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Comparison of Numerical Reduced Order Models of a Generic

UCAV Conőguration using a New Displacement Grid Method

Baptiste Isnard ∗, Geoffrey Tanguy †, Dominique Farcy ‡, Alain Dugeai ğ, Eric Garnier ¶, Jean-Marc Foucaut ‖

Univ. Lille, CNRS, ONERA, Arts et Metiers Institute of Technology, Centrale Lille, UMR 9014 - LMFL - Laboratoire de

Mécanique des Fluides de Lille - Kampé de Fériet, F-59000 Lille, France

This paper presents several approaches to model the unsteady and non-linear longitudinal

aerodynamics of a UCAV conőguration using computational ŕuid dynamics. The linear and

non linear indicial response methods, the linear quasi-steady and the linear unsteady models

are part of the aerodynamic reduced order models studied in this work. The methods associated

with the identiőcation of the models unknowns are explained and based on URANS simulations

with grid displacement. A new method for grid displacement is presented and validated through

indicial simulations. This method is twice as fast as the overset method. The generation of

databases for the different aerodynamic models is then described. The different reduced order

models are then evaluated compared with CFD simulations of pitch forced oscillations for

different frequencies and different initial angles of attack. The linear unsteady model appears to

be more efficient to model different rotation rates compared with the quasi-steady model. The

predictions of the non linear indicial method are the most accurate. The trends and the shapes

of the evolution of the longitudinal coefficient are in good agreement with CFD simultions at

low angles of attack, whereas for higher angles of attack, some discrepancies are observed

especially on the pitch coefficient. The study of implementation costs also shows that the cost of

the indicial method is relatively low in view of its accuracy compared with other models.

I. Nomenclature

𝑎𝑖𝛼 = regressor affecting the output of the transfert function [-]

𝑏 = half span [m]

𝐵𝑎, 𝐵𝑝 , 𝐵𝑇 = orthonormal basis of the different trihedron [-]

𝐶𝐴, 𝐶𝑠 , 𝐶𝑁 = axial, side and normal force coefficient in body axis [-]

𝐶𝐷 , 𝐶𝑦𝑎, 𝐶𝐿 = drag, side and lift force coefficient [-]

𝐶𝑙 , 𝐶𝑚, 𝐶𝑛 = roll, pitch and yaw moment coefficient [-]

𝐶𝑖0 = static coefficicent for parameter i=D, ya, L, l, m, n [-]

𝐶𝑖𝛼 , 𝐶𝑖𝛽 = static derivative for parameter i=D, ya, L, l, m, n [1/rad]

𝐶𝑖𝑝∗ , 𝐶𝑖𝑞∗ , 𝐶𝑖𝑟∗ = damping coefficient for parameter i=D, ya, L, l, m, n [1/rad]

𝐶𝑖 ¤𝛼∗ , 𝐶𝑖 ¤𝛽∗
= unsteady dynamic coefficient for parameter i=D, ya, L, l, m, n [1/rad]

𝐶
𝑑𝑦𝑛

𝑖𝛼
= dynamic coefficicent for parameter i=D, ya, L, l, m, n [-]

𝑐𝑟𝑒 𝑓 = reference chord [m]

𝑓 = frequency [Hz]

𝐹𝑥𝑎 , 𝐹𝑦𝑎 , 𝐹𝑧𝑎 = drag, side and lift force [N]

𝐹𝑥𝑝 , 𝐹𝑦𝑝 , 𝐹𝑧𝑝 = axial, side and normal force in body axis[N]

𝐼𝑖𝛼 , 𝐼𝑖𝑞∗ = Angle of attack and pitch rate indicial responses for parameter i=D, ya, L, l, m, n [1/rad]

𝑀 = Mach number [-]

𝑀𝑥𝑝 , 𝑀𝑦𝑝 , 𝑀𝑧𝑝= roll, pitch and yaw moment in body axis [N.m]
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𝑂 = center of trihedron [-]

𝑝, 𝑞, 𝑟 = roll, pitch and yaw rates [rad/s]

𝑝∗, ¤𝛼∗, 𝑓 ∗, 𝑒𝑡𝑐. = normalized quantities [-]

𝑃 = upstream pressure [Pa]

𝑅𝑎, 𝑅𝑝 , 𝑅𝑇 = aerodynamic, aircraft and terrestrial trihedron [-]

𝑅𝑒 = Reynolds number [-]

𝑡 = time [s]

𝑇 = temperature [K]

𝑠 = Laplace variable [1/s]

𝑆𝑟𝑒 𝑓 = reference surface [𝑚2]

𝑉 = freestream velocity [m/s]

𝑥𝑎, 𝑦𝑎, 𝑧𝑎 = vectors of the aerodynamic trihedron [-]

𝑥𝑝 , 𝑦𝑝 , 𝑧𝑝 = vectors of the aircraft trihedron [-]

𝑥𝑇 , 𝑦𝑇 , 𝑧𝑇 = vectors of the terrestrial trihedron [-]

𝛼 = angle of attack (AOA) [rad]

𝛼𝑘 = motion amplitude [rad]

𝛽 = angle of sideslip (AOS) [rad]

Φ,Θ,Ψ = roll, pitch and yaw angles [rad]

𝜌 = air density [𝑘𝑔/𝑚3]

𝜏𝑖𝛼 = time constant affecting the output of the transfert function [s]

𝜇 = viscosity [Pa.s]

𝜇𝑡 = turbulent viscosity [Pa.s]

𝜔 = angular rate [rad/s]

II. Introduction

T
he study of an aircraft behaviour in the near-stall or post-stall ŕight domain allows the quantiőcation of its

manoeuvrability and its aerodynamic performances. For manoeuvres in these ŕight domains, combat aircraft have

to be highly manoeuvrable and efficient especially at low speeds and high angles of attack (AOAs). In these conditions,

the behaviour of these aircraft is characterised by complex aerodynamics of a vortical nature, including non-linearities

and hysteresis phenomena, all coupled with all degrees of freedom of the aircraft [1]. Thus, the unsteady nature of the

vortical ŕow can induce some alterations in the position of local efforts around the aircraft and lead to variations in the

overall efforts [2, 3]. Hence, signiőcant changes can be observed in ŕight stability and manoeuvrability. In order to

predict and consider all ŕight scenarios, it is therefore essential to have an aeromechanical model of the aircraft. The

development of a reliable representation of the aerodynamic torsor appears to be the main challenge. Its characterisation

is imperative to evaluate the manoeuvrability capabilities of an aircraft and to design effective control laws, allowing to

ensure the safety in ŕight.

Airliner and military aircraft geometries have been extensively studied [4ś9] in order to investigate control problems

in extended ŕight domains, particularly at low speeds and high AOAs. In the context of these researches, the study

of UCAV (Unmanned Combat Air Vehicle) formulas was at the heart of the collaborative work carried out by NATO

from 2010 to 2017. It is during the NATO RTO Task group AVT-161, that the generic UCAV SACCON (Stability And

Control Conőguration) has been the subject of numerous numerical and experimental works [5ś12]. The experience

acquired during these various collaborations on the SACCON geometry has enabled to highlight that the traditional,

mainly linear, approaches to modelling the aerodynamic torsor are insufficient. Indeed, the non-linear behaviour

observed at low speed and high AOA is not modelled [10]. These modelling problems are generally not signiőcant for

commercial aircraft manoeuvring at relatively low rotation rates and amplitudes. However, for modern combat aircraft,

such as the SACCON geometry, predictions of static and dynamic behaviour fail due to highly non-linear aerodynamic

characteristics dominated by vortical ŕow [13]. This can lead to costly non-linear aerodynamic problems that were not

discovered until ŕight testing [13]. It is now widely recognised that it is essential to improve the modelling of unsteady

and non-linear aerodynamic responses during these manoeuvres, both to maximise combat capability and to prevent

accidental deviations from controlled ŕight. To this end, a wide range of linear and non-linear aerodynamic modelling

techniques, known as reduced order models (ROMs), have been developed in recent years. Moroever, the emergence of

CFD has enriched our understanding on these non-linear unsteady phenomena and has helped to limit the cost of wind

tunnel tests and ŕight testing.

Among the popular ROMs, the linear quasi-steady model [8ś10, 14ś16] is the most common. The coefficients of
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the model are determined by the analysis of forced oscillations at only one given frequency. For a forced oscillation

with a different frequency, the rotation rates and the hysteresis phenomena are changed. This leads to a dependence of

the model coefficients on the frequency [10, 17]. Therefore, the linear quasi-steady model does not take into account

unsteady aerodynamic effects and it is not well suited for the analysis of a high performance aircraft with highly nonlinear

and unsteady aerodynamics [13, 18]. This model can be improved in an linear unsteady model by adding a dynamic

coefficient, solution of a differential equation, allowing to get away from this frequency dependence [4, 17]. A non-linear

model [10] can also be constructed. It is able to model, close to perfection, the evolution of the aerodynamics coefficients

at high AOA. However, the model stays dependent on the frequency of the parameters identiőcation. Other models

so-called state-space model such as the Goman and Khrabrov model [19] and its derivatives [3, 20], take into account

the dependence of the aerodynamic coefficients with physical parameters such as the position of the vortex breakdown

but cannot model complex unsteady and non-linear variations. More recently, ROMs based on the physical responses of

the dynamic system to a variation in ŕight parameters have emerged such as the indicial method [5, 14, 21]. Ghoreyshi

et al. [22] have brought to light the application of this method based on a CFD grid displacement approach allowing

imposed motions which are not achievable in wind tunnel. This model does not depend on the frequency. A linear and

non-linear development of the indicial method [5, 14] were applied for the prediction of unsteady aerodynamic loads

for imposed trajectories. Comparisons between the indicial method and CFD computations proved its high efficiency.

Finally, the last kind of model is based on neural networks (RBF, SRBF) [5, 23]. These models require special training

manoeuvres to capture the dynamics of the system of interest. These methods are generally more expensive to develop

compared to other approaches and the physical interpretation that follows is much more complex or impossible. So, no

matter what ROM is used, its purpose is to quickly calculate the aerodynamic forces and moments of a ŕight manoeuvre.

The aim of this paper is to determine the performance of differrent ROMs in terms of accuracy on the predicted

aerodynamic coefficients compared with those given by CFD simulations. The computational cost for the implementation

of ROMs will also be compared. The present work will focus on the implementation of different ROMs based on

numerical simulations only. It will be centered on the study of linear ROMs and indicial method for the modelling of

longitudinal coefficients only. This will allow the comparison of classical linear model with the indicial method, which

can be considered as one of the most powerful numerical method in the accuracy of the results [5]. In order to reduce the

computational cost of the different ROMs, this work presents a new CFD method of grid displacement calculation which

does not need any background mesh. This approach proves to be much more efficient than the classical overset method.

The őrst part of this article presents the different models of the aerodynamic torsor. It describes őrst the indicial

model and then present the differences between linear quasi-steady and unsteady models. The numerical results

presented here are mainly focused on longitudinal components. The second part deals with the numerical methods

used for the numerical simulations and the identiőcation of the model parameters. The description of the new grid

displacement method is detailed and compared with the classical overset method. The third part is devoted to the

numerical simulations. First, RANS simulations on the SACCON geometry are compared to wind tunnel results. Then,

as validation purpose, a comparison is made between the new displacement method and the overset method based on the

simulation of indicial responses. Finally, the indicial responses, the numerical forced oscillations and the coefficients of

the different models are estimated. Then, the accuracy and the implementatioon cost of the ROMs are evaluated by

comparison with a CFD calculation.

III. Unsteady Aerodynamics Prediction Models

A. Coordinate System

In ŕight dynamics, the study of the motion of an aircraft is usually carried out in the Earth’s reference frame, which

is assumed to be Galilean. However, when the aircraft is moving in airspace, the aerodynamic forces and moments it

undergoes can be expressed in different reference frames in order to simplify the solution of the ŕight dynamics equations.

Three trihedrons (Fig. 1) are mainly used: the terrestrial trihedron related to the aircraft RT = (O,BT = (xT, yT, zT)),

the aircraft trihedron Rp = (O,Bp = (xp, yp, zp)) and the aerodynamic trihedron Ra = (O,Ba = (xa, ya, za)). The

origin of the three trihedrons is chosen arbitrarily on the longitudinal axis of the aircraft. These different trihedrons are

linked to each other by the characteristic angles of the ŕight dynamics. Indeed, the transition from the aircraft trihedron

to the aerodynamic trihedron is made by rotations of angle 𝛼 and 𝛽 corresponding respectively to the AOA and the

angle of sideslip (AOS) of the aircraft (Fig. 1a). Similarly, the transition from the terrestrial trihedron to the aircraft

frame is carried out using the Euler angles according to the Tait-Bryan convention, which are the roll angle Φ, pitch

angle Θ and yaw angle Ψ (Fig. 1b).
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(a) Angular relationship between the aircraft frame (blue) and the

aerodynamic frame (red)

(b) Angular relationship between the aircraft frame (blue) and the

ground frame (green)

Fig. 1 Angular relationship between the different frames

In this work, the aerodynamic forces and moments are extracted in the terrestrial reference frame and then projected

into the trihedron of interest. The forces expressed in the aerodynamic trihedron 𝐹𝑖𝑎 or the aircraft trihedron 𝐹𝑖𝑝 are

scaled to obtain the drag 𝐶𝐷 , the lateral force 𝐶𝑠 and the lift 𝐶𝐿 coefficients:

𝐶𝐷 = −
𝐹𝑥𝑎

1

2
𝜌𝑉2𝑆𝑟𝑒 𝑓

𝐶𝑠 =
𝐹𝑦𝑝

1

2
𝜌𝑉2𝑆𝑟𝑒 𝑓

𝐶𝐿 = −
𝐹𝑧𝑎

1

2
𝜌𝑉2𝑆𝑟𝑒 𝑓

(1)

Similarly, the moments expressed in the aircraft trihedron 𝑀𝑖𝑝 are also scaled to obtain the roll 𝐶𝑙 , pitch 𝐶𝑚 and yaw 𝐶𝑛

coefficients:

𝐶𝑙 =
𝑀𝑥𝑝

1

2
𝜌𝑉2𝑆𝑟𝑒 𝑓 𝑏

𝐶𝑚 =
𝑀𝑦𝑝

1

2
𝜌𝑉2𝑆𝑟𝑒 𝑓 𝑐𝑟𝑒 𝑓

𝐶𝑛 =
𝑀𝑧𝑝

1

2
𝜌𝑉2𝑆𝑟𝑒 𝑓 𝑏

(2)

Where 𝜌 is the density of the air, 𝑉 is the speed of the aircraft at point O relative to air, 𝑆𝑟𝑒 𝑓 is the reference surface,

𝑐𝑟𝑒 𝑓 is the reference chord and 𝑏 is the half span of the aircraft.

B. Formulation of Reduced Order Models

There is no trivial analytical representation of the aerodynamic torsor because of the strong dependence of the

coefficients on ŕight conditions (𝑀 and 𝑅𝑒), ŕight parameters (AOA, AOS and the rotation rates) and aircraft geometry.

A reliable representation of this torsor is, however, imperative in the development of a model of the aeromechanical

behaviour of the aircraft. Without this model no controllable ŕight domain evaluation and ŕight simulation can be

considered. To this end, a wide range of aerodynamic modelling techniques have been developed in recent years. These

are known as reduced order models (ROMs) representations of the aerodynamic torsor. The objectives of these ROMs

are to accurately model the evolution of the aerodynamic coefficients over time for a given trajectory in order to predict

the dynamic behaviour of an aircraft at low cost. This section presents three distinct methods to model the dynamic

behaviour of an aircraft from numerical simulations according to the different parameters on which they depend.

1. Indicial Response Modeling

The use of indicial responses to represent the unsteady aerodynamic behaviour of an aircraft is an approach allowing

the modelling of small or large amplitudes of motion. An indicial response is deőned as the output response of a

dynamic system (transient load) generated by a sudden variation of a unit step of one of the ŕight parameters (𝛼, 𝛽,

etc.). For the modelling of unsteady aerodynamic loads, the indicial method is thus based on the convolution product

between this response and the variation of the ŕight parameter in question. This process permits to model the inŕuence
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of previous states on the system at any subsequent time. Mathematical models are detailed by Tobak & al. [24, 25] and

Reisenthel & al. [26, 27] with the use of the Duhamel superposition. In order to model the aerodynamic response from

longitudinal motions, the indicial method takes into account the contributions due to the previous states of AOA and

pitch rate which leads to the following expression of the longitudinal coefficients:

𝐶𝑖 (𝑡) = 𝐶𝑖0 (𝑡 = 0) +
𝑑

𝑑𝑡

∫ 𝑡

0

𝐼𝑖𝛼 (𝑡 − 𝜏)Δ𝛼(𝜏)𝑑𝜏 +
𝑑

𝑑𝑡

∫ 𝑡

0

𝐼𝑖𝑞∗ (𝑡 − 𝜏)𝑞∗ (𝜏)𝑑𝜏 𝑖 = 𝐿, 𝐷, 𝑚 (3)

where 𝐶𝑖0 denotes the value of the static aerodynamic coefficients in the initial position of the aircraft. Δ𝛼(𝜏) =

𝛼(𝜏) − 𝛼(𝑡 = 0) is the difference between the AOA at time 𝑡 = 𝜏 and the AOA at the initial position of the aircrat. The

longitudinal indicial responses obtained by a unit step change in the AOA and the normalized pitch rate 𝑞∗ = 𝑞𝑐𝑟𝑒 𝑓 /𝑉

are noted respectively 𝐼𝑖𝛼 and 𝐼𝑖𝑞∗ , where 𝑖 = 𝐷, 𝐿, 𝑚. The model given by the above equation can be applied to ŕows

that respond linearly to changes in the forcing functions. Linear ŕight regimes are characterized by a linear variation

of the coefficients up to a certain angle after which the ŕow responds in a non-linear manner due to separated ŕow

or vortical ŕow effects. Therefore, this equation solves for any time-varying motion within the linear ŕight regime.

However, when considering high performance aircraft such as őghter aircrafts, the manoeuvres of interest are often

characterised by variable velocity at AOAs potentially extending into the near stall regions. Previous research by the

NATO AVT-161 working group has shown that it is important to take into account the variability of the step response

with increasing AOAs and Mach number [5, 23]. These studies illustrate the inability of the calculated indicial response

at low AOAs to accurately represent the system dynamics at high angles of attack. So, for non linear ŕows, the indicial

response theory can be extended to a non-linear model using parameterised indicial responses to predict unsteady

aerodynamic responses to longitudinal motions [25].

𝐶𝑖 (𝑡) = 𝐶𝑖0 (𝑡 = 0) +
𝑑

𝑑𝑡

∫ 𝑡

0

𝐼𝑖𝛼 (𝑡 − 𝜏, 𝛼(𝜏))Δ𝛼(𝜏)𝑑𝜏 +
𝑑

𝑑𝑡

∫ 𝑡

0

𝐼𝑖𝑞∗ (𝑡 − 𝜏, 𝛼(𝜏))𝑞∗ (𝜏)𝑑𝜏 𝑖 = 𝐿, 𝐷, 𝑚 (4)

As shown in the previous equation, the non-linearity of the model is captured by computing the indicial response at

different initial AOAs. In general, in the case of longitudinal aerodynamics, the AOA indicial response is assumed to

vary with the AOA and the Mach number whereas the pitch rate indicial response is assumed to vary only with the Mach

number for moderate AOAs. However, the accuracy of the model could be improved by including in the database the

coupling between the rotation rate and the AOA [14, 28]. Besides, indicial responses obtained from a negative unit step

variation could be beneőcial to improve the model [14]. The present work focuses on the parameterisation of the two

longitudinal indicial responses, 𝐼𝑖𝛼 and 𝐼𝑖𝑞∗ , with the AOA only as shown in the previous equation. The non-linear

model can be also extended to the lateral coefficients [5]. The validity of this model has been assessed on numerous

occasions [5, 14, 23, 29] and has been shown to be in very good agreement with CFD simulations for forced oscillations

or imposed trajectories 6-DOF.

2. Linear Quasi-steady Modeling

The most common way of modelling the aerodynamic torsor is to express each coefficient as the sum of sub-

coefficients depending on a subset of variables. These sub-coefficients are generally obtained from the őrst order Taylor

series expansion of the aerodynamic forces and moments [8ś10, 14ś16]. The coefficients are written for i=(D, ya, L, l,

m, n) as:

𝐶𝑖 = 𝐶𝑖0 +
𝜕𝐶𝑖

𝜕𝛼
Δ𝛼 +

𝜕𝐶𝑖

𝜕𝛽
Δ𝛽 +

𝜕𝐶𝑖

𝜕𝑝∗
𝑝∗ +

𝜕𝐶𝑖

𝜕𝑞∗
𝑞∗ +

𝜕𝐶𝑖

𝜕𝑟∗
𝑟∗ +

𝜕𝐶𝑖

𝜕 ¤𝛼∗
¤𝛼∗ +

𝜕𝐶𝑖

𝜕 ¤𝛽∗
¤𝛽∗ +

𝜕𝐶𝑖

𝜕 ¤𝑝∗
¤𝑝∗ +

𝜕𝐶𝑖

𝜕 ¤𝑞∗
¤𝑞∗ +

𝜕𝐶𝑖

𝜕 ¤𝑟∗
¤𝑟∗

= 𝐶𝑖0
︸︷︷︸

Stat

+𝐶𝑖𝛼Δ𝛼 + 𝐶𝑖𝛽Δ𝛽
︸             ︷︷             ︸

Static Derivatives

+𝐶𝑖𝑝∗ 𝑝
∗ + 𝐶𝑖𝑞∗ 𝑞

∗ + 𝐶𝑖𝑟∗ 𝑟
∗

︸                          ︷︷                          ︸

Damping Coefficients

+𝐶𝑖 ¤𝛼∗ ¤𝛼
∗ + 𝐶𝑖 ¤𝛽∗

¤𝛽∗

︸              ︷︷              ︸

Unsteady Dynamic
Coefficients

+𝐶𝑖 ¤𝑝∗ ¤𝑝
∗ + 𝐶𝑖 ¤𝑞∗ ¤𝑞

∗ + 𝐶𝑖 ¤𝑟∗ ¤𝑟
∗

︸                          ︷︷                          ︸

Unsteady Dynamic Damping
Coefficients

(5)

Where 𝐶𝑖0 = 𝐶𝑖0 (𝛼0, 𝛽0) represents the initial static aerodynamic coefficient and Δ𝛼 = 𝛼(𝑡) − 𝛼0 with 𝛼0 = 𝛼(𝑡 = 0).

Similarly, Δ𝛽 = 𝛽(𝑡) − 𝛽0. In general, it is considered that the sub-coefficients vary according to the incidence 𝛼, the

sideslip 𝛽 and/or the Mach number 𝑀 , in other words 𝐶𝑖𝑘 = 𝐶𝑖𝑘 (𝛼, 𝛽, 𝑀) for 𝑘 = (𝛼, 𝛽, 𝑝∗, 𝑞∗, 𝑟∗, ¤𝛼∗, ¤𝛽∗, 𝑒𝑡𝑐.). In

the present work, 𝐶𝑖𝑘 = 𝐶𝑖𝑘 (𝛼) depends only with the AOA. The above equation is expressed in terms of the following

normalized quantities:

𝑝∗ =
𝑝(𝑡)𝑏

𝑉
𝑞∗ =

𝑞(𝑡)𝑐𝑟𝑒 𝑓

𝑉
𝑟∗ =

𝑟 (𝑡)𝑏

𝑉
¤𝛼∗

=
¤𝛼𝑐𝑟𝑒 𝑓

𝑉
¤𝛽∗ =

¤𝛽𝑏

𝑉
¤𝑝∗ =

¤𝑝𝑏2

𝑉2
¤𝑞∗ =

¤𝑝𝑐2

𝑟𝑒 𝑓

𝑉2
¤𝑟∗ =

¤𝑟𝑏2

𝑉2
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The impact of the deŕection of control surfaces is not studied in this work. The literature often presents a decoupling

between longitudinal coefficients and lateral quatities (𝛽, 𝑝, 𝑟). Indeed, under the assumption that the inŕuence of the

AOS and the lateral components of the angular velocity (𝑝 and 𝑟) of the longitudinal coefficients are negligible, it is

possible to write:

𝐶𝑖 = 𝐶𝑖0 + 𝐶𝑖𝛼Δ𝛼 + 𝐶𝑖𝑞∗ 𝑞
∗ + 𝐶𝑖 ¤𝛼∗ ¤𝛼

∗ + 𝐶𝑖 ¤𝑞∗ ¤𝑞
∗ 𝑖 = 𝐿, 𝐷, 𝑚 (6)

This kind of representation is widely used in the aeronautical industry for its simplicity of use and identiőcation.

However, the linear quasi-steady model is only efficient in the linear ŕight domain corresponding to low AOA ŕight. It

does not allow the representation of non-linearities and induced couplings, which limits its use when ŕow separations

or vortex breakdown occurs. This model can be extended to lateral coefficients by assuming that the inŕuence of the

pitching angular velocity q is negligible.

3. Linear Unsteady Modeling

As seen above, the linear quasi-static model does not take into account the dependence of the aerodynamic derivatives

on unsteady aerodynamic effects. However, a variant of this method consists in adding a dynamic component to the

coefficients in order to model these unsteady effects [4, 17]. The expression of the unsteady longitudinal coefficients are

presented below:

𝐶𝑖 = 𝐶𝑖0 + 𝐶𝑖𝛼Δ𝛼 + 𝐶𝑖𝑞∗ 𝑞
∗ + 𝐶𝑖 ¤𝛼∗ ¤𝛼

∗ + 𝐶𝑖 ¤𝑞∗ ¤𝑞
∗ + 𝐶

𝑑𝑦𝑛

𝑖𝛼
𝑖 = 𝐿, 𝐷, 𝑚 (7)

It consists of classical aerodynamic quasi-steady derivatives to which are added dynamic terms for the most signiőcant

coefficients. These dynamic coefficients are solutions of a őrst order differential equation depending on the variation of

the AOA [17]:

¤𝐶
𝑑𝑦𝑛

𝑖𝛼
+

1

𝜏𝑖𝛼
𝐶

𝑑𝑦𝑛

𝑖𝛼
= 𝑎𝑖𝛼 ¤𝛼 𝑖 = 𝐿, 𝐷, 𝑚 (8)

Where 𝜏𝑖𝛼 and 𝑎𝑖𝛼 are AOA-dependent quantities. The fact that the constant depends on the derivative of the incidence

allows to take into account the temporal dissymmetries of the detachment / reattachment of the ŕow on the upper surface

[4]. In Laplace space, the dynamic coefficients are represented by the following transfer functions:

𝐶
𝑑𝑦𝑛

𝑖𝛼
(𝑠) =

𝑎𝑖𝛼 𝑠

1 + 𝜏𝑖𝛼 𝑠
𝛼(𝑠) 𝑖 = 𝐿, 𝐷, 𝑚 (9)

Where 𝑠 represents the Laplace parameter. Adding this dynamical coefficient is equivalent to take into account the

previous transfert function which capture all the frequency effects and provides frequency independent coefficients and

parameters. The coefficients of this model are identiőed using forced oscillations at different frequency [4].

IV. Geometry and Description of Numerical Methods

A. SACCON Geometry

The geometry of the generic UCAV named SACCON (Stability And Control CONőguration) was developed

speciőcally for the RTO/AVT-161 research group. It was designed with a 53° sweep angle. The numerical study carried

out here is based on the dimensions of the model designed by ONERA in 2010. This geometry is simply reduced by

35% compared to those used by DLR and NASA. The overall shape of the SACCON and its dimensions are presented in

őgures 2a and 2b. The ONERA model of the SACCON has a reference chord 𝑐𝑟𝑒 𝑓 = 0.3113𝑚 and a half span 𝑏 = 0.5𝑚.

The reference surface is 𝑆𝑟𝑒 𝑓 = 0.3253𝑚2. Finally, the calculated moments are expressed at the moment rotation point

(MRP) chosen at 𝑥/𝑙 = 56.56% corresponding to a point distant from the nose of the aircraft of 0.390m. This study is

focused on the SACCON round leading edge (RLE) conőguration for which the leading edge is evolving.

B. CFD Solver

The ŕow solver used for this study is the elsA code developed by the ONERA. The elsA code is a CFD code, based

on a cell-centered "őnite volume" approach, dedicated to the numerical simulation of internal and external ŕows for

compressible and viscous ŕuids on two- and three-dimensional meshes. In particular, it allows parallel calculations on

several processors for meshes with complex geometries in structured, unstructured or hybrid form. More details on the

capabilities of this solver are described in Cambier & al. [30, 31]. In order to accelerate the solution of the discretised

system, the elsA code uses an implicit method allowing a high Courant-Friedrichs-Lewy number (>1). The diversity of
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(a) SACCON geometry (b) Dimension of the SACCON model de-

signed by ONERA

Fig. 2 Geometry of the SACCON (ONERA model)

models and simulation techniques present in this CFD code allows to adapt the simulations according to the problems

and the different physical mechanisms encountered. In the context of our study, RANS and URANS calculations are

performed. The numerical parameters used for these simulations are detailed later.

C. Computational Grid and Numerical Parameters

For this study, RANS and URANS simulations were performed in a cylindrical domain of radius 20m and height

40m with the SACCON geometry in its center. The objective was to have more than 20 times the size of the SACCON

between the geometry and the edge of the domain in all directions to minimise the risk of reŕection. The center of gravity

of the SACCON is chosen as the origin of the frame. The mesh generated for this study is a multi-block structured mesh

(Fig. 3). The topology of the mesh is C-H in order to take into account the thickness of the trailing edge of the UCAV.

The mesh presented in this paper is the result of a mesh convergence study (Richardson’s method [32]) in order to obtain

results in agreement with the experimental results for a reasonable or acceptable restitution time. Particular attention

has been paid to the resolution of the leading edge, the trailing edge and the boundary layer in order to correctly capture

the origin of the vortices (Fig. 3a). The height of the őrst cell is constant around the UCAV at 0.003 mm to obtain a 𝑦+

(a) Skin mesh of the SACCON geometry (b) Mesh of the boudary layer around the SACCON geometry

Fig. 3 Mesh around the SACCON geometry

close to 1. To allow a correct resolution of the viscous sub-layer and thus to correctly simulate the boundary layer and

the vortex systems, the boundary layer is composed of 70 meshes by 25mm (expansion ratio 1.1) (Fig. 3b). The total

mesh size is about 25.5 million cells. In order to better calibrate our simulations, a sensitivity study of the aerodynamic
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coefficients on the numerical parameters has been performed. Among the different turbulence models and discretization

schemes tested, the use of the Spalart-Allmaras turbulence model [33] with the Jameson scheme (𝑘2=0, 𝑘4=0.016 to

minimize the damping effects) [34] proved to be the most efficient. The elsA solver solves the turbulence equations in a

decentered way. So, the Harten parameter is set to a small value (0.01) to obtain good accuracy. An additional Martinelli

correction (0.3) has also been added to improve the performance of the model and avoid oscillation of the residuals.

All calculations are performed in fully turbulent mode. Finally, the use of a low-Mach preconditioning [35, 36] is not

used for this study due to degradation of the results. Flow boundary conditions are used at the inlet, outlet and radial

boundary of the domain with inőnite ŕow values corresponding to those in Table 1. The SACCON surface is considered

as an adiabatic rigid wall. For the RANS simulations, the equations are solved using a backward Euler scheme and a

CFL of 25 is applied to ensure a satisfactory speed of convergence. The results of these static simulations are obtained

after 90,000 iterations in the present work. URANS calculations for indicial responses or forced oscillations started

from the steady-state solution of RANS simulation. RANS and URANS computations are launched on 224 cores.

Parameters Values Parameters Values

Mach number M 0.15 Reynolds 𝑅𝑒 1.09 10
6

AOA 𝛼 0-28° AOS 𝛽 0-15°

Upstream Pressure P 101325 Pa Density 𝜌 1.2252 kg/m³

Temperature T 288 K Viscosity 𝜇 1.7345 10
−5 Pa.s

Upstream Velocity V 51.28 m/s Turbulent Viscosity 𝜇𝑡 2.9877 10
−5 Pa.s

Table 1 SACCON simulation parameters

Fig. 4 Example for a NACA0012 proőle: overset mesh (left), mesh used for the FMG method (right)

D. Overset Grid Approach

The elsA software allows to solve unsteady ŕow around a static or spatially moving geometry. Indeed, it is possible

to carry out CFD simulations with possibly signiőcant movement such as a complete ŕight manoeuvre or forced

oscillations to reproduce wind tunnel tests [5]. Classically, this kind of simulation is performed using an overset grid

method. This technique is based on the superposition of several meshes generated individually, thus forming a composite

domain [37ś39]. In practice, a relatively coarse cartesian mesh forms the background of the domain and does not take

into account the geometry of the object of study. A second mesh, őner and body-őtted to the geometry of the object,

called chimera, is then superimposed on top of the background mesh using a grid assembly process (Fig. 4 left). During

a simulation, a transfer of information takes place at each iteration between the background mesh and the chimera mesh.

Indeed, at the junction between the meshes, the boundary conditions are interpolated to ensure the continuity of the

quantities. The size of the cells between the two meshes, especially in this interpolation zone, must be similar in order to

improve the transition of the calculation between them. These interpolation zones (overlapping of around 4 cells here)
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are deőned during the assembly process in the same way as the masking zones which avoid calculating the solution on

the parts of the background mesh that are covered. During a dynamic simulation, the chimera mesh must be able to

move inside the background mesh, at each time step, without any mesh deformation, in a free or speciőed way over its

six degrees of freedom (6DoF). In the case of an imposed motion, the trajectory is speciőed from an input őle. The

latter contains the location, at each time step, of the center of gravity of the aircraft. The orientation of the aircraft is

also speciőed using the roll, pitch and yaw angles. Thus, for each iteration, the mesh is updated, by moving the mesh

blocks, according to the displacement of the center of gravity and the orientation of the aircraft that are pre-calculated.

Moroever, the interpolation and masking zones are uploaded too. In the case of our simulations, a ŕow velocity is

imposed on the ŕuid V∞ = −𝑉∞xT in order to reduce the displacement of the mesh in the domain. Indeed, by noting

Vrel = 𝑉∞xT the real velocity of the center of gravity of the plane in the aerodynamic frame, the instantaneous location

of the plane is then deőned from the absolute velocity vector Vrel + V∞. This method is then very well adapted to treat

both forced oscillation movements and indicial responses.

(a) Mesh displacement in the case of a unit step change in 𝛼 using

the FMG method

(b) Mesh displacement in the case of a unit step change in 𝑞 using

the FMG method

Fig. 5 Schematic representation of the mesh displacement for the identiőcation of indicial responses using the

FMG method

E. Full Moving Grid Approach

Although well known and efficient, the overset grid method has the drawback of being expensive in terms of

calculation time. This is mainly due to determination of masking zone and the őelds interpolations between the meshes.

Speciőc methods such as the ALE (Arbitrary Lagrangian-Eulerian) methods make it possible to avoid using the overset

method for certain movements. The ALE method allows to simulate efficiently forced oscillations or ramps, without

moving the mesh, by selecting a rotation point around which the boundary conditions on the edges of the domain are

modiőed at each time step. However, for the simulation of more complex motion such as complete ŕight manoeuvre or

identiőcation of indicial response, this method is not adapted. A new method has been developed to limit the waste

of time and free ourselves from the interpolation constraints of the overset method, while being able to realize any

kind of trajectory. For this purpose, the new method presented here named Full Moving Grid (FMG) does not require

any background mesh. Thus, only the őne mesh adjusted to the study object is kept (Fig. 4 right). As a result, the

entire mesh domain is mobile and can reproduce the same trajectory as in the overset method. Thus, movements are no

longer restricted by the size limitation of the background mesh, and no more interpolation and masking between various

superimposed meshes is required. However, at each time step, the previous ŕow őeld solution is interpolated in the

new mesh position. To this end, a no-reŕection condition supplied by the imposed ŕow, independently of the block

motion, is applied to the boundary of the domain. The solver elsA updates the boundary conditions automatically by

aligning the incoming ŕow with the initially chosen incoming velocity vector. For the FMG method, the displacement

and orientation of the mesh over the time works on the same principle as the overset method. An example of mesh
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displacement simulation with FMG is shown in őgure 5. Indeed, őgure 5a and őgure 5b represent respectively in a

schematic way the mesh displacement obtained to determine the indicial response following a unit step variation in 𝛼

and 𝑞 as stipulated by the method developed by Ghoreyshi et al. [23, 40]. The validity of this new method is studied

in the following section in order to compare its results and its computational time cost with the overset method. The

objective is to show that the FMG method can achieve identical movements to the overset method while reducing the

computation time of 6DOF manoeuvre simulations.

F. Determination of a trajectory with imposed conditions

In order to obtain an imposed trajectory, the temporal evolution of the folowing ŕight quantities have to be prescribed

𝐷 = (𝑉𝑟𝑒 𝑓 , 𝑝, 𝑞, 𝑟, 𝛼, 𝛽) (𝑡). The aeromechanical behaviour of the aircraft in ŕight is characterised by the position of its

centre of gravity as well as by its orientation. For CFD simulations, the ŕight dynamics equations are written in the

relative speed frame Vrel + V∞ where the velocity of the upstream ŕow 𝑉∞ is supposed constant. Hence, to obtain the

imposed trajectory, it is necessary to determine the evolution of the unknown 𝑊 = (𝑥𝐺 , 𝑦𝐺 , 𝑧𝐺 ,Ψ,Θ,Φ) by solving the

following differential equations:

¤𝑥𝐺 = −𝑉∞ +𝑉𝑟𝑒𝑙 (𝐶𝛼𝐶𝛽𝐶Ψ𝐶Θ + 𝑆𝛽 (𝐶Ψ𝑆Θ𝑆Φ − 𝑆Ψ𝐶𝜙) + 𝐶𝛽𝑆𝛼 (𝐶Ψ𝑆Θ𝐶Φ + 𝑆Ψ𝑆Φ))

¤𝑦𝐺 = 𝑉𝑟𝑒𝑙 (𝐶𝛼𝐶𝛽𝑆Ψ𝐶Θ + 𝑆𝛽 (𝑆Ψ𝑆Θ𝑆Φ + 𝐶Ψ𝐶𝜙) − 𝐶𝛽𝑆𝛼 (𝑆Ψ𝑆Θ𝐶Φ − 𝐶Ψ𝑆Φ))

¤𝑧𝐺 = −𝑉𝑟𝑒𝑙 (𝐶𝛼𝐶𝛽𝑆Θ − 𝑆𝛽𝐶Θ𝑆Φ − 𝐶𝛽𝑆𝛼𝐶Θ𝐶Φ)

¤Ψ =
1

𝐶Θ

(𝑞𝑆Φ + 𝑟𝐶Φ)

¤Θ = 𝑞𝐶Φ − 𝑟𝑆Φ

¤Φ = 𝑝 + 𝑡𝑎𝑛Θ(𝑞𝑆Φ + 𝑟𝐶Φ)

(10)

Where 𝐶𝛼 = 𝑐𝑜𝑠(𝛼) and 𝑆𝛼 = 𝑠𝑖𝑛(𝛼). This system of equations is equivalent to ¤𝑊 = 𝑓 (𝑊). Once the ŕight parameters

have been set, the integration is performed with time-centered implicit integration scheme and gives the position and the

orientation of the aircraft a each time step with:

𝑊𝑛+1 = 𝑊𝑛 + Δ𝑡

(

𝐼𝑑 −
Δ𝑡

2

𝜕 𝑓

𝜕𝑊

)−1

𝑓 (𝑊𝑛) (11)

where Δ𝑡 is the time step and 𝐼𝑑 is the identity matrix.

G. System Identiőcation Methods

1. For Indicial Responses

Indicial responses are difficult or impossible to obtain in wind tunnel because of experimental constraints and

kinematical limitations. For this reason, indicial responses were analytically modeled by exponentials functions [21].

However, these analytical expressions are not valid for aircraft conőgurations that exhibit three-dimensional upper

surface vortices. With the emergence of CFD, the responses of the system to a variation have become more accessible.

Indeed, Ghoreyshi et al. [40] developed a CFD grid displacement method to impose an aircraft motion and to identify

linear and non-linear indicial responses. For this, a motion of the study object is speciőed from a motion input őle

deőning its position and orientation at each time step. In the case of longitudinal coefficients, only the changes in

AOA and pitch rate are useful for the application of the model. Thus, to determine the AOA indicial response 𝐼𝑖𝛼
corresponding to a step 𝛼𝑘 on the AOA, a movement satisfying the following conditions must be applied:

𝛼(𝑡) =

{

𝛼 = 𝛼0 + 𝛼𝑘 if 𝑡 > 0

𝛼 = 𝛼0 else
𝑝, 𝑞, 𝑟 = 0 𝑟𝑎𝑑/𝑠 , 𝑉𝑟𝑒𝑙 = 𝑉∞ , 𝛽 = 𝛽0 = 0 𝑟𝑎𝑑

The AOA changes brutally over time while the other quantities are kept constant. Solving the equations of motion (Eq.

10) with these constraints gives Ψ = Φ = 0 and Θ = 𝛼0 which leads to no rotation and the translation is given by:

¤𝑥𝐺 = 𝑉∞ (𝐶𝛼𝑘
− 1)

¤𝑦𝐺 = 0

¤𝑧𝐺 = 𝑉∞𝑆𝛼𝑘

(12)
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Thus, the aircraft starts to move from 𝑡 = 0𝑠 to the right and downwards (Fig. 5a). The downwards translation allows the

AOA to be increased, and the translation to the right maintain constant the velocity of the ŕow perceived by the aircraft

by the law of velocity composition. Furthermore, no rotation is present. Variations in aerodynamic loads are caused

entirely by a variation in AOA. Hence, during this motion, the longitudinal coefficients are written as a function of the

AOA expressed thanks to the Heaviside function 𝐻𝑒 (𝑡):

𝐶𝑖 (𝑡) = 𝐶𝑖0 +
𝑑

𝑑𝑡

(

𝐼𝑖𝛼 ∧ 𝛼𝑘𝐻𝑒

)

= 𝐶𝑖0 + 𝛼𝑘 𝐼𝑖𝛼 ∧ 𝛿(𝑡) = 𝐶𝑖0 + 𝛼𝑘 𝐼𝑖𝛼 (𝑡, 𝛼) (13)

Where ∧ denotes the convolution product. The indicial response over time is therefore expressed as:

𝐼𝑖𝛼 (𝑡, 𝛼) =
𝐶𝑖 (𝑡) − 𝐶𝑖0

𝛼𝑘

(14)

Similarly, to determine the indicial response 𝐼𝑖𝑞∗ corresponding to a change in pitch rate 𝑞𝑘 , a movement satisfying the

following conditions must be applied:

𝑞(𝑡) =

{

𝑞 = 𝑞𝑘 𝑟𝑎𝑑/𝑠 if 𝑡 > 0

𝑞 = 0 𝑟𝑎𝑑/𝑠 else
𝑝, 𝑟 = 0 𝑟𝑎𝑑/𝑠 , 𝑉𝑟𝑒𝑙 = 𝑉∞ , 𝛼 = 𝛼0 , 𝛽 = 𝛽0 = 0 𝑟𝑎𝑑

This time, this is the rotation rate which changes brutally while the other quantities are kept constant. Solving the

equations of motion with these constraints gives Ψ = Φ = 0 and Θ = 𝛼0 + 𝑞𝑘 𝑡 which leads to a pitch rate and the

translation is given by:

¤𝑥𝐺 = 𝑉∞ (𝐶𝑡𝑞 − 1)

¤𝑦𝐺 = 0

¤𝑧𝐺 = 𝑉∞𝑆𝑡𝑞

(15)

Thus, the aircraft moves and rotates simultaneously (Fig. 5b). At 𝑡 = 0𝑠, the aircraft starts to rotate due to the pitch

rate variation inducing also an AOA variation. To counteract this increase, the aircraft is also shifted to the right and

upwards. Thus, the velocity and angle of attack are kept constant over time. The indicial function is obtained in the

same way and is written:

𝐼𝑖𝑞∗ (𝑡, 𝛼) =
𝐶𝑖 (𝑡) − 𝐶𝑖0

𝑞∗
𝑘

(16)

This method therefore allows the inŕuence of each of the parameters (here 𝛼 and 𝑞∗) on the aerodynamic loads to be

completely decoupled from other parameters according to the imposed motion. The indicial method is therefore a

non-intrusive method, easy to implement, allowing to simulate any arbitrary trajectories at any speed. However, as

previously mentioned, the major drawback of this model is that the degree of non-linearity resolved increases with

the number of indicial responses identiőed in the ŕight domain. To capture these non-linearities, a large number of

simulations must be performed. The number of simulations therefore increases strongly with the accuracy of the desired

sampling. So, indicial functions must be generated for each combination of AOA (if more precision is required each

combinaison of AOA, AOS and Mach number can be solved). This is therefore very costly in terms of computation time

and the cost of implementation can become much higher than the cost of CFD simulation for several manoeuvres. In

order to reduce this cost for the creation of the model, Ghoreyshi et al.[41] have used a special approach of modelling

based on time-dependent substitutes by Surrogate-based models. Thus, it allows to interpolate, at each time step, the

value of the unsampled indicial responses at a new point (𝛼, 𝛽, M) from the database of the already computed indicial

functions using kriging interpolation models. The kriging interpolations are performed with the MultiFiCoKriging

algorithm of the open source library OpenMDAO [42].

2. For Linear Quasi-Steady Model

The identiőcation of the different terms of the longitudinal quasi-steady model is made possible by the study of

forced oscillations in pitch. During forced oscillations with amplitude 𝛼𝑘 around a mean value of the AOA 𝛼0 at a

frequency 𝑓 , the angle of attack over time is written 𝛼(𝑡) = 𝛼0 + 𝛼𝑘𝑠𝑖𝑛(2𝜋 𝑓 𝑡). Moroever, the quantities 𝑝 and 𝑞 are 0
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values while ¤𝛼(𝑡) = 𝑞(𝑡). The longitudinal coefficients, namely the drag coefficient 𝐶𝐷 , the lift coefficient 𝐶𝐿 and the

pitching moment coefficient 𝐶𝑚 can be written:

𝐶𝑖 (𝑡) = 𝐶𝑖0 +
(

𝐶𝑖𝛼 − 𝜔∗2
𝐶𝑖 ¤𝑞∗

)

Δ𝛼 +
(

𝐶𝑖𝑞∗ + 𝐶𝑖 ¤𝛼∗

)

𝑞∗

= 𝐶𝑖0 + 𝐶𝑖𝛼+ ¤𝑞∗
Δ𝛼 + 𝐶𝑖𝑞∗+ ¤𝛼∗

𝑞∗
(17)

Where the parameter 𝜔∗
=

𝜔𝑐𝑟𝑒 𝑓

𝑉
=

2𝜋 𝑓 𝑐𝑟𝑒 𝑓

𝑉
corresponds to the normalized frequency for the longitudinal forced

oscillations. This formulation highlights the appearance of coupled terms that cannot be determined separately with this

kind of oscillation. Thus, the quantity 𝐶𝑖𝛼+ ¤𝑞∗
will be noted as the global static derivative corresponding to the coupling

between the static derivative 𝐶𝑖𝛼 and the dynamic damping coefficient 𝐶𝑖 ¤𝑞∗ . Similarly, the quantity 𝐶𝑖𝑞∗+ ¤𝛼∗
is deőned as

the global damping coefficient corresponding to the coupling between the damping coefficient 𝐶𝑖𝑞∗ and the dynamic

derivative 𝐶𝑖 ¤𝛼∗ .

𝐶𝑖𝛼+ ¤𝑞∗
= 𝐶𝑖𝛼 − 𝜔∗2

𝐶𝑖 ¤𝑞∗ (18)

𝐶𝑖𝑞∗+ ¤𝛼∗
= 𝐶𝑖𝑞∗ + 𝐶𝑖 ¤𝛼∗ (19)

The global static derivative and the global damping coefficients are determined by the method of least squares over 1

cycle-average at one mean value of the AOA centered in 𝛼0 and one frequency 𝑓 . It does not take into consideration the

inŕuence of the frequency on the coefficients.

3. For Linear Unsteady Model

The previous paragraph has shown that from the study of forced oscillations, only coupled coefficients can be

determined. The linear unsteady model can also be written in terms of coupled coefficients:

𝐶𝑖 (𝑡) = 𝐶𝑖0 + 𝐶′
𝑖𝛼+ ¤𝑞∗

Δ𝛼 + 𝐶′
𝑖𝑞∗+ ¤𝛼∗

𝑞∗ + 𝐶
𝑑𝑦𝑛

𝑖𝛼
𝑖 = 𝐿, 𝐷, 𝑚 (20)

However, forced oscillation can be studied in the frequency domain. Then, the Laplace coefficient can be written as

𝑠 = 𝑖𝜔 where 𝜔 corresponds to the pulsation of the movement. The dynamical coefficient (Eq. 9) becomes:

𝐶
𝑑𝑦𝑛

𝑖𝛼
=

𝑎𝑖𝛼𝜏
2

𝑖𝛼
𝜔2

1 + 𝜏2

𝑖𝛼
𝜔2

Δ𝛼 +
𝑎𝑖𝛼𝜏𝑖𝛼

1 + 𝜏2

𝑖𝛼
𝜔2

𝑉

𝑐𝑟𝑒 𝑓
𝑞∗ 𝑖 = 𝐿, 𝐷, 𝑚 (21)

That’s why, in the case of forced oscillations, it is possible to őnd a formulation similar to the quasi-steady model by

replacing the equation (21) in the equation (20):

𝐶𝑖 (𝑡) = 𝐶𝑖0 +

(

𝐶′
𝑖𝛼+ ¤𝑞∗

+
𝑎𝑖𝛼𝜏

2

𝑖𝛼
𝜔2

1 + 𝜏2

𝑖𝛼
𝜔2

)

Δ𝛼 +

(

𝐶′
𝑖𝑞∗+ ¤𝛼∗

+
𝑎𝑖𝛼𝜏𝑖𝛼

1 + 𝜏2

𝑖𝛼
𝜔2

𝑉

𝑐𝑟𝑒 𝑓

)

𝑞∗ 𝑖 = 𝐿, 𝐷, 𝑚 (22)

And so, its possible to őnd in the case of forced oscillations, an equivalence between quasi-steady coefficients and those

from the linear unsteady model:

𝐶𝑖𝛼+ ¤𝑞∗
= 𝐶′

𝑖𝛼+ ¤𝑞∗
+

𝑎𝑖𝛼𝜏
2

𝑖𝛼
𝜔2

1 + 𝜏2

𝑖𝛼
𝜔2

𝐶𝑖𝑞∗+ ¤𝛼∗
= 𝐶′

𝑖𝑞∗+ ¤𝛼∗
+

𝑎𝑖𝛼𝜏𝑖𝛼

1 + 𝜏2

𝑖𝛼
𝜔2

𝑉

𝑐𝑟𝑒 𝑓

(23)

These global coefficients are then independent of the frequency. For the application of the model the parameters 𝐶𝑖𝛼+ ¤𝑞∗
,

𝐶′
𝑖𝑞∗+ ¤𝛼∗

, 𝑎𝑖𝛼 and 𝜏𝑖𝛼 must be determined. The method of the least squares is then applied on forced oscillations of

different frequency centered on the same mean AOA. The huge shortcomming of this model structure is that it requires

a large number of trials to end up with a representative model. Moroever, some modelling difficulties can be expected

for modern őghter aircraft conőgurations that generate many non-linearities [4].
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V. Results

A. Static Results

The results of the RANS simulations obtained in the present work are compared with the experimental results

obtained by ONERA and DLR (Fig 6). The CFD calculations are particularly close to the experimental results up to

moderate AOAs around 16-18° and that for different AOSs up to 15°. For higher AOAs, more differences are observed

between the experimental and numerical values, but the trends in the evolution of the coefficients are maintained.

The largest deviations are obtained for the pitching moment. This slope shifts can be explained by the absence of

the sting in the simulations [5]. This absence can also explain the shift in lift coefficient. When the AOS increases,

notable evolutions are observable on the trends of the lateral coefficients 𝐶𝑦 , 𝐶𝑙 and 𝐶𝑛 while the impact on the lift

and drag coefficients is minimal. However, for the pitch coefficient, the increase of the AOS causes a smoothing of

the non-linearity becoming less abrupt between 12° and 18°. This phenomenon can also be observed experimentally.

This comparison between simulation and wind tunnel tests shows that CFD allows to obtain correct global forces

and moments and correct trends at high AOA in relatively efficient way, without accurately predicting the pitching

moment and that whatever the AOS. The choice of numerical parameters and the mesh used in the present work allow to

Fig. 6 Comparison between numerical (present work) and experimental static coefficients (ONERA 2011 and

DLR TN2373) as a function of AOA for different AOSs at 𝑀 = 0.15 and 𝑅𝑒 = 1.09 10
6

observe the formation of the different vortices (Fig. 7) on the upper surface of the SACCON which are also observed

experimentally [7]: the apex vortex, the tip vortex and the thickness vortex. The dynamics of these different vortices is

caught by CFD simulations, from their formation to their breakdown, via their separation and fusion. Indeed, the apex

and tip vortex appear at an AOA of 10° (Fig. 7 top left). Then around 14°, the apex vortex splits in two at the wing

kink giving rise to the thickness vortex while the tip vortex intensiőes and slowly rises towards the apex (Fig. 7 top

middle). By increasing the AOA up to 16°, the different vortices become more intense and the tip vortex continues its

ascent towards the apex (Fig. 7 top right). From 18°, the tip vortex rises abruptly towards the apex and merges with the

thickness vortex and causes the non-linearities observed in the coefficients (Fig. 7 bottom left). Then, the increase of

the AOA leads to the rise to the apex of the tip vortex, its merging with the apex vortex and its gradual vortex breakdown

(Fig. 7 bottom right). However, the simulations, compared with experimental data [7]) fail to capture the development

of these vortices for the correct angles of attack and their correct positioning on the upper surface. As a result, the local

Cp values are not correct, which leads to differences in the pitching moment values and not in the lift and drag forces.
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Fig. 7 Visualisation of the vortices on the upper surface of the SACCON obtained numerically for different

AOAs at 𝑀 = 0.15 and 𝑅𝑒 = 1.09 10
6

B. Numerical Validation of the Full Moving Grid Approach

This part aims to compare the overset method with the FMG calculation method for unsteady simulations in order to

verify its results and ensure its efficiency. First of all, the comparison of steady-state results obtained with the overset

method are identical to those presented in the previous section for the FMG mesh but are not presented in this paper.

The computational time for RANS simulation are equivalent for both methods, the FMG method is slightly faster (Table

2). URANS calculations started from the steady-state solution of RANS simulation. The comparison between the

overset and FMG method will be made on the SACCON geometry on the basis of indicial simulations (presented in

section B.1) for a unit step variation in AOA at zero rotation rate and then for a variation in rotation rate for a őxed

AOA (Fig. 8 and 9). The sensitivity of indicial responses to mesh size, time step, time resolution method and number

Fig. 8 Comparison of the time evolution of the lift and pitch coefficients due to a unit step change in the AOA

between the overset and the FMG method : a) for 𝛼0 = 5)° b) for different 𝛼0 at 𝑀 = 0.15 and 𝑅𝑒 = 1.09 10
6 for

the SACCON geometry
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of sub-iterations was studied. A good convergence of the results is obtained for a time step of Δ𝑡 = 5 10
−6𝑠 for the

Gear method with 20 sub-iterations. In the case of the overset method, the Cartesian background mesh extends in

all 3 directions over 40 chord lengths. The body-őtted mesh is positioned in the centre of this background mesh and

extends over approximately 4 chord lengths (as shown in the Fig. 4). A domain of 20 chords length was used for the

FMG method to perfectly capture the transient regime of the 3D SACCON geometry. The observed responses of the

Fig. 9 Comparison of the time evolution of the lift and pitch coefficients due to a unit step change in the pitch

rate between the overset and the FMG method : a) for 𝛼0 = 5° b) for different 𝛼0 at 𝑀 = 0.15 and 𝑅𝑒 = 1.09 10
6

for the SACCON geometry

system for an initial AOA of 5° for a unit step change in the AOA (Fig. 8a) or pitch rate step (Fig. 9a) show a near

perfect superposition of the coefficients for FMG and overset methods. This comparison process was also carried out

for different initial AOAs (Fig. 8b and 9b) and for each of them, the height of the peak, the duration of the transient

regime and őnal asymptotic value are the same between both methods for the lift and the pitch coefficients. The indicial

responses were then compared with the literature and in particular with the simulations performed on the SACCON

geometry by Ghoreyshi et al. [23, 28]. The simulations are performed at 𝑀 = 0.15 and 𝑀 = 0.3. The results obtained

with the FMG method are in agreement with Ghoreyshi et al. [23, 28]. Indeed, the height of the initial peak, the time of

the transient regime as well as the asymptotic value reached in the stationary regime are almost identical (Fig. 10 a and

b). For a positive unit step in AOA, when the grid starts to move, a positive peak in lift is observed whereas the peak

is negative in the case of the pitching moment. The trend in the evolution of these coefficients can be explained by

the disturbance of the ŕow around the SACCON caused by the sudden motion. This displacement leads to the rapid

formation of compression and expansion acoustic waves on the lower and upper surfaces of the vehicle respectively,

causing the overshoot on the coefficients [43]. As the simulation progresses and the motion becomes established, the

waves move away from the vehicle and the coefficients asymptotically tend towards a steady-state value after about one

convective time. In the case of an increasing Mach number, the initial peak of the response generally decreases with

increasing compressibility effects. The results obtained show that the FMG method and the overset method give the

same results and that for all AOAs. Then, these results are consistent with the literature. Moreover, the comparison

between the two methods also showed that the FMG method is much faster on unsteady computations for equivalent

mesh (Table 2). The duration of the URANS computations is reduced by around 50% in average for 3D case which

represents a gain in terms of computational cost that is more than signiőcant for equivalent results.
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Mesh type Number of cells RANS CPU mean time

(50000 iterations)

URANS CPU mean time

(1000 iterations)

Overset grid 24 468 152 16h 8h30-9h

FMG 25 542 216 15h 4h30

Table 2 Comparison between numerical methods around the SACCON geometry

Fig. 10 Comparison between indicial responses of the SACCON geometry obtained in the present work at

𝑀 = 0.15 and 𝑅𝑒 = 1.09 10
6 and those obtained by Ghoreyshi et al. at 𝑀 = 0.146 and 𝑀 = 0.3

C. Parameterised Indicial Responses

The indicial responses of the SACCON aircraft due to a positive step change in AOA and in the pitch rate are shown

in őgure 11. All calculations start with a steady-state solution at 𝑀 = 0.15. For AOA responses, the motion starts at

𝑡 = 0𝑠 and the AOA increases by 1°. For pitch rate responses, the normalized pitch rate is increased by 0.5236 𝑟𝑎𝑑/𝑠 at

𝑡 = 0𝑠 and the AOA stays constant. It has been shown that indicial response has no signiőcant sensitivity to the choice of

the amplitude of the step of the AOA or the pitch rate [44]. The rotation center is chosen at the MRP. The linear indicial

method (Eq. 3) can be applied without parameterised indicial responses. Indeed, the responses 𝐼𝑖𝛼 and 𝐼𝑖𝑞∗ do not

depend on the AOA. The linear model only needs the AOA and pitch rate responses at only one initial AOA chosen at 0°.

In contrast, the non linear method depends on the initial AOA. To apply the non-linear model (Eq. 4), the present work

shows simulations performed for 9 different AOAs ranging from -5° to 20° (Fig. 11) for both AOA responses and pitch

rate responses. The őgure 11) shows that indicial functions vary with the initial AOA. The initial values are invariant

with initial AOA, but the transient trend and steady state values are different. The database is therefore made of AOA

and pitch rate indicial responses which depend on the initial value of the AOA for positive step change. According to

previous study [14], indicial responses for negative step change are also taken into consideration in the database to

improve the model for both AOA and pitch rate. However, indicial responses need to be known for each initial AOA to

apply the non linear model. That’s why, the special approach of modelling based on time-dependent substitutes by

Surrogate-based models presented by Ghoreyshi et al.[41] will be used. This method permits to interpolate the indicial
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Fig. 11 Indicial simulation results for different initial AOAs: a) for a unit step change on the AOA, b) for a 30°/s

step change on the pitch rate at 𝑀 = 0.15 and 𝑅𝑒 = 1.09 10
6

Fig. 12 Indicial responses obtained for each AOA between -5° and 20° from kriging interpolation for unit step

change in AOA

response for AOAs that are not computed (Fig. 12). Similarly as in Ghoreyshi et al. [41], the indicial responses above

17° do not converge to a steady state probably due to the computationnal difficulties of our CFD simulations to catch the

topology of the ŕow after the stall.

D. Forced oscillations

Forced pitch oscillation simulations were performed for different frequencies 𝑓 (1Hz, 2Hz, 3Hz), for different mean

angles 𝛼𝑚 with an amplitude of 𝛼𝑘 = 5° (Fig. 13). The AOA at each time is given by 𝛼(𝑡) = 𝛼𝑚 + 𝛼𝑘𝑠𝑖𝑛(2𝜋 𝑓 𝑡).

The aircraft is undergoing an oscillatory movement around a point distant from the nose of the aircraft of 0.438𝑚.

The calculations are started with a steady-state solution at 𝑀 = 0.15. During the forced oscillation, the aerodynamic

coefficients are no longer equal to the static coefficients and are successively higher and lower or vice versa (Fig. 13). In

the linear domain, the variations of the coefficients as a function of the AOA follow an ellipse whose axis is practically
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Fig. 13 Results of forced pitch oscillations of 5° amplitude centered in different AOAs 𝛼𝑚 and for different

frequencies at 𝑀 = 0.15 and 𝑅𝑒 = 1.09 10
6

aligned with the static curve. Hysteresis phenomena increases with the frequency which results in a thickening of the

ellipses and a shift of its axis with respect to the static curve (Fig. 13). For forced oscillations with larger AOA (15-20°),

the CFD predicts a strongly non-linear behaviour. The non-linearity is directly related to the vortex dynamics on the

SACCON upper surface and in particular to the rise of the tip vortex and the position of the vortex breakdown. As

the frequency increases, the non-linearities are smoothed and shifted to higher incidences. This is due to a lag on the

evolution of the position of the vortices compared with the static case with the variation of the AOA. This phenomenon is

very well observed in the case of the pitching moment drop which is almost not present at high frequency (𝐶𝑚 Fig. 13).

Simulations of pitch forced oscillations allow the identiőcation of the different parameters of the linear quasi-steady

and unsteady models. The coefficients of the quasi-static model are obtained by the method of the least squares

performed separately on each oscillation and for each frequency. The obtained coefficients (Fig 14) show a dependence

on the frequency at which the identiőcation is performed. This dependence is most pronounced for high AOA but

remains present for moderate AOA 𝛼 < 10°. The quasi-static model therefore has the disadvantage of being evaluated

and calibrated for a single frequency and so a rotation rate. The model will therefore be less accurate for a movement
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Fig. 14 Global static derivative and global damping coefficients as a function of the AOA and frequency

Fig. 15 Unsteady coefficients as a function of the AOA
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with a different associated rotation rate.

This frequency dependence is taken into account in the unsteady linear model. The parameters of the model are

identiőed by least squares on the forced oscillations for the 3 frequencies at the same time for a given mean AOA. The

obtained coefficients are presented in őgure 15. The unsteady coefficients are compared with the coefficients of the

quasi-static model with Eq. (23) and plotted in őgure 14. With the exception of the AOA of 15°, the unsteady model is

able to reproduce the dependence on the frequency of the global static derivative 𝐶𝑖𝛼+ ¤𝑞∗
and global damping coefficient

𝐶𝑖𝑞∗+ ¤𝛼∗
of the quasi-stationary model. Only the oscillation centered at 15° poses an identiőcation problem (Fig. 14). For

this incidence, the strongly non-linear character of the oscillation leads to a non-linearity in the frequency evolution

of the coefficient. It is this non-linearity that the unsteady model fails to reproduce correctly. The linear unsteady

model is therefore a good improvement to get away from this frequency dependence. It could be more proőtable for the

modelisation of any type of trajectory with different rotation rates. For the application of the linear quasi-stationary and

unsteady models, the coefficients are interpolated by kriging method (Fig. 14).

E. ROM Applications

The accuracy of the previously implemented ROMs is evaluated in this section. The coefficients obtained from the

ROMs during a forced oscillation are directly compared with the CFD calculation for different AOAs and frequencies.

A percentage error of the ROMs will be calculated from the following formulation [14]:

𝐶𝑖 𝑅𝑂𝑀 𝑒𝑟𝑟𝑜𝑟 =
𝐶𝑅𝑂𝑀
𝑖

− 𝐶𝐶𝐹𝐷
𝑖

|𝑚𝑎𝑥(𝐶𝐶𝐹𝐷
𝑖

) − 𝑚𝑖𝑛(𝐶𝐶𝐹𝐷
𝑖

) |
× 100 (24)

In this work, the linear quasi-steady model used is generated with 1Hz pitch oscillations (Fig. 13a) while the unsteady

model is based on the three different frequencies simulated. A strong difference (until 30% for 𝐶𝐷 , 4% for 𝐶𝐿 and

30% for 𝐶𝑚) between ROM and CFD calculation is observed for AOAs below 0° (Fig. 17 a). This is caused by the

extrapolation of the coefficients in this area. The longitudinal coefficients (𝐶𝐷 , 𝐶𝐿 and 𝐶𝑚) obtained for both ROMs are

very similar for 1Hz at low AOAs (Fig. 17 a and b). The accuracy of the quasy-steady model is slightly better at 1Hz

compared with the unsteady model (Fig. 18 a and b). This is an expected result because the quasi-steady model is

identiőed for this frequency. For a different frequency, the unsteady model is closer to CFD calculations (Fig. 17 a, b

and c) and error compute is lower compared with the quasi-steady model (Fig. 18 a, b and c) especially for oscillation

around 10°. The accuracy of the unsteady model compared with the quasy-steady model increases with the frequency

and the increase of the AOA (Fig. 18 c). This is due to the increase of the frequency dependence with AOA while the

quasi-steady model is build from a single frequency. The modelisation of the longitudinal coefficients by the linear

unsteady ROM is quite good for positive AOAs up to 15° (error less than 10% for 𝐶𝐷 , less than 6% for 𝐶𝐿 and less than

10% for 𝐶𝑚). For higher AOAs, both linear ROMs are not able to reproduce the non-linearities present in the CFD

calculations (Fig. 17c and 18 c). The calculated errors (Fig. 18) of the quasi-steady and unsteady models show that they

perform well in modelling the 𝐶𝐷 and 𝐶𝐿 with deviations around 1% up to 10°. However, these ROMs fail to model the

pitch coefficients 𝐶𝑚 with errors mostly above 10%. The analysis of the evolution of the error also shows that the error

increases with the frequency for the three coefficients. Besides, the shape and trends of the oscillations are not fully

reproduced. Indeed, the error has a lemniscate-like shape (eight shaped curve Fig. 18). This shape means the ROMs

predictions moves towards and away from the CFD solution without reproducing correctly the trends.

The linear indicial method requires very little simulation to be applied, but only performs well for AOAs close to 0°.

As the AOA increases, the linear indicial method loses performance. Indeed, őgure 16 shows a 1Hz pitch-oscillation case,

with a mean AOA of 5° and an amplitude of 5°. The őgure shows the nonlinear ROM predictions are in good agreement

with CFD simulations, while linear ROM cannot predict correctly the evolution of the longitudinal coefficients. The

errors on the longitudinal coefficients (Fig. 16b) show that the accuracy of the non-linear model is better compared

with the linear indicial method. In addition, the őgure 16a also shows that the indicial method is relatively accurate in

predicting the transient regime of the SACCON aerodynamic coefficients at the beginning of the oscillation motion.

The non-linear method allows, in a range up to the wing stall (around 16°), to obtain very satisfactory results for

the coefficients 𝐶𝐿 and 𝐶𝑚 (Fig. 19). Indeed, unlike the linear quasi-stationary and unsteady models (Fig. 17), the

indicial method respects the evolution of CFD curves (Fig. 19). The calculated errors form ellipses, reŕecting a kind

of similarity between the shapes of ROM predictions and CFD calculations. Thus, for moderate AOAs up to 15°,

the non-linear indicial method is able to reproduce correctly the trend of the coefficients 𝐶𝐿 and 𝐶𝑚 but shows some

discrepencies in the values compared with CFD simulations. Indeed, an error of less than 8% for the 𝐶𝐿 and less than

10% on the 𝐶𝑚 is observed for AOAs up to 15° and for all frequencies (Fig. 20 a, b and c). Errors of 30% are observed
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(a)

(b)

Fig. 16 Comparison between linear and nonlinear indicial methods for a 1 Hz pitch oscillation centered in

𝛼𝑚 = 5° for 5° amplitude of a) ROM coefficients b) error between ROMs and CFD simulations

on the 𝐶𝐷 . Above 15°, the indicial responses no longer converge to a steady state, leading to major differences in the

coefficients at high incidence. This could be induced by the wing stall, the rise and/or the breakdown of the tip vortex.

Contrary to linear quasi-steady model and unsteady model, the increase of the frequency does not necessarily lead to an

increase in the measured error. Indeed, the error decreases for the lift coefficient (Fig. 20).

The comparison between the CFD ROMs shows that the non-linear indicial method is the most suitable to reproduce

a correct behaviour of the UCAV. The errors mesured on the 𝐶𝐿 and 𝐶𝐷 coefficients are higher than those of the

quasi-steady and unsteady model. However, the indicial method generates a better modelisation of the pitch coefficient

and a better reproduction of the trends in the evolution of the three longitudinal coefficients for all frequencies. The

implementation cost of the non linear method is expensive, higher than the implementation of the quasi-steady model

but lower than the unsteady model (Table 3). Thus, for a low incidence simulation, the inexpensive linear indicial

model seems sufficient. In the case of simulation in the linear domain with rotation rates that do not vary much, the

quasi-stationary linear model seems appropriate for a low cost model. Otherwise the non-linear model will be better

recommended to model correctly the behaviour of the aircraft. For a trajectory simulation, the unsteady model or the

non-linear model can be chosen because both models are independent of the frequency and so of the rotation rate.

However, the unsteady model is more expensive and gives less accurate results in the evolution of the coefficients and

on the prediction of the pitch coefficient compared with the non-linear indicial method. The indicial method seems

to be the most appropriate ROM to model correctly the longitudinal coefficients, despite the small discrepancies in

the obtained values. Once the longitudinal ROMs are constructed, a rapid prediction of a wide range of pitching and

plunging motions can be performed. The computational cost of only one CFD simultion is less than the implementation

cost of each ROMs. So, the more trajectory simulations are performed, the more cost-effective the ROM will be.
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ROM Simulation types Number of AOA Total Training

time/CPU (h)

Executing

time (min)

Linear indicial 𝛼, 𝑞 positive step 1 72 1

Non-linear indicial 𝛼, 𝑞 positive and negative step 9 1296 15

Linear quasi-steady 1Hz 1 frequency (2 cycles) 5 300 1

Linear quasi-steady 2Hz 1 frequency (2 cycles) 5 450 1

Linear quasi-steady 3Hz 1 frequency (2 cycles) 5 900 1

Linear unsteady 3 frequencies (2 cycles) 5 1650 1

Table 3 Computational cost comparisons

VI. Conclusion and prospects
This paper presents several approaches to model the unsteady and non-linear longitudinal aerodynamics of a UCAV

conőguration thanks to CFD simulations using grid motions. In order to minimize the cost of implementation the

reduced order models studied, a new and less expensive method of grid movement was applied. This new method

compared with the overset approach is twice as fast, for equivalent results. The method has been applied to the SACCON

geometry and compared with the literature.

Indicial and forced oscillation simulations were performed to establish a database of the various ROM parameters.

A comparison between the linear quasi-steady model, the unsteady model, the indicial method and the CFD simulations

has been carried out.

The results show that the linear quasi-steady model generated from 1Hz forced oscillations and the unsteady model

generated from three different frequencies of oscillations reproduce well the lift and drag coefficient. More difficulties

are encountered to model the pitching moment. With the increase of the frequency and the AOA, the unsteady model

becomes more efficient than the quasi-steady model. In addition, the evolution of the trends of the coefficients are not

well respected.

The non-linear indicial method most accurately reproduces the trends and shape of the evolution of the longitudinal

coefficients despite deviations that may be slightly larger than the linear quasi-stationary and unsteady ROMs. The

results show a good agreement, with small discrepancies, of the non-linear indicial method with the CFD calculation

until the wing stall around 16°. Furthermore, it has been shown that the implementation cost of the indicial method is

not too expensive compared with the other ROM studied.

Future work will aim to improve the models studied. For the linear quasi-steady and unsteady models, the main goal

will be to decouple the coefficients. For this purpose, speciőc CFD computations will be performed by imposing a

periodic oscillation motion on only one parameter. In a similar way to the indicial simulations, imposing the following

conditions allow to study the inŕuence of ¤𝛼 only, without the inŕuence of the pitch rate 𝑞:

𝛼(𝑡) =

{

𝛼 = 𝛼0 + 𝛼𝑘𝑠𝑖𝑛(2𝜋 𝑓 𝑡) if 𝑡 > 0

𝛼 = 𝛼0 else
𝑝, 𝑞, 𝑟 = 0 𝑟𝑎𝑑/𝑠 , 𝑉 = cst

For the indicial method, the aim will be to understand the origins of the discrepancies observed. In this work, the centers

of rotation of forced oscillations and indicial simulations are different. Thus, a study on the inŕuence on the indicial

responses of the center of rotation will be achieved. As it stands, the indicial method only takes into account the effects

of the AOA and the pitching caught alone. The inŕuence of 𝐶𝑖 ¤𝛼∗ is not taken into account. Thus, the inŕuence of this

coefficient on the accuracy of the model will be studied.

Then these ROMs will be extended to the modelling of lateral aerodynamics and őnally applied and compared on

some realistic 6-DOF aircraft manoeuvres.
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Fig. 17 Comparison between linear quasi-steady, unsteady model predictions with CFD simulations for 1Hz

and 3Hz forced oscillations of 5° amplitude centered in a) 0°, b) 5°, c) 10° and d) 15°
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Fig. 18 Errors between the predictions of the linear quasi-steady, unsteady models with the CFD simulations

for 1Hz, 2Hz and 3Hz forced oscillations of 5° amplitude centered in a) 0°, b) 5°, c) 10° and d) 15°
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Fig. 19 Comparison between non-linear indicial method predictions and CFD simulations for 1Hz and 3Hz

forced oscillations of 5° amplitude centered in a) 0°, b) 5°, c) 10° and d) 15°
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Fig. 20 Errors between the predictions of the non-linear indicial model and the CFD simulations for 1Hz, 2Hz

and 3Hz forced oscillations of 5° amplitude centered in a) 0°, b) 5°, c) 10° and d) 15°
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