U n,k,1 (t, x 2 , x 1 ε ) + k∈R2 e i ε ψ k,2 (t,x1) U n,k,2 (t, x 1 , x 2 ε ).
As a consequence, when we inject this ansatz in the interior equation, the boundary conditions and the initial condition still leads to the cascade of equations ( 26)-( 31) and (32).

But, let us stress that in this cascade, this will specifically be important for the boundary cascade (31), we now have several selfinteraction phenomena.

Similarly, the reformulation steps of Paragraph 5.2 are unchanged because the cascade of equations is the same.

As a consequence we have to study how the order of determination of the amplitudes is affected by several selfinteraction loops. This is described in the following paragraph for the leading order term. For higher order terms, once the order of determination is clearly established we can repeat the same computations as in Paragraph ?? when we had uniqueness of the selfinteraction loop. Indeed this process only adds some sources terms in the equations but the order to resolution is not modified compared to the one of the leading order term. Consequently we will not describe the construction of high order terms in the following.

In this section we describe how the method described in Section 5 needs to be modified to construct the geometric optics expansions when the frequencies set contains several (simple) selfinteraction loops. In order to do so let us first remark the following important refinements of the construction in the unique selfinteraction loop framework of Section 5:

1. The determination of the elements of the "first" selfinteraction loop (namely the one turned on by the source g ε ) only requires that this loop is not a composite loop. So that we can reproduce the determination of the first loop's amplitudes in order to initialize the resolution.

2. The determination of the elements away from the loop based on the number of type V sequences only requires that the considered sequence do not contain any selfinteraction indices.

As a consequence, we can use the same arguments as in Section 5 to determine first the amplitudes associated to the indices in the first loop and then to determine the amplitudes which are linked to s 1 1 by an arbitrary number of type V sequence if all these sequences do not contain any selfinteraction indices.

To save some vocabulary we introduce the following definition: Definition 6.1 (Simply regenerated index) Let i ∈ I we say that i is simply regenerated if all the sequences of type V linking i to s 1 1 do not contain any selfinteracting indices except the ones of {s 1 }.

Determination of the first selfinteraction elements and determination of simply regenerated indices

In this paragraph we first justify that if the first selfinteraction loop, namely the one turned on by the source g ε is a simple loop then we can reproduce the computations made in Paragraph 5.3.1.

The only point to be clarified is Lemma 5.5. Having a look at its proof however shows that to conclude we do not really require the uniqueness of the selfinteraction loop but only that the loop {s 1 } is simple in the sense of Definition 4.5. It is the case under Assumption 4.2.

As a consequence, we can reproduce the computations made in Paragraph 5.3.1. It gives the initialization condition reading under the form (58). More precisely we should have

(I -T 1 )u 0,s 1 2b 1 |x 1 =0 = T 1 g,
where T 1 is defined by (59) (the exponent here only specifies that it is the operator obtained by considering the first interaction loop namely {s 1 }).

We assume that the operator I -T 1 is invertible on the space H ∞ ♮ (R × R + ) so that it gives u 0,s

1 2b 1 |x 1 =0
and all the amplitudes associated to the loop {s 1 } are determined.

Because at the end of the day we will have to consider all the selfinteraction loops in I we make the following assumption. This is just a generalization of Assumption 5.1 to the framework of Assumption 4.2.

Assumption 6.1 We assume that for all a ∈ 1, A the operator I -T a defined by (59) and obtained by repeating the computations of Paragraph 5.3.1 to the loop

{s a } is invertible from H ∞ ♮ (R × R + ) into H ∞ ♮ (R × R + ).
We now describe the determination of simply regenerated indices in I . To do thiswe use the fact that because the type V sequence(s) linking i to s 1 1 do not contain selfinteraction indices, then the analysis of Section 5.3.2 can be reproduced.

Indeed, the only points where we used the Assumption 4.1 on selfinteraction loop in the proofs of Propositions 5.7 and 5.8 are at the first step of Proposition 5.7 and in the first point of Proposition 5.8 where we required that a sequence reading (i, ℓ ′ 2r+3 , ...ℓ ′ 2p ′ +1 , k, j, i) can not be a selfinteraction loop for i.

It is the case for simply regenerated indices because in the sequence(s) linking these indices to s 1 1 we do not have any selfinteraction indices. As a consequence, Propositions 5.7 and 5.8 apply and it gives the determination of all simply regenerated indices.

However the selfinteracting elements in the first loop {s 1 } being determined from Paragraph 6.1 there is no loss of generality by assuming that ℓ reads under the form (64) (where the first terms can possibly depend on the amplitudes indexed by elements of {s 1 } which are known and depend explicitly on the source g).

Step 1: Entering in the first selfinteraction loop after {s 1 }. We first show that we can reiterate the computations of Paragraph 5.3.1 in order to determine the indices s a • appearing in ℓ.

We make this justification when ℓ p-1 ∈ I oi the analysis being similar when ℓ p-1 ∈ I io . In such a situation we have s a p ′ ∈ I io and we want to justify that any Φ(s a p ′ ) ∩ I oi \ {ℓ p-1 , s a p } is simply regenerated, ℓ p-1 is simply regenerated.

(

) 65 
where s a p stands for the incoming-outgoing index of s a such that s a p ∈ Φ(s a p ′ ). The second point of the claim ( 65) is clear.

To proof the first part of the claim we consider j ∈ Φ(s a p ′ ) ∩ I oi \ {ℓ p-1 , s a p }. From Proposition 4.3 this index j is linked to s 1 1 by type V sequences and such sequences ℓ ′ read a priori under the form (64). However if there exists selfinteraction indices in ℓ ′ then the sequence (ℓ ′ , j) is a sequence (containing selfinteraction indices differing from the ones of {s 1 }) linking i to s 1 1 and differing from ℓ. This is excluded from the choice of i for which we have uniqueness of such a sequence.

As a consequence, any element in Φ(s a p ′ ) ∩ I oi \ {s a p } is simply regenerated and thus it is determinable from the analysis of Section 5. So the boundary condition (29) for s a p ′ gives after the use of the uniform Kreiss-Lopatinskii condition:

u 0,s a p ′ |x 1 =0 = -Π s a p ′ ϕ s a p ′ 1 B 1 u 0,s a p |x 1 =0 -Π s a p ′ ϕ s a p ′ 1 B 1 j∈Φ(s a p ′ )∩Ioi\{s a p } u 0,j |x 1 =0 ,
the second term in the right-hand side being a known function depending explicitly on g. Because of Proposition 5.3, combined with the fact that s a p ′ ∈ I io this trace is sufficient to determine the whole amplitude u 0,s a p ′ .

Step 2: Solving the first loop We can reiterate exactly the same process for all the elements of the considered selfinteraction loop {s a } by showing that if s a p ∈ I io we have

u 0,s a p |x 1 =0 = -Π s a p ϕ s a p 1 B 1 u 0,s a p-1 |x 1 =0 -g p ,
and if s a p ∈ I oi we have u

0,s a p |x 2 =0 = -Π s a p ϕ s a p 2 B 2 u 0,s a p-1 |x 2 =0 -g p ,
where g p depends on the suitable trace of the known amplitudes u 0,ℓp-1 (which depend on g from Assumption 4.2). Indeed the proof is exactly the same for all indices s a p included in (64). For non visited indices we proceed similarly except that we form an other type V sequence by passing through s a p ′ .

For instance, consider to simplify that s a = {s a p ′ , s a p ′ +1 , s a p ′ +2 , s a p } and we assume that the sequence ℓ only contains s a p ′ and s a p ′ +1 . By contradiction, we assume that there exists j a non simply regenerated index in Ψ(s a p ) ∩ I io \ {s a p ′ +2 } then it is linked to s 1 1 by a sequence ℓ ′ containing selfinteraction indices and thus the sequence (ℓ ′ , j, s a p ′ , s a p ′ +1 , ...) is an other type V sequence containing non selfinteraction indices sequence linking i to s 1 1 which is impossible because such a sequence is assumed to be unique.

As a consequence we can reproduce the same computations as the ones of Paragraph 5.3.1 which give rise to some new compatibility condition reading

(I -T a )u 0,s a p ′ |x 1 =0 = T a g a , (66) 
where the operator T a is defined by (59) applied to the loop {s a } and where g a depend explicitly on the source g.

From Assumption 4.2, we thus obtain u 0,s a p ′ |x 1 =0

and the values of the visited selfinteraction elements of {s a } in ℓ are deduced from the explicit formula of Paragraph 5.3.1.

Step 3: Next selfinteraction loops From the above results the sequence ℓ now reads under the form (64) where we now have a = a ′ and where the ℓ 1 , ..., ℓ p-1 now depend on the (known) selfinteraction indices of {s 1 } and {s a }. We can thus reproduce Steps 1 and 2 where we now used "does not contain selfinteraction indices except in {s 1 } or {s a }" for the new concept of simply regenerated indices.

So that pass each loop gives rise to a compatibility condition under the form (66) which can be solved uniquely from Assumption 6.1.

Step 4 : The end of the sequence Using Step 3 as many times as there are distinct selfinteraction groups elements in ℓ we can now assume that ℓ reads under the form ℓ = (ℓ 1 , ..., ℓ t , ℓ t+1 , ..., ℓ f ), for some t ≤ f where the first terms ℓ 1 , ..., ℓ t depend on the visited selfinteraction indices in ℓ and where ℓ t+1 , ..., ℓ f do not contain any selfinteraction indices so that all the amplitudes associated to the indices in the sequence ℓ are known.

Step 5 : The determination of u 0,i To conclude it remains to determine u 0,i . We distinguish several cases depending on the nature of the index i.

If i ∈ I io , then we distinguish two subcases depending on if i is selfinteracting or not:

-If i ̸ ∈ S . In such a case the boundary condition (29) determining u 0,i |x 1 =0 reads:

u 0,i |x 1 =0 = -Π i ϕ i 1 B 1 j∈Φ(i)∩Ioi u 0,j |x 1 =0 (67) 
where the sum in the right-hand side contains the index ℓ f (whose amplitude is known) and possibly other indices which are simply regenerated (from the uniqueness of the sequence ℓ) so that their amplitudes can be determined. As a consequence, Proposition 5.3 applies and thus u 0,i is determined from (67).

-If i ∈ S then the boundary condition determining u 0,i |x 1 =0 reads

u 0,i |x 1 =0 = -Π i ϕ i 1 B 1 u 0,j |x 1 =0 -Π i ϕ i 1 B 1 j∈Φ(i)∩Ioi\{j} u 0,j |x 1 =0 , (68) 
where j stands for the selfinteracting outgoing-incoming index such that j ∈ Φ(i). As in the subcase where i ̸ ∈ S then the second term in the right-hand side of ( 68) is a known function.

Reiterating the arguments of the above Step 1 and Step 2 we can justify that all the boundary conditions involving the elements of the loop containing i read under the form (68).

This leads us to a compatibility condition (I -T ai )u 0,i |x 1 =0 = g i , where a i is such that i ∈ {s ai } and where g i depends on the right-hand side of (68) so on g. Inverting the operator I -T ai from the Assumption 6.1 thus gives the desired value of u 0,i |x 1 =0 . As a consequence, Proposition 5.3 applies and thus u 0,i is determined.

If i ∈ I oi then the proof follows the same lines as for the case i ∈ I io so that we feel free to omit the details here.

Similarly when i ∈ I ii ∪ I ev1 ∪ I ev2 ∪ I g1 ∪ I g2 then once it is clear that the amplitude associated to the last index of ℓ, namely ℓ f , has been determined the determination of Section 5 applies. So that we can apply Proposition 5.8 to determine the simply regenerated elements in Φ(i) ∩ I oi and Proposition 6.1 to determine the amplitudes u 0,ℓ f and u 0,ℓ ′ f ′ . It determines all the required traces to determine u 0,i by Proposition 5.3.

We now consider the case where ℓ f = ℓ ′ f ′ . In such a situation the claim is the following: Any element of Φ(i) ∩ I oi \ {ℓ f } is simply regenerated, ℓ f is linked to s 1 1 by two type V sequences containing selfinteraction terms.

(70)

or equivalently the initial boundary value problem with trivial initial condition, then the Assumptions 5.1 and 6.1 ensuring the inversibility of the loop's operators are automatically satisfied. Indeed, we have:

Proposition 7.1 For the finite time problem (71), the inversibility Assumption 6.1 is satisfied.

Proof : We consider the proof for some operator T defined by (Tu)(t, y) := Su(t -αy, βy) where S ∈ M N ×N (C) and α > 0, β ∈ R. Because of the special form of the inversibility condition of Assumption 6.1 to invert I -T it is tempting to expand (I -T) -1 as the Neumann series expansion. However we then have that for n ≥ 0, (T n u)(t, y) = S n u(t -αn, βn). So that if we choose n large enough so that T ≤ αn then all the terms T p for p ≥ n vanish. The Neumann series then have a finite number of terms and we can read on them the expected regularity.

□

We refer to [Benoit, 2016] for some other comments and examples of frameworks where we can justify that Assumption 6.1 is satisfied.

7.2 Some words about the justification of the expansion

Some comments about the number of phases

The first point in the justification of the expansion is of course to give a precise sense to the formal series defining the ansatz (25). In order to do so, as in [Benoit, 2016], we can use the assumption that the number of phases obtained during the phase generation process in finite that is that #F < ∞.

Of course, this assumption is far to be harmless because for a given hyperbolic operator (especially when we have N large, so that "many" roots have to be considered at any steps) then it is really complicated to effectively apply the phase generation process and to verify effectively that #F < ∞.

Let us, however mention a framework where we can easily show that this assumption is satisfied. Once again finite time problems can be of some help if we assume moreover that the initial source has it support away from the corner. In such a configuration we can then show that all the required traces in Propositions 5.3, 5.4 and 5.6 have their supports away from the corner (because they are obtain as explicit solution of some transport equation). Then if we consider a given amplitude u 0,i ∈ I io ∪ I oi its transported trace will have its support away from the origin so that it will require some time to go on the other side. As a consequence the descendants of i appear after the time of appearance of u 0,i plus some stricctly positive time of travel.

The time of resolution being finite we can then not have an infinite number of phases in the process.

Of course, considering finite time problems with some source having its support away from the corner is rather unsatisfactory if we are interested in corner problem but it has the advantage to show that the number of phases can effectively be finite. This is however still a rather big remaining obstruction to the applicability of Theorem 2.2.

In a future contribution we aim to study the assumption #F < ∞ without using any support property.

We have two approaches in mind:

try to give some geometric condition on W ensuring that we have #F < ∞ holds.

try to bypass this assumption by characterizing the boundary conditions which give enough decay for the series k∈I e i ε φ k u n,k to make sense even if #F = ∞. The amplitudes u 0,k essentially read under the form u 0,k (t, x) = S k g k , where g k is some explicit evaluation of the source g along the suitable caracteristics and where S k describe all the coefficients of reflections ϕ j 1 B 1 and ϕ j 2 B 2 encountered to generate the index k. So that, find a way to ensure that ∥S k ∥ ↓ 0 sufficiently fast may be a good way to deal with geometric optics expansions without the assumption #F < ∞. 51

The justification in itself

We consider in the following the truncated ansatz u ε app,N0 for N 0 ∈ N given by: ).

u ε
In order to make the error analysis we require some energy estimates for the solution u to the boundary value problem

         L(∂)u = f in Ω, B 1 u |x1=0 = g 1 on ∂Ω 1 , B 2 u |x2=0 = g 2 on ∂Ω 2 , u |t≤0 = 0 on Γ. ( 73 
)
We assume that this problem is strongly well-posed in the following (classical) sense. In order to do so we require the following weighted L 2 -spaces: for γ > 0 and X ⊂ Ω we define L 2 γ (X) := {u ∈ D ′ (X) \ e -γt u ∈ L 2 (X)}.

Definition 7.1 Let γ > 0 and let (f, g 1 , g 2 ) ∈ L 2 γ (Ω) × L 2 γ (∂Ω 1 ) × L 2 γ (∂Ω 2 ) then the boundary value problem (73) admits a unique solution u ∈ L 2 γ (Ω) with traces in L 2 γ (∂Ω 1 ) × L 2 γ (∂Ω 2 ) satisfying the ernegy estimate: there exists C > 0 such that

γ∥u∥ 2 L 2 γ (Ω) + ∥u |x1=0 ∥ 2 L 2 γ (∂Ω1) +∥u |x2=0 ∥ 2 L 2 γ (∂Ω2) ≤ C 1 γ ∥f ∥ 2 L 2 γ (Ω) + ∥g 1 ∥ 2 L 2 γ (∂Ω1) + ∥g 2 ∥ 2 L 2 γ (∂Ω2) . (74) 
The full characterization of the boundary conditions leading to strongly well-posed problems has not been achieved yet in the literature. One of the main advance in such a characterization is probably the analysis of [Osher, 1973] describing a way to construct a symmetrizor which permits to obtain an a priori energy estimate (74) some (non explicit) looses of derivatives.

However, for specific operators and boundary conditions, namely, for symmetric operators with strictly dissipative boundary conditions then we can show (see for example [?]) that the associated boundary value problem is strongly well-posed in the sense of Definition 7.1.

The aim of the following is to justify that the truncated ansatz ( 72) is indeed a good approximation of the unique solution to u ε if the associated boundary value problem is strongly well-posed. More precisely, we have Proposition 7.2 Under the Assumptions of Theorem 2.2, assume moreover that #F < ∞ and that the boundary value problem (73) is well-posed in the sense of Definition 7.1. Then we have the estimate

∀ N 0 ∈ N, ∥u ε -u ε app,N0 ∥ L 2 γ (Ω) ≤ C √ ε N0+1 ,
where u ε stands for the unique solution to (1) and where u ε app,N0 is defined in (72).

Proof : The proof exposed here is rather classical. We first estimate the error u ε -u ε app,N0+2 and then we conclude by the triangle inequality. The error u ε -u ε app,N0+2 solves the corner problem

         L(∂)(u ε -u ε app,N0+2 = f ε in Ω, B 1 (u ε -u ε app,N0+2 ) |x1=0 = 0 on ∂Ω 1 , B 2 (u ε -u ε app,N0+2 ) |x2=0 = 0 on ∂Ω 2 , (u ε -u ε app,N0+2 ) |t≤0 = 0 on Γ, (75) 
where the source f ε is defined by

f ε := √ ε N0+1 k∈I hyp e i ε φ k L(∂)u N0+1,k + √ ε N0+2 k∈I hyp e i ε φ k L(∂)u N0+2,k + √ ε N0+1 k∈G1 e i ε φ k L ′ 1 (∂)u N0+1,k t, x 2 , x 1 √ ε + √ ε N0+1 k∈G1 e i ε φ k A 1 ∂ χ1 (u N0+1,k ) t, x 2 , x 1 √ ε + √ ε N0+2 k∈G1 e i ε φ k L ′ 1 (∂)u N0+2,k t, x 2 , x 1 √ ε + √ ε N0+1 k∈G2 e i ε φ k L ′ 2 (∂)u N0+1,k t, x 1 , x 2 √ ε + √ ε N0+1 k∈G2 e i ε φ k A 2 ∂ χ2 (u N0+1,k ) t, x 1 , x 2 √ ε + √ ε N0+2 k∈G2 e i ε φ k L ′ 1 (∂)u N0+2,k t, x 1 , x 2 √ ε + √ ε N0+1 k∈R1 e i ε ψ k,1 L ′ 1 (∂)U N0+1,k,1 t, x 2 , x 1 ε + √ ε N0+2 k∈R1 e i ε ψ k,1 L ′ 1 (∂)U N0+2,k,1 t, x 2 , x 1 ε + √ ε N0+1 k∈R2 e i ε ψ k,2 L ′ 2 (∂)U N0+1,k,2 t, x 1 , x 2 ε + √ ε N0+2 k∈R2 e i ε ψ k,2 L ′ 2 (∂)U N0+2,k,2 t, x 1 , x 2 ε .
Because of the fast scales, when taking the L 2 -norm of the right-hand side of f ε , by a simple change of variable one will recover a ε α (with α = 1/2 for evanescent modes and α = 1/4 for glancing modes). Consequently, the limiting term in f ε is the term √ ε The energy estimate of Definition 7.1 then gives that

∥u ε -u ε app,N0+2 ∥ L 2 (Ω) ≤ C √ ε N0+1 ,
the triangle inequality then ends up the proof.

□
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  a, b ∈ Z we define a, b := [a, b] ∩ Z.
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 3 Figure 3: An other (not really) "stairway" like loop
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 5 Figure 5: Non selfinteraction loop with incoming-outgoing phase
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 6 Figure 6: Non selfinteraction loop with incoming-outgoing phase bis
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 7 Figure 7: Tree structure of the set of indices I in[Benoit, 2016].

  then F contains all the roots (in the ξ 2 variable), denoted by ξ p 2 , of the dispersion relation det L (τ , ξ i 1 , ξ 2 ) = 0 satisfying one of the following two alternatives (a) ξ p 2 ∈ R and the frequency (τ , ξ i 1 , ξ p 2 ) is associated to an outgoing-incoming group velocity, an incoming-incoming group velocity or is glancing for the side ∂Ω 2 .(b) ℑξ p 2 > 0.

  Definition 4.4 [Type V and type H sequences] Let i ∈ I and j ∈ I be linked to i in the sense of Definition 4.3. We say that the index j ∈ I is linked to the index i ∈ I by a type V (resp. H) sequence and we denote i ↣ V j (resp. i ↣ H j) if the sequence (i, ℓ, j) where ℓ is given by Definition 4.3 satisfies α) or β) (resp. α ′ ) or β ′ )).

  0}, and I R the set of indices linked to the indices in I 0 in the sense of Definition 4.3. Then we have I = I R .

  Assumption 4.2 [Multiple selfinteraction loops]The frequencies set F indexed by I admits A ∈ N selfinteraction loop each of size 2b a ∈ N, b a ∈ N and a ∈ 1, A . These loops are simple in the sense of Definition 4.5. That is to say that the following properties are satisfied: we denote by S the set of selfinteracting indices of I . Then
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 8 Figure 8: An example with several selfinteraction loops

Definition 4. 6

 6 Let ζ let a placeholder for a frequency boundary. We define For k ∈ I hyp ∪ I g1 ∪ I g2 we introduce Π k = Π k (ζ) the projection on ker L (dφ k ) with respect to the decomposition (10).
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 11 Figure 11: Illustration of the first statement of the claim

Figure 12 :

 12 Figure 12: Illustration of the second statement of the claim

Figure 17 :

 17 Figure 17: First illustration of the situation with several selfinteracting loops, ℓ f ̸ = ℓ ′ f ′ .

  app,N0 (t, x) ∼

	N0	√	ε	n			e	i ε φ k (t,x) u n,k (t, x)			(72)
	n=0					k∈I hyp						
	+	N0 n=0	√	ε	n	k∈Ig 1	e	i ε φ k (t,x) u n,k (t, x 2 ,	x 1 √ ε	) +	k∈Ig 2	e	i ε φ k (t,x) u n,k (t, x 1 ,	x 2 √ ε	)
	+	N0 n=0	√	ε	n	k∈R1	e	i ε ψ k,1 (t,x2) U n,k,1 (t, x 2 ,	x 1 ε	) +	k∈R2	e	i ε ψ k,2 (t,x1) U n,k,2 (t, x 1 ,	x 2 ε

We here mean that it is always possible to construct problems for which such selfinteraction phenomenon occur (see Section ??). But that they are toy model and that we have reasons to believe that for a given hyperbolic operator L(∂) such phenomenon "generically" do not appear.

The following construction can also probably operates with not a lot of modifications for constantly hyperbolic operators but we choose the strictly hyperbolic ones for simplicity.

This characterization can be easily made graphically by considering the outgoing normal to V at the intersection point

B 1 , β := k∈{s}∩Iio v k,2 v k,1 l∈{s}∩Ioi v l,1 v l,2,

Indeed the sequence (ℓ ′′ , ℓ 2p+1 ) can be simplified into ℓ if and only if ℓ 2p+1 admits an interaction loop.

Construction of the leading order term

In this paragraph we describe the construction of the leading order term in the geometric optics expansion.

From the results of Paragraph 5.2 we have justified that the whole determination of the amplitudes of the leading order term amounts to determine the suitable trace values.

Thus in the following we describe an order of resolution which permits to decouple the boundary conditions cascades ( 29) and ( 30) and thus to perform the construction of the leading order term thanks to Propositions 5.3-5.4 and 5.6.

Because several loops have to be considered the order of resolution will not be as simple as in the unique loop framework of [Benoit, 2016]. The main steps of the determination remain however, in some sense, the same. We first find a compatibility condition permitting to determine the elements of the selfinteraction loop.

We then find some order of resolution to determine the elements coming from reflections of the selfinteraction loop's elements.

Determination of the loop elements

In this paragraph we generalize the compatibility condition of [Benoit, 2016] to a selfinteraction loop with any odd number of elements so that there exists an even number of selfinteracting terms. The ideas remain however unchanged.

We assume for a while that the last amplitude of the loop, namely u 0,s 2b is known. We will recover the values of all the other selfinteracting terms in terms of u 0,s 2b and finally a compatibility condition determining u 0,s 2b .

Because by definition s 1 ∈ I io from Proposition 5.3 it is sufficient to determine its trace on ∂Ω 1 to determine u 0,s1 . From the boundary condition (29) this trace satisfies

In both cases, we remark that the left-hand side reads under the form B 1 v where v ∈ E s 1 so that the uniform Kreiss-Lopatinskii condition (see Assumption 2.4) gives that

where we recall that Π s1 stands for the projection upon ker L (dφ s1 ) introduced in Definition 4.6.

In order to follow the method of resolution of [Benoit, 2016] we need to justify that Ψ(s 1 ) ∩ I oi = {s 2b } to make sure that the right-hand side only depends on the "known" function u 0,s 2b .

Lemma 5.5 Consider a complete for reflections frequencies set F satisfying Assumption 4.1 then we have

Proof : We proceed by contradiction by assuming that there exists i ∈ Φ(s 1 ) ∩ I oi , i ̸ = s 2b . Using the fact that the frequencies set is minimal we obtain that i necessarily comes from some reflection. So there exists some j ∈ I io such that j ∈ Ψ(i). From Proposition 4.3, we have that s 1 ↣ V j so that there exists a type V sequence ℓ with an even number of elements linking s 1 to j. As a consequence, the sequence (s 1 , ℓ, j, i, s 1 ) is 

and a similar relation in the case i ∈ I g2 , where we used the fact that I oi ∩ Φ * (ℓ 2p+1 ) = ∅ to simplify the right-hand side. Once again we use the case i ∈ I oi to determine u 0,ℓ2p+1 |x 1 =0 this gives u 0,i |χ 1 =0

and thus the whole u 0,i using Proposition 5.6.

Because we have determined u 0,i when s 1 ↣ V i by a unique sequence of type V for all possible kind of the index i the proof of Proposition 5.7 is complete.

□

From now on, using Proposition 5.7, we can assume that all the indices linked to s 1 by only one type V sequence has been determined.

For later purposes let us remark that in fact the above proof does not really require the uniqueness of the selfinteraction loop but that to hold it is sufficient that the sequence ℓ linking i to s 1 does not contain any indices which are selfinteracting.

The following proposition states that we can now determine all the indices linked to s 1 by two distinct sequences of type V .

Proposition 5.8 In a complete for reflections frequencies set satisfying Assumption 4.1, let i ∈ I be such that there exist two distinct type V sequences ℓ and ℓ ′ such that s 1 ↣ V i then the amplitude u 0,i solving the cascades of equations ( 26), ( 31) and (32) can be uniquely determined from the values of the u 0,sp where s p ∈ {s}.

Proof : Acting as for the proof of Proposition 5.7 we have to separate several cases depending on the nature of the index i.

We first assume that i ∈ I io . Let ℓ := (ℓ 1 , ..., ℓ 2p+1 ) and ℓ ′ := (ℓ ′ 1 , ..., ℓ ′ 2p ′ +1 ) with p, p ′ ∈ N be the two sequences such that s 1 ↣ V i. From Proposition 5.3 it is sufficient to determine u 0,i |x 1 =0 . By definition of type V sequences and the boundary condition (29) we have, thanks to the uniform Kreiss-Lopatinskii condition:

We have several cases to consider to express (61) in a suitable way. It depends on the values of the end of the sequences ℓ and ℓ ′ .

-Consider first that ℓ 2p+1 ̸ = ℓ 2p ′ +1 then we claim that we have

2p ′ +1 by exactly one type V sequence, so that Proposition 5.7 applies to determine each of the amplitudes u 0,ℓ2p+1 and u 0,ℓ ′ 2p ′ +1 and thus

We now proof the claim. We proceed once again by contradiction by assuming that there exists

. By minimality of the frequencies set such a j comes from the reflection of some k ∈ I io ∩ Ψ(j). From Proposition 4.3 such k is linked to s 1 by

sequences ℓ and ℓ ′ , the boundary condition (30) and the uniform Kreiss-Lopatinskii condition; we have

We then claim that we have

2p ′ by exactly one sequence of type V, so that the right-hand side of (62) only depends on u 0,ℓ2p

which are known from Proposition 5.7. The proof of the new claim is totally similar to the previous claim so that the proof is omitted here. If ℓ 2p = ℓ ′ 2p we consider the preceding elements ℓ 2p-1 and ℓ ′ 2p ′ -1 and repeat the same arguments until that we find two elements such that ℓ q ̸ = ℓ ′ q ′ which necessarily occurs at some step because ℓ ̸ = ℓ ′ . This ends up the determination of u 0,i when i ∈ I io .

If i ∈ I oi then the proof is the same mutatis mutandis as the one for the case i ∈ I io . We feel free to omit this proof here. If i ∈ I ii then the proof differs a little from the one where i is linked to s 1 by a unique type V sequence so that we will give more details. Let i ∈ I ii be linked to s 1 by two distinct sequences ℓ = (ℓ 1 , ..., ℓ p ) and ℓ ′ = (ℓ ′ 1 , ..., ℓ ′ p ′ ). From the definition of type V sequences we have p, p ′ ∈ N not necessarily with the same parity. We thus make the following distinctions depending on the above parities -If p and p ′ are both odd then we have i ∈ Φ(ℓ p ) = Φ(ℓ ′ p ′ ) where ℓ p , ℓ p ′ ∈ I oi . The claim here is that if

p ′ by exactly one sequence of type V.

At this step of the proof we thus have determined the amplitudes for the indices in the first loop and the indices which are linked to s 1 1 by type V sequence(s) who do not contain any selfinteraction indices except the ones of {s 1 }. In the following, we consider to conclude the whole determination of the amplitudes, the indices linked by type V sequences containing selfinteraction indices (differing from the ones of {s 1 }).

Determination of the other amplitudes

The determination of the others amplitudes in the geometric optics expansion follows essentially the same sketch of construction than the one performed under Assumption 4.1. We will first determine the amplitudes linked to s 1 1 by a unique type V sequence containing selfinteraction indices away from {s 1 } (that is to say that the indices are not simply regenerated any more). It is made in Paragraph 6.2.1.

Then to conclude the whole determination we proceed inductively by considering indices linked to s 1 1 by two type V sequences containing selfinteraction indices (away from the ones of {s 1 }) and so on.

The determination of indices linked by one sequence

In all this paragraph we consider an index i ∈ I . From Proposition 4.3 it is linked to s 1 1 by (possibly many) type V sequences. We assume in the following that i is linked to s 1 1 by a unique type V sequence and that, because we have already determined simply regenerated indices, this sequence contains selfinteraction indices away from the ones of {s 1 }.

Before to give a precise sketch of construction of the amplitude associated to i let us give the following lemma which describes the structure of the considered type V sequence.

Lemma 6.1 Consider a wcomplete for reflections frequencies set satisfying Assumption 4.2. Let i ∈ I let ℓ be a type V sequence linking i to s 1 1 . Note that we authorize ℓ to contain selfinteraction indices differing from the ones of {s 1 }. Let ℓ p := s a p ′ and ℓ q be two consecutive selfinteracting indices of ℓ then one of the following alternatives is satisfied 1. q = p + 1 and ℓ q = s a p ′ +1 (with the convention that if p ′ = 2b a then s a p ′ +1 = s a 1 ).

2. q > p + 1 and ℓ q = s a ′ q ′ , a ̸ = a ′ for some q ′ ∈ 1, 2b a ′ .

As a consequence if the sequence ℓ contains selfinteracting indices differing from the ones of {s 1 } then it reads under the form ℓ := (s 1 2 , ..., s 1 p , ℓ p+1 , ..., ℓ q-1 , s a q ′ , ..., s a q ′ +r , ℓ q+r+1 , ..., ℓ q+r+l , s a ′ q ′′ , ..., s a ′ q ′′ +r ′ , ..., ℓ f ), or ℓ := (ℓ 1 , ..., ℓ p-1 , s a p ′ , ..., s a p ′ +r , ℓ p+r+1 , ..., ℓ q+r+l , s a ′ q ′ , ..., s a ′ q ′ +r ′ , ..., ℓ f ), where the ℓ • are non selfinteracting indices.

Proof : To fix the ideas and to simplify the exposition, we assume that ℓ p := s 1 2 ∈ I oi . ;This special proof can then be extended to the general framework.

Let us assume that q = p + 1 we want to show that ℓ q = s 1 3 . By contradiction let us assume that

Then by construction the sequence (s 1 1 , s 1 2 , s a ′ q ′ , ℓ, s 1 3 , ..., s 1 2b , s 1 1 ) is a loop for the index s 1 1 . It differs from the unique selfinteraction loop {s 1 } for s 1 1 because of s a ′ q ′ is not an element of s 1 . As a consequence, ℓ q ∈ {s 1 } because {s 1 } is a simple selfinteraction loop so that we necessarily have ℓ q = ℓ p+1 = s 1 3 .

Let us assume now that q > p + 1. By contradiction we thus assume that ℓ q ∈ {s 1 }. We justify here once again for simplicity that we have ℓ q ̸ ∈ {s 1 3 , s 1 4 , s 1 5 , s 1 1 } the proof for the other indices follows the same lines.

Assume by contradiction that ℓ q = s 1 4 . By definition of type V sequences we can thus find non selfinteracting indices ℓ p+1 , ℓ p+2 , ..., ℓ p+2r+1 such that (s 2 1 , ℓ p+1 , ℓ p+2 , ..., ℓ p+2r+1 ) forms a type V sequence linking s 1 4 45 to s 1 1 . As a consequence the sequence (s 1 1 , s 1 2 , ..., s 1 2b 1 , s 1 1 ) and (s 1 1 , s 1 2 , ℓ p+1 , ..., ℓ p+2r+1 , s 1 4 , ..., s 1 2b 1 , s 1 1 ) are two distinct loops for s 1 1 which is exclude because {s 1 } is a simple selfinteraction loop.

We now justify that we can not have ℓ q = s 1 5 . Proceeding similarly we can find non selfinteracting indices ℓ p+1 , ℓ p+2 , ..., ℓ p+2r such that (s 2 1 , ℓ p+1 , ℓ p+2 , ..., ℓ p+2r ) forms a type V sequence linking s 1 5 to s 1 1 . Once again the existence of such a sequence contradicts the simplicity of the loop {s 1 }.

The proof is the same to justify that ℓ q ̸ = s 1 1 , s 1 3 .

The previous double discussion is illustrated on Figures 15 and16. 1 by (at least) one type V sequence(s) containing selfinteraction indices differing from the ones of {s 1 }. We start the determination by the indices which are linked by a unique type V sequence containing selfinteraction indices which differ from the ones of {s 1 }. We stress that from Lemma 6.1 several loops can be visited.

Proposition 6.1 Consider a complete for reflections frequencies set satisfying the loop Assumption 4.2 and the inversibility condition Assumption 6.1. Let i ∈ I be such that there exists a unique type V sequence containing selfinteraction indices (differing from the ones of {s 1 }. Then u 0,i solving the cascades of equations ( 26)-( 31)-( 32) can be uniquely determined from the source g.

Proof :

We have to study different cases depending on the nature of the index i. In all cases, from Lemma 6.1 we know that ℓ, the sequence linking s 1 1 to i, reads under the form ℓ = (ℓ 1 , ..., ℓ p-1 , s a p ′ , ..., s a p ′ +r , ℓ p+r+1 , ..., ℓ q+r+l , s a ′ q ′ , ..., s a ′ q ′ +r ′ , ..., ℓ f ),

or possibly ℓ := (s 1 2 , ..., s 1 p , ℓ p+1 , ..., ℓ q-1 , s a q ′ , ..., s a q ′ +r , ℓ q+r+1 , ..., ℓ q+r+l , s a ′ q ′′ , ..., s a ′ q ′′ +r ′ , ..., ℓ f ).

□

As a consequence we have determined all the amplitudes which are linked to s 1 1 by type V sequences where at most one of these sequences contains selfinteracting elements away from {s 1 }.

Determination of the others amplitudes

In the spirit of Section 5 we then turn to the indices linked to s 1 1 by two such sequences.

Proposition 6.2 Consider a complete for reflections frequencies set satisfying Assumptions 4.2. We also assume that we have Assumption 6.1. Let i ∈ I be an index such that we have two distinct sequences ℓ, ℓ ′ , containing selfinteraction indices differing from the ones of {s 1 } which link s 1 1 to i. Then u 0,i solving the cascades of equations ( 26)-( 31)-( 32) can be uniquely determined from the source g.

Proof : Using Lemma 6.1 we can assume that the two sequences ℓ, ℓ ′ read under the form: ℓ =(ℓ 1 , ..., ℓ p-1 , s a q , ..., s a q+r , ..., ℓ f ), and

where before to enter into the loop {s a } (resp. {s a ′ }) the indices ℓ 1 , ..., ℓ p-1 (resp. ℓ ′ 1 , ..., ℓ ′ p ′ -1 ) only depend on the selfinteracting indices of {s 1 }. So that we can assume that they are known from the previous discussion.

The remaining of the proof looks like the one of Proposition 5.8. We have to consider several cases depending on the kind of the index i. To fix the ideas let us assume that i ∈ I io , the other cases being essentially similar. We have several possibilities:

Let us assume first that ℓ

This is a direct consequence of the fact that i is linked to s 1 1 by exactly two type V sequences containing selfinteracting elements (see the proof of Proposition 5.8). We illustrate the situation on Figure 17.

The first point of the claim (70) is clear. It is a straightforward consequence of the fact that i is linked to s 1 1 by exactly two type V sequences containing selfinteraction elements. As a consequence, any element in Φ(i) ∩ I oi \ {ℓ f } can be determined from the results of Paragraph 6.1.

To construct u 0,i it is thus sufficient to determine u 0,ℓ f . To do so we explore the terms composing ℓ and ℓ ′ until that the two sequences differ. We can then apply the claim (65).

The proof operates exactly as the one of Proposition 5.8 (with type V sequence replaced by type V sequence containing selfinteraction elements away from the ones of {s 1 }) so that we feel free to omit the details here. We conclude by Figure 18 which illustrates the previously described situation. 

□

We then generalize inductively Proposition 6.2 to indices linked to s 1 1 by three sequences and so on. This completes the determination of all the amplitudes for the leading order term.

We end up with the following proposition summarizing the above construction.

Proposition 6.3 Under Assumptions 2.1, 2.2, 2.4 and 2.3, consider a complete for reflections frequencies set satisfying the uniqueness Assumption 4.2. Finally, assume that the inversibility assumption 6.1 holds then there exist (u 0,k ) k∈Ios , (U 0,1,k ) k∈R1 and (U 0,k,2 ) k∈R2 satisfying the cascades of equations (26), ( 31) and (32) at the first order.

As a consequence, to complete the proof of Theorem 2.2 we only have to justify that the truncated ansatz u ε app,N0 makes sense and to justify the fact that it is indeed a good approximation of the solution to (1). It is the purpose of the following Section.

Some extra remarks

To end up this article let us justify the expansion and give some more details about significant fact for finite times problems.

7.1 Some comments about finite time problems and Assumption 6.1

If we consider a finite time boundary value problem rather than (1). More precisely if we consider: for T > 0,