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Kalman-like Observer for Hybrid Systems with
Linear Maps and Known Jump Times (Full Version)

Gia Quoc Bao Tran and Pauline Bernard

Abstract— We propose a hybrid Kalman-like observer for
general hybrid systems with linear (time-varying) dynamics
and output maps, where the solutions’ jump times are exactly
known. After defining a hybrid observability Gramian and
the corresponding hybrid uniform complete observability, we
show that the estimate provided by this observer converges
asymptotically to the complete system solution if this observ-
ability holds together with some boundedness and invertibility
conditions along the considered system solution. Then, under
additional uniformity and strictness of the forgetting factors,
we show exponential stability of the estimation error with an
arbitrarily fast rate. The robust stability of this error against
input disturbances and measurement noise is also studied. The
results are illustrated on several benchmark examples, including
switched systems, hybrid systems with discontinuous solutions,
and continuous-time systems with multi-rate sporadic outputs.

I. INTRODUCTION

The celebrated Kalman observer was introduced in the
early 60s by Kalman and Bucy [1] as an optimal filter
for linear continuous-time systems. Under uniform complete
observability and in a stochastic context, it was shown
to minimize the covariance of the estimation error in the
presence of Gaussian dynamics and measurement noise. Its
appeal lies in its systematic design and easiness of tuning,
which is linked to the (assumedly known) covariance of those
disturbances. It was then extended to discrete-time systems
[2] and multiple settings [3], thus widely used in industry.

On the other hand, in the early 90s, an alternative Kalman-
like observer was developed [4], [5], optimizing in a deter-
ministic setting the ability of the estimate to explain the past
output history, with a certain forgetting factor and weighting,
describing the confidence in the output measurement. The
difference with the Kalman filter mainly lies in the absence of
noise on the dynamics which facilitates a Lyapunov stability
analysis by linking the Lyapunov matrix directly to the
observability Gramian. This design was extended to discrete-
time systems in [6], and without forgetting factor in [7].

However, surprisingly, we are not aware of any such
systematic design for hybrid systems with linear maps,
combining continuous (flows) and discrete (jumps) behavior,
with outputs available during both flows and jumps. Indeed,
observer design in this context generally goes through the
resolution of LMIs with no guaranteed solvability [8], [9],
or an observability decomposition isolating the part of the
state that is instantaneously observable during flows [10],
[11]. An exception is a particular case of constant parameter

Centre Automatique et Systèmes (CAS), Mines Paris - PSL, Paris, France
{firstname,lastname}@minesparis.psl.eu

estimation with both continuous and discrete measurements,
for which a hybrid gradient descent was developed [12], [13].

Otherwise, observer designs typically avoid the combi-
nation of flow/jump innovation terms, by using the output
during either flows only (flow-based) or jumps only (jump-
based) [9]. The latter case includes continuous-time systems
with sampled measurements, for which continuous-discrete
Kalman filters [3], [14], [9] are derived, where the estimate
evolves in the open loop during flows and is corrected at
the sampling instants, with a gain depending on a hybrid
covariance matrix. The latter evolves either discretely, based
on an equivalent discrete system describing how the error
propagates during the combination of flows and jumps [9],
or in a hybrid way [3], [14]. Most recent advances con-
cern essentially the implementation of continuous-discrete
extended Kalman filters [15] for nonlinear systems, or to
find alternative LMI-based designs of the gains [16], [17].

Note that the design of a unified and systematic Kalman
filter seems still open for continuous-time systems with
multi-rate sampled outputs, namely combining fast (almost
continuous) and slow measurements with different sampling
rates. Designs typically include several (discrete) Kalman
filters operating at different rates with fusing strategies [18],
[19], [20], or sample-and-hold LMI-based correction terms
[21], or KKL observers with inter-sample predictors [22].

In this paper, we propose a hybrid Kalman-like observer
for general hybrid systems [23] with linear maps and known
jump times, exploiting outputs available during both flows
and jumps. The considered class includes linear switched
systems and linear continuous-time systems with (multi-rate)
sampled/sporadic measurements, and its restriction to fully
continuous or discrete dynamics allows us to recover the
designs of [4], [5], [6], [7]. Compared to existing hybrid
designs, this one is systematic, automatically taking into
account the observability brought by the combination of
both continuous and discrete outputs and dynamics, with
no need for state decomposition, unlike [10], [11], and
applies to time-varying hybrid systems. After defining a
hybrid observability Gramian and the corresponding hybrid
uniform complete observability condition, we show asymp-
totic convergence of the estimate under some boundedness
and invertibility conditions, thus extending the design of
[12] to non-constant states. Then, the exponential stability
of the estimation error with an arbitrarily fast convergence
rate is proven under additional uniformity conditions and
strictness of the forgetting factors. Finally, we show the
robust stability of the estimation error (in the sense of [24])
against flow/jump input disturbances and measurement noise.



Notations: Let R (resp. N) denote the set of real numbers
(resp. natural numbers, i.e., {0, 1, 2, . . .}). We denote Rm×n

(resp. Sn
>0) as the set of real (m × n)- (resp. symmetric

positive definite (n× n)-) dimensional matrices. Let | · | be
the Euclidean norm and ∥ · ∥ the induced matrix norm. Let
ϕF (t, t

′) be the continuous-time transition matrix of ẋ = Fx
(with F possibly time-varying) from time t′ to t, i.e., such
that any solution verifies x(t) = ϕF (t, t

′)x(t′). For a solution
(t, j) 7→ x(t, j) to a hybrid system, we denote domx its time
domain [23], domt x (resp. domj x) the domain’s projection
on the ordinary time (resp. jump) component, and for j ∈
domj x, tj(x) the unique time such that (tj(x), j) ∈ domx
and (tj(x), j − 1) ∈ domx, and Tj(x) := {t ∈ domt x :
(t, j) ∈ domx} (for hybrid systems with inputs, see [25]).
The mention of x is omitted when no confusion is possible.
A solution x to a hybrid system is complete if domx is
unbounded. In some long derivations such as (4) below, ⋆
denotes the symmetric part, i.e., ⋆⊤P = P⊤P . Woodbury
matrix identity is here recalled as (A+ UCV )−1 = A−1 −
A−1U(C−1+V A−1U)−1V A−1, where A and C are square
and dimensions are appropriate.

II. HYBRID KALMAN-LIKE OBSERVER

Consider a hybrid system with linear (time-varying) maps

H
{

ẋ= Fx+ uc (x, uc) ∈ C yc = Hcx
x+ = Jx+ ud (x, ud) ∈ D yd = Hdx

(1)

where x ∈ Rnx is the state, C and D are the flow and
jump sets, yc ∈ Rny,c and yd ∈ Rny,d are the outputs
known during flows and at jumps respectively, uc ∈ Rnx

and ud ∈ Rnx are known exogenous terms, as well as the
dynamics matrices F, J ∈ Rnx×nx and the output matrices
Hc ∈ Rny,c×nx , Hd ∈ Rny,d×nx which are all known and
possibly time-varying. Denote X0 as a set containing the
initial conditions of the trajectories to be estimated and U as
a set of inputs (uc, ud) of interest (U could also contain the
matrices (F, J,Hc, Hd) seen as inputs in the varying setting).
We then denote SH(X0,U) as the set of maximal solutions
to H initialized in X0 with (uc, ud) ∈ U . Because the goal
of this paper is to design an asymptotic observer for (1), we
assume solutions x ∈ SH(X0,U) are complete as stated next.

Assumption 1: Given X0 and U , each solution x ∈
SH(X0,U) is complete.

Remark 1: Models of the form (1) include not only hybrid
systems with linear maps described in the setting of [23]
(see Example 2), but also switched systems with linear
maps where the active mode is seen as an exogenous signal
making (F, J,Hc, Hd) time-varying (see Example 1), and
continuous-time systems with sporadic or multi-rate sam-
pled outputs (see Example 3). Note that in many of these
systems, observability is acquired by the combination of
flows with (F,Hc) and jumps with (J,Hd). Therefore, the
direct coupling of classical continuous and discrete linear
observers relying on the observability of each pair separately
will typically not work. Here, instead, we design a single
unified algorithm, automatically gathering observability from
both flows and jumps via a shared covariance matrix.

A. Synchronized Hybrid Kalman-like Observer

Assuming the jump times of the solutions x ∈ SH(X0,U)
are exactly known or detected—for instance from discon-
tinuities in the output, or impact sensors, or because they
are triggered by the user or the sensor’s availability in the
sampled-data case—and exploiting the linearity of the maps
of H, we propose a systematic design of a synchronized
hybrid Kalman-like observer of the form

Ĥ


˙̂x=Fx̂+ uc + PH⊤

c R−1
c (yc −Hcx̂)

Ṗ=λP + FP + PF⊤ − PH⊤
c R−1

c HcP

}
when H flows

x̂+=Jx̂+ ud + JK(yd −Hdx̂)
P+=γ−1J(I −KHd)PJ⊤

}
when H jumps

(2a)
with

K = PH⊤
d (HdPH⊤

d +Rd)
−1, (2b)

where λ ≥ 0 and γ ∈ (0, 1] are design parameters, Rc ∈
Sny,c

>0 and Rd ∈ Sny,d

>0 are (possibly time-varying) weighting
matrices such that there exist positive scalars cRc

, cRc
, cRd

,
and cRd

such that for all (t, j) ∈ domx, we have

cRc
I ≤ Rc(t, j) ≤ cRc

I,
cRd

I ≤ Rd(tj+1, j) ≤ cRd
I.

(2c)

The observer (2) gathers in a common setting the contin-
uous and discrete Kalman-like observers of [4], [5] and [6],
[7]. The difference compared to the continuous and discrete
Kalman designs [1], [2] mainly lies in the absence of the
Q-covariance matrices, commonly describing the confidence
in the dynamics. They are here replaced by forgetting factors
λ and γ, which allows us to: 1) Make the dynamics of
P−1 linear and explicitly solvable, with a direct link to the
so-called observability Gramian; and 2) Obtain a quadratic
strict Lyapunov function. Note that in the discrete case,
the computation steps of the Kalman filter [7] are gathered
here into a single jump map. It combines 1) Correction
and 2) Prediction, instead of the contrary, since the output
available to compute x̂+ is its value before the jump, namely
Hdx instead of Hdx

+. This justifies the presence of J in
front of K in the discrete correction term. In the classical
Kalman notations, this means that our (x̂, P ) corresponds to
(x̂, P )(k|k − 1) instead of (x̂, P )(k|k), which is consistent
with the use of P (k|k− 1) in the Lyapunov function in [7].
Note finally that adding the Kalman Q-parameters in (2)
would preserve the decrease of the Lyapunov function but
would make its lower-boundedness more intricate to prove.

The goal of this paper is first to provide conditions
ensuring asymptotic convergence of (2) without any further
constraint on the forgetting factors λ ≥ 0 and γ ∈ (0, 1],
i.e., all maximal solutions (x, x̂, P ) to the cascade H − Ĥ
initialized in X0×Rnx×Snx

>0 with (uc, ud) ∈ U are complete
and verify

lim
t+j→+∞

|x(t, j)− x̂(t, j)| = 0, (t, j) ∈ domx. (3)

In a second step, conditions for exponential stability of
the estimation error with an arbitrarily fast rate as well as
robustness against disturbances will be derived when λ > 0



and/or γ ∈ (0, 1). Classically, the asymptotic convergence of
the Kalman(-like) observer is shown for continuous-time and
discrete-time systems under the so-called Uniform Complete
Observability condition [1], [5], [6]. This condition im-
poses uniform and persistent invertibility of the observability
Gramian, describing the richness of the information provided
by the output on a certain time window. We extend those
notions and objects in the next section in the hybrid context.

B. Hybrid Definitions of the Observability Gramian and
Uniform Complete Observability

To define the notions of Gramian and observability needed
for this observer, let us assume the following.

Assumption 2: For all solutions x ∈ SH(X0,U) and for
all j ∈ domj x, the map t 7→ F (t, j) is locally bounded on
Tj , and the matrix J(tj+1, j) is invertible if j+1 ∈ domj x.

Remark 2: Assuming the invertibility of each J(tj+1, j)
can be restrictive in the hybrid context. But as seen in
Example 2, thanks to the non-uniqueness of representation in
hybrid systems, it may be possible to rewrite J satisfying this
assumption. Note though that inverting J is not necessary
to implement observer (2) and is needed for analysis only,
similarly to the discrete Kalman literature [7], [6]. Example
2 is a case where the observer works without this condition
and the analysis might be adaptable as suggested in [26].

Under Assumption 2, solutions x ∈ SH(X0,U) are unique
in both forward and backward time, so we can define hybrid
transition matrices of H. More precisely, given a solution
x ∈ SH(X0,U) with uc = 0 and ud = 0, for all hybrid
times ((t′, j′), (t, j)) ∈ domx× domx, we have

x(t, j) = ΦF,J((t, j), (t
′, j′))x(t′, j′),

where ΦF,J is defined as ΦF,J((t, j), (t
′, j′)) =

ϕF (t, tj+1)
(∏j′+1

k=j ϕF (tk+1, tk)J(tk, k − 1)
)
ϕF (tj′+1, t

′)

if t ≥ t′ and j ≥ j′, and ΦF,J((t, j), (t
′, j′)) =

ϕF (t, tj)
(∏j′

k=j+1 ϕF (tk−1, tk)J
−1(tk, k − 1)

)
ϕF (tj′ , t

′)

otherwise, with the time domain of F and J inherited from
domx.

Definition 1 (Backward observability Gramian):
The backward observability Gramian of the quadruple
(F, J,Hc, Hd) defined on a time domain D, from time
(t′, j′) ∈ D to a later time (t, j) ∈ D, is defined as

G(F,J,Hc,Hd)((t
′, j′), (t, j)) =

∫ tj′+1

t′ ⋆⊤Ψc((s, j
′), (t, j))ds

+

j−1∑
k=j′+1

∫ tk+1

tk
⋆⊤Ψc((s, k), (t, j))ds

+

j−1∑
k=j′

⋆⊤ Ψd((tk+1, k), (t, j)) +
∫ t

tj
⋆⊤Ψc((s, j), (t, j))ds,

(4)
where Ψc((s, k), (t, j)) = Hc(s, k)ΦF,J((s, k), (t, j)) and
Ψd((tk+1, k), (t, j)) = Hd(tk+1, k)ΦF,J((tk+1, k), (t, j)),
with all the jump times determined from D.

Remark 3: The backward Gramian (4) characterizes the
ability to reconstruct x(t, j) from the knowledge of the past
output. This form naturally comes up in the analysis, but

we could also define a forward Gramian, characterizing the
ability to reconstruct x(t′, j′) from the knowledge of the
future output. They are equivalent under the capability to
go forward and backward in time, namely Assumption 2.

Definition 2 (Uniform complete observability (UCO)):
The quadruple (F, J,Hc, Hd) defined on a hybrid time
domain D is uniformly completely observable (UCO) with
data (∆, µ) if there exists ∆ > 0 and µ > 0 such that for all
((t′, j′), (t, j)) ∈ D ×D verifying (t− t′) + (j − j′) ≥ ∆,

G(F,J,Hc,Hd)((t
′, j′), (t, j)) ≥ µI. (5)

In this paper, we show three main results: 1) The estimation
error converges asymptotically to zero for any choice of
λ ≥ 0, γ ∈ (0, 1], under boundedness of the matrices and
UCO along the considered solution only (Section III); 2) It is
exponentially stable with an arbitrarily fast rate for appropri-
ate choices of λ and γ if these requirements hold uniformly
with respect to solutions (Section IV); and 3) It is robustly
stable (in the sense of [24]) with respect to flow/jump input
disturbances and measurement noise (Section V).

III. ASYMPTOTIC CONVERGENCE FROM
UNIFORM COMPLETE OBSERVABILITY

In this part, we provide sufficient conditions for asymp-
totic convergence of the synchronized hybrid Kalman-like
observer for a given solution x ∈ SH(X0,U), thanks to
some boundedness and uniform complete observability as-
sumptions, made along that particular solution only.

Assumption 3: For each solution x ∈ SH(X0,U), assume:

• (Boundedness) There exist non-negative scalars cF , cHc
,

and cHd
, and positive scalars cJ and cJ−1 such that for

all (t, j) ∈ domx, we have (if j + 1 ∈ domj x)

∥F (t, j)∥ ≤ cF ,
∥J(tj+1, j)∥ ≤ cJ , ∥J−1(tj+1, j)∥ ≤ cJ−1 ,
∥Hc(t, j)∥ ≤ cHc , ∥Hd(tj+1, j)∥ ≤ cHd

;

• (Observability) There exists a pair of positive scalars
(∆, µ) such that the quadruple (F, J,Hc, Hd) defined
on the time domain of x is UCO with this data.

Theorem 1 then shows that all solutions in SH(X0,U) can
be estimated by the observer (2). Note that for asymptotic
convergence only (without stability guarantees), no unifor-
mity with respect to solutions or time domains is required,
but only along the time domain of each particular solution.

Theorem 1: Under Assumptions 1, 2, and 3, for any
λ ≥ 0 and any γ ∈ (0, 1], any maximal solution (x, x̂, P )
to the cascade H − Ĥ initialized in X0 × Rnx × Snx

>0

with (uc, ud) ∈ U and (Rc, Rd) satisfying (2c) for some
(cRc

, cRc
, cRd

, cRd
) ∈ R4

>0 is complete and verifies (3).
Proof: Consider a solution x ∈ SH(X0,U). By

Assumption 1, it is complete. In the rest of this proof,
all variables are evolving on domx and so are complete.
Consider (t, j) 7→ Π(t, j) with Π(0, 0) ∈ Snx

>0 and dynamics{
Π̇ = −λΠ−ΠF − F⊤Π+H⊤

c R−1
c Hc

Π+ = γ(J−1)⊤(Π +H⊤
d R−1

d Hd)J
−1.

(6)



Because J is invertible at jumps from Assumption 2, Π is
well-defined. It can be proven using mathematical induction
that the closed form of Π(t, j) for all (t, j) ∈ domx is

Π(t, j)=e−λtγjΦ⊤
F,J((0, 0), (t, j))Π(0, 0)ΦF,J((0, 0), (t, j))

+
∑j−1

k=0

∫ tk+1

tk
e−λ(t−s)γj−k ⋆⊤ Ψc′((s, k), (t, j))ds

+
∑j−1

k=0 e
−λ(t−tk+1)γj−k ⋆⊤ Ψd′((tk+1, k), (t, j))

+
∫ t

tj
e−λ(t−s) ⋆⊤ Ψc′((s, j), (t, j))ds,

(7)
where Ψc′((s, k), (t, j)) = R

− 1
2

c (s, k)Ψc((s, k), (t, j)) and
Ψd′((tk+1, k), (t, j)) = R

− 1
2

d (tk+1, k)Ψd((tk+1, k), (t, j))
(with Ψc and Ψd defined in Definition 1). Now, we
show that Π is uniformly lower-bounded along domx.
First use Gronwall’s inequality to show that ∥ϕF (t, t

′)∥ ≤
ecF |t−t′|, then it follows that for any ((t′, j′), (t, j)) ∈
domx × domx with t′ ≤ t and j′ ≤ j, we
have ∥ΦF,J((t, j), (t

′, j′))∥ ≤ ecF (t−t′)cj−j′

J . Because
ΦF,J((t, j), (t

′, j′))ΦF,J((t
′, j′), (t, j)) = I , this implies that

⋆⊤ΦF,J((t
′, j′), (t, j)) ≥ e−2cF (t−t′)c

−2(j−j′)
J I.

Then, for any (t, j) ∈ domx such that t+ j ≤ ∆, we have

Π(t, j) ≥ e−λtγje−2cF tc−2j
J Π(0, 0)

≥ (e−λγe−2cF max{1, cJ}−2)∆Π(0, 0)
≥ cΠ,1I,

for some cΠ,1 > 0. Next, for any (t, j) ∈ domx such that
t + j ≥ ∆, we can always pick (t′, j′) ∈ domx (before
(t, j)) such that ∆ ≤ (t− t′) + (j − j′) ≤ ∆+ 1 and from
Assumption 3, we have

Π(t, j)

≥ e−λ(t−t′)γj−j′ min{c−1
Rc

, c−1
Rd

}G(F,J,Hc,Hd)((t
′, j′), (t, j))

≥ (e−λγ)∆+1 min{c−1
Rc

, c−1
Rd

}G(F,J,Hc,Hd)((t
′, j′), (t, j))

≥ µ(e−λγ)∆+1 min{c−1
Rc

, c−1
Rd

}I := cΠ,2I.

Therefore, for all (t, j) ∈ domx, we have

Π(t, j) ≥ min{cΠ,1, cΠ,2}I := cΠI, (8)

which means that Π is uniformly lower-bounded and thus
uniformly invertible on domx. Let us now study the dy-
namics of W := Π−1, which is well-defined and belongs to
Snx
>0. During flows, we have

Ẇ = −W Π̇W
= −W (−λΠ−ΠF − F⊤Π+H⊤

c R−1
c Hc)W

= −W (−λW−1 −W−1F − F⊤W−1 +H⊤
c R−1

c Hc)W
= λW + FW +WF⊤ −WH⊤

c R−1
c HcW.

At jumps, using Woodbury matrix identity, we have

W+ = (Π+)−1

= (γ(J−1)⊤(Π +H⊤
d R−1

d Hd)J
−1)−1

= γ−1J(W−1 +H⊤
d R−1

d Hd)
−1J⊤

= γ−1J(W −WH⊤
d (HdWH⊤

d +Rd)
−1HdW )J⊤

= γ−1J(I −WH⊤
d (HdWH⊤

d +Rd)
−1Hd)WJ⊤.

Therefore, W follows the same dynamics as P in (2).
So if W (0, 0) = P (0, 0) then W (t, j) = P (t, j) for
all (t, j) ∈ domx. This means that P = Π−1 (with

Π(0, 0) = (P (0, 0))−1) and that P is invertible at all times
(but not necessarily uniformly along domx since P may go
to 0 asymptotically if Π is not uniformly upper-bounded).
Therefore, the error x̃ := x− x̂ follows the dynamics{

˙̃x = (F −Π−1H⊤
c R−1

c Hc)x̃ := F̃ x̃

x̃+ = J(I −KHd)x̃ := J̃ x̃,
(9)

where K = Π−1H⊤
d (HdΠ

−1H⊤
d + Rd)

−1. Consider the
Lyapunov function V (x̃,Π) = x̃⊤Πx̃. For all (t, j) ∈ domx,
V (x̃(t, j),Π(t, j)) ≥ cΠ|x̃(t, j)|2, so Theorem 1 is proven if
we show that V asymptotically converges to 0. Let us study
the dynamics of V along (9) and (6). During flows, we have

V̇ = x̃⊤[(F −Π−1H⊤
c R−1

c Hc)
⊤Π+ Π̇
+Π(F −Π−1H⊤

c R−1
c Hc)]x̃

= x̃⊤(−λΠ−H⊤
c R−1

c Hc)x̃
= −λV − x̃⊤H⊤

c R−1
c Hcx̃

≤ −λV − c−1
Rc

x̃⊤H⊤
c Hcx̃.

Using Woodbury matrix identity yields

K
= PH⊤

d (R−1
d −R−1

d Hd(P
−1 +H⊤

d R−1
d Hd)

−1H⊤
d R−1

d )
= PH⊤

d R−1
d − PH⊤

d R−1
d Hd(P

−1 +H⊤
d R−1

d Hd)
−1H⊤

d R−1
d

= PH⊤
d R−1

d − P ((P−1 +H⊤
d R−1

d Hd)− P−1)
×(P−1 +H⊤

d R−1
d Hd)

−1H⊤
d R−1

d

= (P−1 +H⊤
d R−1

d Hd)
−1H⊤

d R−1
d

= (Π +H⊤
d R−1

d Hd)
−1H⊤

d R−1
d .

At jumps, thanks to the newly obtained expression of K and
Woodbury matrix identity, we have

V + = γx̃⊤(I −KHd)
⊤(Π +H⊤

d R−1
d Hd)(I −KHd)x̃

= γx̃⊤(I −KHd)
⊤(Π +H⊤

d R−1
d Hd)

×(I − (Π +H⊤
d R−1

d Hd)
−1H⊤

d R−1
d Hd)x̃

= γx̃⊤(I −KHd)
⊤Πx̃

= γx̃⊤(I −Π−1H⊤
d (HdPH⊤

d +Rd)
−1Hd)

⊤Πx̃
= γV − γx̃⊤H⊤

d (HdΠ
−1H⊤

d +Rd)
−1Hdx̃

≤ γV − γx̃⊤H⊤
d (c2Hd

c−1
Π + cR)

−1Hdx̃.

We see that V decreases strictly and exponentially to 0 if
λ > 0 and γ ∈ (0, 1). We next show that actually, thanks to
UCO, it converges in-the-large even for λ = 0 and γ = 1.
In this case, we have

V̇ ≤ − c−1
Rc

x̃⊤H⊤
c Hcx̃ := − ccx̃

⊤H⊤
c Hcx̃,

V + − V ≤ − cΠ
c2Hd

+cΠcR
x̃⊤H⊤

d Hdx̃ := − cdx̃
⊤H⊤

d Hdx̃,

and thus, for all ((t′, j′), (t, j)) ∈ domx× domx, we have

V (t, j) ≤ V (t′, j′)− Ṽ , (10)

where

Ṽ = cc
∫ tj′+1

t′ ⋆⊤Hc(s, j
′)x̃(s, j′)ds+ cc

∑j−1
k=j′+1 G̃F (k)

+ cd
∑j−1

k=j′ G̃J(k) + cc
∫ t

tj
⋆⊤Hc(s, j)x̃(s, j)ds,

with G̃F and G̃J defined as

G̃F (k) =
∫ tk+1

tk
⋆⊤Hc(s, k)x̃(s, k)ds,

G̃J(k) = ⋆⊤Hd(tk+1, k)x̃(tk+1, k).
(11)



Applying Lemma 1 in the Appendix with ∆m = ∆+1, Kc =
Π−1H⊤

c R−1
c , and Kd = JK = JΠ−1H⊤

d (HdΠ
−1H⊤

d +
Rd)

−1, which are indeed upper-bounded by cHc(cΠcRc
)−1

and cJcHd
(cΠcRd

)−1 respectively, there exists cG > 0 such
that for all ((t′, j′), (t, j)) ∈ domx× domx such that ∆ ≤
(t− t′) + (j − j′) ≤ ∆+ 1, we have

Ṽ ≥ min{cc, cd}cG x̃⊤(t, j)G(F,J,Hc,Hd)((t
′, j′), (t, j))x̃(t, j)

≥ min{cc, cd}cGµ|x̃(t, j)|2,

exploiting the UCO property in Assumption 3. We finally
conclude that there exists cV > 0 such that for any
((t′, j′), (t, j)) ∈ domx × domx verifying ∆ ≤ (t − t′) +
(j − j′) ≤ ∆+ 1, we have

V (t, j) ≤ V (t′, j′)− cV |x̃(t, j)|2.

It remains to show that x̃ converges asymptotically to 0 using
contradiction, similar to [7]. Assume that x̃ does not converge
to 0. Then, there exists ϵ > 0 such that for any (t′, j′) ∈
domx, we can always find (exploiting the completeness of
x) (t, j) ∈ domx such that (t − t′) + (j − j′) ≥ ∆ and
|x̃(t, j)| ≥ ϵ. Hence we have V (t, j) ≤ V (t′, j′) − cV ϵ

2.
By repeating this process, still thanks to the completeness
of x, V becomes negative after a finite amount of time,
which contradicts its definition. Therefore, by contradiction,
x̃ converges asymptotically to 0.

Example 1 (Switched system): Inspired by [10, Example
1], consider a switched system with linear maps

ẋ = Aix, y = Cix, (12)

characterized by two modes i ∈ {1, 2} as A1 =

(
0 0
0 0

)
,

A2 =

(
ϵ 1
−1 ϵ

)
, C1 =

(
1 0

)
, C2 =

(
0 0

)
, and triggered

such that the time between two successive switches cannot
be shorter than some δ > 0. As pointed out in [10], neither
(A1, C1) nor (A2, C2) is observable, but the switching order
1 → 2 → 1 allows us to determine the initial condition
unless the times elapsed in-between switches are multiples
of π, which corresponds to a singular switching signal. A
hybrid Kalman-like observer (2) is then designed for (12),
leading to a much simpler observer than in [10]. Asymptotic
convergence of the error is shown in Figure 1 for λ = 0
and γ = 1. Convergence could be significantly accelerated
by taking λ > 0 and/or γ in (0, 1), for which exponential
stability with an arbitrarily fast rate and robustness will be
shown in the next sections. On the other hand, Figure 2
shows the observer estimate with a π-periodic switching
signal for which UCO does not hold. The error x̃1 goes to
0 during mode 1 because x1 is measured; in mode 2, it gets
affected by the error x̃2, which cannot contract because x2

is not observable.

IV. EXPONENTIAL STABILITY OF THE ERROR
WITH AN ARBITRARILY FAST RATE

In this part, we show that under some extra uniformity
in the boundedness and observability, the estimation error is

Fig. 1. State estimation in a switched system (with λ = 0 and γ = 1).

Fig. 2. State estimation in a switched system (singular switching signal).

exponentially stable with an arbitrarily fast convergence rate.
For this, Assumption 3 is strengthened into the following.

Assumption 4: Assume as in Assumption 3, but all scalars
therein are now the same for all solutions x ∈ SH(X0,U).

Theorem 2 then shows the exponential stability of the
error with respect to the initial condition at any desired
convergence rate.

Theorem 2: Under Assumptions 1, 2, and 4, for any
(cRc

, cRc
, cRd

, cRd
) ∈ R4

>0, there exists a map c : R≥0 →
R≥0 such that for any λ′ > 0, the choice λ = 2λ′ and
γ = e−2λ′

is such that any maximal solution (x, x̂, P ) to the
cascade H−Ĥ initialized in X0×Rnx×Snx

>0 with (uc, ud) ∈
U and (Rc, Rd) satisfying (2c) with (cRc

, cRc
, cRd

, cRd
), is

complete and verifies for all (t, j) ∈ domx,

|x(t, j)− x̂(t, j)|
≤ c(∥Π(0, 0)∥)|x(0, 0)− x̂(0, 0)|e−λ′(t+j−(∆+1)). (13)

Proof: First, adapting the steps leading to (8) in the
proof of Theorem 1 to the particular choice of λ and γ, Π
is uniformly lower-bounded by e−2λ′(∆+1)c(∥Π(0, 0)∥) for
some c : R≥0 → R≥0 depending only on the uniform quan-
tities in Assumption 4 and cRc

, cRd
. Second, from the proof

of Theorem 1, we have V̇ ≤ −λV and V + ≤ γV along
(9) and (6), which translates to V (t, j) ≤ e−λtγjV (0, 0) ≤
e−2λ′(t+j)V (0, 0). Then (13) holds.

Remark 4: Note from (13) that the gain with respect to
the initial error is proportional to eλ

′(∆+1), which increases
with the choice of the rate λ′, characterizing the peaking
phenomenon typically encountered in high-gain designs.
While an arbitrarily fast exponential rate is achieved in (13)



at all times, arbitrarily fast convergence of the error can only
be achieved after t + j = ∆ + 1. This is explained by the
necessity of achieving observability (see the UCO condition
in Definition 2). Note finally that (13) can also easily be
achieved by pushing only λ (resp. γ) under a dwell time
(resp. reverse dwell time) (see [9]), by bringing stability and
rate from flows to jumps and vice-versa.

Note that the asymptotic stability of the estimation error
typically ensures robustness properties with respect to delays
in the jump triggering of the observer, when the jump times
are not perfectly known. For instance, in the autonomous
context, [9, Theorem 6.4] shows the semi-global practical
stability outside of the delay intervals assuming a dwell time,
boundedness of solutions, and the hybrid basic conditions.

Example 2 (Spiking neuron): The spiking behavior of a
neuron may be modeled with state ξ = (ξ1, ξ2) ∈ R2 as{

ξ̇= (0.04ξ21 + 5ξ1 − ξ2 + Iext, a(bξ1 − ξ2)) when ξ1 ≤ vm
ξ+= (c, ξ2 + d) when ξ1 = vm

(14)
where ξ1 is the membrane potential, ξ2 is the recovery
variable, and Iext is a constant [27]. The parameters, char-
acterizing the neuron type, are taken here for instance as
Iext = 150, a = 0.02, b = 0.2, c = −55, d = 4, and
vm = 30 (all in appropriate units). The jump times of the
solutions to (14) are detected from the discontinuities of the
output yc = ξ1. On the other hand, we assume d is unknown
and seek to estimate online (ξ1, ξ2, d). Note that d is not
observable during flow, but it becomes observable from the
combination of flows and jumps as noticed in [9]. We thus
re-model (14) into the form (1) with x = (x1, x2, x3) =

(ξ1, ξ2, d) ∈ R3, matrices F =
(

5 −1 0
ab −a 0
0 0 0

)
, J =

(
0 0 0
0 1 1
0 0 1

)
,

Hc = ( 1 0 0 ), Hd = ( 0 0 0 ), and uc = (0.04y2c + Iext, 0, 0),
ud = (c, 0, 0) known exogenous terms that can be perfectly
compensated using output injection. Note that J is not
invertible and does not verify Assumption 2. A possibility is
to notice that because the jump map of (14) is only active
when ξ1 = vm, it can be rewritten as ξ+1 = ξ1 − vm + c,
while preserving the same hybrid system. It would then be
cast in the form (1) with ud = (−vm + c, 0, 0) and the
invertible matrix J =

(
1 0 0
0 1 1
0 0 1

)
, thus satisfying Assumption 2.

However, for the sake of illustration, we show in Figure 3 the
results of a simulation using the non-invertible formulation.
This suggests that the invertibility of J might only be for
theoretical analysis and it is not necessary to implement the
observer (2). See [26] for more details.

V. ROBUSTNESS OF THE ERROR AGAINST
DISTURBANCES AND MEASUREMENT NOISE
Dealing with uncertainties such as input disturbances and

measurement noise is an asset of Kalman(-like) observers
for a robust and practical design. Consider the system (1)
with flow/jump input disturbances vc ∈ Rnx , vd ∈ Rnx and
measurement noise wc ∈ Rny,c , wd ∈ Rny,d as

Hd

{
ẋ= Fx+ uc + vc (x, uc) ∈ C yc = Hcx+ wc

x+ = Jx+ ud + vd (x, ud) ∈ D yd = Hdx+ wd

(15)

Fig. 3. State and parameter estimation in a spiking neuron. Last figure:
Comparison of the 2-norm of the error for increasing λ′ (yellow—nominal
case, blue and red—higher values of λ′ with worse peaking).

Theorem 3 shows that the estimate provided by the cas-
cade of Hd in (15) with the observer Ĥ in (2) is robustly
stable with respect to the uncertainties in the sense of [24,
Definition 2] (extended to hybrid systems), which is stronger
than the classical Input-to-State-Stability (ISS) defined in
[28] by an increasing penalty of past uncertainties.

Theorem 3: Under Assumptions 1, 2, and 4, there exist
λ⋆ > 0 and 0 < γ⋆ ≤ 1 such that for any Π0 ∈ Snx

>0, any
(cRc

, cRc
, cRd

, cRd
) ∈ R4

>0, any λ > λ⋆, and any 0 < γ <

γ⋆, any maximal solution to the cascade Hd−Ĥ initialized in
X0×Rnx ×{Π0} with (uc, ud) ∈ U and (Rc, Rd) satisfying
(2c) for (cRc

, cRc
, cRd

, cRd
) is complete and robustly stable

with respect to the uncertainties (vc, wc, vd, wd).
Proof: Following the proof of (8) in Theorem 1, Π is

uniformly lower-bounded by (e−λγ)∆+1c with c depending
only on the parameters of Assumption 4, cRc

, cRd
and

Π0. On the other hand, since for any ((t′, j′), (t, j)) ∈
domx × domx with t′ < t and j′ < j, we have
∥ΦF,J((t

′, j′), (t, j))∥ ≤ ecF (t−t′)(cJ−1)j−j′ , we get from
(7) and the triangle inequality:

∥Π(t, j)∥ ≤ e(2cF−λ)t(γc2J−1)j∥Π0∥
+ c2Hc

∑j−1
k=0(γc

2
J−1)j−k

∫ tk+1

tk
e(2cF−λ)(t−s)ds

+ c2Hd

∑j−1
k=0 e

(2cF−λ)(t−tk)(γc2J−1)j−k

+ c2Hc

∫ t

tj
e(2cF−λ)(t−s)ds.

Therefore, pick λ⋆
0 > 2cF and 0 < γ⋆

0 < c−2
J−1 with γ⋆

0 ≤ 1.
Then, there exists c > 0 depending only on the uniform
quantities in Assumption 4, Π0, and λ⋆

0, γ⋆
0 such that for all

λ > λ⋆
0 and 0 < γ < γ⋆

0 , Π ≤ cI . Now, in the presence of
disturbances and noise, the error x̃ := x−x̂ has the dynamics

˙̃x = (F −Π−1H⊤
c R−1

c Hc)x̃+ vc −Π−1H⊤
c R−1

c wc

x̃+ = J(I −Π−1H⊤
d (HdΠ

−1H⊤
d +Rd)

−1Hd)x̃
+ vd − JΠ−1H⊤

d (HdΠ
−1H⊤

d +Rd)
−1wd.

(16)
Consider the Lyapunov function V (x̃,Π) = x̃⊤Πx̃. Let us
study the dynamics of V along (16) and (6). During flows,
thanks to Cauchy-Schwartz and Young’s inequalities as well
as the uniform upper bounds of the matrices, there exist
positive scalars σ1 and σ2 (independent of λ and γ) such



that we have for all λ > λ⋆
0 and 0 < γ < γ⋆

0 ,

V̇ = [x̃⊤(F −Π−1H⊤
c R−1

c Hc)
⊤ + v⊤c − w⊤

c R
−1
c HcΠ

−1]Πx̃
+ x̃⊤(−λΠ−ΠF − F⊤Π+H⊤

c R−1
c Hc)x̃

+ x̃⊤Π[(F −Π−1H⊤
c R−1

c Hc)x̃+ vc −Π−1H⊤
c R−1

c wc]
= − λV − x̃⊤H⊤

c R−1
c Hcx̃+ 2x̃⊤Πvc − 2x̃⊤H⊤

c R−1
c wc

≤ − λ
3V + σ1

λ |vc|2 + σ2

λ(e−λγ)∆+1 |wc|2.

At jumps, in a similar way, there exist positive scalars σ3,
σ4, and σ5 (independent of λ and γ) such that we have for
all λ > λ⋆

0 and 0 < γ < γ⋆
0 ,

V + = γV − γx̃⊤H⊤
d (HdΠ

−1H⊤
d +Rd)

−1Hdx̃
+2γx̃⊤ΠJ−1vd − 2γx̃⊤H⊤

d (HdΠ
−1H⊤

d +Rd)
−1wd

+γv⊤d (J
−1)⊤(Π +H⊤

d R−1
d Hd)J

−1vd
−2γv⊤d (J

−1)⊤H⊤
d R−1

d wd

+γw⊤
d R

−1
d Hd(Π +H⊤

d R−1
d Hd)

−1H⊤
d R−1

d wd

≤ 3γV + γσ3|vd|2 + γ
(

σ4

(e−λγ)∆+1 + σ5

)
|wd|2.

Therefore, for any λ > λ⋆
0 and any 0 < γ < min

{
γ⋆
0 ,

1
3

}
,

we have

V̇ ≤ −λcV + αc|dc|2, V + ≤ γdV + αd|dd|2,

where λc = λ
3 > 0, γd = 3γ ∈ (0, 1),

αc = 2max
{

σ1

λ , σ2

λ(e−λγ)∆+1

}
, αd =

2max
{
γσ3, γ

(
σ4

(e−λγ)∆+1 + σ5

)}
, |dc|2 =

max{|vc|2, |wc|2}, and |dd|2 = max{|vd|2, |wd|2}. This
means that x̃ satisfies for some positive scalars κ1 and κ2,

|x̃(t, j)|2 ≤ κ1

(
e−λctγj

dκ2|x̃(0, 0)|2

+ αc

∑j−1
k=0

∫ tk+1

tk
e−λc(t−s)γj−k

d |dc(s, k)|2ds
+ αd

∑j−1
k=0 e

−λc(t−tk+1)γj−k
d |dd(tk+1, k)|2

)
+
∫ t

tj
e−λc(t−s)|dc(s, j)|2ds.

Taking the square root of both sides, we obtain robust
stability according to [24] (but for a hybrid system).

Example 3 (Continuous system with multi-rate outputs):
Consider a vehicle with position x1, velocity x2, and
acceleration x3. We measure x3 with a fast rate of 50 (Hz),
so this can be seen as a continuous output, which however
contains a lot of high-frequency noise. We then measure
x1 thanks to a less noisy GPS at the rate of 1 (Hz). This
makes the system observable already; however, to illustrate
that our method covers systems with multi-rate sampled
outputs, let us assume that we also measure x2 sporadically
from every 1.5 (s) to every 2 (s). This system is written in
hybrid form, with state x = (x1, x2, x3), input uc, and two
additional timers τ1, τ2 as

ẋ = (x2, x3, uc)
τ̇1 = −1
τ̇2 = −1

when

{
τ1 ∈ [0, 1]

τ2 ∈ [0, 2]

x+ = x

τ+1 =

{
1, if τ1 = 0
τ1, if τ1 ̸= 0

τ+2 ∈
{
[1.5, 2], if τ2 = 0
{τ2}, if τ2 ̸= 0

when
[
τ1 = 0
τ2 = 0

(17a)

with the outputs

yc = x3, yd =

(x1, 0), if τ1 = 0 and τ2 ̸= 0
(0, x2), if τ2 = 0 and τ1 ̸= 0
(x1, x2), if τ1 = τ2 = 0

, (17b)

and initialized with τ1(0, 0) = 1 and τ2(0, 0) ∈ [1.5, 2].
Figure 5 shows a scenario where we have a fixed sampling
period of 1.5 (s) for x2, measurement noise (with high
frequency and amplitude ≈ 3 in yc, low frequency and
amplitude ≈ 1 in yd), and the input uc = 0.01 (m/s3) is an
unknown bias (assumed 0 in the observer, so that vc = uc).
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Fig. 4. Sensor noise used for simulation.
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Fig. 5. State estimation in a car with multi-rate sampled outputs (with
input disturbances and noise).

VI. CONCLUSION

We have provided a systematic hybrid Kalman-like ob-
server for general hybrid systems with linear maps and
known jump times, based on uniform complete observability.
Its implementation is straightforward and applies directly
to a wide class of systems including switched as well
as continuous-time sampled systems with sporadic/multiple
rates. Its complexity is the same as for a continuous or
discrete Kalman filter, with dimension nx+n2

x, with the same
covariance matrix shared among flows and jumps. Another
route could be to follow [11] through an observability
decomposition: we could combine a continuous Kalman-like
observer—estimating only the part of the state that is instan-
taneously observable during flows from yc—with a discrete



Kalman-like observer for the rest of the state, thus possibly
reducing the observer dimension by splitting the covariance
matrix. However, the possibility of decomposition is not
guaranteed for time-varying systems and may not verify the
necessary decoupling conditions. Future directions include
properly taking into account, in the covariance matrix, errors
in the jump triggering and eventually developing a Kalman
observer for hybrid systems with unknown jump times.

APPENDIX

Lemma 1: Consider a quadruple (F, J,Hc, Hd) defined
on a hybrid time domain D and verifying the boundedness
condition of Assumption 3. Pick (Kc,Kd) defined and
uniformly upper-bounded on D. Then, for any ∆m > 1,
there exists cG > 0 such that any hybrid arc x̃ defined on D
and verifying the linear dynamics ˙̃x = (F −KcHc)x̃ during
flows and x̃+ = (J − KdHd)x̃ at jumps, verifies for all
((t′, j′), (t, j)) ∈ D ×D with (t− t′) + (j − j′) ≤ ∆m,

G̃((t′, j′), (t, j))
≥ cG x̃⊤(t, j)G(F,J,Hc,Hd)((t

′, j′), (t, j))x̃(t, j), (18)

where

G̃((t′, j′), (t, j)) =
∫ tj′+1

t′ ⋆⊤Hc(s, j
′)x̃(s, j′)ds

+
∑j−1

k=j′+1 G̃F (k) +
∑j−1

k=j′ G̃J(k) +
∫ t

tj
⋆⊤Hc(s, j)x̃(s, j)ds,

with G̃F and G̃J defined in (11).
Remark 5: Define F̃ := F −KcHc and J̃ := J −KdHd.

If J̃ is invertible at all times, then Lemma 1 is equivalent to
the fact that for all ((t′, j′), (t, j)) ∈ D ×D with (t− t′) +
(j − j′) ≤ ∆m, we have

G(F̃ ,J̃,Hc,Hd)
((t′, j′), (t, j)) ≥ cG G(F,J,Hc,Hd)((t

′, j′), (t, j)).
Proof: This proof resembles that of [13, Theorem 3]

but in the case where F ̸= 0 and J ̸= 0, and that of [7]
extended to the hybrid case. The key idea is to consider
the terms −KcHcx̃ and −KdHdx̃ in the dynamics of x̃ as
flow/jump inputs respectively, so that

x̃(t, j) = ΦF,J((t, j), (t
′, j′))x̃(t′, j′)

−
∫ tj′+1

t′ ΨA((t, j), (s, j
′))ds

−
∑j−1

k=j′+1

∫ tk+1

tk
ΨA((t, j), (s, k))ds

−
∑j−1

k=j′ ΨB((t, j), (tk+1, k))

−
∫ t

tj
ΨA((t, j), (s, j))ds,

(19)

where A := KcHc, B := KdHd, and

ΨA((t, j), (t
′, j′)) = ΦF,J((t, j), (t

′, j′))A(t′, j′)x̃(t′, j′),
ΨB((t, j), (t

′, j′)) = ΦF,J((t, j), (t
′, j′))B(t′, j′)x̃(t′, j′).

Since (t− t′)+(j− j′) ≤ ∆m, we deduce the upper bounds
on ΨA and ΨB as

|ΨA((t, j), (t
′, j′))| ≤ cA|Hc(t

′, j′)x̃(t′, j′)|,
|ΨB((t, j), (t

′, j′))| ≤ cB |Hd(t
′, j′)x̃(t′, j′)|,

with scalars cA and cB independent of (t, j, t′, j′) given by

cA = cKc
(ecF max{cJ , cJ−1})∆m ,

cB = cKd
(ecF max{cJ , cJ−1})∆m .

Let us now lower-bound each term in G̃. First, using (19)
with (s, k) replacing (t, j), we get

G̃F (k)=
∫ tk+1

tk

∣∣Hc(s, k)ΦF,J((s, k), (t
′, j′))x̃(t′, j′)

−Hc(s, k)
∑k−1

q=j′+1

∫ tq+1

tq
ΨA((s, k), (u, q))du

−Hc(s, k)
∑k−1

q=j′ ΨB((s, k), (tq+1, q))

−Hc(s, k)
∫ tj′+1

t′ ΨA((s, k), (u, j
′))du

−Hc(s, k)
∫ s

tk
ΨA((s, k), (u, k))du

∣∣2ds.
Using |a− b|2 ≥ ρ

1+ρ |a|
2 − ρ|b|2 for some ρ > 0,1 we get

G̃F (k)≥ ρ
1+ρ

∫ tk+1

tk

∣∣Hc(s, k)ΦF,J((s, k), (t
′, j′))x̃(t′, j′)

∣∣2ds
− ρc2Hc

∫ tk+1

tk

∣∣∑k−1
q=j′+1

∫ tq+1

tq
ΨA((s, k), (u, q))du

+
∑k−1

q=j′ ΨB((s, k), (tq+1, q))

+
∫ tj′+1

t′ ΨA((s, k), (u, j
′))du

+
∫ s

tk
ΨA((s, k), (u, k))du

∣∣2ds.
Applying |

∑N
i=1 ai|2 ≤ N

∑N
i=1 |ai|2 (obtained from

Cauchy-Schwartz inequality), we get

G̃F (k)≥ ρ
1+ρ

∫ tk+1

tk

∣∣Hc(s, k)ΦF,J((s, k), (t
′, j′))x̃(t′, j′)

∣∣2ds
−ρc2Hc

(2(k − j′) + 1)×∫ tk+1

tk

[∑k−1
q=j′+1

∣∣ ∫ tq+1

tq
ΨA((s, k), (u, q))du

∣∣2
+
∑k−1

q=j′

∣∣ΨB((s, k), (tq+1, q))
∣∣2

+
∣∣ ∫ tj′+1

t′ ΨA((s, k), (u, j
′))du

∣∣2
+
∣∣ ∫ s

tk
ΨA((s, k), (u, k))du

∣∣2]ds.
Using the triangle and Cauchy-Schwartz inequalities, we get

G̃F (k)≥ ρ
1+ρ

∫ tk+1

tk

∣∣Hc(s, k)ΦF,J((s, k), (t
′, j′))x̃(t′, j′)

∣∣2ds
−ρc2Hc

(2(k − j′) + 1)
∫ tk+1

tk

[∑k−1
q=j′+1(tq+1 − tq)

×
∫ tq+1

tq

∣∣ΨA((s, k), (u, q))
∣∣2du

+
∑k−1

q=j′

∣∣ΨB((s, k), (tq+1, q))
∣∣2

+(tj′+1 − t′)
∫ tj′+1

t′

∣∣ΨA((s, k), (u, j
′))

∣∣2du
+(s− tk)

∫ s

tk

∣∣ΨA((s, k), (u, k))
∣∣2du]ds

≥ ρ
1+ρ

∫ tk+1

tk

∣∣Hc(s, k)ΦF,J((s, k), (t
′, j′))x̃(t′, j′)

∣∣2ds
−ρc2Hc

(2(k − j′) + 1)(tk+1 − t′ + 1)

×
∫ tk+1

tk

[∑k−1
q=j′+1

∫ tq+1

tq

∣∣ΨA((s, k), (u, q))
∣∣2du

+
∑k−1

q=j′

∣∣ΨB((s, k), (tq+1, q))
∣∣2

+
∫ tj′+1

t′

∣∣ΨA((s, k), (u, j
′))

∣∣2du
+
∫ s

tk

∣∣ΨA((s, k), (u, k))
∣∣2du]ds.

1This is equivalent to
∣∣∣ 1√

ρ+1
a−

√
ρ+ 1b

∣∣∣2 ≥ 0, so true for any ρ > 0.



Using the bounds on ΨA and ΨB , we get

G̃F (k)≥ ρ
1+ρ

∫ tk+1

tk

∣∣Hc(s, k)ΦF,J((s, k), (t
′, j′))x̃(t′, j′)

∣∣2ds
−ρc2Hc

(2(k − j′) + 1)(tk+1 − t′ + 1)max{c2A, c2B}
×
∫ tk+1

tk

[∑k−1
q=j′+1

∫ tq+1

tq

∣∣Hc(u, q)x̃(u, q)
∣∣2du

+
∑k−1

q=j′

∣∣Hd(tq+1, q)x̃(tq+1, q)
∣∣2

+
∫ tj′+1

t′

∣∣Hc(u, j
′)x̃(u, j′)

∣∣2du
+
∫ s

tk

∣∣Hc(u, k)x̃(u, k)
∣∣2du]ds

≥ ρ
1+ρ

∫ tk+1

tk

∣∣Hc(s, k)ΦF,J((s, k), (t
′, j′))x̃(t′, j′)

∣∣2ds
−ρc2Hc

(2(k − j′) + 1)(tk+1 − t′ + 1)max{c2A, c2B}
×(tk+1 − tk)

[∑k−1
q=j′+1

∫ tq+1

tq

∣∣Hc(u, q)x̃(u, q)
∣∣2du

+
∑k−1

q=j′

∣∣Hd(tq+1, q)x̃(tq+1, q)
∣∣2

+
∫ tj′+1

t′

∣∣Hc(u, j
′)x̃(u, j′)

∣∣2du
+
∫ tk+1

tk

∣∣Hc(u, k)x̃(u, k)
∣∣2du]

≥ ρ
1+ρ

∫ tk+1

tk

∣∣Hc(s, k)ΦF,J((s, k), (t, j))x̃(t, j)
∣∣2ds

−ρc2Hc
(2(k − j′) + 1)(tk+1 − t′ + 1)max{c2A, c2B}

×(tk+1 − tk)G̃.

Similarly to G̃F (k), we get for the two separate integral terms
of G̃,∫ tj′+1

t′ ⋆⊤Hc(s, j
′)x̃(s, j′)ds ≥

ρ
1+ρ

∫ tj′+1

t′

∣∣Hc(s, j
′)ΦF,J((s, j

′), (t, j))x̃(t, j)
∣∣2ds− ρc2Hc

×(tj′+1 − t′)max{c2A, c2B}(tj′+1 − t′)G̃,∫ t

tj
⋆⊤Hc(s, j)x̃(s, j)ds ≥

ρ
1+ρ

∫ t

tj

∣∣Hc(s, j)ΦF,J((s, j), (t, j))x̃(t, j)
∣∣2ds− ρc2Hc

×(2(j − j′) + 1)(t− t′ + 1)max{c2A, c2B}(t− tj)G̃.

For G̃J(k), using (19) with (tk+1, k) replacing (t, j), we get

G̃J(k)=
∣∣Hd(tk+1, k)ΦF,J((tk+1, k), (t

′, j′))x̃(t′, j′)

−Hd(tk+1, k)
∑k−1

q=j′+1

∫ tq+1

tq
ΨA((tk+1, k), (u, q))du

−Hd(tk+1, k)
∑k−1

q=j′ ΨB((tk+1, k), (tq+1, q))

−Hd(tk+1, k)
∫ tj′+1

t′ ΨA((tk+1, k), (u, j
′))du

−Hd(tk+1, k)
∫ tk+1

tk
ΨA((tk+1, k), (u, k))du

∣∣2
=
∣∣Hd(tk+1, k)ΦF,J((tk+1, k), (t

′, j′))x̃(t′, j′)

−Hd(tk+1, k)
∑k

q=j′+1

∫ tq+1

tq
ΨA((tk+1, k), (u, q))du

−Hd(tk+1, k)
∫ tj′+1

t′ ΨA((tk+1, k), (u, j
′))du

−Hd(tk+1, k)
∑k−1

q=j′ ΨB((tk+1, k), (tq+1, q))
∣∣2.

Using |a− b|2 ≥ ρ
1+ρ |a|

2 − ρ|b|2 for the same ρ, we get

G̃J(k)≥ ρ
1+ρ

∣∣Hd(tk+1, k)ΦF,J((tk+1, k), (t
′, j′))x̃(t′, j′)

∣∣2
−ρc2Hd

∣∣∑k
q=j′+1

∫ tq+1

tq
ΨA((tk+1, k), (u, q))du

+
∫ tj′+1

t′ ΨA((tk+1, k), (u, j
′))du

+
∑k−1

q=j′ ΨB((tk+1, k), (tq+1, q))
∣∣2.

Applying |
∑N

i=1 ai|2 ≤ N
∑N

i=1 |ai|2, we get

G̃J(k)≥ ρ
1+ρ

∣∣Hd(tk+1, k)ΦF,J((tk+1, k), (t
′, j′))x̃(t′, j′)

∣∣2
−ρc2Hd

(2(k − j′) + 1)

×
[∑k

q=j′+1

∣∣ ∫ tq+1

tq
ΨA((tk+1, k), (u, q))du

∣∣2
+
∣∣ ∫ tj′+1

t′ ΨA((tk+1, k), (u, j
′))du

∣∣2
+
∑k−1

q=j′

∣∣ΨB((tk+1, k), (tq+1, q))
∣∣2].

Using the triangle and Cauchy-Schwartz inequality, we get

G̃J(k)≥ ρ
1+ρ

∣∣Hd(tk+1, k)ΦF,J((tk+1, k), (t
′, j′))x̃(t′, j′)

∣∣2
−ρc2Hd

(2(k − j′) + 1)
[∑k

q=j′+1(tq+1 − tq)

×
∫ tq+1

tq

∣∣ΨA((tk+1, k), (u, q))
∣∣2du

+(tj′+1 − t′)
∫ tj′+1

t′

∣∣ΨA((tk+1, k), (u, j
′))

∣∣2du
+
∑k−1

q=j′

∣∣ΨB((tk+1, k), (tq+1, q))
∣∣2]

≥ ρ
1+ρ

∣∣Hd(tk+1, k)ΦF,J((tk+1, k), (t
′, j′))x̃(t′, j′)

∣∣2
−ρc2Hd

(2(k − j′) + 1)(tk+1 − t′ + 1)

×
[∑k

q=j′+1

∫ tq+1

tq

∣∣ΨA((tk+1, k), (u, q))
∣∣2du

+
∫ tj′+1

t′

∣∣ΨA((tk+1, k), (u, j
′))

∣∣2du
+
∑k−1

q=j′

∣∣ΨB((tk+1, k), (tq+1, q))
∣∣2].

Using the bounds on ΨA and ΨB , we get

G̃J(k)≥ ρ
1+ρ

∣∣Hd(tk+1, k)ΦF,J((tk+1, k), (t
′, j′))x̃(t′, j′)

∣∣2
−ρc2Hd

(2(k − j′) + 1)(tk+1 − t′ + 1)

×max{c2A, c2B}
[∑k

q=j′+1

∫ tq+1

tq

∣∣Hc(u, q)x̃(u, q)
∣∣2du

+
∫ tj′+1

t′

∣∣Hc(u, j
′)x̃(u, j′)

∣∣2du
+
∑k−1

q=j′

∣∣Hd(tq+1, q)x̃(tq+1, q)
∣∣2]

≥ ρ
1+ρ

∣∣Hd(tk+1, k)ΦF,J((tk+1, k), (t, j))x̃(t, j)
∣∣2

−ρc2Hd
(2(k − j′) + 1)(tk+1 − t′ + 1)

×max{c2A, c2B}G̃.

Now let us lower-bound G̃ by summing the obtained inequal-
ities. Since (t− t′) + (j − j′) ≤ ∆m, we get

G̃≥ ρ
1+ρ x̃(t, j)

⊤G(F,J,Hc,Hd)((t
′, j′), (t, j))x̃(t, j)

− ρmax{c2A, c2B}{c2Hc
, c2Hd

}G̃
× [

∑j−1
k=j′+1(2(k − j′) + 1)(tk+1 − t′ + 1)(tk+1 − tk)

+
∑j−1

k=j′(2(k − j′) + 1)(tk+1 − t′ + 1)

+(2(j − j′) + 1)(t− t′ + 1)(t− tj) + (tj′+1 − t′)2]
≥ ρ

1+ρ x̃(t, j)
⊤G(F,J,Hc,Hd)((t

′, j′), (t, j))x̃(t, j)

−ρmax{c2A, c2B}{c2Hc
, c2Hd

}G̃
×[(j − j′ − 1)(2(j − j′)− 1)(tj − t′ + 1)(tj − tj′+1)
+(j − j′)(2(j − j′)− 1)(tj − t′ + 1)
+(2(j − j′) + 1)(t− t′ + 1)(t− tj) + (tj′+1 − t′)2]

≥ ρ
1+ρ x̃(t, j)

⊤G(F,J,Hc,Hd)((t
′, j′), (t, j))x̃(t, j)

−ρmax{c2A, c2B}{c2Hc
, c2Hd

}G̃
×[∆2

m(2∆m − 1)(∆m + 1) + ∆m(2∆m − 1)(∆m + 1)
+(2∆m + 1)(∆m + 1)∆m +∆2

m],

and thus, the result follows.
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