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We present a theoretical study of the interaction between an atom characterized by a degenerate ground state
and a reciprocal environment, such as a semiconductor nanoparticle, without the presence of external bias. Our
analysis reveals that the combined influence of the electron’s intrinsic spin magnetic moment on the environment
and the chiral atomic dipolar transitions may lead to either the spontaneous breaking of time-reversal symmetry
or the emergence of time-crystal-like states with remarkably long relaxation times. The different behavior is ruled
by the handedness of the precession motion of the atom’s spin vector, which is induced by virtual chiral-dipolar
transitions. Specifically, when the relative orientation of the precession angular velocity and the electron spin
vector is as in a spinning top, the system manifests time-crystal-like states. Conversely, with the opposite relative
orientation, the system experiences spontaneous symmetry breaking of time reversal symmetry. Our findings
introduce a mechanism for the spontaneous breaking of time-reversal symmetry in atomic systems, and unveil
an exciting opportunity to engineer a nonreciprocal response at the nanoscale, exclusively driven by the quantum
vacuum fluctuations.

DOI: 10.1103/PhysRevB.108.235154

I. INTRODUCTION

Time crystals refer to a phase of matter where the ground
state of a system described by a time-independent Hamilto-
nian exhibits repetitive oscillations in time without external
driving [1–6]. This concept was introduced by Shapere and
Wilczek [1,2] and is rooted in a spontaneous symmetry
breaking of the time-translation symmetry of the system
Hamiltonian. Spontaneous symmetry breaking is a fundamen-
tal mechanism observed in various physical processes such as
ferroelectricity, ferromagnetism, and superconductivity [7–9].

At the microscopic level, physical systems are typically
governed by time-reversal invariant Hamiltonians [10]. This
means that if a specific time dynamics complies with the laws
of physics, its time-reversed counterpart is also valid and can
be observed in a real physical experiment if the system can
be prepared in the required initial state. For atomic systems
with half-integer total spin (including nuclear spin), the time-
reversal symmetry dictates that the eigenstates of the system
are organized in doublets, which are pairs of degenerate states
with the same energy. This result is known as Kramers’ theo-
rem [11], and it implies that the ground state of such systems
is necessarily doubly degenerate.

This work aims to demonstrate theoretically that the inter-
action between an atomic system with a degenerate ground
state and a reciprocal environment (e.g., a metallic or semi-
conductor nanoparticle without any form of external bias)
can lead to either the spontaneous breaking of time-reversal
symmetry or the formation of time-crystal-like states with
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extraordinarily long relaxation times. Our analysis reveals that
the key to unlocking such extreme physics lies in the combi-
nation of chiral-type atomic transitions and the influence of
the electron’s intrinsic spin magnetic moment on the envi-
ronment. In particular, we show that chiral-dipolar transitions
may cause the spin magnetic moment of the electron to un-
dergo a periodic precession motion around the symmetry axis
defined by the atom and nanoparticle (z axis). We demonstrate
that when the relative orientation of the precession angular
velocity (ωm) and the electron spin vector (Ŝ) is the same as
for a spinning top [ωm ∼ (Ŝ · ẑ)ẑ], the orbit of the spin vector
is periodic in time and resilient to perturbations of the sys-
tem Hamiltonian. In such a case, the atomic system supports
time-crystal-like states in its ground state. In contrast, when
the precession velocity satisfies ωm ∼ −(Ŝ · ẑ)ẑ, the system
orbit is dragged to a well-defined attractor point in the Bloch
sphere resulting in a spontaneous symmetry breaking of the
time-reversal symmetry.

It should be noted that quantum “time crystals” usually
refer to quantum many-body systems such that the single-
particle expectation of one-body operators is independent of
time in the ground state, while the expectation of N-body op-
erators can be time dependent [5]. Here, we employ the term
“time-crystal” in a broader sense to describe a quantum sys-
tem capable of undergoing periodic (metastable) motion when
it interacts with a dissipative environment. For this reason, our
findings are not affected by the “no-go” theorems previously
discussed in the literature [5,12,13]. In fact, in agreement with
[12] we find that our time-crystal-like states are destroyed
by the effects of radiation loss. Within the validity of our
model, the timescale of such a process is so large that it can
be neglected for all practical purposes.
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As mentioned above, we find that for some classes of
atomic systems the interaction of the spin magnetic moment
of the electron with the environment results in a spontaneous
symmetry breaking of the time-reversal symmetry. Material
platforms with broken time-reversal symmetry are particularly
interesting from an electromagnetic point of view as they can
lead to nonreciprocal interactions, and enable the unidirec-
tional propagation of light and optical isolation [14–23].

Moreover, over the past decade, there has been a signif-
icant surge of interest in nonreciprocal effects in quantum
systems. In general, nonreciprocity in the quantum realm
can be achieved through various means, such as applying
an external magnetic bias [24–27], preparing the system
in a chiral quantum state [24,27–31], utilizing nonlineari-
ties [32], or employing a nonreciprocal substrate [33–35].
When a quantum system is prepared in a state that fa-
vors specific circularly polarized (chiral) optical transitions,
it exhibits remarkable directional properties [24,36,37]. The
nonreciprocity of the environment can uniquely influence the
Casimir-Polder dispersion forces and torques in atomic and
nanoscale systems [34,35,38–41]. Additionally, driven time-
variant systems provide exotic environments for quantum
light-matter interactions [42,43].

Unlike previous studies, our work presents a mechanism
for the spontaneous breaking of time-reversal symmetry in an
atomic system, solely based on the interactions between the
atom and the quantum vacuum. No external bias is required
beyond the inherent vacuum fluctuations. This unique mech-
anism leads to the emergence of a nonreciprocal gyrotropic
response in the atomic system. This effect bears a resemblance
to the phenomena of ferromagnetism and antiferromagnetism
observed in solid-state materials. The spontaneous symmetry
breaking can only occur in the presence of chiral transitions,
which may be attributed to the influence of the atomic spin-
orbit interaction.

The paper is organized as follows. In Sec. II, we introduce
the geometry of the problem and the atomic model of interest.
In Sec. III, we derive a reduced nonlinear master equation
that describes the time evolution of the atomic degrees of
freedom. In Sec. IV, we demonstrate that, for the ground sub-
space, the master equation can be written in the von Neumann
form using a nonlinear effective Hamiltonian. By employing
a quasistatic approximation, we obtain an explicit analytical
formula for the effective Hamiltonian. In Sec. V, we show
that the system can exhibit time-crystal-like states or broken
time-reversal symmetry, depending on the handedness of the
chiral dipolar transitions with respect to the electron spin.
Finally, Sec. VI provides a brief summary of the main results.

II. THE KRAMERS QUBIT

The geometry of the problem is represented in Fig. 1.
It consists of a time-reversal invariant atomic system inter-
acting with a spherical plasmonic nanoparticle of radius R.
The distance between the atom and the nanoparticle center
is d . Due to the Kramers theorem, all the atomic states must
be degenerate [11]. Here, we consider a minimal model for
such a system corresponding to a two-level atom formed by
two degenerate ground states (|gi〉, i = 1, 2) and two or more
degenerate excited states (|e j〉, j = 1, 2, …). For simplicity,

FIG. 1. A Kramers two-level system stands at a distance d from
a plasmonic nanoparticle. The energy levels and the transition dipole
moments of the two-level system are shown in the top panel. The
two ground and the two excited states are related by the time-reversal
operator T .

in the main text it is supposed that the excited states subspace
has dimension 2, but the theory can be readily generalized to
an excited state subspace with higher dimension (see Appen-
dices A and B). Following [44], we refer to such a system as
a “Kramers two-level system” or “Kramers qubit.”

The atomic states are connected by the time-reversal op-
erator T as |g2〉 = T |g1〉 and |e2〉 = T |e1〉. As T 2 = −1,
the Kramers pairs also satisfy |g1〉 = −T |g2〉 and |e2〉 =
−T |e1〉 [11,44]. The electric dipole moment operator is p̂e =
p̂−

e + p̂+
e , with p̂+

e = (p̂−
e )† and p̂−

e = γdσg1,e1 + γ∗
dσg2,e2 +

γcσg1,e2 − γ∗
cσg2,e1, with σgi,e j = |gi〉〈e j | [44]. The four tran-

sition electric dipole moments (γd, γ
∗
d, γc, γ

∗
c ) between the

excited and ground states are represented in the top panel of
Fig. 1. As discussed in Ref. [44], the presence of spin-orbit
coupling generally prevents the selection of a basis for the
ground and excited states without crossed transitions. In gen-
eral, the spin-orbit interaction implies that γc �= 0 and γd �= 0.

Recently, it was suggested that the Jahn-Teller trigonal
molecular systems X3 (e.g., the alkali trimers Li3, Na3, and
K3) may be good candidates to implement a Kramers two-
level system [45]. It has been predicted that when such
molecular systems are placed nearby a planar substrate the
global rotational symmetry may be spontaneously broken by
the quantum vacuum fluctuations [45], in agreement with the
theory of Ref. [44]. In the following, we further motivate the
Kramers two-level model by showing that it emerges naturally
from the Schrödinger equation with the spin-orbit interaction.

A. Hydrogenlike model for the Kramers two-level system

Let us consider the Schrödinger equation for a hydrogen-
like atom described by a spherical symmetric electric potential
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including the spin-orbit interaction [46]. The effects of nu-
clear spin are disregarded in the analysis. It is implicit that
the nuclear spin is an integer to ensure that the total spin is
half-integer (e.g., deuterium, which is an isotope of hydrogen,
has such a property).

The spin-orbit interaction intertwines the spin and orbital
degrees of freedom, in such a way that it becomes impos-
sible to write the energy eigenfunctions as a product of
some coordinate-dependent function (the orbital part) and a
coordinate-independent spinor (the spin part). For example,
the first few energy levels of a hydrogenlike atom are the
1S, 2S, and 2P states. The spin-orbit interaction splits the 2P
states into two levels, 2P1/2 and 2P3/2 [46]. The superscript
j determines the total angular momentum. The 2S states are
excluded from additional considerations because by symme-
try they cannot be coupled to the 1S ground states, i.e., the
corresponding transition electric dipole moment vanishes. The
energy of the 2P1/2 states is lower than the energy of the
2P3/2 states. So, the light interactions with a hypothetical
hydrogenlike atom with strong spin-orbit coupling can be
approximately described by dipolar transitions between the
1S1/2 (ground states) and the 2P1/2 states (excited states).
Both the 1S1/2 and the 2P1/2 states are doublets. The excited
states can be written explicitly as

|e1〉 ≡ | j = 1/2, mj = −1/2〉

= 1√
3
|l = 1, ml = 0,↓〉−

√
2

3
|l = 1, ml = −1,↑〉.

(1a)

|e2〉 ≡ | j = 1/2, mj = 1/2〉

= 1√
3
|l = 1, ml = 0,↑〉−

√
2

3
|l = 1, ml = 1,↓〉.

(1b)

The labels ( j, mj ) refer to the total angular momentum and the
labels (l, ml ) to the orbital angular momentum. The arrows
indicate the states spin up or spin down with respect to z.
Note that the spin state cannot be factored out. It can be easily
checked that the two excited states are linked as |e2〉 = T |e1〉.
The two ground states are simply given by

|g1〉 ≡ |l = 0,↑〉, |g2〉 ≡ |l = 0,↓〉. (2)

It is implicit that the principal quantum number of the
ground and excited states is n = 1 and n = 2, respectively.
Evidently, the transition dipole moments are given by γd =
〈g1|p̂e|e1〉 and γc = 〈g1|p̂e|e2〉 with p̂e = qr̂ the electric
dipole operator. Here, q = −e is the negative charge of the
electron. Taking into account the spatial symmetry of the S
and P states it can be easily shown that the two transition
dipole moments assume the form

γd = γd√
2

(x̂ − iŷ), γc = γcẑ. (3)

Therefore, one of the dipolar transitions is circularly polar-
ized (chiral), whereas the other dipolar transition is linearly
polarized. In the hydrogenlike model the amplitudes of the
two dipoles are related as |γd| = √

2|γc|, so that the chiral
transitions dominate.

This analysis confirms that even in very elementary sys-
tems the spin-orbit interaction originates crossed dipolar
transitions that couple the spin-up and spin-down ground
states. Evidently, the considered toy model describes an
isotropic atomic system, i.e., invariant under arbitrary space
rotations. As detailed later, in our analysis we shall con-
sider more general systems with reduced symmetry (|γd| �=√

2|γc|). For example, following Ref. [45], the Jahn-Teller
molecular systems X3 are characterized by a similar Kramers
model but with γc ≈ 0. The X3 molecules are planar and have
a threefold rotation symmetry.

B. Magnetic dipole due to the intrinsic electron spin

Besides the electric dipole transitions, in our model we
also consider the magnetic dipole coupling that arises due to
the intrinsic spin magnetic moment of the electron. The spin
magnetic moment operator m̂s is written in terms of Pauli
matrices in the usual way.

The interesting point is that the intrinsic spin magnetic mo-
ment may create a static magnetic field B0 that can tailor the
response of the plasmonic nanoparticle. The static magnetic
field can be found using the dipole approximation [47]

B0 = μ0

4πd3
(3ẑ ⊗ ẑ − 1) · ms, (4)

with ms = 〈m̂s〉 the expectation of m̂s and d � R the distance
between the atom and the nanoparticle. For simplicity, we
disregard any orbital contributions to B0, as they are much
weaker.

Importantly, the field B0 can influence the macroscopic
response of a free-electron gas. Specifically, under a static
magnetic bias (B0 = B0û) a Drude plasma acquires a gy-
roelectric response determined by the permittivity tensor
[48,49]:

ε̄

ε0
= εt 1t + iεgû × 1 + εaû ⊗ û, (5)

with 1t = 1 − û ⊗ û. The permittivity elements are

εt = 1 − ω2
p

(
1 + i�

ω

)
(ω + i�)2 − ω2

0

, εg = 1

ω

ω2
pω0

ω2
0 − (ω + i�)2 ,

εa = 1 − ω2
p

ω(ω + i�)
. (6)

Here, ω0 = −qB0/m∗ is the cyclotron frequency deter-
mined by the bias magnetic field B0 = B0û, � is the collision
frequency, m∗ is the electron effective mass, and ωp is the
plasma frequency. Thus, the atomic state controls the response
of the nanoparticle, and hence indirectly tailors the environ-
ment with which it interacts.

It is relevant to point out that the gyrotropic response of the
plasma is itself rooted in a nonlinear response of the material.
Specifically, the motion of the electrons at the microscopic
level is ruled by the Lorentz force q(E + v × B), and the
magnetic part of the force mixes the particle velocity with the
magnetic field, corresponding to a nonlinear interaction. The
linear gyrotropic response (6) arises after a suitable lineariza-
tion of the Lorentz force [22,48].

Using the estimate 〈ms〉 ∼ h̄
2

q
me

with me the free-electron
mass, one sees that the cyclotron frequency amplitude is
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on the order of ω0⊥ ≡ μ0

8πd3
h̄q2

mem∗ = αe,fs
h̄2

2mem∗
1
c

1
d3 with αe,fs ≈

1/137 the electron fine-structure constant. For a distance of
d = 5 nm and for a semiconductor with m∗ = 0.001me one
obtains ω0⊥ ∼ 2π × 0.2 GHz (B0 ∼ 7.4 µT). This estimate
shows that the gyrotropic effects due to the spin magnetic mo-
ment can be significant and thereby lead to a strong coupling
of the atomic system with the environment.

III. NONLINEAR MASTER EQUATION

In Appendix A, we use the Born-Markov approximation to
derive a master equation for the reduced density matrix ρ̂S that
describes the time evolution of the atomic degrees of freedom,
∂t ρ̂S = −i 1

h̄ [Ĥat, ρ̂S] + Lρ̂S [Eq. (A14)]. Here, Ĥat is the time-
reversal invariant atomic Hamiltonian and L is a Lindblad
operator written in terms of the dipole atomic operators and of
the system Green’s function G [Eq. (A15)]. As usual, the Born
approximation considers that the full-system density matrix
satisfies ρ̂(t ) ≈ ρ̂S(t ) ⊗ ρ̂E at all time instants, with ρ̂S and
ρ̂E density matrices that depend on the atomic (environment)
degrees of freedom, respectively. Importantly, as the atomic
state tailors the environment through the magnetic moment
ms = tr{m̂sρ̂S}, the Green’s function depends indirectly on ρ̂S

through the bias magnetic field. Consequently, the Lindblad
operator also depends on ρ̂S and the reduced master equation
is nonlinear.

The linearity of the Schrödinger equation, or more gen-
erally of a master equation, is an essential feature of the
quantum superposition principle. Yet, some many-body con-
densed matter systems may be effectively described by
nonlinear Schrödinger equations. Well-known examples are
the Hartree-Fock equation and the Gross-Pitaevskii equation
[50–52]. Similarly, we find that interaction of the atomic sys-
tem with a gyroelectric nanoparticle may be described by a
nonlinear master equation due to the effect of the intrinsic spin
magnetic moment. It is important to note that the nonlinearity
of the master equation does not contradict the superposition
principle. In fact, the reduced master equation is supposed
to describe the time evolution of systems for which at ini-
tial time ρ̂(t ) ≈ ρ̂S(t ) ⊗ ρ̂E(B0), with ρ̂E(B0) the environment
ground state determined by the atomic spin magnetic moment.
The superposition of matrices of the type ρ̂S,i(t ) ⊗ ρ̂E(B0,i )
(i = 1,2, …) is not an object with the same structure as the
individual matrices. Thereby, the time evolution of a density
matrix that is a linear combination of matrices of the type
ρ̂S,i(t ) ⊗ ρ̂E(B0,i ) cannot be studied using the reduced (non-
linear) master equation. In other words, the lack of linearity
in the reduced master equation is not in conflict with the
superposition principle. From a more intuitive point of view,
the nonlinearity can be attributed to the fact that the magnetic
field expectation for a superposition of two atomic states is not
the superposition of the fields associated with the individual
states.

IV. GROUND STATE PHYSICS

A. Effective Hamiltonian

This paper is focused on the ground state physics. In Ap-
pendix B, we show that the ground subspace generated by

linear combinations of elements of the type |gi〉〈g j | is closed.
This implies that if the reduced density matrix ρ̂S at the initial
time (t = 0) belongs to the ground subspace, it will continue
to reside within the ground subspace for t > 0. Note that an
arbitrary initial state will eventually evolve into an element of
the ground subspace due to the usual spontaneous emission
decay.

Furthermore, it is proven in Appendix B that the dynamics
of the ground subspace is described by a simplified reduced
master equation of the type ∂t ρ̂S = −i 1

h̄ [Ĥef , ρ̂S], with Ĥef an
effective Hamiltonian that depends on the transition dipole
operators and on the system Green’s function [Eq. (B5)].
Thus, the ground subspace effective dynamics is modeled
by a von Neumann equation. This means if the initial state
is a pure state of the type ρ̂S(t = 0) = |ψ0〉〈ψ0| with |ψ0〉
some element in the atomic ground subspace, then for t >

0 the reduced density matrix satisfies ρ̂S(t ) = |ψ (t )〉〈ψ (t )|
with |ψ (t )〉 = c1(t )|g1〉 + c2(t )|g2〉, i.e., the density matrix
describes a pure state at all time instants. The time evolution of
the coefficients c1(t ), c2(t ) is ruled by a nonlinear Schrödinger
equation [Eq. (B8)]

ih̄∂t

(
c1

c2

)
= Hef

(
c1, c2

)(c1

c2

)
, (7)

where Hef = [hm,n(B0)]m,n=1,2 is a 2 × 2 matrix with entries:

hm,n(B0) = −tr

{
Q(m,n) ·

(
1

2π

∫ ∞

0+
dξ

G(r0, r0, iξ )

ωa − iξ

+
[
G(r0, r0, iξ )

]T
ωa + iξ

)}
. (8)

In the above, ωa is the atomic transition frequency of the
two-level system, tr{· · · } is the trace operator, and Q(m,n) =
〈gm|p̂− ⊗ p̂+|gn〉 is a 6 × 6 matrix determined by the atomic
dipole operators. Note that the system Green’s function de-
pends on B0, and consequently the matrix operator Hef

depends explicitly on c1(t ), c2(t ), leading to a nonlinear dy-
namics.

B. Quasistatic approximation

In Appendix C, we explicitly evaluate the elements of the
effective Hamiltonian neglecting retardation effects. This qua-
sistatic approximation is expected to be very accurate when
the distance between the atomic system and the nanoparticle is
subwavelength with respect to the atomic transition frequency
ωa. Furthermore, our analysis assumes that the nanoparticle
does not have a magnetic response (μ = μ0) so that it does not
backscatter appreciably the fields created by the atomic spin
magnetic moment. In these conditions, the effective Hamilto-
nian is determined to leading order by [Eqs. (C8) and (C10)]

hm,n ≈ −iA
α0

16ε0π3 d6
tr

{
Q(m,n) ·

(
ωef

ωp
× 1

)}
, (9)

with α0 = 4πR3, ωef = ω0 + 3
(
ω0 × ẑ

)× ẑ, ω0 = ω0û =
−q
m∗ B0 is the oriented cyclotron frequency, and A is the real-
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valued dimensionless parameter:

A =
∫ ∞

0
dξ

1[
3ξ (ξ + �) + ω2

p

]2 3ξ 2ω3
p

ω2
a + ξ 2

. (10)

In the above Q(m,n) should be understood as Q(m,n) =
〈gm|p̂−

e ⊗ p̂+
e |gn〉 (3 × 3 matrix) so that it is determined only

by the electric dipole operator. The spin magnetic moment
governs the cyclotron frequency vector ω0 and introduces
nonlinearity into the reduced master equation. It is important
to note that neglecting the effects of the spin magnetic moment
would cause hm,n to vanish, except for a constant Lamb shift.
The Lamb shift, responsible for the Casimir effect, has been
excluded from the analysis (see Appendix C).

The described formalism applies to a generic time-reversal
invariant two-level system, with the number of degenerate
excited states arbitrary. For the case of a Kramers two-level
system with excited states |e1〉 and |e2〉 linked by time-reversal
symmetry (Fig. 1) Q(m,n) are given by

Q(1,1) = γd ⊗ γ∗
d + γc ⊗ γ∗

c ,

Q(2,2) = γ∗
d ⊗ γd + γ∗

c ⊗ γc, (11a)

Q(1,2) = −γd ⊗ γc + γc ⊗ γd,

Q(2,1) = γ∗
d ⊗ γ∗

c − γ∗
c ⊗ γ∗

d. (11b)

Substituting these formulas into Eq. (9) one obtains the fol-
lowing explicit formulas for the Hamiltonian matrix elements:

h11 = −h22 = −A
α0

16π3ε0d6

ωef

ωp
· (iγd × γ∗

d + iγc × γ∗
c ),

(12a)

h12 = h∗
21 = −iA

α0

8π3ε0d6

ωef

ωp
· (γc × γd ). (12b)

As seen, the interaction with the (nonreciprocal) environ-
ment leads to Lamb shifts with opposite signs for the two
ground states, h11 = −h22 (Zeeman-type effect). Note that
h11, h22 are always real valued, whereas the antidiagonal terms
h12, h21 may be complex valued. Furthermore, the above for-
mulas confirm that Hef is an Hermitian matrix, Hef = H†

ef , as
it should be to guarantee the unitary evolution of the atomic
state. Importantly, the diagonal terms are nonzero only in the
presence of atomic chiral-type transitions.

It is underlined that hmn is proportional to the magnetic
field B0 created by the spin magnetic moment. Clearly, for
a fixed magnetic field B0 the Hamiltonian that describes the
ground state is nontrivial. As a consequence, the ground state
energy (E = ∑

m,n c∗
mhmncn) is state dependent. In particular,

for a given atomic configuration the energy of the state |g1〉
may be slightly different from the energy of |g2〉 (h11 �= h22)
due to the detuning arising from the interactions with the
environment.

C. Representation of the spin magnetic moment operator

From Eq. (4), the magnetic field B0 can be written as

B0 = μ0

4πd3

(
3ẑ ⊗ ẑ − 1

) ·
⎛
⎝c∗ · M1 · c

c∗ · M2 · c
c∗ · M3 · c

⎞
⎠, (13)

with c = (c1 c2)T and Mi the matrix that represents the
ith component of the vector operator m̂s in the ground sub-
space basis (|g1〉, |g2〉). For simplicity, we shall suppose that
|g1〉, |g2〉 can be identified with the spin-up and spin-down
states as in Eq. (2). Then, Mi is proportional to the ith Pauli
matrix σ i:

Mi = h̄

2

q

me
σ i. (14)

Here, me is the free-electron mass, q = −e, and an elec-
tron g factor of 2 is assumed. Within these assumptions the
oriented cyclotron frequency ω0 = −q

m∗ B0 becomes

ω0 = μ0

4πd3

h̄

2

q2

mem∗

⎛
⎜⎝ c∗

1c2 + c∗
2c1

−ic∗
1c2 + ic∗

2c1

2
(|c2|2 − |c1|2

)
⎞
⎟⎠. (15)

It is interesting to note that under a time reversal
the atomic state |ψ〉 = c1|g1〉 + c2|g2〉 is transformed into
T |ψ〉 = −c∗

2|g1〉 + c∗
1|g2〉 [44]. Thus, a time reversal trans-

forms the coefficients (c1, c2) as (c1, c2) → (−c∗
2, c∗

1 ). Note
that the time-reversal operator is antilinear. This property
shows that the cyclotron frequency ω0 is flipped under a time
reversal (ω0 → −ω0), as it should be.

Curiously, in the absence of material loss both the atom
and the environment are time-reversal invariant. Consistent
with this property, the effective Hamiltonian is also time-
reversal symmetric. This property holds true even when
the environment is lossy. To demonstrate this, we note
that the time-reversal invariance requires that Hef (ω0) =∑

m,n hm,n(ω0)|gm〉〈gn| satisfies Hef (ω0) = T −1Hef (−ω0)T
or equivalently Hef (ω0) = −T Hef (−ω0)T [44]. As (KT )† =
−KT with K the conjugation operator [44], this is still the
same as Hef (ω0) = ∑

m,n h∗
mn(−ω0)|T gm〉〈T gn|. Using now

Eq. (12), |g2〉 = T |g1〉, and |g1〉 = −T |g2〉 one can easily
check that the nonlinear Hamiltonian is indeed time-reversal
invariant. In general, an effective Hamiltonian of the type
Hef = Hef (c1, c2) is time-reversal symmetric when

Hef (c1, c2) =
(

h11 h12

h21 h22

)∣∣∣∣
(c1,c2 )

=
(

h∗
22 −h∗

21

−h∗
12 h∗

11

)∣∣∣∣
(−c∗

2,c
∗
1 )

.

(16)

Examples of nonlinear time-reversal invariant classical
systems are discussed in [53].

V. TIME-CRYSTAL STATES AND SPONTANEOUS
SYMMETRY BREAKING

In the following, we demonstrate that the nonlinear quan-
tum master equation can give rise to either time-crystal-like
states or spontaneous symmetry breaking of time-reversal
symmetry.

To this end, we consider a toy model for the Kramers
two-level system that generalizes Eq. (3). Similar to the hy-
drogenlike model of Sec. II A, one of the atomic transitions
is circularly polarized, whereas the other transition is linearly
polarized:

γd = γd√
2

(
x̂ ± iŷ

)
, γc = γcẑ. (17)
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However, here the complex amplitudes γc and γd are un-
constrained. It can be shown that for the “−” sign the system
is invariant under continuous rotations about the z axis [44].
For the “+” sign there is a continuous rotation symmetry
about the z axis only when γc = 0. “Low-symmetry” scenar-
ios may occur naturally in some molecular systems [45]. The
sign ± determines the handedness of the dipolar transition
|e1〉 → |g1〉. The handedness direction is formally defined as
ŝdip,1 = i

2|γd |2 γd × γ∗
d = ±ẑ. The handedness for the dipolar

transition |e2〉 → |g2〉 is the opposite one, ŝdip,2 = ∓ẑ.
It is worth noting that the transformation (γd, γc) →

(γc,−γd ) leaves the effective Hamiltonian unchanged [see
Eq. (12)]. Thus, the physics remains qualitatively the same
when the direct transitions are linearly polarized and the
crossed transitions are circularly polarized.

Substituting γc and γd in Eq. (12) and using ωef = ω0 +
3(ω0 × ẑ) × ẑ and Eq. (15), one can readily show that the
effective Hamiltonian elements are

h11 = −h22 = −A
α0

16π3ε0d6

ω0⊥
ωp

(±2)
(|c2|2 − |c1|2

)|γd|2,

(18a)

h12 = h∗
21 = −iA

α0

8π3ε0d6

ω0⊥
ωp

2
√

2iγdγc

{
c∗

1c2, + sign
−c1c∗

2, − sign
,

(18b)

with ω0⊥ = αe,fs
h̄2

2mem∗
1
c

1
d3 . Hence, the effective Hamiltonian

(Hef = Hef,± with the ± sign determined by the handedness
of the dipolar transition |e1〉 → |g1〉) reduces to

Hef,±(c1, c2) = ±
(
Ed
(|c1|2 − |c2|2

)
Ecrc∗

acb

E∗
crcac∗

b −Ed
(|c1|2 − |c2|2

)
)

, with (19a)

Ed = A
R3

2π2ε0d6

ω0⊥
ωp

|γd|2 and Ecr = 2
√

2
γc

γ ∗
d

Ed. (19b)

Note that Ed, Ecr are constants independent of the atomic state.
In the above, (a, b) = (1, 2) for the “+” sign case, whereas
(a, b) = (2, 1) for the “−” sign case.

For a given initial state c = (c1, c2), the system dy-
namics may be characterized by solving the nonlinear
Schrödinger equation (7). As previously mentioned, since
Hef = H†

ef the time evolution is unitary such that c∗ · c =
1 at all time instants. Each atomic state is associated
with a well-defined spin vector direction given by Ŝ =
(c∗ · σx · c, c∗ · σy · c, c∗ · σz · c). Thus, it is intuitive to repre-
sent the system state on the Bloch sphere using the mapping
(c1, c2) → Ŝ. The north and south poles of the Bloch sphere
correspond to the states |g1〉 and |g2〉, respectively. As the
spin vector flips under a time reversal [(c1, c2) → (−c∗

2, c∗
1 )],

the time-reversed system state is represented by the antipodal
point of the Bloch sphere.

We recall that |g1〉 and |g2〉 are the states with electron
spin oriented along the +z direction (−z direction). Thus,
the Hamiltonian Hef,+ models a system such that the handed-
ness of the chiral transition |e1〉 → |g1〉 (ŝdip,1 = +ẑ) matches
the handedness of the electron spin (spin up). Likewise, the
handedness of the transition |e2〉 → |g2〉 (ŝdip,2 = −ẑ) also
matches the handedness of the corresponding electron spin
(spin down). In contrast, the Hamiltonian Hef,− models a
system such that the handedness of the chiral dipolar transition
is opposite to the handedness of the electron spin.

A. Chiral polarized transitions dominate

In the first set of examples, we suppose that the chiral
dipolar transitions dominate, |γd| � |γc|, as in the Jahn-Teller
X3 molecule [45]. To begin with, let us ignore the linear
polarized transitions and assume that γc = 0. In that case,
h12 = h21 = 0 and the solution of the nonlinear Schrödinger

equation [Eq. (7)] can be found analytically as follows:

c1(t ) = c1,t=0e−i(±Ed/h)(|c1|2−|c2|2 )t ,

c2(t ) = c2,t=0e+i(±Ed/h)(|c1|2−|c2|2 )t . (20)

Note that |c1| and |c2| are time independent and determined
by the initial conditions (cn,t=0 = |cn|eiφ0n , n = 1,2). The en-
ergy expectation is given by the quadratic form c∗ · Hef,±(c) ·
c = ±Ed(|c1|2 − |c2|2)

2
. In particular, for Hef− the spin-up

and the spin-down states are global minima of the quadratic
form c∗ · Hef (c) · c, whereas for Hef+ they are global maxima.
When γc = 0 the energy is conserved along the orbit. In the
general case, c∗ · Hef (c) · c does not need to be constant of
motion because some energy can be exchanged between the
atom and the environment (see Sec. V D).

The spin vector expectation associated with the orbit is

Ŝ = (
2|c1||c2|cos(ωmt + δφ), 2|c1||c2|sin(ωmt + δφ),

|c1|2 − |c2|2
)
, (21)

where δφ = φ02 − φ01 and

ωm = h11 − h22

h̄
= ±2Ed

h̄

(|c1|2 − |c2|2
)
. (22)

Clearly, notwithstanding the continuous time translation
symmetry of both the microscopic and the effective Hamilto-
nians, the atomic state varies periodically in time. Excluding
an overall phase factor of the wave function with no phys-
ical consequences, the time period of the wave function is
Tspin = 2π

|ωm | , which is the same as the time period of the spin
vector. Thus, the “ground” is a time-crystal-like state.

The spontaneous symmetry breaking of the time transla-
tion symmetry is rooted in the precession of the spin vector
around the z axis. Figure 2 represents the dynamics of a
generic pure state in the Bloch sphere. The density matrix
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(c)

(a) (b)

FIG. 2. Representation of the trajectory of the spin vector (blue
curve) in the Bloch sphere for the Hamiltonian (a) Hef,+ and (b)
Hef,−. The blue arrow indicates the direction of growing time. The
initial atomic state (blue dot) is a pure state with ρ11 = 0.7. The
dashed black circle represents the equator line of the Bloch sphere
and the purple dots the north and south poles (spin-up and spin-down
states). (c) Phase of ρ12 as a function of the normalized time for the
Hamiltonian Hef,−. The dashed vertical line marks the theoretical
precession period.

[ρ̂S(t ) = ∑
i, j ρi j |gi〉〈g j |] depends on the coordinates c1, c2 as

ρi j = cic∗
j . We choose an initial state such that ρ11,t=0 = 0.7

[blue dot in Figs. 2(a) and 2(b)]. For reference, the purple
dots in the figures represent the states |g1〉 (north pole) and
|g2〉 (south pole). As can be seen in Figs. 2(a) and 2(b), the
direction of the precession motion depends on the considered
Hamiltonian Hef,±.

For the Hamiltonian Hef,+ [Fig. 2(a)] the precession an-
gular velocity (ωm) is locked to the direction of the spin
vector in the same manner as for a classical spinning top:
ωm ∼ (Ŝ · ẑ)ẑ. On the other hand, for the Hamiltonian Hef,−
[Fig. 2(b)] the direction of the precession angular veloc-
ity is opposite to the direction of the spin vector ωm ∼
−(Ŝ · ẑ)ẑ. Thus, the precession motion relative to the direc-
tion of the spin vector depends on whether the handedness
of the chiral transitions matches the handedness of the
atomic spin or not. Note that when the pure state lies
in the equator of the Bloch sphere (ρ11,t=0 = ρ22,t=0 =
1/2) the time dynamics is trivial and there is no spin
precession.

The shortest time-crystal period (Tmin) occurs when the
state is near the poles of the Bloch sphere and is given
by Tmin = π h̄

Ed
. To give an idea of the relevant timescale

of the problem, consider a semiconductor nanoparticle with
ωp/2π = 1 THz, � = 0.1ωp, m∗ = 0.001me, and radius R =
d/2. The nanoparticle is separated from the atomic system
by d = 5 nm. Supposing that the transition electric dipole
moment is on the order of γd = 100 D and that the transition
frequency is ωa = 50ωp one finds that 1/Tmin = 63 kHz. So,

FIG. 3. Representation of the trajectory of the spin vector in the
Bloch sphere for the Hamiltonian (a) Hef,+ and (b) Hef,−. Here, it is
supposed that |γc| = 0.1|γd| and the rest of the parameters are as in
Fig. 2.

the spin precession is a quite slow process that justifies the
Born approximation and the assumption that the environment
changes adiabatically with atomic spin magnetic moment.
Note that 1/Tmin scales with γ 2

d and so for smaller values of
the electric dipole the precession frequency is even smaller.
Figure 2(c) represents the phase of ρ12 = c1c∗

2 for the Hamil-
tonian Hef,−. After a full time-crystal cycle the phase changes
by 2π . The time-crystal period (dashed vertical line) is Tspin =

Tmin

||c1|2−|c2|2| and depends on the initial state.

B. Spontaneous symmetry breaking of time-reversal symmetry

Next, we discuss the impact of weak linearly polar-
ized crossed transitions on the time-crystal dynamics |γd| �
|γc| �= 0 (Fig. 3). For |γc| �= 0 and |γd| �= 0 the antidiagonal
elements of the effective Hamiltonian are nonzero. Hence,
there is a nontrivial coupling between the two electron spins
and the nonlinear equations of motion cannot be integrated an-
alytically. For the Hamiltonian Hef,+ the effect of the crossed
transitions is mild [Fig. 3(a)]. The perturbation creates some
wobbling with respect to a purely circular orbit, but always
leads to closed orbits in the Bloch sphere. The situation for
the Hamiltonian Hef,− is far more interesting [Figs. 3(bi)–
3(biii)]. In this case, a small γc can completely disrupt the
time-crystal cycle when the phase of the parameter γc is dif-
ferent from the phase of γ ∗

d . Specifically, independent of the
initial (pure) state the orbit of the spin vector evolves towards
the south (north) pole of the sphere when 0 < arg(γc/γ

∗
d ) <

π [−π < arg(γc/γ
∗
d ) < 0], respectively [Figs. 3(bii) and

3(biii)]. For arg(γc/γ
∗
d ) = 0 or arg(γc/γ

∗
d ) = π , the orbit re-

mains circular and closed [Fig. 3(bi)].
Thereby, when the handedness of the atomic spin does

not match the handedness of the chiral dipole transition the
time-crystal dynamics is typically suppressed after a tran-
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FIG. 4. Representation of the trajectory of the spin vector in the
Bloch sphere for the Hamiltonian Hef,− with γc = −i0.1γ ∗

d for a (a)
pure state and for (b) a mixed state. For an initial pure state all the
trajectories converge to the attractor (repeller) when t → ∞ (t →
−∞).

sient process that occurs on a timescale on the order of
Tmin|γd |/|γc|. Remarkably, independent of the initial prepa-
ration of the system, for large t the ground state is either
the spin-down state [0 < arg(γc/γ

∗
d ) < π ] or the spin-up state

[−π < arg(γc/γ
∗
d ) < 0]. In such circumstances the stable

ground state is not invariant under a time reversal. Thus, the
ground state has less symmetry than the system Hamiltonian;
in other words, the time-reversal symmetry is spontaneously
broken. It is underlined that Hef,− is time-reversal symmetric.

The different dynamics of the Hamiltonians Hef,± can be
formally justified using the Lindblad master equation that
controls the time dynamics of ρ11 = |c1|2. From Appendix E
[Eq. (E1)], one finds that ∂tρ11 = 2

h̄ Im{h12ρ21}. Thus, taking
into account that for a pure state ρ21 = c2c∗

1 and using Eq. (19)
it follows that

∂tρ11 =
√

2
4Ed

h̄

{
+Im

{
γc

γ ∗
d

(c∗
1c2)2} for Hef,+

−|c1c2|2Im
{

γc

γ ∗
d

}
for Hef,−

. (23)

As seen, for the Hamiltonian Hef,− the sign of ∂tρ11 is
independent of time and is strictly locked to the sign of
−Im{γc/γ

∗
d }. In agreement with Fig. 3, ρ11 is a strictly in-

creasing (decreasing) function of time when Im{γc/γ
∗
d } <

0 [Im{γc/γ
∗
d } > 0]. In contrast, for the Hamiltonian Hef,+

the sign of ∂tρ11 depends on the system state and os-
cillates between positive and negative values along the
time-crystal orbit, explaining the wobbling motion observed
in Fig. 3(bi).

To understand the compatibility of the spontaneously bro-
ken symmetry with the T -invariant effective Hamiltonian, we
depict in Fig. 4(a) the full trajectory of the spin vector ex-
pectation in the range −∞ < t < +∞ for the same example
as in Fig. 3(biii) (γc = −0.1iγ ∗

d ). Independent of the initial
state at t = 0, the orbit for t → −∞ starts always at the
south pole of the Bloch sphere (“repeller point”) and ends
always at the north pole of the sphere (“attractor point”).
Attractor and repeller points are well known in the theory
of nonlinear dynamics [54]. The time-reversal symmetry of
the Hamiltonian implies that if Ŝ(t ) is the trajectory associ-
ated with a certain initial state, then −Ŝ(−t ) is the trajectory
associated with the corresponding time-reversed initial state.

FIG. 5. Representation of the trajectory of the spin vector in the
Bloch sphere for the Hamiltonian (a) Hef,+ and (b) Hef,− and a pure
initial state. Here, γc = −i10γ ∗

d so that linearly polarized transitions
dominate. The initial atomic state (blue dot) is a pure state with ρ11 =
0.7.

Then, the existence of an orbit attractor for t → +∞ forcibly
implies the existence of an orbit repeller for t → −∞. Fur-
thermore, the attractor and the repeller must be linked by
the time-reversal operator, in agreement with the numerical
results in Fig. 4. Note that the attractor and the repeller
points are forcibly eigenstates of the nonlinear Hamiltonian:
Hef (c) · c = Ec.

The spontaneously broken symmetry can, in principle,
be exploited to generate nonreciprocal light-matter interac-
tions without an external magnetic field bias. For example,
in Fig. 4(a), the vacuum fluctuations anchor the atomic spin
vector along the +z axis, creating a nonreciprocal response
in both the atom and the nanoparticle electric polarizabilities.
Since the spin-up state is the only stable orientation of the
spin vector, the nonreciprocal response is expected to remain
resilient to sufficiently weak external perturbations.

It is also relevant to discuss the time dynamics of
mixed states. The time evolution of the mixed states is
determined by numerically solving the reduced master
equation ∂t ρ̂S = −i 1

h̄ [Ĥef , ρ̂S] [see Eq. (E1) and the as-
sociated discussion]. Now, the spin vector expectation is
written in terms of the density matrix elements as Ŝ =
(ρ12 + ρ21, iρ12 − iρ21, ρ11 − ρ22). For mixed states the am-
plitude of the spin vector may be less than the unity (|Ŝ| � 1).
Thus, in general Ŝ is a point interior to the Bloch sphere. Fig-
ure 4(b) shows the time evolution of an initial mixed state with
ρ11,t=0 = 0.7, ρ22,t=0 = 0.3, and ρ12,t=0 = 0.18. As seen, also
in this case the attractor (repeller) states have a spin vector
expectation oriented towards the +z direction (−z direction),
but they are not pure states. For this example, any mixed state
with ρ12 = 0 and ρ11 > ρ22 is a stable attractor point. Thus,
there is a continuous family of attractors that are mixed states
and a single pure attractor state.

C. Linear polarized transitions dominate

Next, we consider the scenario where the linearly polar-
ized dipole transitions dominate, 0 �= |γd| � |γc|. Figure 5
shows the time evolution of pure states for an atomic system
with γc = −10iγ ∗

d . Comparing with Fig. 3, one sees that the
Hamiltonian Hef,+ still supports time-crystal states [Fig. 5(a)]
but the orbits now cross both the north and the south hemi-
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spheres of the Bloch sphere, rather than being confined to
one of the hemispheres [Fig. 3(a)]. Thus, now the inversion
ρ11 − ρ22 may vary significantly in each time-crystal cycle.
On the other hand, for the Hamiltonian Hef,− one sees that
similar to Fig. 3(biii) the orbit is dragged to the attractor point
on the north pole of the Bloch sphere. However, the attraction
is so strong that the precession around the north pole is not
detectable anymore. We recall that the timescale associated
with the spin precession is on the order of Tmin, whereas the
timescale associated with the relaxation to the attractor point
is on the order of Tmin|γd |/|γc| [Eq. (23)]. Consequently, the
latter process dominates when |γc| � |γd| as in the present
example.

D. Closed orbits and conservative dynamics

It is rather remarkable that the orbits associated with the
Hamiltonian Hef,+ are exactly closed and periodic. Next, we
demonstrate that this property arises from a hidden conser-
vative dynamics. To this end, first we note that the energy
expectation of the Hamiltonian Hef,+ can be explicitly written
as follows:

〈Hef,+〉 ≡ c∗ · Hef,+(c) · c

= Ed
(
c1c∗

1 − c2c∗
2

)2 + Ecr
(
c∗

1

)2(
c2
)2 + E∗

cr

(
c∗

2

)2(
c1
)2

.

(24)

Thus, 〈Hef,+〉 may be regarded as an analytical function of
the variables c1, c∗

1, c2, c∗
2. Interestingly, it can be readily veri-

fied that for the Hef,+ Hamiltonian the nonlinear-Schrödinger
equation (7) is formally equivalent to the following set of
equations:

i2h̄
d

dt
ci = ∂

∂c∗
i

〈Hef,+〉,

i2h̄
d

dt
c∗

i = − ∂

∂ci
〈Hef,+〉 (i = 1, 2). (25)

This equivalence implies that the nonlinear Schrödinger
equation generates precisely the same dynamics as a classical
Hamiltonian function 〈Hef,+〉, with ci, c∗

i canonical conju-
gate variables. In particular, the energy expectation 〈Hef,+〉
is a constant of motion because d

dt 〈Hef,+〉 = ∑
i

∂〈Hef,+〉
∂ci

dci
dt +

∂〈Hef,+〉
∂c∗

i

dc∗
i

dt = 0, resulting in orbits that are exactly closed and
periodic. In fact, these orbits are determined by the curves of
the Bloch sphere generated by the condition 〈Hef,+〉 = const.

In contrast, the dynamics of Hef,− is conservative only
when the parameter Ecr is real valued. For a complex-valued
Ecr, the energy expectation 〈Hef,−〉 is not conserved, and the
time dynamics lead to the system state evolving towards min-
imizing 〈Hef,−〉. These properties underscore the fundamental
differences between the two Hamiltonians.

E. Radiation effect

As seen in the previous sections, the interaction of the spin
magnetic moment with the nanoparticle may lead to the for-
mation of periodic time-crystal-like states with a characteristic
period on the order of h̄π/Ed. The time-crystal cycle is rooted

in the precession of the spin magnetic moment. Hence it is
natural to wonder if radiation effects can lead to a relaxation
of the oscillation.

In order to investigate this, in Appendix E we incorporate
in our analysis the effect of the radiation loss due to the
atomic spin magnetic moment precession. The analysis is
done in a perturbative manner and for simplicity assumes that
the chiral dipolar transitions dominate (|γd| � |γc|). It leads
to a modified Lindblad master equation of the form ∂t ρ̂S =
−i 1

h̄ [Ĥef , ρ̂S] + Lmρ̂S. The last term (Lmρ̂S) describes a para-
metric relaxation process due to the emission of radiation,
analogous to the standard spontaneous emission decay from
an excited state to the ground state. The associated decay rate
is given by �sp = gsp

2Ed
h̄ |ρ11 − ρ22|3 [Eq. (E7)] with gsp =

αe,fs
8
3

( Ed
mec2

)2
a dimensionless parameter. The parametric re-

laxation process is controlled by the spin precession frequency
ωm = 2h11

h̄ = ±2Ed
h̄ (ρ11 − ρ22) [Eq. (22)]. When ωm > 0 the

radiation effects tend to decrease the ρ11 population, whereas
when ωm < 0 the system evolves to increase the ρ11 popula-
tion. Note that the sign of ωm depends on the system state and
on the effective Hamiltonian (Hef,±).

To begin with, we estimate the peak value of the decay
rate using �sp ∼ gsp

2Ed
h̄ . Considering the same structural pa-

rameters as in Sec. V A, we get gsp = 1.3 × 10−33, which
corresponds to a decay rate on the order of �sp ∼ 1.3 ×
10−33 × 2π × 63 kHz. The associated decay time is 1/�sp ∼
6 × 1019 years, many orders of magnitude larger than the age
of the universe. So, the effect of the magnetic dipole radiation
is totally negligible, and for all practical purposes, within the
validity of the model, the lifetime of the time-crystal states
is infinite. It is relevant to point out that in the quasistatic
approximation considered here the radiative decay due to the
magnetic dipole precession is not influenced by the dissipation
in the plasmonic nanoparticle. Indeed, in the quasistatic limit
the electric and magnetic fields are effectively decoupled and
so the magnetic dipole is not influenced by the loss in the
permittivity function.

Yet, it is interesting to assess how the dissipation affects
the system dynamics. To this end, we consider an unrealisti-
cally large decay rate corresponding to gsp = 0.05. Figure 6(a)
shows the effect of radiation loss on the time evolution of the
spin vector expectation for a time-crystal state of the Hamilto-
nian Hef,+. As seen, after a few cycles the orbit approaches the
plane Sz = 0, where ρ11 = ρ22 = 0.5 [see Fig. 6](aii). It can
be seen that the orbit is slightly interior to the Bloch sphere,
indicating the formation of a mixed state. For comparison,
the time-crystal orbit without including the decay rate �sp is
shown in Fig. 3(a). The observed behavior can be explained as
follows. For the Hamiltonian Hef,+ the spin frequency ωm is
positive in the north hemisphere of the Bloch sphere. Thus, the
radiation loss acts to decrease the ρ11 population, and thereby
makes the system state approach the equatorial line. If the sys-
tem state crosses the equatorial line to the south hemisphere,
then ωm becomes negative and the radiation loss acts to in-
crease the ρ11 population. Thus, for t → ∞ the system state
is some point in the Sz = 0 plane. The convergence is rather
slow because the decay rate (�sp ∼ |ρ11 − ρ22|3) approaches
zero when ρ11 = ρ22 = 0.5.

235154-9



SILVEIRINHA, TERÇAS, AND ANTEZZA PHYSICAL REVIEW B 108, 235154 (2023)

FIG. 6. (i) Effect of radiation loss (gsp = 0.05) on the trajectory of the spin vector expectation in the Bloch sphere for (a) Hef,+, γc = 0.1γ ∗
d ,

with an initial pure state. (b) Hef,−, γc = −i0.1γ ∗
d and an initial mixed state. (ii) Plot of ρ11 (blue line) and ρ22 (green line) as a function of

time.

The effect of radiation loss for the Hamiltonian Hef,− is
qualitatively different. To illustrate this, we depict in Fig. 6(b)
the orbit of the spin vector expectation for the same initial
mixed state as in Fig. 4(a), but considering the effects of
radiation loss modeled by gsp = 0.05 (note that here we only
show the orbit calculated for t > 0). As seen, different from
Fig. 4(a), the orbit converges asymptotically to the north pole
of the Bloch sphere. The justification is that for the Hamilto-
nian Hef,− the spin frequency ωm is negative when the system
state lies in the north hemisphere and hence the radiation loss
acts to increase the ρ11 population, i.e., drags the system state
to the north pole. In general, for Hef,− the effect of radiation
loss is to drag the system state to the closest pole, independent
of whether the state is pure or mixed. However, it is important
to keep in mind that the radiation loss relaxation competes
with the much stronger and dominant relaxation due to the
“attractor” point. Thus, the overall effect of the radiation loss
is to guarantee that there is a single stable attractor point
(spin-up state in the present example). In other words, there
are no stable mixed states in the presence of radiation loss.

It is relevant to point out that both for Hef,+ and for Hef,−
the asymptotic ground state in the presence of radiation loss
minimizes the atomic energy expectation, c∗ · Hef,±(c) · c ≈
±Ed(|c1|2 − |c2|2)

2
for |γd| � |γc|.

VI. SUMMARY

In summary, we theoretically studied how the degeneracy
of the atomic ground state and the intrinsic spin magnetic
moment of the electron can result in either a spontaneous
symmetry breaking of time-translation symmetry or a sponta-
neous symmetry breaking of the time reversal. We argued that

the magnetic field created by the electron intrinsic magnetic
moment can create a strong coupling between the environment
and the atom. Using a parametric Born-Markov approxima-
tion, we have derived a reduced quantum master equation that
describes the time evolution of the ground state as a function
of time. We demonstrated that the ground state dynamics can
be described by a nonlinear Schrödinger equation. The cor-
responding effective Hamiltonian is Hermitian and exhibits
time-reversal symmetry.

Our analysis focused on a particular toy model that de-
scribes a system with circularly polarized (chiral) and linearly
polarized atomic transitions. We found out that when the
dipolar transitions are purely chiral, the time translation sym-
metry is spontaneously broken, and the system can support
time-crystal states. Both hydrogenlike systems with a strong
spin-orbit coupling or the Jahn-Teller molecular systems X3
can be interesting platforms to investigate these time-crystal
states [45]. In these states, the spin vector undergoes com-
plete precession around the symmetry axis in each time cycle.
The direction of the precession angular velocity depends on
whether the handedness of a chiral dipolar transition matches
the handedness of the spin vector (system Hef,+), or not (sys-
tem Hef,−).

We have shown that in the latter case (Hef,−), the time-
crystal state can be strongly influenced by linearly polarized
transitions. These transitions cause the relaxation of the time-
crystal cycle towards a well-defined attractor point in the
Bloch sphere. As a result, time-reversal symmetry of the
system is spontaneously broken, leading to the formation of
a well-defined ground state which lacks time-reversal sym-
metry. The system exhibits nonreciprocal electromagnetic
response in this stable ground state, which could be ben-
eficial for nanophotonic applications such as the design of
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electromagnetic isolators on the nanoscale without external
bias. The nonreciprocal response originates from the self-bias
provided by the vacuum fluctuations, which is responsible for
the spontaneous symmetry breaking.

In contrast, the time-crystal states supported by the Hamil-
tonian Hef,+ are resilient to the influence of linearly polarized
dipolar transitions. Additionally, we conducted a perturbative
study of the relaxation of the time-crystal state caused by the
radiation emitted during each precession cycle. Our analysis
shows that this effect is negligible, and that for all practical
purposes the time-crystal state lifetime is infinite.

Our theory demonstrates that the ground state physics of
chiral-atomic systems can be remarkably intricate and offer
intriguing applications in nonreciprocal nanophotonics. We
hope that our theoretical findings will inspire further studies
based on realistic physical platforms.
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APPENDIX A: THE QUANTUM MASTER EQUATION

Here, we derive the quantum master equation for an atom
interacting with a structured environment, e.g., a gyroelectric
nanoparticle.

1. Quantized electromagnetic field

As discussed in Sec. II B, in our problem the response
of the environment is nonlinear at a microscopic level. To
circumvent this difficulty (i.e., the quantization of a nonlinear
bosonic field), we follow the standard approach and model the
quantized field using the macroscopic (linearized) permittivity
response given by Eq. (5). For this reason, in our analysis
the field operators will depend parametrically on the magnetic
field created by the spin magnetic moment. This property is
implicit in all the discussions of Appendix A.

The environment degrees of freedom are modeled by a
continuum of bosonic operators b̂ω(r) that annihilate the en-
vironment ground state |0E〉, and satisfy standard bosonic
commutation relations:

[
b̂ω(r), b̂†

ω′ (r′)
] = δ

(
ω−ω′)δ(r − r′)1,

[
b̂ω(r), b̂ω′ (r′)

] = 0.

(A1)
The environment Hamiltonian is

ĤEM =
∫ ∞

0
dω

∫
d3r h̄ωb̂†

ω(r) · b̂ω(r). (A2)

The quantized electromagnetic fields F̂ = (Ê Ĥ) are

written in terms of the operators b̂ω and of the system Green’s

function G(r, r0, ω) as F̂ = F̂− + F̂+ with

F̂−(r, t ) =
∫ ∞

0+
dω

∫
d3r′

×
√

h̄

π |ω|G(r, r′, ω) · Rω(r′) · b̂ω(r′)e−iωt .

(A3)

The system Green’s function G(r, r′, ω) (6 × 6 tensor) is
the classical solution of the Maxwell’s equation for a dipole-
type excitation:

N̂ · G − ωM
(
r, ω

) · G = ω1δ
(
r − r′),

with N̂ =
(

0 i∇×
−i∇× 0

)
. (A4)

In the above, N̂ is a differential operator and M = M(r, ω)
is a 6 × 6 material matrix that determines the environment
response. It is written in terms of the permittivity and perme-
ability tensors as

M(r, ω) =
(

ε̄(r, ω) 03×3

03×3 μ013×3

)
. (A5)

Furthermore, the matrix Rω in Eq. (A3) is defined by Rω =
[ωM′′]1/2 with M′′(ω) = (M − M†)/(2i).

For a real-valued ω, the system Green’s function satisfies
the identity:

G(r, r′, ω) − [
G(r′, r, ω)

]†
=
∫

d3r′′G(r, r′′, ω) · (M(r′′, ω
)− M†(r′′, ω)

)
· [G(r′, r′′, ω)

]†
. (A6)

2. Interaction with the environment and Born-Markov
approximation

We consider a multilevel atomic system described by the
Hamiltonian Ĥat. The coupling of the atom with the envi-
ronment is modeled by the interaction Hamiltonian where r0

stands for the position of the atom and p̂ = (p̂e p̂m )T is the
(six-vector) transition dipole moment operator of the atom.
The subcomponent p̂e is the electric dipole moment operator,
whereas p̂m = μ0m̂s is determined by the (spin) magnetic
dipole moment operator (m̂s).

We use the standard density matrix formalism to de-
scribe the time evolution of the system state. The full-system
density matrix is denoted by ρ̂ and satisfies the von Neu-
mann equation ∂t ρ̂ = i

h̄ [ρ̂, Ĥ ] with Ĥ = Ĥ0 + Ĥint and Ĥ0 =
Ĥat + ĤEM. Then, the interaction picture density matrix, ρ̂I =
e+i(Ĥ0/h̄)t ρ̂e−i(Ĥ0/h̄)t , satisfies

∂t ρ̂I = i

h̄

[
ρ̂I, Ĥint (t )

]
, (A7)

with Ĥint (t ) = ei(Ĥ0/h̄)t Ĥinte−i(Ĥ0/h̄)t .
In the Born approximation, the density matrix is assumed

to satisfy ρ̂I(t ) ≈ ρ̂S,I(t ) ⊗ ρ̂E at all time instants, where ρ̂S,I

and ρ̂E depend only on the atomic (environment) states, re-
spectively. Typically, the environment density matrix ρ̂E is
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supposed to be time invariant. In this study, we consider
the influence of the intrinsic spin magnetic moment of an
electron on the macroscopic gyrotropic response of the en-
vironment. Thus, we take into account that the static-type
magnetic field B0 arising from the electron spin can mod-
ify the permittivity of the plasmonic particle, consequently
affecting the environment ground state |0E〉. It is underlined
that the value of B0 depends on the atomic configuration
and governs the macroscopic permittivity response of the
nanoparticle.

We will consider that ρ̂E ≈ |0E〉〈0E| with |0E〉 the (para-
metric) ground state of the environment, which as explained
above depends on B0. Then, proceeding in a standard manner,
one finds that the dynamics of the reduced density matrix
ρ̂S,I(t ) is determined by

∂t ρ̂S,I = − 1

h̄2

∫ +∞

0
trE
{[[

ρ̂I(t − τ ), Ĥint (t − τ )
]
, Ĥint (t )

]}
dτ.

(A8)

The operator trE{· · · } represents the trace over the environ-
ment degrees of freedom. It is supposed that at initial time
trE{[ρ̂I(t0), Ĥint (t )]} = 0.

Next, we use the Markov approximation so that
ρ̂I(t−τ ) → ρ̂I(t ) in Eq. (A8). This leads to

∂t ρ̂S,I = − 1

h̄2

∫ +∞

0
trE {ρ̂I(t )Ĥint (t − τ )Ĥint (t )}}dτ

− 1

h̄2

∫ +∞

0
trE {−Ĥint (t − τ )ρ̂I(t )Ĥint (t )}dτ

− 1

h̄2

∫ +∞

0
trE {−Ĥint (t )ρ̂I(t )Ĥint (t − τ )}dτ

− 1

h̄2

∫ +∞

0
trE {Ĥint (t )Ĥint (t − τ )ρ̂I(t )}dτ. (A9)

3. Derivation of the master equation

In order to simplify Eq. (A9), first we use Eq. (A6) and ρ̂E ≈ |0E〉〈0E| to obtain

trE{ρ̂EF̂(r, t ) ⊗ F̂(r′, t − τ )} = h̄

2π i

∫ ∞

0
dωe−iωτ

[
G(r, r′, ω) − [

G(r′, r, ω)
]†]

, (A10a)

trE{F̂(r, t )ρ̂E ⊗ F̂(r′, t − τ )} = − h̄

2π i

∫ ∞

0
dωe+iωτ

[
G(r, r′, ω) − [

G(r′, r, ω)
]†]∗

. (A10b)

Next, we substitute Ĥint (t ) = −F̂(r0,t ) · p̂(t ) into Eq. (A9), taking into account the above identities. After some simplifica-
tions, using F̂ = F̂− + F̂+ with F̂− given by Eq. (A3), one may show that the system dynamics is controlled by ∂t ρ̂S,I = Lρ̂S,I

with the Lindblad operator L given by

Lρ̂S,I = − 1

2π h̄i
ρ̂S,I(t )

∫ +∞

0
dω

(∫ +∞

0
p̂(t − τ )e+iωτ dτ

)
A(ω) · p̂(t )

− 1

2π h̄i
p̂(t ) ·

∫ +∞

0
dωA(ω) ·

(∫ +∞

0
e−iωτ p̂(t − τ )dτ

)
ρ̂S,I(t )

− 1

2π h̄i

∫ +∞

0
dω

(∫ +∞

0
p̂(t − τ )e−iωτ dτ

)
· A∗(ω)ρ̂S,I(t ) · p̂(t )

− 1

2π h̄i
p̂(t ) ·

∫ +∞

0
dωA∗(ω)ρ̂S,I(t ) ·

(∫ +∞

0
e+iωτ p̂(t − τ )dτ

)
(A11)

and A(ω) = G(r0, r0, ω) − [
G(r0, r0, ω)

]†
. It is underlined that the master equation ∂t ρ̂S,I = Lρ̂S,I applies to an arbitrary atomic

system, i.e., may include the contributions from an arbitrary number of energy levels and can also account for the effect of the
spin magnetic moment.

4. Degenerate two-level systems

Next, we consider the particular case of an atom with only two (degenerate) energy levels. The ground states are denoted
by |gi〉 and the excited states by |e j〉, with i = 1, …, and j = 1, …, running over the different degenerate states. The energy
difference between the ground and excited states is h̄ωa so that the atom Hamiltonian is Ĥat = h̄ωa

∑
j |e j〉〈e j |. Furthermore, we

suppose the environment does not have a magnetic response (μ = μ0). In such a case, the effects of the spin magnetic moment
operator are expected to be negligible and we can use p̂ ≈ (p̂e 0)T . In fact, the interactions with the environment are mainly
ruled by quasistatic interactions (see Appendix C) and an environment with μ = μ0 does not backscatter the magnetic fields
created by the magnetic moment p̂m = μ0m̂s. It is, however, important to underline the effects of m̂s are not dropped altogether
in our analysis as they influence the gyroelectric response of the environment. The effects of radiation loss due to the precession
of the spin magnetic moment are discussed in Appendix E.

235154-12



SPONTANEOUS BREAKING OF TIME-REVERSAL … PHYSICAL REVIEW B 108, 235154 (2023)

Within these hypotheses, the dipole operator may be assumed of the type p̂(t ) = p̂−(t ) + p̂+(t ) with p̂−(t ) = p̂−e−iωat ,
p̂+(t ) = p̂+e+iω∗

a t , and p̂± (p̂+ = [p̂−]†) the operators in the Schrödinger picture determined only by the electric dipole operator
[p̂ ≈ ( p̂e 0 )T ]. For convenience, we include in ωa a small positive imaginary part (ωa → ωa + 0+i) that accounts for a
slow (adiabatic) switching of the interaction term. Typically, p̂− is an operator of the type p̂− = ∑

i, j γ i j |gi〉〈e j |, where γ i j is the
transition electric dipole moment (six vectors with the last three entries equal to zero) of the electronic transition |e j〉 → |gi〉.

In the previous conditions, ∫ +∞

0
e−iωτ p̂(t − τ )dτ = p̂−(t )

1

i(ω − ωa )
+ p̂+(t )

1

i(ω + ω∗
a )

. (A12)

Then, after straightforward simplifications Eq. (A11) becomes

Lρ̂S,I = − 1

2π h̄
ρ̂S,I(t )

∫ ∞

0
dω

(
p̂−(t ) · A(ω)

(ω + ωa )
+ p̂+(t ) · A(ω)

(ω − ω∗
a )

)
· p̂(t )

+ 1

2π h̄
p̂(t ) ·

∫ ∞

0
dω

(
A(ω)

(ω − ωa )
· p̂−(t ) + A(ω)

(ω + ω∗
a )

· p̂+(t )

)
ρ̂S,I(t )

+ 1

2π h̄

∫ ∞

0
dω

(
p̂−(t ) · A∗(ω)

(ω − ωa )
+ p̂+(t ) · A∗(ω)

(ω + ω∗
a )

)
· ρ̂S,I(t ) · p̂(t )

− 1

2π h̄
p̂(t ) · ρ̂S,I(t )

∫ ∞

0
dω

(
A∗(ω)

(ω + ωa )
· p̂−(t ) + A∗(ω)

(ω − ω∗
a )

p̂+(t )

)
. (A13)

Next, we switch back to the Schrödinger picture, so that the master equation becomes

∂t ρ̂S = −i
1

h̄

[
Ĥat, ρ̂S

]+ Lρ̂S, (A14)

where Ĥat is the atom Hamiltonian, ρ̂S = e−i(Ĥat/h̄)t ρ̂S,Ie−i(Ĥat/h̄)t is the reduced density matrix in the Schrödinger pic-
ture. Noting that A(ω)/2i is a Hermitian matrix, one may show that the Lindblad operator in the Schrödinger picture
satisfies

Lρ̂S = − i

h̄
ρ̂S(t )

(
p̂− · [G −]∗ · p̂ + p̂+ · [G+]† · p̂

)+ i

h̄

(
p̂ · G+ · p̂− + p̂ · [G −]T · p̂+)ρ̂S(t )

−i

h̄

(
p̂− · [G+]T

ρ̂S(t ) · p̂ + p̂+ · G −ρ̂S(t ) · p̂
)+ i

h̄

(
p̂ · [G −]†ρ̂S(t ) · p̂− + p̂ · [G+]∗

ρ̂S(t ) · p̂+), (A15)

where we introduced the tensors:

G+ = 1

2π i

∫ ∞

0+
dω

A(ω)

(ω − ωa )
, G − = −1

2π i

∫ ∞

0+
dω

A∗(ω)

(ω + ω∗
a )

. (A16)

In the above, the symbols † and T represent the Hermitian conjugate matrix and the transpose matrix, respectively. Note that
in the Schrödinger picture the operators p̂± are time independent. Furthermore, it is worth pointing out that the rotating wave
approximation was not applied.

In the calculation of G − the frequency ωa can be assumed real valued because the integral is free of singularities.
Consequently, G − is a Hermitian tensor:

G − = [
G −]†. (A17)

In contrast, the integrand associated with G+
has a singularity and hence the imaginary part of ωa cannot be dropped. In the

next section, it is shown that G+ = G − G−
with G = G(r0, r0, ωa ) the system Green’s function. Furthermore, we shall show

that G−
can be written in terms of an integral over the imaginary frequency axis.

Using G − = [
G −]† in Eq. (A15), one can prove that for the case of a nondegenerate two-level system (with a single excited

state and single ground state) it reduces to the results derived in previous works [55–57] when the rotating wave approximation
is applied to the Lindblad operator.

5. The functions Ḡ±

Let us now relate the tensors G±
(see also Ref. [58]). To begin with we use A(ω) = G(r0, r0, ω) − [G(r0, r0, ω)]

†
to write

G − =
[

1

2π i

∫ ∞

0+
dω

G(r0, r0, ω)

(ω + ωa )

]∗
+ 1

2π i

∫ ∞

0+
dω

[
G(r0, r0, ω)

]T
(ω + ω∗

a )
. (A18)
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Performing a Wick rotation, one can deform the integration path to the positive imaginary frequency axis without crossing
any poles of the integrand in the first quadrant of the complex plane (Re{ω} > 0 and Im{ω} > 0):

G − =
[

1

2π

∫ ∞

0+
dξ

G(r0, r0, iξ )

(iξ + ωa )

]∗
+ 1

2π

∫ ∞

0+
dξ

[
G(r0, r0, iξ )

]T
(iξ + ω∗

a )
. (A19)

Taking into account that G(r0, r0, iξ ) is real valued, it follows that

G − = 1

2π

∫ ∞

0+
dξ

⎡
⎣G(r0, r0, iξ )

(ωa − iξ )
+
[
G(r0, r0, iξ )

]T
(ωa + iξ )

⎤
⎦, (A20)

where we dropped the infinitesimal imaginary part (0+i) of ωa in the final formula.
We can proceed in a similar manner for the tensor G+

. Different from the previous case, now the Wick rotation will cross a
pole of the integrand at ω = ωa. A straightforward analysis shows that

G+ = G(r0, r0, ωa ) − G −. (A21)

The Green’s function G(r0, r0, ωa ) can be decomposed as G = Gself + Gscat
. The first term is the divergent self-contribution

(the real part of Ḡself has a singularity), which is discarded. The second term is the scattering part of the Green’s
function.

APPENDIX B: MASTER EQUATION FOR THE
GROUND SUBSPACE

In this appendix, we focus our analysis in the ground
space of the reduced density matrix. The ground subspace is
generated by objects of the type |gm〉〈gn| with m, n running
over the degenerate ground states. As in Appendix A4, we
suppose that the dipole moment operator is p̂ = p̂− + p̂+ with
p̂− = ∑

i, j γ i j |gi〉〈e j | with p̂ ≈ (p̂e 0)T .
To begin with, let us prove that the ground space is closed,

i.e., that when the Lindblad operator [Eq. (A15)] acts on an
element of the ground subspace it generates another element
of the ground subspace. To this end, we note that if ρ̂S(t ) is
in the ground subspace, then ρ̂S(t )p̂+ = p̂−ρ̂S(t ) = 0. Taking

also into account that G − = [
G −]† [Eq. (A17)], it follows

that

Lρ̂S|ground = i

h̄

(
p̂ · [G −]T · p̂+ρ̂S(t ) − ρ̂S(t )p̂− · [G −]T · p̂

)
.

(B1)
Furthermore, it is clear that if ρ̂S(t ) is in the ground sub-

space, then p̂+
i p̂+

i′ ρ̂S(t ) = 0 = ρ̂S(t ) p̂−
i p̂−

i′ . This observation
shows that

Lρ̂S|ground

= i

h̄

(
p̂− · [G −]T · p̂+ρ̂S(t ) − ρ̂S(t )p̂− · [G −]T · p̂+).

(B2)

Evidently, the element in the right-hand side of the above
equation is an element of the ground subspace. This confirms
that the ground subspace is indeed closed.

Equation (B2) can be rewritten in a more compact way in
terms of a commutator:

Lρ̂S|ground = i

h̄

[
p̂− · [G −]T · p̂+, ρ̂S(t )

]
. (B3)

Thereby, it follows that the dynamics of the reduced den-
sity matrix ∂t ρ̂S = −i 1

h̄ [Ĥat, ρ̂S] + Lρ̂S [Eq. (A14)] may be

reduced to a von Neumann equation of the type

∂t ρ̂S = −i
1

h̄

[
Ĥef , ρ̂S

]
(ground subspace), (B4)

with Ĥef = Ĥat − p̂− · [G −]T · p̂+ the effective Hamiltonian
of the ground. Since Ĥat restricted to the ground subspace is a
constant, one can take

Ĥef = −p̂− · [G −]T · p̂+(ground subspace). (B5)

The effective Hamiltonian is determined by the Green’s
function G − [Eq. (A20)], which depends on the static mag-
netic field B0 created by the intrinsic spin magnetic moment
of the electron. Thus, as further discussed in the main text,
Ĥef is a function of the reduced density matrix and Eq. (B4)
is a nonlinear master equation. As the reduced density matrix
is ruled by a von Neumann equation, for a pure state it may
be assumed of the form ρ̂S(t ) = |ψ (t )〉〈ψ (t )| for all time
instants, with |ψ (t )〉 a vector in the ground subspace satisfying
the nonlinear Schrödinger equation:

ih̄
∂

∂t
|ψ (t )〉 = Ĥef (B0)|ψ (t )〉. (B6)

For the geometry of the main text, the static magnetic field
is given by

B0 = μ0

4πd3
(3ẑ ⊗ ẑ − 1) · ms, with ms = 〈ψ (t )|m̂s|ψ (t )〉

(B7)
and m̂s the electron spin magnetic moment operator. It is
underlined that the previous analysis applies to an arbitrary
degenerate two-level system with an arbitrary number of de-
generate excited (ground) states.

Supposing that the ground subspace is generated by two
states (e.g., connected by time-reversal symmetry), |g1〉 and
|g2〉, it is possible to write |ψ (t )〉 = c1(t )|g1〉 + c2(t )|g2〉. The
dynamics of the coefficients c1(t ), c2(t ) is ruled by

ih̄∂t

(
c1

c2

)
= Hef (c1, c2) ·

(
c1

c2

)
, (B8)
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where Hef (c1, c2) = [hm,n] is a 2 × 2 matrix (m, n = 1, 2)
with entries

hm,n = 〈
gm|Ĥef (B0)|gn

〉
. (B9)

Using Eq. (A20), it is simple to show that

hm,n = − 1

2π

∫ ∞

0+
dξ
〈
gm|p̂− · [G(r0, r0, iξ )

]
T · p̂+|gn

〉 1

ωa − iξ

− 1

2π

∫ ∞

0+
dξ
〈
gm|p̂− · G(r0, r0, iξ ) · p̂+|gn

〉 1

ωa + iξ
.

(B10)

This can also be rewritten as

hm,n(B0) =−tr

{〈
gm|p̂− ⊗ p̂+|gn

〉 ·
(

1

2π

∫ ∞

0+
dξ

G(r0, r0, iξ )

ωa − iξ

+
[
G(r0, r0, iξ )

]
T

ωa + iξ

)}
. (B11)

It should be noted that in the above formulas the Green’s
function depends on B0, and hence also on the coefficients
c1(t ), c2(t ). It may be checked that the effective Hamilto-
nian precisely agrees with the result obtained by applying
lowest-order perturbation theory to the full Hamiltonian (see
Appendix E of Ref. [44]). As previously noted, the above
results are valid for a degenerate two-level system with the
dimension of the excited subspace arbitrary. In the main text,
we restrict our attention to the case where the excited sub-
space is generated by only two states (|e1〉 and |e2〉) linked by
time-reversal symmetry. For completeness, we mention that
had the contribution from the magnetic dipole been retained,
Eq. (B11) would get an additional term with the same struc-
ture with p̂− = p̂+ → (0 p̂m)T and ωa = 0.

APPENDIX C: EFFECTIVE HAMITONIAN WITH A
QUASISTATIC APPROXIMATION

In the following, we obtain approximate analytical formu-
las for the effective Hamiltonian matrix elements [Eq. (8)]
neglecting retardation effects (quasistatic approximation).

The elements hm,n are written in terms of the system
Green’s function G(r0, r0, iξ ) evaluated in the imaginary fre-
quency axis. The Green’s function can be decomposed into

self and scattering terms: G = Gself + Gscat
. The self term

corresponds to the field radiated by a dipole (electric or mag-
netic) alone in free space [see Eq. (A4)]. We will evaluate
G using a quasistatic approximation, which is typically very
accurate for near-field interactions. In the quasistatic limit and
for a nanoparticle with a trivial magnetic response (μ = μ0)
the magnetic part of Gscat

vanishes. This is so because the
magnetic particle does not scatter magnetic fields when μ =
μ0. Thus, we can safely focus on the electric part of Gscat

associated with electric excitations (see also Appendix A4).
The quasistatic field created by an electric dipole with

dipole moment pe is Eself = 1
4πε0r3 (3r̂ ⊗ r̂ − 1) · pe. The

Green’s function term Gscat
gives the field backscattered by

the nanoparticle due to Eself . The local (incident) field at the

nanoparticle position is

Enp = Cint · pe

ε0
, with Cint = 1

4πd3

(
3ẑ ⊗ ẑ − 1

)
. (C1)

We took into account that the relative position of the atom
with respect to the nanoparticle is given by the vector d ẑ
(see Fig. 1). The field Enp separates the electric charges of
the nanoparticle creating an electric dipole pnp. It is given
by pnp = ε0αnp · Enp, where αnp(ω) is the nanoparticle po-
larizability. The electric polarizability of the gyroelectric
nanosphere is calculated in Appendix D using a quasistatic
approximation [Eq. (D8)].

The field backscattered at the atom position is evidently
Ebs = Cint · pnp/ε0. It can also be written in terms of the
primary excitation as Ebs = Cint · αnp · Cint · pe/ε0. This dis-
cussion proves that the scattering part of the Green’s function
is given by the tensor:

Gscat
(r0, r0, iξ ) = 1

ε0
Cint · αnp(iξ ) · Cint. (C2)

In summary, within a quasistatic approximation the integral
in Eq. (8) can be evaluated with the substitution G → Gscat

with Gscat
defined as in Eq. (C2). Again, we underline that

even though the atom has a spin magnetic dipole moment, the
magnetic part of the Green’s function can be safely ignored
because the nanoparticle itself is assumed nonmagnetic (μ =
μ0). Nevertheless, the effects of the spin magnetic moment
are still relevant as they tailor the electric response of the
nanoparticle.

Next, we obtain an explicit expression for Eq. (8). To be-
gin we note that Q(m,n) = 〈gm|p̂− ⊗ p̂+|gn〉 has the following
symmetries:

Q(m,n) = Q(n,m)† and Q(m,n) = 〈
T gm|p̂− ⊗ p̂+|T gn

〉∗
. (C3)

The first identity follows from the fact that p̂ is Hermi-
tian and Q(m,n) can be expressed as Q(m,n) = 〈gm|p̂ ⊗ p̂|gn〉.
On the other hand, the second identity uses the formula
〈gm|Â|gn〉 = 〈T gm|Â|T gn〉∗, which is valid for a generic time-
reversal invariant operator Â [44]. In particular, combining
the two identities and using |g2〉 = |T g1〉 and |g1〉 = −|T g2〉
one sees that the Q(m,n) matrices are antisymmetric for m �= n
and that Q(1,1) = Q(2,2),∗. The discussed symmetries are in
agreement with Eq. (11) for a Kramers two-level system.

On the other hand, the Green’s function can be decomposed
into symmetric and antisymmetric parts G = GS + GAS with
GS = 1

2

(
G + GT

)
and GAS = 1

2

(
G − GT

)
. Since the trace of

the product of a symmetric and antisymmetric matrix van-
ishes, it follows that Eq. (8) can be written as

hm,n(B0) = −δmn
1

2π

∫ ∞

0+
dξ tr

{
Q(m,m) · GS

}
×
(

1

ωa − iξ
+ 1

ωa + iξ

)

− 1

2π

∫ ∞

0+
dξ tr

{
Q(m,n) · GAS

}
×
(

1

ωa − iξ
− 1

ωa + iξ

)
. (C4)
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Using now Q(1,1) = Q(2,2),∗ and Q(m,m) = Q(m,m)† one sees
that tr

{
Q(1,1) · GS

} = tr
{
Q(2,2) · GS

}
. It was taken into ac-

count that for generic matrices A, B one has tr{A · B} =
tr{B · A} = tr{BT · AT }. Thereby, we find that

hm,n(B0) = δmnE0(B0)

− 1

2π

∫ ∞

0+
dξ tr

{
Q(m,n) · GAS

} 2iξ

ω2
a + ξ 2

, with

(C5a)

E0(B0) = − 1

2π

∫ ∞

0+
dξ tr

{
Q(m,m) · GS

} 2ωa

ω2
a + ξ 2

. (C5b)

The term associated with E0(B0) corresponds to a diagonal
matrix and represents a Lamb shift due to the interaction with
the environment.

To proceed, we use Eqs. (C2) and (D8) to evaluate GS and
GAS. As usual, we ignore the self-field terms. Since Cint is a
symmetric tensor, it is clear that Gl = 1

ε0
Cint · αnp,l (iξ ) · Cint

(l = S, AS) with αnp,l the symmetric and antisymmetric parts
of the polarizability tensor. From Eq. (D8), the antisymmet-
ric part is given by αnp,AS = α0

3iεgû×1
(εt +2)2−ε2

g
with α0 = 4πR3.

The symmetric part is determined by the remaining terms in
Eq. (D8). Two of the terms (the first and last) are independent
of B0 and hence give rise to a Lamb shift that is independent
of the atomic state, with no relevant physical consequences
in our analysis. Hence, ignoring this Lamb shift, we can
use the replacement αnp,S → −α0

3(εt +2)1t

(εt +2)2−ε2
g

in the evaluation

of E0(B0). The previous considerations show that the matrix
elements of the effective Hamiltonian are

hm,n = δmnE0(B0) + 3α0

πε0
tr
{
Q(m,n) · Cint · (û × 1

) · Cint
}

×
∫ ∞

0+
dξ

εg

(εt + 2)2 − ε2
g

ξ

ω2
a + ξ 2

, (C6a)

E0(B0) = 3α0

πε0
tr
{
Q(m,m) · Cint · 1t · Cint

}
×
∫ ∞

0+
dξ

(εt + 2)

(εt + 2)2 − ε2
g

ωa

ω2
a + ξ 2

. (C6b)

The permittivity elements (εt , εg) are evaluated with ω = iξ .
Next, we use Cint = 1

4πd3 (3ẑ ⊗ ẑ − 1) to obtain the follow-
ing results:

Cint · (û × 1
) · Cint = 1

16π2 d6
w × 1,

with w = û + 3
(
û × ẑ

)× ẑ. (C7a)

Cint · 1t · Cint

= 1
16π2 d6

[
1 − û ⊗ û + {

3 − 9(û · ẑ)2}ẑ ⊗ ẑ

+ 3û · ẑ
(
û ⊗ ẑ + ẑ ⊗ û

)]
. (C7b)

It is recalled that û is the direction of the magnetic field
created by the spin magnetic moment of the atom B0. Evi-
dently, B0 is rather weak and thereby it is justified to consider
its effects perturbatively. From the previous formulas, one can
see that ε0 only depends on |B0|2, whereas the contribution
from the antisymmetric part of the Green’s function [integral

in Eq. (C6a)] is proportional to |B0|. Hence, to leading order
one can safely drop the term E0. With such an approximation,
we finally obtain

hm,n ≈ −iA
α0

16ε0π3 d6
tr

{
Q(m,n) ·

(
ωef

ωp
× 1

)}
, (C8)

where ωef = ω0 + 3(ω0 × ẑ) × ẑ, ω0 = ω0û = −q
m∗ B0 is the

oriented cyclotron frequency, and A is the dimensionless real-
valued parameter:

A =
∫ ∞

0+
dξ

iεg/ω0

(εt + 2)2 − ε2
g

3ξωp

ω2
a + ξ 2

. (C9)

Taking into account that � � ω0 for realistic nanoparti-
cles, one sees from Eq. (6) that the integral can be evaluated

using εt ≈ 1 + ω2
p

ξ (ξ+�) and iεg

ω0
≈ 1

ξ

ω2
p

(ξ+�)2 . Furthermore, the

term ε2
g in the denominator of the integral is negligible. These

considerations show that to leading order the parameter A is a
constant (i.e., it is independent of the atomic state):

A ≈
∫ ∞

0
dξ

1[
3ξ (ξ + �) + ω2

p

]2 3ξ 2ω3
p

ω2
a + ξ 2

. (C10)

APPENDIX D: THE POLARIZABILITY OF THE
NANOPARTICLE

In this appendix, we calculate the polarizability of the
spherical nanoparticle using a quasistatic approximation (see
also Ref. [59]). Specifically, neglecting the effects of time
retardation, one may assume that E ≈ −∇φ with φ an electric
potential that satisfies ∇ · (ε̄ · ∇φ) = 0. In order to find the
electric polarizability, it is supposed that the nanoparticle is
illuminated with a constant electric field (Einc) described by
the electric potential −Einc · r. Then, for a nanoparticle stand-
ing in air the total electric potential may be written as

φout = −Einc · r + p1 · r̂
4πε0r2

, r > R, (D1a)

φint = −E1 · r, r < R. (D1b)

The field outside the nanoparticle is the superposition of
the incident field of the field created by an (unknown) electric
dipole (p1). The field inside the nanoparticle (E1) is a constant.
Note that both φint and φout satisfy ∇ · (ε̄ · ∇φ) = 0 in the
relevant region of space. In order to determine the unknowns
p1 and E1 one needs to enforce suitable boundary conditions
at r = R.

The continuity of the electric potential is ensured by

EincR − p1

4πε0R2
= E1R. (D2)

The continuity of the electric displacement vector is guaran-
teed by the condition

ε0

(
Einc + 2p1

4πε0R3

)
= ε̄ · E1. (D3)

Combining the two boundary conditions, one finds that

ε0

(
Einc + 2p1

ε0α0

)
= ε̄ ·

(
Einc − p1

ε0α0

)
(D4)
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with α0 = 4πR3. The nanoparticle electric polarizability αnp

is defined in such a way p1 = ε0αnp · Einc. Clearly, the polar-
izability satisfies

1 + 2αnp

α0
= ε̄

ε0
·
(

1 − αnp

α0

)
. (D5)

Solving for αnp one finally concludes that

αnp = α0

(
ε̄

ε0
+ 213×3

)−1

·
(

ε̄

ε0
− 13×3

)
. (D6)

The electric polarizability may also be written as

αnp = α0

[
13×3 − 3

(
ε̄

ε0
+ 213×3

)−1
]
. (D7)

It should be mentioned that the quasistatic polarizability
does not account for the effect of radiation loss, which is
typically negligible as compared to the material loss.

For the particular case of a gyroelectric permittivity re-
sponse as in Eq. (5) the polarizability can be explicitly written

as

αnp = α0

[
13×3 − 3

(εt + 2)2 − ε2
g

[
(εt + 2)1t − iεgû × 1

]

− 3

εa + 2
û ⊗ û

]
, (D8)

with α0 = 4πR3α0 = 4πR3.

APPENDIX E: LINDBLAD MASTER EQUATION WITH
RADIATION LOSS

In this appendix, we generalize the quantum master equa-
tion (B4) in order to include perturbatively the effects of
the radiation loss due to the precession of the atomic spin
magnetic moment.

1. Master equation without radiation loss

To begin with, it is useful to write explicitly Eq. (B4) in
terms of the density matrix elements ρ̂S(t ) = ∑

i, j ρi j |gi〉〈g j |
and of the effective Hamiltonian elements [Eq. (19)]. Taking
into account that h22 = −h11 one finds that

∂t

(
ρ11 ρ12

ρ21 ρ22

)
= −i

1

h̄

(
h12ρ21 − h21ρ12 2h11ρ12 + h12(ρ22 − ρ11)

−2h11ρ21 − h21(ρ22 − ρ11) −(h12ρ21 − h21ρ12)

)
. (E1)

The elements hi j are defined as in Eq. (19) with the replace-
ments cic∗

j → ρi j , so that h11 = ±Ed(ρ11 − ρ22) and h12 =
h∗

21 = ±Ecrρba with (a, b) = (1, 2) for the Hef,+ system and
(a, b) = (2, 1) for the Hef,− system. The time evolution of
both pure and mixed atomic states can be determined using
the above equation.

2. Radiation loss

Next, we take into account the effects of radiation loss
perturbatively. A time-crystal state originates a time-varying
magnetic dipole moment, and hence emits radiation to the far
field. It should be noted that in our model the electric dipole
moment vanishes in the ground subspace and hence cannot
emit radiation.

The derivation of the master equation up to the end
of Appendix A3 is completely general. In particular,
Eq. (A11) incorporates the magnetic dipole (p̂m) effects
in the operator p̂ = (p̂e p̂m )T . We recall that p̂(t ) repre-
sents the dipole operator in the interaction picture [p̂(t ) =
exp(+ i

h̄ Ĥatt )p̂ exp(− i
h̄ Ĥatt )]. Since (p̂m )i = μ0

h̄
2

q
me

σ i with σ i

the Pauli matrix, it follows that p̂m(t ) = p̂m in the ground sub-
space. In other words, the operator p̂m(t ) remains independent
of time in the interaction picture. It is possible to circumvent
this deficiency, by incorporating the effective Hamilto-
nian into the atom Hamiltonian. With this approximation,
we find

p̂m(t ) ≈ exp

(
+ i

h̄
Ĥeft

)
p̂m exp

(
− i

h̄
Ĥeft

)
. (E2)

For simplicity, we restrict our analysis to the case wherein
Ĥef is approximately diagonal (h12 ≈ 0) and h22 = −h11

(|γc| � |γd|). Then, straightforward calculations show that

p̂m(t ) = p̂m0 + p̂−
me−iωmt + p̂+

me+iωmt (E3a)

with p̂m0 some operator independent of time, p̂−
m=γm|g2〉〈g1|,

p̂+
m = (p̂−

m )†, and

γm = μ0
h̄

2

q

me

⎛
⎝ 1

+i
0

⎞
⎠, ωm = 2h11

h̄
. (E3b)

Note that ωm is precisely the spin precession frequency
when |γc| � |γd| [Eq. (22)]. As in Appendix A, we include
a small positive imaginary part in ωm to model an adiabatic
switching of the interaction term. With this modification,
the magnetic dipole operator becomes p̂m(t ) → p̂−

me−iωmt +
p̂+

me+iω∗
mt , where we dropped the time-independent term p̂m0

which plays no role in the dynamics. Substituting p̂m(t ) →
p̂−

me−iωmt + p̂+
me+iω∗

mt into Eq. (A11), the Lindblad operator in
the Schrödinger picture gets an additional term (Lm) due to the
magnetic dipole radiation such that [compare with Eq. (A15)]

Lmρ̂S = − i

h̄
ρ̂S(t )

(
p̂−

m · [Gmm
− ]∗ · p̂m + p̂+

m · [G+
mm

]† · p̂m
)

+ i

h̄

(
p̂m · G+

mm · p̂−
m + p̂m · [Gmm

− ]
T · p̂+

m

)
ρ̂S(t )

−i

h̄

(
p̂−

m · [G+
mm

]
T ρ̂S(t ) · p̂m + p̂+

m · G −
mmρ̂S(t ) · p̂m

)
+ i

h̄

(
p̂m · [Gmm

− ]†
ρ̂S(t ) · p̂−

m+p̂m · [G+
mm

]∗
ρ̂S(t ) · p̂+

m

)
.

(E4)
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Here, G±
mm are defined as in Eq. (A16) with the replace-

ment ωa → ωm. Furthermore, G±
mm refer to the magnetic part

of the Green’s function (right-lower 3 × 3 subblock of the
6 × 6 tensor). Similar to Appendix A5, G±

mm can be expressed
in terms of the system Green’s function. However, one needs
to be careful because here ωm = 2h11

h̄ can be either positive or
negative, depending on the system state. For a positive ωm,
the results in Eqs. (A20) and (A21) hold true. We can ignore
the nonresonant part of the Green’s function (G−

mm) as it is

associated with a Lamb shift. Thus, for ωm > 0 we can replace
G−

mm → 0 and G+
mm → Gmm in Eq. (E4). Since the nanopar-

ticle does not have a magnetic response, the Green’s function
can be identified with the free-space Green’s function, so that
Im{Gmm} = 1

6πμ0

(
ωm
c

)3
13×3. We recall that the imaginary part

of the Green’s function controls the spontaneous emission de-
cay in free space. In summary, for ωm > 0 the radiation from
the magnetic dipole precession is modeled by an operator Lm

such that

Lmρ̂S = 1

6πμ0 h̄

(ωm

c

)3[−ρ̂S(t )p̂+
m · p̂−

m − p̂+
m · p̂−

mρ̂S(t ) + 2p̂−
m · ρ̂S(t ) · p̂+

m

]
, ωm > 0 (E5)

We took into account that p̂+
m · p̂m = p̂+

m · p̂−
m = p̂m · p̂−

m and that p̂−
m · ρ̂S(t ) · p̂m = p̂−

m · ρ̂S(t ) · p̂+
m and p̂m · ρ̂S(t ) · p̂+

m = p̂−
m ·

ρ̂S(t ) · p̂+
m. Clearly, the formula for ωm < 0 can be obtained from the previous one with the replacements ωm → −ωm, p̂−

m → p̂+
m,

and p̂+
m → p̂−

m. So, the operator is generally defined as

Lmρ̂S = −�sp

2

{
ρ̂S(t )|g1〉〈g1| + |g1〉〈g1|ρ̂S(t ) − 2|g2〉〈g1|ρ̂S(t )|g1〉〈g2|, ωm > 0

ρ̂S(t )|g2〉〈g2| + |g2〉〈g2|ρ̂S(t ) − 2|g1〉〈g2|ρ̂S(t )|g2〉〈g1|, ωm < 0,
(E6)

where �sp = 2 |γm |2
6πμ0 h̄

( |ωm |
c

)3
is the spontaneous emission rate

due to the magnetic spin precession in free space. Using
|γm|2 = 2

(
μ0

h̄
2

q
me

)2
the decay rate �sp can also be written as

�sp = αe,fs
2

3
|ωm|

(
h̄|ωm|
mec2

)2

= gsp
2Ed

h̄
|ρ11 − ρ22|3, (E7)

where αe,fs is the electron fine-structure constant and gsp =
αe,fs

8
3

( Ed
mec2

)2
is a dimensionless factor. To conclude, we note

that Lmρ̂S is represented by the following matrix in the spin-
up and spin-down basis:

Lmρ̂S → −�sp

(
ρ̃

ρ12

2
ρ21

2 −ρ̃

)
with ρ̃ =

{
ρ11, ωm > 0
−ρ22, ωm < 0.

(E8)
The full master equation is ∂t ρ̂S = −i 1

h̄ [Ĥef , ρ̂S] + Lmρ̂S

and can be written explicitly by adding to the right-hand side
of Eq. (E1) to the matrix Lmρ̂S defined in the above equation.
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