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Kalman-like Observer for Hybrid Systems with Linear Maps and Known Jump Times (Full Version)

We propose a hybrid Kalman-like observer for general hybrid systems with linear (time-varying) dynamics and output maps, where the solutions' jump times are exactly known. After defining a hybrid observability Gramian and the corresponding hybrid uniform complete observability, we show that the estimate provided by this observer converges asymptotically to the complete system solution if this observability holds together with some boundedness and invertibility conditions along the considered system solution. Then, under additional uniformity and strictness of the forgetting factors, we show exponential stability of the estimation error with an arbitrarily fast rate. The robust stability of this error against input disturbances and measurement noise is also studied. The results are illustrated on several benchmark examples, including switched systems, hybrid systems with discontinuous solutions, and continuous-time systems with multi-rate sporadic outputs.

I. INTRODUCTION

The celebrated Kalman observer was introduced in the early 60s by Kalman and Bucy [START_REF] Kalman | New Results in Linear Filtering and Prediction Theory[END_REF] as an optimal filter for linear continuous-time systems. Under uniform complete observability and in a stochastic context, it was shown to minimize the covariance of the estimation error in the presence of Gaussian dynamics and measurement noise. Its appeal lies in its systematic design and easiness of tuning, which is linked to the (assumedly known) covariance of those disturbances. It was then extended to discrete-time systems [START_REF] Deyst | Conditions for Asymptotic Stability of the Discrete Minimum-variance Linear Estimator[END_REF] and multiple settings [START_REF] Jazwinski | Stochastic Processes and Filtering Theory[END_REF], thus widely used in industry.

On the other hand, in the early 90s, an alternative Kalmanlike observer was developed [START_REF] Bornard | Regularly Persistent Observers for Bilinear Systems[END_REF], [START_REF] Hammouri | Observer Synthesis for Stateaffine Systems[END_REF], optimizing in a deterministic setting the ability of the estimate to explain the past output history, with a certain forgetting factor and weighting, describing the confidence in the output measurement. The difference with the Kalman filter mainly lies in the absence of noise on the dynamics which facilitates a Lyapunov stability analysis by linking the Lyapunov matrix directly to the observability Gramian. This design was extended to discretetime systems in [START_REF] Besanc ¸on | Exponential Forgetting Factor Observer in Discrete Time[END_REF], and without forgetting factor in [START_REF] Zhang | On Stability of the Kalman Filter for Discrete Time Output Error Systems[END_REF].

However, surprisingly, we are not aware of any such systematic design for hybrid systems with linear maps, combining continuous (flows) and discrete (jumps) behavior, with outputs available during both flows and jumps. Indeed, observer design in this context generally goes through the resolution of LMIs with no guaranteed solvability [START_REF] Ríos | State Estimation for Linear Hybrid Systems with Periodic Jumps and Unknown Inputs[END_REF], [START_REF] Bernard | Observer Design for Hybrid Dynamical Systems with Approximately Known Jump Times[END_REF], or an observability decomposition isolating the part of the state that is instantaneously observable during flows [START_REF] Tanwani | Observability for Switched Linear Systems: Characterization and Observer Design[END_REF], [START_REF] Tran | Observer Design based on Observability Decomposition for Hybrid Systems with Linear Maps and Known Jump Times[END_REF]. An exception is a particular case of constant parameter Centre Automatique et Systèmes (CAS), Mines Paris -PSL, Paris, France {firstname,lastname}@minesparis.psl.eu estimation with both continuous and discrete measurements, for which a hybrid gradient descent was developed [START_REF] Saoud | A Hybrid Gradient Algorithm for Linear Regression with Hybrid Signals[END_REF], [START_REF] Saoud | Hybrid Persistency of Excitation in Adaptive Estimation for Hybrid Systems[END_REF].

Otherwise, observer designs typically avoid the combination of flow/jump innovation terms, by using the output during either flows only (flow-based) or jumps only (jumpbased) [START_REF] Bernard | Observer Design for Hybrid Dynamical Systems with Approximately Known Jump Times[END_REF]. The latter case includes continuous-time systems with sampled measurements, for which continuous-discrete Kalman filters [START_REF] Jazwinski | Stochastic Processes and Filtering Theory[END_REF], [START_REF] Tanwani | Error Covariance Bounds for Suboptimal Filters with Lipschitzian Drift and Poisson-sampled Measurements[END_REF], [START_REF] Bernard | Observer Design for Hybrid Dynamical Systems with Approximately Known Jump Times[END_REF] are derived, where the estimate evolves in the open loop during flows and is corrected at the sampling instants, with a gain depending on a hybrid covariance matrix. The latter evolves either discretely, based on an equivalent discrete system describing how the error propagates during the combination of flows and jumps [START_REF] Bernard | Observer Design for Hybrid Dynamical Systems with Approximately Known Jump Times[END_REF], or in a hybrid way [START_REF] Jazwinski | Stochastic Processes and Filtering Theory[END_REF], [START_REF] Tanwani | Error Covariance Bounds for Suboptimal Filters with Lipschitzian Drift and Poisson-sampled Measurements[END_REF]. Most recent advances concern essentially the implementation of continuous-discrete extended Kalman filters [START_REF] Knudsen | A New Continuous Discrete Unscented Kalman Filter[END_REF] for nonlinear systems, or to find alternative LMI-based designs of the gains [START_REF] Ferrante | State Estimation of Linear Systems in the Presence of Sporadic Measurements[END_REF], [START_REF] Sferlazza | Time-Varying Sampled-Data Observer With Asynchronous Measurements[END_REF].

Note that the design of a unified and systematic Kalman filter seems still open for continuous-time systems with multi-rate sampled outputs, namely combining fast (almost continuous) and slow measurements with different sampling rates. Designs typically include several (discrete) Kalman filters operating at different rates with fusing strategies [START_REF] Andrisani | Estimation using a Multirate Filter[END_REF], [START_REF] Fatehi | Kalman Filtering Approach to Multi-rate Information Fusion in the Presence of Irregular Sampling Rate and Variable Measurement Delay[END_REF], [START_REF] Kordestani | A New Fusion Estimation Method for Multi-Rate Multi-Sensor Systems With Missing Measurements[END_REF], or sample-and-hold LMI-based correction terms [START_REF] Moarref | Observer Design for Linear Multi-rate Sampled-data Systems[END_REF], or KKL observers with inter-sample predictors [START_REF] Ling | Multi-rate Observer Design using Asynchronous Inter-sample Output Predictions[END_REF].

In this paper, we propose a hybrid Kalman-like observer for general hybrid systems [START_REF] Goebel | Hybrid Dynamical Systems: Modeling Stability, and Robustness[END_REF] with linear maps and known jump times, exploiting outputs available during both flows and jumps. The considered class includes linear switched systems and linear continuous-time systems with (multi-rate) sampled/sporadic measurements, and its restriction to fully continuous or discrete dynamics allows us to recover the designs of [START_REF] Bornard | Regularly Persistent Observers for Bilinear Systems[END_REF], [START_REF] Hammouri | Observer Synthesis for Stateaffine Systems[END_REF], [START_REF] Besanc ¸on | Exponential Forgetting Factor Observer in Discrete Time[END_REF], [START_REF] Zhang | On Stability of the Kalman Filter for Discrete Time Output Error Systems[END_REF]. Compared to existing hybrid designs, this one is systematic, automatically taking into account the observability brought by the combination of both continuous and discrete outputs and dynamics, with no need for state decomposition, unlike [START_REF] Tanwani | Observability for Switched Linear Systems: Characterization and Observer Design[END_REF], [START_REF] Tran | Observer Design based on Observability Decomposition for Hybrid Systems with Linear Maps and Known Jump Times[END_REF], and applies to time-varying hybrid systems. After defining a hybrid observability Gramian and the corresponding hybrid uniform complete observability condition, we show asymptotic convergence of the estimate under some boundedness and invertibility conditions, thus extending the design of [START_REF] Saoud | A Hybrid Gradient Algorithm for Linear Regression with Hybrid Signals[END_REF] to non-constant states. Then, the exponential stability of the estimation error with an arbitrarily fast convergence rate is proven under additional uniformity conditions and strictness of the forgetting factors. Finally, we show the robust stability of the estimation error (in the sense of [START_REF] Allan | Nonlinear Detectability and Incremental Input/Output-to-State Stability[END_REF]) against flow/jump input disturbances and measurement noise.

Notations: Let R (resp. N) denote the set of real numbers (resp. natural numbers, i.e., {0, 1, 2, . . .}). We denote R m×n (resp. S n >0 ) as the set of real (m × n)-(resp. symmetric positive definite (n × n)-) dimensional matrices. Let | • | be the Euclidean norm and ∥ • ∥ the induced matrix norm. Let ϕ F (t, t ′ ) be the continuous-time transition matrix of ẋ = F x (with F possibly time-varying) from time t ′ to t, i.e., such that any solution verifies x(t) = ϕ F (t, t ′ )x(t ′ ). For a solution (t, j) → x(t, j) to a hybrid system, we denote dom x its time domain [START_REF] Goebel | Hybrid Dynamical Systems: Modeling Stability, and Robustness[END_REF], dom t x (resp. dom j x) the domain's projection on the ordinary time (resp. jump) component, and for j ∈ dom j x, t j (x) the unique time such that (t j (x), j) ∈ dom x and (t j (x), j -1) ∈ dom x, and T j (x) := {t ∈ dom t x : (t, j) ∈ dom x} (for hybrid systems with inputs, see [START_REF] Sanfelice | Hybrid Feedback Control[END_REF]). The mention of x is omitted when no confusion is possible. A solution x to a hybrid system is complete if dom x is unbounded. In some long derivations such as (4) below, ⋆ denotes the symmetric part, i.e., ⋆ ⊤ P = P ⊤ P . Woodbury matrix identity is here recalled as

(A + U CV ) -1 = A -1 - A -1 U (C -1 + V A -1 U ) -1 V A -1
, where A and C are square and dimensions are appropriate.

II. HYBRID KALMAN-LIKE OBSERVER

Consider a hybrid system with linear (time-varying) maps

H ẋ = F x + u c (x, u c ) ∈ C y c = H c x x + = Jx + u d (x, u d ) ∈ D y d = H d x (1) 
where x ∈ R nx is the state, C and D are the flow and jump sets, y c ∈ R ny,c and y d ∈ R n y,d are the outputs known during flows and at jumps respectively, u c ∈ R nx and u d ∈ R nx are known exogenous terms, as well as the dynamics matrices F, J ∈ R nx×nx and the output matrices

H c ∈ R ny,c×nx , H d ∈ R n y,d
×nx which are all known and possibly time-varying. Denote X 0 as a set containing the initial conditions of the trajectories to be estimated and U as a set of inputs (u c , u d ) of interest (U could also contain the matrices (F, J, H c , H d ) seen as inputs in the varying setting).

We then denote S H (X 0 , U) as the set of maximal solutions to H initialized in X 0 with (u c , u d ) ∈ U. Because the goal of this paper is to design an asymptotic observer for (1), we assume solutions x ∈ S H (X 0 , U) are complete as stated next. Assumption 1: Given X 0 and U, each solution x ∈ S H (X 0 , U) is complete.

Remark 1: Models of the form (1) include not only hybrid systems with linear maps described in the setting of [START_REF] Goebel | Hybrid Dynamical Systems: Modeling Stability, and Robustness[END_REF] (see Example 2), but also switched systems with linear maps where the active mode is seen as an exogenous signal making (F, J, H c , H d ) time-varying (see Example 1), and continuous-time systems with sporadic or multi-rate sampled outputs (see Example 3). Note that in many of these systems, observability is acquired by the combination of flows with (F, H c ) and jumps with (J, H d ). Therefore, the direct coupling of classical continuous and discrete linear observers relying on the observability of each pair separately will typically not work. Here, instead, we design a single unified algorithm, automatically gathering observability from both flows and jumps via a shared covariance matrix.

A. Synchronized Hybrid Kalman-like Observer

Assuming the jump times of the solutions x ∈ S H (X 0 , U) are exactly known or detected-for instance from discontinuities in the output, or impact sensors, or because they are triggered by the user or the sensor's availability in the sampled-data case-and exploiting the linearity of the maps of H, we propose a systematic design of a synchronized hybrid Kalman-like observer of the form

Ĥ         ẋ=F x + u c + P H ⊤ c R -1 c (y c -H c x) Ṗ =λP + F P + P F ⊤ -P H ⊤ c R -1 c H c P when H flows x+ =J x + u d + JK(y d -H d x) P + =γ -1 J(I -KH d )P J ⊤ when H jumps (2a) with K = P H ⊤ d (H d P H ⊤ d + R d ) -1 , (2b) 
where λ ≥ 0 and γ ∈ (0 

c Rc I ≤ R c (t, j) ≤ c Rc I, c R d I ≤ R d (t j+1 , j) ≤ c R d I. ( 2c 
)
The observer (2) gathers in a common setting the continuous and discrete Kalman-like observers of [START_REF] Bornard | Regularly Persistent Observers for Bilinear Systems[END_REF], [START_REF] Hammouri | Observer Synthesis for Stateaffine Systems[END_REF] and [START_REF] Besanc ¸on | Exponential Forgetting Factor Observer in Discrete Time[END_REF], [START_REF] Zhang | On Stability of the Kalman Filter for Discrete Time Output Error Systems[END_REF]. The difference compared to the continuous and discrete Kalman designs [START_REF] Kalman | New Results in Linear Filtering and Prediction Theory[END_REF], [START_REF] Deyst | Conditions for Asymptotic Stability of the Discrete Minimum-variance Linear Estimator[END_REF] mainly lies in the absence of the Q-covariance matrices, commonly describing the confidence in the dynamics. They are here replaced by forgetting factors λ and γ, which allows us to: 1) Make the dynamics of P -1 linear and explicitly solvable, with a direct link to the so-called observability Gramian; and 2) Obtain a quadratic strict Lyapunov function. Note that in the discrete case, the computation steps of the Kalman filter [START_REF] Zhang | On Stability of the Kalman Filter for Discrete Time Output Error Systems[END_REF] are gathered here into a single jump map. It combines 1) Correction and 2) Prediction, instead of the contrary, since the output available to compute x+ is its value before the jump, namely H d x instead of H d x + . This justifies the presence of J in front of K in the discrete correction term. In the classical Kalman notations, this means that our (x, P ) corresponds to (x, P )(k|k -1) instead of (x, P )(k|k), which is consistent with the use of P (k|k -1) in the Lyapunov function in [START_REF] Zhang | On Stability of the Kalman Filter for Discrete Time Output Error Systems[END_REF]. Note finally that adding the Kalman Q-parameters in (2) would preserve the decrease of the Lyapunov function but would make its lower-boundedness more intricate to prove.

The goal of this paper is first to provide conditions ensuring asymptotic convergence of (2) without any further constraint on the forgetting factors λ ≥ 0 and γ ∈ (0, 1], i.e., all maximal solutions (x, x, P ) to the cascade H -Ĥ initialized in X 0 ×R nx ×S nx >0 with (u c , u d ) ∈ U are complete and verify lim t+j→+∞ |x(t, j) -x(t, j)| = 0, (t, j) ∈ dom x.

(

) 3 
In a second step, conditions for exponential stability of the estimation error with an arbitrarily fast rate as well as robustness against disturbances will be derived when λ > 0 and/or γ ∈ (0, 1). Classically, the asymptotic convergence of the Kalman(-like) observer is shown for continuous-time and discrete-time systems under the so-called Uniform Complete Observability condition [START_REF] Kalman | New Results in Linear Filtering and Prediction Theory[END_REF], [START_REF] Hammouri | Observer Synthesis for Stateaffine Systems[END_REF], [START_REF] Besanc ¸on | Exponential Forgetting Factor Observer in Discrete Time[END_REF]. This condition imposes uniform and persistent invertibility of the observability Gramian, describing the richness of the information provided by the output on a certain time window. We extend those notions and objects in the next section in the hybrid context.

B. Hybrid Definitions of the Observability Gramian and Uniform Complete Observability

To define the notions of Gramian and observability needed for this observer, let us assume the following.

Assumption 2: For all solutions x ∈ S H (X 0 , U) and for all j ∈ dom j x, the map t → F (t, j) is locally bounded on T j , and the matrix

J(t j+1 , j) is invertible if j + 1 ∈ dom j x.
Remark 2: Assuming the invertibility of each J(t j+1 , j) can be restrictive in the hybrid context. But as seen in Example 2, thanks to the non-uniqueness of representation in hybrid systems, it may be possible to rewrite J satisfying this assumption. Note though that inverting J is not necessary to implement observer (2) and is needed for analysis only, similarly to the discrete Kalman literature [START_REF] Zhang | On Stability of the Kalman Filter for Discrete Time Output Error Systems[END_REF], [START_REF] Besanc ¸on | Exponential Forgetting Factor Observer in Discrete Time[END_REF]. Example 2 is a case where the observer works without this condition and the analysis might be adaptable as suggested in [START_REF] Moore | Coping with Singular Transition Matrices in Estimation and Control Stability Theory[END_REF].

Under Assumption 2, solutions x ∈ S H (X 0 , U) are unique in both forward and backward time, so we can define hybrid transition matrices of H. More precisely, given a solution x ∈ S H (X 0 , U) with u c = 0 and u d = 0, for all hybrid times ((t ′ , j ′ ), (t, j)) ∈ dom x × dom x, we have

x(t, j) = Φ F,J ((t, j), (t ′ , j ′ ))x(t ′ , j ′ ),
where Φ F,J is defined as Φ F,J ((t, j),

(t ′ , j ′ )) = ϕ F (t, t j+1 ) j ′ +1 k=j ϕ F (t k+1 , t k )J(t k , k -1) ϕ F (t j ′ +1 , t ′ ) if t ≥ t ′ and j ≥ j ′ , and Φ F,J ((t, j), (t ′ , j ′ )) = ϕ F (t, t j ) j ′ k=j+1 ϕ F (t k-1 , t k )J -1 (t k , k -1) ϕ F (t j ′ , t ′ )
otherwise, with the time domain of F and J inherited from dom x.

Definition 1 (Backward observability Gramian): The backward observability Gramian of the quadruple (F, J, H c , H d ) defined on a time domain D, from time (t ′ , j ′ ) ∈ D to a later time (t, j) ∈ D, is defined as

G (F,J,Hc,H d ) ((t ′ , j ′ ), (t, j)) = t j ′ +1 t ′ ⋆ ⊤ Ψ c ((s, j ′ ), (t, j))ds + j-1 k=j ′ +1 t k+1 t k ⋆ ⊤ Ψ c ((s, k), (t, j))ds + j-1 k=j ′ ⋆ ⊤ Ψ d ((t k+1 , k), (t, j)) + t tj ⋆ ⊤ Ψ c ((s, j), (t, j))ds, (4) where Ψ c ((s, k), (t, j)) = H c (s, k)Φ F,J ((s, k), (t, j)) and Ψ d ((t k+1 , k), (t, j)) = H d (t k+1 , k)Φ F,J ((t k+1 , k), (t, j)),
with all the jump times determined from D.

Remark 3: The backward Gramian (4) characterizes the ability to reconstruct x(t, j) from the knowledge of the past output. This form naturally comes up in the analysis, but we could also define a forward Gramian, characterizing the ability to reconstruct x(t ′ , j ′ ) from the knowledge of the future output. They are equivalent under the capability to go forward and backward in time, namely Assumption 2.

Definition 2 (Uniform complete observability (UCO)): The quadruple (F, J, H c , H d ) defined on a hybrid time domain D is uniformly completely observable (UCO) with data (∆, µ) if there exists ∆ > 0 and µ > 0 such that for all

((t ′ , j ′ ), (t, j)) ∈ D × D verifying (t -t ′ ) + (j -j ′ ) ≥ ∆, G (F,J,Hc,H d ) ((t ′ , j ′ ), (t, j)) ≥ µI.
(5) In this paper, we show three main results: 1) The estimation error converges asymptotically to zero for any choice of λ ≥ 0, γ ∈ (0, 1], under boundedness of the matrices and UCO along the considered solution only (Section III); 2) It is exponentially stable with an arbitrarily fast rate for appropriate choices of λ and γ if these requirements hold uniformly with respect to solutions (Section IV); and 3) It is robustly stable (in the sense of [START_REF] Allan | Nonlinear Detectability and Incremental Input/Output-to-State Stability[END_REF]) with respect to flow/jump input disturbances and measurement noise (Section V).

III. ASYMPTOTIC CONVERGENCE FROM UNIFORM COMPLETE OBSERVABILITY

In this part, we provide sufficient conditions for asymptotic convergence of the synchronized hybrid Kalman-like observer for a given solution x ∈ S H (X 0 , U), thanks to some boundedness and uniform complete observability assumptions, made along that particular solution only.

Assumption 3: For each solution x ∈ S H (X 0 , U), assume:

• (Boundedness) There exist non-negative scalars c F , c Hc , and c H d , and positive scalars c J and c J -1 such that for all (t, j) ∈ dom x, we have (if j + 1 ∈ dom j x)

∥F (t, j)∥ ≤ c F , ∥J(t j+1 , j)∥ ≤ c J , ∥J -1 (t j+1 , j)∥ ≤ c J -1 , ∥H c (t, j)∥ ≤ c Hc , ∥H d (t j+1 , j)∥ ≤ c H d ;
• (Observability) There exists a pair of positive scalars (∆, µ) such that the quadruple (F, J, H c , H d ) defined on the time domain of x is UCO with this data. Theorem 1 then shows that all solutions in S H (X 0 , U) can be estimated by the observer [START_REF] Deyst | Conditions for Asymptotic Stability of the Discrete Minimum-variance Linear Estimator[END_REF]. Note that for asymptotic convergence only (without stability guarantees), no uniformity with respect to solutions or time domains is required, but only along the time domain of each particular solution.

Theorem 1: Under Assumptions 1, 2, and 3, for any λ ≥ 0 and any γ ∈ (0, 1], any maximal solution (x, x, P )

to the cascade H -Ĥ initialized in X 0 × R nx × S nx >0 with (u c , u d ) ∈ U and (R c , R d ) satisfying (2c) for some (c Rc , c Rc , c R d , c R d ) ∈ R 4
>0 is complete and verifies (3). Proof: Consider a solution x ∈ S H (X 0 , U). By Assumption 1, it is complete. In the rest of this proof, all variables are evolving on dom x and so are complete. Consider (t, j) → Π(t, j) with Π(0, 0) ∈ S nx >0 and dynamics

Π = -λΠ -ΠF -F ⊤ Π + H ⊤ c R -1 c H c Π + = γ(J -1 ) ⊤ (Π + H ⊤ d R -1 d H d )J -1 . ( 6 
)
Because J is invertible at jumps from Assumption 2, Π is well-defined. It can be proven using mathematical induction that the closed form of Π(t, j) for all (t, j) ∈ dom x is Π(t, j)=e -λt γ j Φ ⊤ F,J ((0, 0), (t, j))Π(0, 0)Φ F,J ((0, 0), (t, j))

+ j-1 k=0 t k+1 t k e -λ(t-s) γ j-k ⋆ ⊤ Ψ c ′ ((s, k), (t, j))ds + j-1 k=0 e -λ(t-t k+1 ) γ j-k ⋆ ⊤ Ψ d ′ ((t k+1 , k), (t, j)) + t tj e -λ(t-s) ⋆ ⊤ Ψ c ′ ((s, j), (t, j))ds, (7) where 
Ψ c ′ ((s, k), (t, j)) = R -1 2 c (s, k)Ψ c ((s, k), (t, j)) and Ψ d ′ ((t k+1 , k), (t, j)) = R -1 2 d (t k+1 , k)Ψ d ((t k+1 , k), (t, j))
(with Ψ c and Ψ d defined in Definition 1). Now, we show that Π is uniformly lower-bounded along dom x. First use Gronwall's inequality to show that ∥ϕ F (t, t ′ )∥ ≤ e c F |t-t ′ | , then it follows that for any ((t ′ , j ′ ), (t, j)) ∈ dom x × dom x with t ′ ≤ t and j ′ ≤ j, we have ∥Φ F,J ((t, j),

(t ′ , j ′ ))∥ ≤ e c F (t-t ′ ) c j-j ′ J . Because Φ F,J ((t, j), (t ′ , j ′ ))Φ F,J ((t ′ , j ′ ), (t, j)) = I, this implies that ⋆ ⊤ Φ F,J ((t ′ , j ′ ), (t, j)) ≥ e -2c F (t-t ′ ) c -2(j-j ′ ) J I.
Then, for any (t, j) ∈ dom x such that t + j ≤ ∆, we have

Π(t, j) ≥ e -λt γ j e -2c F t c -2j J Π(0, 0) ≥ (e -λ γe -2c F max{1, c J } -2 ) ∆ Π(0, 0) ≥ c Π,1 I, for some c Π,1 > 0. Next, for any (t, j) ∈ dom x such that t + j ≥ ∆, we can always pick (t ′ , j ′ ) ∈ dom x (before (t, j)) such that ∆ ≤ (t -t ′ ) + (j -j ′ ) ≤ ∆ + 1 and from Assumption 3, we have Π(t, j) ≥ e -λ(t-t ′ ) γ j-j ′ min{c -1 Rc , c -1 R d }G (F,J,Hc,H d ) ((t ′ , j ′ ), (t, j)) ≥ (e -λ γ) ∆+1 min{c -1 Rc , c -1 R d }G (F,J,Hc,H d ) ((t ′ , j ′ ), (t, j)) ≥ µ(e -λ γ) ∆+1 min{c -1 Rc , c -1 R d }I := c Π,2 I.
Therefore, for all (t, j) ∈ dom x, we have

Π(t, j) ≥ min{c Π,1 , c Π,2 }I := c Π I, (8) 
which means that Π is uniformly lower-bounded and thus uniformly invertible on dom x. Let us now study the dynamics of W := Π -1 , which is well-defined and belongs to S nx >0 . During flows, we have

Ẇ = -W ΠW = -W (-λΠ -ΠF -F ⊤ Π + H ⊤ c R -1 c H c )W = -W (-λW -1 -W -1 F -F ⊤ W -1 + H ⊤ c R -1 c H c )W = λW + F W + W F ⊤ -W H ⊤ c R -1 c H c W.
At jumps, using Woodbury matrix identity, we have

W + = (Π + ) -1 = (γ(J -1 ) ⊤ (Π + H ⊤ d R -1 d H d )J -1 ) -1 = γ -1 J(W -1 + H ⊤ d R -1 d H d ) -1 J ⊤ = γ -1 J(W -W H ⊤ d (H d W H ⊤ d + R d ) -1 H d W )J ⊤ = γ -1 J(I -W H ⊤ d (H d W H ⊤ d + R d ) -1 H d )W J ⊤ .
Therefore, W follows the same dynamics as P in [START_REF] Deyst | Conditions for Asymptotic Stability of the Discrete Minimum-variance Linear Estimator[END_REF]. So if W (0, 0) = P (0, 0) then W (t, j) = P (t, j) for all (t, j) ∈ dom x. This means that P = Π -1 (with Π(0, 0) = (P (0, 0)) -1 ) and that P is invertible at all times (but not necessarily uniformly along dom x since P may go to 0 asymptotically if Π is not uniformly upper-bounded). Therefore, the error x := x -x follows the dynamics

ẋ = (F -Π -1 H ⊤ c R -1 c H c )x := F x x+ = J(I -KH d )x := J x, (9) 
where

K = Π -1 H ⊤ d (H d Π -1 H ⊤ d + R d ) -1 .
Consider the Lyapunov function V (x, Π) = x⊤ Πx. For all (t, j) ∈ dom x, V (x(t, j), Π(t, j)) ≥ c Π |x(t, j)| 2 , so Theorem 1 is proven if we show that V asymptotically converges to 0. Let us study the dynamics of V along ( 9) and [START_REF] Besanc ¸on | Exponential Forgetting Factor Observer in Discrete Time[END_REF]. During flows, we have

V = x⊤ [(F -Π -1 H ⊤ c R -1 c H c ) ⊤ Π + Π +Π(F -Π -1 H ⊤ c R -1 c H c )]x = x⊤ (-λΠ -H ⊤ c R -1 c H c )x = -λV -x⊤ H ⊤ c R -1 c H c x ≤ -λV -c -1 Rc x⊤ H ⊤ c H c x.
Using Woodbury matrix identity yields

K = P H ⊤ d (R -1 d -R -1 d H d (P -1 + H ⊤ d R -1 d H d ) -1 H ⊤ d R -1 d ) = P H ⊤ d R -1 d -P H ⊤ d R -1 d H d (P -1 + H ⊤ d R -1 d H d ) -1 H ⊤ d R -1 d = P H ⊤ d R -1 d -P ((P -1 + H ⊤ d R -1 d H d ) -P -1 ) ×(P -1 + H ⊤ d R -1 d H d ) -1 H ⊤ d R -1 d = (P -1 + H ⊤ d R -1 d H d ) -1 H ⊤ d R -1 d = (Π + H ⊤ d R -1 d H d ) -1 H ⊤ d R -1 d .
At jumps, thanks to the newly obtained expression of K and Woodbury matrix identity, we have

V + = γ x⊤ (I -KH d ) ⊤ (Π + H ⊤ d R -1 d H d )(I -KH d )x = γ x⊤ (I -KH d ) ⊤ (Π + H ⊤ d R -1 d H d ) ×(I -(Π + H ⊤ d R -1 d H d ) -1 H ⊤ d R -1 d H d )x = γ x⊤ (I -KH d ) ⊤ Πx = γ x⊤ (I -Π -1 H ⊤ d (H d P H ⊤ d + R d ) -1 H d ) ⊤ Πx = γV -γ x⊤ H ⊤ d (H d Π -1 H ⊤ d + R d ) -1 H d x ≤ γV -γ x⊤ H ⊤ d (c 2 H d c -1 Π + c R ) -1 H d x.
We see that V decreases strictly and exponentially to 0 if λ > 0 and γ ∈ (0, 1). We next show that actually, thanks to UCO, it converges in-the-large even for λ = 0 and γ = 1. In this case, we have

V ≤ -c -1 Rc x⊤ H ⊤ c H c x := -c c x⊤ H ⊤ c H c x, V + -V ≤ - cΠ c 2 H d +cΠc R x⊤ H ⊤ d H d x := -c d x⊤ H ⊤ d H d x,
and thus, for all ((t ′ , j ′ ), (t, j)) ∈ dom x × dom x, we have

V (t, j) ≤ V (t ′ , j ′ ) -Ṽ , (10) 
where

Ṽ = c c t j ′ +1 t ′ ⋆ ⊤ H c (s, j ′ )x(s, j ′ )ds + c c j-1 k=j ′ +1 GF (k) + c d j-1 k=j ′ GJ (k) + c c t tj ⋆ ⊤ H c (s, j)x(s, j)ds,
with GF and GJ defined as

GF (k) = t k+1 t k ⋆ ⊤ H c (s, k)x(s, k)ds, GJ (k) = ⋆ ⊤ H d (t k+1 , k)x(t k+1 , k). ( 11 
)
Applying Lemma 1 in the Appendix with

∆ m = ∆+1, K c = Π -1 H ⊤ c R -1 c , and K d = JK = JΠ -1 H ⊤ d (H d Π -1 H ⊤ d + R d ) -1
, which are indeed upper-bounded by c Hc (c Π c Rc ) -1 and c J c H d (c Π c R d ) -1 respectively, there exists c G > 0 such that for all ((t ′ , j ′ ), (t, j)) ∈ dom x × dom x such that ∆ ≤ (t -t ′ ) + (j -j ′ ) ≤ ∆ + 1, we have

Ṽ ≥ min{c c , c d }c G x⊤ (t, j)G (F,J,Hc,H d ) ((t ′ , j ′ ), (t, j))x(t, j) ≥ min{c c , c d }c G µ|x(t, j)| 2 ,
exploiting the UCO property in Assumption 3. We finally conclude that there exists c V > 0 such that for any

((t ′ , j ′ ), (t, j)) ∈ dom x × dom x verifying ∆ ≤ (t -t ′ ) + (j -j ′ ) ≤ ∆ + 1, we have V (t, j) ≤ V (t ′ , j ′ ) -c V |x(t, j)| 2 .
It remains to show that x converges asymptotically to 0 using contradiction, similar to [START_REF] Zhang | On Stability of the Kalman Filter for Discrete Time Output Error Systems[END_REF]. Assume that x does not converge to 0. Then, there exists ϵ > 0 such that for any (t ′ , j ′ ) ∈ dom x, we can always find (exploiting the completeness of x) (t, j) ∈ dom x such that (t -t ′ ) + (j -j ′ ) ≥ ∆ and |x(t, j)| ≥ ϵ. Hence we have

V (t, j) ≤ V (t ′ , j ′ ) -c V ϵ 2 .
By repeating this process, still thanks to the completeness of x, V becomes negative after a finite amount of time, which contradicts its definition. Therefore, by contradiction, x converges asymptotically to 0.

Example 1 (Switched system): Inspired by [10, Example 1], consider a switched system with linear maps

ẋ = A i x, y = C i x, (12) 
characterized by two modes i ∈ {1, 2} as A 1 = 0 0 0 0 ,

A 2 = ϵ 1 -1 ϵ , C 1 = 1 0 , C 2 = 0 0
, and triggered such that the time between two successive switches cannot be shorter than some δ > 0. As pointed out in [START_REF] Tanwani | Observability for Switched Linear Systems: Characterization and Observer Design[END_REF], neither (A 1 , C 1 ) nor (A 2 , C 2 ) is observable, but the switching order 1 → 2 → 1 allows us to determine the initial condition unless the times elapsed in-between switches are multiples of π, which corresponds to a singular switching signal. A hybrid Kalman-like observer (2) is then designed for [START_REF] Saoud | A Hybrid Gradient Algorithm for Linear Regression with Hybrid Signals[END_REF], leading to a much simpler observer than in [START_REF] Tanwani | Observability for Switched Linear Systems: Characterization and Observer Design[END_REF]. Asymptotic convergence of the error is shown in Figure 1 for λ = 0 and γ = 1. Convergence could be significantly accelerated by taking λ > 0 and/or γ in (0, 1), for which exponential stability with an arbitrarily fast rate and robustness will be shown in the next sections. On the other hand, Figure 2 shows the observer estimate with a π-periodic switching signal for which UCO does not hold. The error x1 goes to 0 during mode 1 because x 1 is measured; in mode 2, it gets affected by the error x2 , which cannot contract because x 2 is not observable.

IV. EXPONENTIAL STABILITY OF THE ERROR WITH AN ARBITRARILY FAST RATE

In this part, we show that under some extra uniformity in the boundedness and observability, the estimation error is exponentially stable with an arbitrarily fast convergence rate. For this, Assumption 3 is strengthened into the following.

Assumption 4: Assume as in Assumption 3, but all scalars therein are now the same for all solutions x ∈ S H (X 0 , U).

Theorem 2 then shows the exponential stability of the error with respect to the initial condition at any desired convergence rate.

Theorem 2: Under Assumptions 1, 2, and 4, for any

(c Rc , c Rc , c R d , c R d ) ∈ R 4
>0 , there exists a map c : R ≥0 → R ≥0 such that for any λ ′ > 0, the choice λ = 2λ ′ and γ = e -2λ ′ is such that any maximal solution (x, x, P ) to the cascade H-Ĥ initialized in X 0 ×R nx ×S nx >0 with (u c , u d ) ∈ U and (R c , R d ) satisfying (2c) with (c Rc , c Rc , c R d , c R d ), is complete and verifies for all (t, j) ∈ dom x,

|x(t, j) -x(t, j)| ≤ c(∥Π(0, 0)∥)|x(0, 0) -x(0, 0)|e -λ ′ (t+j-(∆+1)) . (13)
Proof: First, adapting the steps leading to (8) in the proof of Theorem 1 to the particular choice of λ and γ, Π is uniformly lower-bounded by e -2λ ′ (∆+1) c(∥Π(0, 0)∥) for some c : R ≥0 → R ≥0 depending only on the uniform quantities in Assumption 4 and c Rc , c R d . Second, from the proof of Theorem 1, we have V ≤ -λV and V + ≤ γV along (9) and ( 6), which translates to V (t, j) ≤ e -λt γ j V (0, 0) ≤ e -2λ ′ (t+j) V (0, 0). Then (13) holds.

Remark 4: Note from (13) that the gain with respect to the initial error is proportional to e λ ′ (∆+1) , which increases with the choice of the rate λ ′ , characterizing the peaking phenomenon typically encountered in high-gain designs. While an arbitrarily fast exponential rate is achieved in [START_REF] Saoud | Hybrid Persistency of Excitation in Adaptive Estimation for Hybrid Systems[END_REF] at all times, arbitrarily fast convergence of the error can only be achieved after t + j = ∆ + 1. This is explained by the necessity of achieving observability (see the UCO condition in Definition 2). Note finally that (13) can also easily be achieved by pushing only λ (resp. γ) under a dwell time (resp. reverse dwell time) (see [START_REF] Bernard | Observer Design for Hybrid Dynamical Systems with Approximately Known Jump Times[END_REF]), by bringing stability and rate from flows to jumps and vice-versa.

Note that the asymptotic stability of the estimation error typically ensures robustness properties with respect to delays in the jump triggering of the observer, when the jump times are not perfectly known. For instance, in the autonomous context, [START_REF] Bernard | Observer Design for Hybrid Dynamical Systems with Approximately Known Jump Times[END_REF]Theorem 6.4] shows the semi-global practical stability outside of the delay intervals assuming a dwell time, boundedness of solutions, and the hybrid basic conditions.

Example 2 (Spiking neuron): The spiking behavior of a neuron may be modeled with state ξ = (ξ 1 , ξ 2 ) ∈ R 2 as ξ= (0.04ξ

2 1 + 5ξ 1 -ξ 2 + I ext , a(bξ 1 -ξ 2 )) when ξ 1 ≤ v m ξ + = (c, ξ 2 + d)
when ξ 1 = v m (14) where ξ 1 is the membrane potential, ξ 2 is the recovery variable, and I ext is a constant [START_REF] Izhikevich | Simple Model of Spiking Neurons[END_REF]. The parameters, characterizing the neuron type, are taken here for instance as I ext = 150, a = 0.02, b = 0.2, c = -55, d = 4, and v m = 30 (all in appropriate units). The jump times of the solutions to ( 14) are detected from the discontinuities of the output y c = ξ 1 . On the other hand, we assume d is unknown and seek to estimate online (ξ 1 , ξ 2 , d). Note that d is not observable during flow, but it becomes observable from the combination of flows and jumps as noticed in [START_REF] Bernard | Observer Design for Hybrid Dynamical Systems with Approximately Known Jump Times[END_REF]. We thus re-model ( 14) into the form (1) with x = (x 1 , x 2 , x 3 ) = (ξ 1 , ξ 2 , d) ∈ R 3 , matrices F = 5 -1 0 ab -a 0 0 0 0 , J = 0 0 0 0 1 1 0 0 1 , H c = ( 1 0 0 ), H d = ( 0 0 0 ), and u c = (0.04y 2 c + I ext , 0, 0), u d = (c, 0, 0) known exogenous terms that can be perfectly compensated using output injection. Note that J is not invertible and does not verify Assumption 2. A possibility is to notice that because the jump map of ( 14) is only active when ξ 1 = v m , it can be rewritten as ξ + 1 = ξ 1 -v m + c, while preserving the same hybrid system. It would then be cast in the form (1) with u d = (-v m + c, 0, 0) and the invertible matrix J =

1 0 0 0 1 1 0 0 1
, thus satisfying Assumption 2. However, for the sake of illustration, we show in Figure 3 the results of a simulation using the non-invertible formulation. This suggests that the invertibility of J might only be for theoretical analysis and it is not necessary to implement the observer [START_REF] Deyst | Conditions for Asymptotic Stability of the Discrete Minimum-variance Linear Estimator[END_REF]. See [START_REF] Moore | Coping with Singular Transition Matrices in Estimation and Control Stability Theory[END_REF] for more details.

V. ROBUSTNESS OF THE ERROR AGAINST DISTURBANCES AND MEASUREMENT NOISE

Dealing with uncertainties such as input disturbances and measurement noise is an asset of Kalman(-like) observers for a robust and practical design. Consider the system (1) with flow/jump input disturbances Theorem 3 shows that the estimate provided by the cascade of H d in [START_REF] Knudsen | A New Continuous Discrete Unscented Kalman Filter[END_REF] with the observer Ĥ in ( 2) is robustly stable with respect to the uncertainties in the sense of [24, Definition 2] (extended to hybrid systems), which is stronger than the classical Input-to-State-Stability (ISS) defined in [START_REF] Cai | Characterizations of Input-to-state Stability for Hybrid Systems[END_REF] by an increasing penalty of past uncertainties.

v c ∈ R nx , v d ∈ R nx and measurement noise w c ∈ R ny,c , w d ∈ R n y,d as H d ẋ = F x + u c + v c (x, u c ) ∈ C y c = H c x + w c x + = Jx + u d + v d (x, u d ) ∈ D y d = H d x + w d (15) 
Theorem 3: Under Assumptions 1, 2, and 4, there exist λ ⋆ > 0 and 0 < γ ⋆ ≤ 1 such that for any Π 0 ∈ S nx >0 , any

(c Rc , c Rc , c R d , c R d ) ∈ R 4
>0 , any λ > λ ⋆ , and any 0 < γ < γ ⋆ , any maximal solution to the cascade

H d -Ĥ initialized in X 0 × R nx × {Π 0 } with (u c , u d ) ∈ U and (R c , R d ) satisfying (2c) for (c Rc , c Rc , c R d , c R d )
is complete and robustly stable with respect to the uncertainties (v c , w c , v d , w d ).

Proof: Following the proof of (8) in Theorem 1, Π is uniformly lower-bounded by (e -λ γ) ∆+1 c with c depending only on the parameters of Assumption 4, c Rc , c R d and Π 0 . On the other hand, since for any ((t ′ , j ′ ), (t, j)) ∈ dom x × dom x with t ′ < t and j ′ < j, we have ∥Φ F,J ((t ′ , j ′ ), (t, j))∥ ≤ e c F (t-t ′ ) (c J -1 ) j-j ′ , we get from (7) and the triangle inequality:

∥Π(t, j)∥ ≤ e (2c F -λ)t (γc 2 J -1 ) j ∥Π 0 ∥ + c 2 Hc j-1 k=0 (γc 2 J -1 ) j-k t k+1 t k e (2c F -λ)(t-s) ds + c 2 H d j-1 k=0 e (2c F -λ)(t-t k ) (γc 2 J -1 ) j-k + c 2 Hc t tj e (2c F -λ)(t-s) ds. Therefore, pick λ ⋆ 0 > 2c F and 0 < γ ⋆ 0 < c -2 J -1 with γ ⋆ 0 ≤ 1.
Then, there exists c > 0 depending only on the uniform quantities in Assumption 4, Π 0 , and λ ⋆ 0 , γ ⋆ 0 such that for all λ > λ ⋆ 0 and 0 < γ < γ ⋆ 0 , Π ≤ cI. Now, in the presence of disturbances and noise, the error x := x-x has the dynamics

   ẋ = (F -Π -1 H ⊤ c R -1 c H c )x + v c -Π -1 H ⊤ c R -1 c w c x+ = J(I -Π -1 H ⊤ d (H d Π -1 H ⊤ d + R d ) -1 H d )x + v d -JΠ -1 H ⊤ d (H d Π -1 H ⊤ d + R d ) -1 w d . (16) 
Consider the Lyapunov function V (x, Π) = x⊤ Πx. Let us study the dynamics of V along ( 16) and [START_REF] Besanc ¸on | Exponential Forgetting Factor Observer in Discrete Time[END_REF]. During flows, thanks to Cauchy-Schwartz and Young's inequalities as well as the uniform upper bounds of the matrices, there exist positive scalars σ 1 and σ 2 (independent of λ and γ) such that we have for all λ > λ ⋆ 0 and 0

< γ < γ ⋆ 0 , V = [x ⊤ (F -Π -1 H ⊤ c R -1 c H c ) ⊤ + v ⊤ c -w ⊤ c R -1 c H c Π -1 ]Πx + x⊤ (-λΠ -ΠF -F ⊤ Π + H ⊤ c R -1 c H c )x + x⊤ Π[(F -Π -1 H ⊤ c R -1 c H c )x + v c -Π -1 H ⊤ c R -1 c w c ] = -λV -x⊤ H ⊤ c R -1 c H c x + 2x ⊤ Πv c -2x ⊤ H ⊤ c R -1 c w c ≤ -λ 3 V + σ1 λ |v c | 2 + σ2 λ(e -λ γ) ∆+1 |w c | 2 .
At jumps, in a similar way, there exist positive scalars σ 3 , σ 4 , and σ 5 (independent of λ and γ) such that we have for all λ > λ ⋆ 0 and 0 < γ < γ ⋆ 0 ,

V + = γV -γ x⊤ H ⊤ d (H d Π -1 H ⊤ d + R d ) -1 H d x +2γ x⊤ ΠJ -1 v d -2γ x⊤ H ⊤ d (H d Π -1 H ⊤ d + R d ) -1 w d +γv ⊤ d (J -1 ) ⊤ (Π + H ⊤ d R -1 d H d )J -1 v d -2γv ⊤ d (J -1 ) ⊤ H ⊤ d R -1 d w d +γw ⊤ d R -1 d H d (Π + H ⊤ d R -1 d H d ) -1 H ⊤ d R -1 d w d ≤ 3γV + γσ 3 |v d | 2 + γ σ4 (e -λ γ) ∆+1 + σ 5 |w d | 2 .
Therefore, for any λ > λ ⋆ 0 and any 0 < γ < min γ ⋆ 0 , 1 3 , we have

V ≤ -λ c V + α c |d c | 2 , V + ≤ γ d V + α d |d d | 2 ,
where

λ c = λ 3 > 0, γ d = 3γ ∈ (0, 1), α c = 2 max σ1 λ , σ2 λ(e -λ γ) ∆+1 , α d = 2 max γσ 3 , γ σ4 (e -λ γ) ∆+1 + σ 5 , |d c | 2 = max{|v c | 2 , |w c | 2 }, and |d d | 2 = max{|v d | 2 , |w d | 2 }.
This means that x satisfies for some positive scalars κ 1 and κ 2 ,

|x(t, j)| 2 ≤ κ 1 e -λct γ j d κ 2 |x(0, 0)| 2 + α c j-1 k=0 t k+1 t k e -λc(t-s) γ j-k d |d c (s, k)| 2 ds + α d j-1 k=0 e -λc(t-t k+1 ) γ j-k d |d d (t k+1 , k)| 2 + t tj e -λc(t-s) |d c (s, j)| 2 ds.
Taking the square root of both sides, we obtain robust stability according to [START_REF] Allan | Nonlinear Detectability and Incremental Input/Output-to-State Stability[END_REF] (but for a hybrid system).

Example 3 (Continuous system with multi-rate outputs): Consider a vehicle with position x 1 , velocity x 2 , and acceleration x 3 . We measure x 3 with a fast rate of 50 (Hz), so this can be seen as a continuous output, which however contains a lot of high-frequency noise. We then measure x 1 thanks to a less noisy GPS at the rate of 1 (Hz). This makes the system observable already; however, to illustrate that our method covers systems with multi-rate sampled outputs, let us assume that we also measure x 2 sporadically from every 1.5 (s) to every 2 (s). This system is written in hybrid form, with state x = (x 1 , x 2 , x 3 ), input u c , and two additional timers τ 1 , τ 2 as

                       ẋ = (x 2 , x 3 , u c ) τ1 = -1 τ2 = -1    when τ 1 ∈ [0, 1] τ 2 ∈ [0, 2] x + = x τ + 1 = 1, if τ 1 = 0 τ 1 , if τ 1 ̸ = 0 τ + 2 ∈ [1.5, 2], if τ 2 = 0 {τ 2 }, if τ 2 ̸ = 0            when τ 1 = 0 τ 2 = 0 (17a)
with the outputs

y c = x 3 , y d =    (x 1 , 0), if τ 1 = 0 and τ 2 ̸ = 0 (0, x 2 ), if τ 2 = 0 and τ 1 ̸ = 0 (x 1 , x 2 ), if τ 1 = τ 2 = 0 , (17b) 
and initialized with τ 1 (0, 0) = 1 and τ 2 (0, 0) ∈ [1.5, 2].

Figure 5 shows a scenario where we have a fixed sampling period of 1.5 (s) for x 2 , measurement noise (with high frequency and amplitude ≈ 3 in y c , low frequency and amplitude ≈ 1 in y d ), and the input u c = 0.01 (m/s 3 ) is an unknown bias (assumed 0 in the observer, so that v c = u c ). 

VI. CONCLUSION

We have provided a systematic hybrid Kalman-like observer for general hybrid systems with linear maps and known jump times, based on uniform complete observability. Its implementation is straightforward and applies directly to a wide class of systems including switched as well as continuous-time sampled systems with sporadic/multiple rates. Its complexity is the same as for a continuous or discrete Kalman filter, with dimension n x +n 2

x , with the same covariance matrix shared among flows and jumps. Another route could be to follow [START_REF] Tran | Observer Design based on Observability Decomposition for Hybrid Systems with Linear Maps and Known Jump Times[END_REF] through an observability decomposition: we could combine a continuous Kalman-like observer-estimating only the part of the state that is instantaneously observable during flows from y c -with a discrete Kalman-like observer for the rest of the state, thus possibly reducing the observer dimension by splitting the covariance matrix. However, the possibility of decomposition is not guaranteed for time-varying systems and may not verify the necessary decoupling conditions. Future directions include properly taking into account, in the covariance matrix, errors in the jump triggering and eventually developing a Kalman observer for hybrid systems with unknown jump times. 

((t ′ , j ′ ), (t, j)) ∈ D × D with (t -t ′ ) + (j -j ′ ) ≤ ∆ m , G((t ′ , j ′ ), (t, j)) ≥ c G x⊤ (t, j)G (F,J,Hc,H d ) ((t ′ , j ′ ), (t, j))x(t, j), (18) 
where

G((t ′ , j ′ ), (t, j)) = t j ′ +1 t ′ ⋆ ⊤ H c (s, j ′ )x(s, j ′ )ds + j-1 k=j ′ +1 GF (k) + j-1 k=j ′ GJ (k) + t tj ⋆ ⊤ H c (s, j)x(s, j)ds,
with GF and GJ defined in [START_REF] Tran | Observer Design based on Observability Decomposition for Hybrid Systems with Linear Maps and Known Jump Times[END_REF].

Remark 5: Define F := F -K c H c and J := J -K d H d . If J is invertible at all times, then Lemma 1 is equivalent to the fact that for all ((t ′ , j ′ ), (t, j)) ∈ D × D with (t -t ′ ) + (j -j ′ ) ≤ ∆ m , we have G ( F , J,Hc,H d ) ((t ′ , j ′ ), (t, j)) ≥ c G G (F,J,Hc,H d ) ((t ′ , j ′ ), (t, j)).

Proof: This proof resembles that of [13, Theorem 3] but in the case where F ̸ = 0 and J ̸ = 0, and that of [START_REF] Zhang | On Stability of the Kalman Filter for Discrete Time Output Error Systems[END_REF] extended to the hybrid case. The key idea is to consider the terms -K c H c x and -K d H d x in the dynamics of x as flow/jump inputs respectively, so that x(t, j) = Φ F,J ((t, j), (t ′ , j ′ ))x(t ′ , j ′ ) -

t j ′ +1 t ′ Ψ A ((t, j), (s, j ′ ))ds - j-1 k=j ′ +1 t k+1 t k Ψ A ((t, j), (s, k))ds - j-1 k=j ′ Ψ B ((t, j), (t k+1 , k)) - t tj Ψ A ((t, j), (s, j))ds, (19) 
where

A := K c H c , B := K d H d , and 
Ψ A ((t, j), (t ′ , j ′ )) = Φ F,J ((t, j), (t ′ , j ′ ))A(t ′ , j ′ )x(t ′ , j ′ ), Ψ B ((t, j), (t ′ , j ′ )) = Φ F,J ((t, j), (t ′ , j ′ ))B(t ′ , j ′ )x(t ′ , j ′ ).
Since (t -t ′ ) + (j -j ′ ) ≤ ∆ m , we deduce the upper bounds on Ψ A and Ψ B as

|Ψ A ((t, j), (t ′ , j ′ ))| ≤ c A |H c (t ′ , j ′ )x(t ′ , j ′ )|, |Ψ B ((t, j), (t ′ , j ′ ))| ≤ c B |H d (t ′ , j ′ )x(t ′ , j ′ )|,
with scalars c A and c B independent of (t, j, t ′ , j ′ ) given by

c A = c Kc (e c F max{c J , c J -1 }) ∆m , c B = c K d (e c F max{c J , c J -1 }) ∆m .
Let us now lower-bound each term in G. First, using [START_REF] Fatehi | Kalman Filtering Approach to Multi-rate Information Fusion in the Presence of Irregular Sampling Rate and Variable Measurement Delay[END_REF] with (s, k) replacing (t, j), we get

GF (k)= t k+1 t k H c (s, k)Φ F,J ((s, k), (t ′ , j ′ ))x(t ′ , j ′ ) -H c (s, k) k-1 q=j ′ +1 tq+1 tq Ψ A ((s, k), (u, q))du -H c (s, k) k-1 q=j ′ Ψ B ((s, k), (t q+1 , q)) -H c (s, k) t j ′ +1 t ′ Ψ A ((s, k), (u, j ′ ))du -H c (s, k) s t k Ψ A ((s, k), (u, k))du 2 ds.
Using |a -b| 2 ≥ ρ 1+ρ |a| 2 -ρ|b| 2 for some ρ > 0, 1 we get

GF (k)≥ ρ 1+ρ t k+1 t k H c (s, k)Φ F,J ((s, k), (t ′ , j ′ ))x(t ′ , j ′ ) 2 ds -ρc 2 Hc t k+1 t k k-1 q=j ′ +1 tq+1 tq Ψ A ((s, k), (u, q))du + k-1 q=j ′ Ψ B ((s, k), (t q+1 , q)) + t j ′ +1 t ′ Ψ A ((s, k), (u, j ′ ))du + s t k Ψ A ((s, k), (u, k))du 2 ds. Applying | N i=1 a i | 2 ≤ N N i=1 |a i | 2 (obtained from Cauchy-Schwartz inequality), we get GF (k)≥ ρ 1+ρ t k+1 t k H c (s, k)Φ F,J ((s, k), (t ′ , j ′ ))x(t ′ , j ′ ) 2 ds -ρc 2 Hc (2(k -j ′ ) + 1)× t k+1 t k k-1 q=j ′ +1 tq+1 tq Ψ A ((s, k), (u, q))du 2 + k-1 q=j ′ Ψ B ((s, k), (t q+1 , q)) 2 + t j ′ +1 t ′ Ψ A ((s, k), (u, j ′ ))du 2 + s t k Ψ A ((s, k), (u, k))du 2 ds.
Using the triangle and Cauchy-Schwartz inequalities, we get

GF (k)≥ ρ 1+ρ t k+1 t k H c (s, k)Φ F,J ((s, k), (t ′ , j ′ ))x(t ′ , j ′ 2 ds -ρc 2 Hc (2(k -j ′ ) + 1) t k+1 t k k-1 q=j ′ +1 (t q+1 -t q ) × tq+1 tq Ψ A ((s, k), (u, q)) 2 du + k-1 q=j ′ Ψ B ((s, k), (t q+1 , q)) 2 +(t j ′ +1 -t ′ ) t j ′ +1 t ′ Ψ A ((s, k), (u, j ′ )) 2 du +(s -t k ) s t k Ψ A ((s, k), (u, k)) 2 du ds ≥ ρ 1+ρ t k+1 t k H c (s, k)Φ F,J ((s, k), (t ′ , j ′ ))x(t ′ , j ′ ) 2 ds -ρc 2 Hc (2(k -j ′ ) + 1)(t k+1 -t ′ + 1) × t k+1 t k k-1 q=j ′ +1 tq+1 tq Ψ A ((s, k), (u, q)) 2 du + k-1 q=j ′ Ψ B ((s, k), (t q+1 , q)) 2 + t j ′ +1 t ′ Ψ A ((s, k), (u, j ′ )) 2 du + s t k Ψ A ((s, k), (u, k)) 2 du ds.
1 This is equivalent to

1 √ ρ+1 a - √ ρ + 1b 2 
≥ 0, so true for any ρ > 0.

Using the bounds on Ψ A and Ψ B , we get

GF (k)≥ ρ 1+ρ t k+1 t k H c (s, k)Φ F,J ((s, k), (t ′ , j ′ ))x(t ′ , j ′ ) 2 ds -ρc 2 Hc (2(k -j ′ ) + 1)(t k+1 -t ′ + 1) max{c 2 A , c 2 B } × t k+1 t k k-1 q=j ′ +1 tq+1 tq H c (u, q)x(u, q) 2 du + k-1 q=j ′ H d (t q+1 , q)x(t q+1 , q) 2 + t j ′ +1 t ′ H c (u, j ′ )x(u, j ′ ) 2 du + s t k H c (u, k)x(u, k) 2 du ds ≥ ρ 1+ρ t k+1 t k H c (s, k)Φ F,J ((s, k), (t ′ , j ′ ))x(t ′ , j ′ ) 2 ds -ρc 2 Hc (2(k -j ′ ) + 1)(t k+1 -t ′ + 1) max{c 2 A , c 2 B } ×(t k+1 -t k ) k-1 q=j ′ +1 tq+1 tq H c (u, q)x(u, q) 2 du + k-1 q=j ′ H d (t q+1 , q)x(t q+1 , q) 2 + t j ′ +1 t ′ H c (u, j ′ )x(u, j ′ ) 2 du + t k+1 t k H c (u, k)x(u, k) 2 du ≥ ρ 1+ρ t k+1 t k H c (s, k)Φ F,J ((s, k), (t, j))x(t, j) 2 ds -ρc 2 Hc (2(k -j ′ ) + 1)(t k+1 -t ′ + 1) max{c 2 A , c 2 B } ×(t k+1 -t k ) G.
Similarly to GF (k), we get for the two separate integral terms of G,

t j ′ +1 t ′
⋆ ⊤ H c (s, j ′ )x(s, j ′ )ds ≥ ρ 1+ρ t j ′ +1 t ′ H c (s, j ′ )Φ F,J ((s, j ′ ), (t, j))x(t, j)

2 ds -ρc 2 Hc ×(t j ′ +1 -t ′ ) max{c 2 A , c 2 B }(t j ′ +1 -t ′ ) G, t tj ⋆ ⊤ H c (s, j)x(s, j)ds ≥ ρ 1+ρ t tj H c (s, j)Φ F,J ((s, j), (t, j))x(t, j)

2 ds -ρc 2 Hc ×(2(j -j ′ ) + 1)(t -t ′ + 1) max{c 2 A , c 2 B }(t -t j ) G. For GJ (k), using [START_REF] Fatehi | Kalman Filtering Approach to Multi-rate Information Fusion in the Presence of Irregular Sampling Rate and Variable Measurement Delay[END_REF] with (t k+1 , k) replacing (t, j), we get GJ (k)= H d (t k+1 , k)Φ F,J ((t k+1 , k), (t ′ , j ′ ))x(t (2(k -j ′ ) + 1)(t k+1 -t ′ + 1)(t k+1 -t k ) + j-1 k=j ′ (2(k -j ′ ) + 1)(t k+1 -t ′ + 1) +(2(j -j ′ ) + 1)(t -t ′ + 1)(t -t j ) + (t j ′ +1 -t ′ ) 2 ] ≥ ρ 1+ρ x(t, j) ⊤ G (F,J,Hc,H d ) ((t ′ , j ′ ), (t, j))x(t, j) -ρ max{c 2 A , c 2 B }{c 2 Hc , c 2 H d } G ×[(j -j ′ -1)(2(j -j ′ ) -1)(t j -t ′ + 1)(t j -t j ′ +1 ) +(j -j ′ )(2(j -j ′ ) -1)(t j -t ′ + 1) +(2(j -j ′ ) + 1)(t -t ′ + 1)(t -t j ) + (t j ′ +1 -t ′ ) 2 ] ≥ ρ 1+ρ x(t, j) ⊤ G (F,J,Hc,H d ) ((t ′ , j ′ ), (t, j))x(t, j) -ρ max{c 2 A , c 
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 1 Fig. 1. State estimation in a switched system (with λ = 0 and γ = 1).

Fig. 2 .

 2 Fig. 2. State estimation in a switched system (singular switching signal).

Fig. 3 .

 3 Fig. 3. State and parameter estimation in a spiking neuron. Last figure: Comparison of the 2-norm of the error for increasing λ ′ (yellow-nominal case, blue and red-higher values of λ ′ with worse peaking).
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 45 Fig. 4. Sensor noise used for simulation.

APPENDIX Lemma 1 :

 1 Consider a quadruple (F, J, H c , H d ) defined on a hybrid time domain D and verifying the boundedness condition of Assumption 3. Pick (K c , K d ) defined and uniformly upper-bounded on D. Then, for any ∆ m > 1, there exists c G > 0 such that any hybrid arc x defined on D and verifying the linear dynamics ẋ = (F -K c H c )x during flows and x+ = (J -K d H d )x at jumps, verifies for all

  Rc , c Rc , c R d , and c R d such that for all (t, j) ∈ dom x, we have

	, 1] are design parameters, R c ∈ >0 are (possibly time-varying) weighting >0 and R d ∈ S S ny,c n y,d
	matrices such that there exist positive scalars c

Ψ

  ′ , j ′ ) B ((t k+1 , k), (t q+1 , q)) -H d (t k+1 , k)t j ′ +1 t ′ Ψ A ((t k+1 , k), (u, j ′ ))du -H d (t k+1 , k) Ψ A ((t k+1 , k), (u, k))du 2 = H d (t k+1 , k)Φ F,J ((t k+1 , k), (t ′ , j ′ ))x(t ′ , j ′ ) -H d (t k+1 , k) A ((t k+1 , k), (u, q))du -H d (t k+1 , k) t j ′ +1 t ′ Ψ A ((t k+1 , k), (u, j ′ ))du -H d (t k+1 , k) k-1 q=j ′ Ψ B ((t k+1 , k), (t q+1 , q)) 2 .Using |a -b| 2 ≥ ρ 1+ρ |a| 2 -ρ|b| 2 for the same ρ, we get GJ (k)≥ ρ 1+ρ H d (t k+1 , k)Φ F,J ((t k+1 , k), (t ′ , j ′ ))x(t ′ , j ′ )

	-H d (t k+1 , k)	q=j ′ +1 Ψ t k+1 tq+1 tq
				t k
				k	tq+1
				q=j ′ +1	tq
					2
	-ρc 2 H d	k q=j ′ +1	tq+1 tq	Ψ A ((t k+1 , k), (u, q))du
	+ +	t j ′ +1 t ′ k-1 q=j ′ Ψ B ((t k+1 , k), (t q+1 , q)) Ψ A ((t k+1 , k), (u, j ′ ))du	2 .
	Applying |	N i=1 a i | 2 ≤ N	N i=1 |a i | 2 , we get
	GJ (k)≥ ρ 1+ρ H k		tq+1
		q=j ′ +1	tq

A ((t k+1 , k), (u, q))du

-H d (t k+1 , k) k-1 q=j ′ Ψ d (t k+1 , k)Φ F,J ((t k+1 , k), (t ′ , j ′ ))x(t ′ , j ′ ) 2 -ρc 2 H d (2(k -j ′ ) + 1) ×

Ψ

  A ((t k+1 , k), (u, q))duΨ A ((t k+1 , k), (u, j ′ ))duUsing the triangle and Cauchy-Schwartz inequality, we getGJ (k)≥ ρ 1+ρ H d (t k+1 , k)Φ F,J ((t k+1 , k), (t ′ , j ′ ))x(t ′ , j ′ ) 2 -ρc 2 H d (2(k -j ′ ) + 1) k q=j ′ +1 (t q+1 -t q ) × tq+1 tq Ψ A ((t k+1 , k), (u, q)) 2 du +(t j ′ +1 -t ′ ) t j ′ +1 t ′ Ψ A ((t k+1 , k), (u, j ′ )) (t k+1 , k)Φ F,J ((t k+1 , k), (t ′ , j ′ ))x(t ′ , j ′ ) Ψ B ((t k+1 , k), (t q+1 , q)) 2 .Using the bounds on Ψ A and Ψ B , we getGJ (k)≥ ρ 1+ρ H d (t k+1,k)Φ F,J ((t k+1 , k), (t ′ , j ′ ))x(t ′ , j ′ )

	+ +	2 q=j 2 du t j ′ +1 t ′ 2 k-1 + k-1 q=j ′ Ψ B ((t k+1 , k), (t q+1 , q)) 2 ≥ ρ 1+ρ H d 2 -ρc 2 H d (2(k -j ′ ) + 1)(t k+1 -t ′ + 1) × k q=j ′ +1 tq+1 tq Ψ A ((t k+1 , k), (u, q)) 2 du + t j ′ +1 t ′ Ψ A ((t k+1 , k), (u, j ′ )) 2 du + k-1 q=j ′ 2 -ρc 2 H d (2(k -j ′ ) + 1)(t k+1 -t ′ + 1) × max{c 2 A , c 2 B } k q=j ′ +1 tq+1 tq H c (u, q)x(u, q) 2 du + t j ′ +1 t ′ H 2 du k-1 + q=j -ρ max{c 2 A , c 2 B }{c 2 Hc , c 2 G H d } j-1 × [ k=j ′ +1

′ Ψ B ((t k+1 , k), (t q+1 , q)) 2 . c (u, j ′ )x(u, j ′ ) ′ H d (t q+1 , q)x(t q+1 , q) 2 ≥ ρ 1+ρ H d (t k+1 , k)Φ F,J ((t k+1 , k), (t, j))x(t, j) 2 -ρc 2 H d (2(k -j ′ ) + 1)(t k+1 -t ′ + 1) × max{c 2 A , c 2 B } G.

Now let us lower-bound G by summing the obtained inequalities. Since (t -t ′ ) + (j -j ′ ) ≤ ∆ m , we get G≥ ρ 1+ρ x(t, j) ⊤ G (F,J,Hc,H d ) ((t ′ , j ′ ), (t, j))x(t, j)

  2 B }{c 2 Hc , c 2 H d } G ×[∆ 2 m (2∆ m -1)(∆ m + 1) + ∆ m (2∆ m -1)(∆ m + 1) +(2∆ m + 1)(∆ m + 1)∆ m + ∆ 2 m ],and thus, the result follows.
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