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Abstract Cardiac resynchronization therapy (CRT) was proposed in the 1990s as a new therapy for patients with heart failure and 
wide QRS with depressed left ventricular ejection fraction despite optimal medical treatment. This review is aimed first to 
describe the rationale and the physiologic effects of CRT. The journey of the landmark randomized trials leading to the adop-
tion of CRT in the guidelines since 2005 is also reported showing the high level of evidence for CRT. Different alternative 
pacing modalities of CRT to conventional left ventricular pacing through the coronary sinus have been proposed to increase 
the response rate to CRT such as multisite pacing and endocardial pacing. A new emerging alternative technique to conven-
tional biventricular pacing, conduction system pacing (CSP), is a promising therapy. The different modalities of CSP are de-
scribed (Hirs pacing and left bundle branch area pacing). This new technique has to be evaluated in clinical randomized trials 
before implementation in the guidelines with a high level of evidence.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -Keywords Cardiac resynchronization therapy • Cardiac conduction system pacing • Clinical trials

* Corresponding author. Tel: +1-804-356-6246. E-mail addresses: Kenneth.elllenbogen@vcuhealth.org; ken.ellenbogen@gmail.com
© The Author(s) 2023. Published by Oxford University Press on behalf of the European Society of Cardiology. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits 
non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

What’s new?

• Review article for EHRA 25th anniversary
• Review of clinical trials on cardiac resynchronization therapy
• Review of clinical trials on conduction system pacing
• Future directions

The inauguration of Europace coincides with the beginning of a new era 
in cardiac pacing, the treatment of heart failure (HF) with cardiac im-
plantable electronic devices. Following the description of biventricular 
pacing in left bundle branch block (LBBB) by Mower and Cazeau about 
the haemodynamic benefit of multisite pacing, more than 781 original 
articles have since appeared on this subject in Europace, emphasizing 
its significant contribution to this field.

Although the detrimental effect of ventricular pacing on cardiac function 
has been recognized for a century, the lack of treatment alternatives 

stymied this field. In a similar manner, cardiac conduction disturbance 
such as LBBB was regarded a consequence rather than a cause of HF. 
The appreciation of the adverse effect of both right ventricular (RV) 
pacing and ventricular conduction disturbance, in particular LBBB, on car-
diac mechanics started after the publication of two landmark trials, MOST 
and DAVID. A subanalysis of the MOST trial showed that a higher percent-
age RV pacing was associated with a larger prevalence of atrial fibrillation 
and hospitalization for HF.1 The DAVID trial investigated the potential 
benefit of ventricular pacing to create a higher heart rate in patients with 
HF. Instead, the greater percentage of RV pacing was detrimental.2

Mechanistic studies on the causes of adverse effects involved pre-clinical 
studies by the Kass and Prinzen groups. Both RV pacing and LBBB resulted 
in poorer haemodynamic function that is most likely explained by loss of 
mechanical co-ordination. Early-activated regions do not contribute 
much to systolic function whereas late-activated—pre-stretched— 
regions have a stronger contraction and cause a mid-systolic ‘rebound’ 
stretch of the earlier activated regions, thus resulting in ‘wasted 
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myocardial work’.3 Longer-lasting abnormal electrical and mechanical 
activation initiate and aggravate adverse ventricular remodelling, affect-
ing the genome, transcriptome, proteome, metabolome, cell organelles, 
and entire organ function.4 Whilst the initiation of ventricular remodel-
ling is difficult to demonstrate in patients, reverse remodelling is well 
known and represents an important part of the response to cardiac re-
synchronization therapy (CRT). This has resulted in the recognition of a 
new clinical entity: ‘dyssynchrony induced cardiomyopathy’, (Figure 1).

From the beginning of CRT, proper atrioventricular and interventricu-
lar timing as well as the selection of the proper LV site play a crucial role. 
A properly timed atrioventricular interval not only increases the active 
contribution of left atrial systole to LV filling but also improves resynchro-
nization by fusion of LV or biventricular (BiV) pacing-generated activation 
wavefronts pacing with intrinsic conduction. Although a relatively simple 
pathlength model, i.e. the time delay between upslope of LV and RV pres-
sure curves (interVA), was useful to predict optimal resynchronization, 
the wide range of optimal interVA intervals between patients indicated 
the need for individual optimization of CRT. Furthermore, the haemo-
dynamic benefit of properly timed LV pacing was at least as large as 
that of biventricular pacing. Nearly 20 years after these findings, the pro-
spectively designed Adapt-CRT trial showed that LV pacing at a well- 
tuned AV delay is clinically superior to biventricular pacing.5

The technological evolution of the over-the-wire coronary sinus pa-
cing lead from a bipolar lead to a quadripolar lead not only resulted in 
reduced probability of phrenic nerve stimulation and lower risk of lead 
dislodgement but also opened several new research areas, like the 

potential existence of an LV target area, the avoidance of myocardial 
scar, and the added value of pacing multiple LV sites. Invasive and non- 
invasive mapping studies including body surface electrocardiogram 
(ECG) have consistently shown that, in a typical LBBB and right bundle 
branch block (RBBB) QRS morphology, there is a large electrically de-
layed area of the LV or RV lateral wall, respectively. Therefore, pacing at 
a late region (especially in LBBB) increases contractility, stroke volume, 
and stroke work as well as efficiency.

A clinically useful approach is therefore to locate the latest-activated 
region by measuring local Q-LV timing. However, more sophisticated 
non-invasive mapping methods, based upon the combination of two 
cardiac imaging methods, e.g. 12-lead ECG and computed tomography 
or cardiac magnetic resonance, now allow the display of three- 
dimensional biventricular activation, possibly leading to a more perso-
nalized delivery of the pacing lead.6

Quadripolar leads enable pacing from multiple electrodes simultaneous-
ly. In contrast to acute haemodynamic promising results when multiple elec-
trodes are paced achieving higher LV contractility, clinical trial results did not 
confirm the expected beneficial effect on heart failure hospitalization and 
mortality.7 Several studies used measures of mechanical rather than elec-
trical dyssynchrony. However, the relation between electrical and mechan-
ical activation is variable and particularly weak in hearts with scar. 
Importantly, the effects of scar appear independent of the distance between 
scar and latest-activated region, implying that scar also affects electromech-
anical coupling remote from the scar.8 Therefore, LV lead positioning 
should not be guided solely by measurements of mechanical dyssynchrony.

TNFa
Caspases
DNA
fragmentation

Normal

Time Structure, current
mainly in LVfw currents adrenergic responseß1 and ß2

K+

Ca2+

Ca2+  sensitivity and
MHCa expression

expression and
Ca2+ uptake

Cx43 lateralization
and expression

Collagen

MMPs

TGFb

CTGF





















 





OPN

BNP

miR133 CTGF

MHCa

Fibrosis

C
R

T

Hypertrophy

T
-t

u
b

u
le

E
je

ct
io

n 
fr

ac
tio

n

Chronic LBBB
Apoptosis

D
ys

sy
n

ch
ro

n
y

LBBB

SR SERCA
PLN

Figure 1 Processes contributing to the structural, electrical, and contractile remodelling in the dyssynchronous heart as seen on functional measure-
ments (left) and on a cellular and molecular level (right). Red colour indicates the situation during dyssynchrony. Dyssynchrony causes asymmetric and 
eccentric hypertrophy, and (in the failing heart) fibrosis as well as apoptosis. Some of the molecular factors are mentioned. Similarly, some of the processes 
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The continued search of a more physiological pacing approach re-
sulted in novel strategies like pacing the LV endocardium and the infrahi-
sian conduction system. In pre-clinical LBBB models, LV endocardial 
pacing increased LV contractility and systolic function by engaging rapid 
conducting layers. The practical implementation of endocardial CRT is 
however technically and clinically challenging.9 Significantly more promis-
ing is conduction system pacing (CSP), and particularly LBB (area) pacing. 
Multiple acute haemodynamic studies showed a consistent superiority of 
this pacing modality compared to RV pacing, and a haemodynamic per-
formance at least as good as biventricular pacing (BVP).

Computer models have contributed to better insight in mechanisms 
and better diagnosis of dyssynchronous heart failure.10 A benefit of 
computer models is that they can estimate the consequences of the 
multiple interactions between electrical and mechanical properties of 
the heart and between regional behaviour and global pump function, 
beyond the capabilities of the human brain.11

The primary issue in CRT is the spread of the depolarization wave-
front across the ventricles. A technique that is already in use for clinical 
research is ECG imaging. It is built on the relation between potentials at 
the heart surface and on the torso, dictated by the laws of electromag-
netism. Inverting this relation enables the reconstruction of epicardial 
potentials from the electrocardiograms recorded at the body surface. 
ECG imaging showed that any late-activated LV region, regardless of 
whether the QRS morphology was classified as Intraventricular con-
duction delay (defect) (IVCD) or LBBB, predicts CRT benefit. Recent 
studies show that the distance between LV pacing site and latest elec-
trical activation is a strong independent predictor for CRT response 
and that ECG imaging can delineate the electrical synchronization pro-
vided by multipoint pacing and dynamic AV delay programming target-
ing fusion with intrinsic conduction.

Whilst ECG imaging uses resolution of the inverse problem, another 
approach is to estimate activation maps using 12-lead ECG, thoracic 

anatomy, and an Eikonal diffusion model.12 The latter assumes that ven-
tricular depolarization is a binary state. The advantage of this approach 
compared with classical ECG imaging is that in the Eikonal model, myocar-
dial properties are used, and full 3D activation maps are obtained. In a sub-
sequent study, investigators used a patient-specific Eikonal model of 
cardiac activation with spatially varying action potential duration (APD) 
and repolarization rate to fit to ECGs measured in patients at various 
time intervals after the start of CRT. These computer simulations indicated 
that the increase in area of the T-wave during CRT-off with longer lasting 
CRT can be explained by changes in APD that are opposite to the change 
in CRT-induced activation time. These APD changes were associated with 
a reduction in LV dispersion in repolarization during chronic CRT.

Mechanical models have been used to assess the influence of (ab)nor-
mal activation on cardiac pump function. These models were able to re-
produce the typical regional strain patterns by simply delaying the onset 
of contraction between the two walls.13 An important finding from 
these simulations was that the time-to-peak shortening, often used in 
clinical studies, correlated poorly with the time differences of onset of 
activation. The model simulations demonstrated that increasing degrees 
of imposed dyssynchrony create two peaks in septal strain, the timing of 
which hardly change, whilst their amplitude did. Consequently, when de-
fining peak shortening as the peak with the largest amplitude, the 
time-to-peak shortening interval may change considerably with only a 
very small changes in actual activation time. This finding may explain 
why studies investigating the use of markers of mechanical dyssynchrony 
as indicator of CRT response were negative. In a next step, the com-
puter model was used to develop a CRT marker. The best marker [sys-
tolic stretch index, the sum of early systolic (pre)stretch of the lateral 
wall and mid-systolic (‘rebound’) stretch] was retrospectively evaluated 
using data from a clinical trial showing that systolic stretch index (SSI) 
was powerful in predicting the CRT response, even in patients not hav-
ing a class I indication. Notably, a later study showed that a large SSI is 
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only predictive of CRT outcome in case there is already a clear electrical 
dyssynchrony (QRSarea).14 In another approach, patient-specific 
models were developed in eight CRT candidates using computed 
tomography/magnetic resonance imaging and single-photon-emission 
computed tomography (scar) imaging in combination with electrical ac-
tivation based on endocardial LV mapping and a mono-domain model. 
The model-generated total LV activation time as well as the septum- 
lateral wall activation time difference significantly correlated to the 
observed reduction in left ventricular end-systolic volume (LVESV).

Mechanical models were also used to investigate the best location of the 
pacing electrodes. A finite element model showed that in non-infarcted 
hearts, the best location of the LV lead is the mid-lateral wall, even if it is 
not the latest-activated region. Explanation for this paradoxical finding is 
that the combination of mid-lateral wall and RV apical lead positions pro-
vides the most synchronous activation. Another study showed that, in 
hearts with a scar, the optimal LV lead position is a compromise between 
a position distant from the scar and from the septum, thus achieving the 
most effective electromechanical resynchronization of the remaining viable 
myocardium. Mechanical modelling may also play a role in determining the 
best position of the pacing lead in the increasingly popular LBB area pacing. 
Meiburg et al. coupled a high resolution Eikonal activation model of ven-
tricular activation to the lumped mechanical and haemodynamic model 
CircAdapt model. Their simulation results predict that a lead position at 
∼80% of the septum creates the best compromise between interventricu-
lar and intra-LV dyssynchrony and the best biventricular pump function.15

The ultimate goal of computer modelling is to generate a ‘digital twin’ 
of the patient. The inductive and deductive reasoning built in the digital 

twin will provide better mechanistic understanding of the disease and 
better diagnosis and treatment prediction. The results so far indicate 
that Digital Twins can be of significant value in the field of pacing and 
CRT.16 The challenges in develop such patient-specific models are 
that they are at simple as possible (requiring not too high computational 
power), require patient information that is readily available and easy to 
acquire and yet provide a significant added value on top of the available 
clinical data.

Current status of cardiac 
resynchronization therapy
Proof of concept
The first studies to provide proof of concept for CRT were Multisite 
Stimulation in Cardiomyopathies-Sinus Rhythm (MUSTIC-SR), in which 
67 patients with HF were randomized to 3 months of ‘CRT-off’ or 
‘CRT-on’.17 Compared with ‘CRT-off’, ‘CRT-on’ improved walking dis-
tance, quality of life (QoL), and peak oxygen uptake (VO2). In the sub-
sequent Pacing Therapies for Congestive Heart Failure (PATH-CHF),18

CRT improved walking distance and peak VO2, and reversed LV re-
modelling after 12 months. Similar findings emerged from Multicentre 
InSync Randomized Clinical Evaluation (MIRACLE),19 the first double- 
blind CRT trial, in which 453 patients with HF were randomized to 
CRT-on or CRT-off. At 6 months, CRT-pacing (CRT-P) improved 
walking distance, QoL, exercise capacity, left ventricular ejection 
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fraction (LVEF), and peak VO2, and reduced HF hospitalizations. As in 
PATH-HF, CRT was also shown to reverse LV remodelling. In addition, 
it showed that CRT reduced functional mitral regurgitation.

The landmark clinical trials
By the early 2000s, the HF community recognized that arrhythmic, sud-
den cardiac death (SCD) accounted for a large proportion of deaths in 
patients with HF. In parallel, primary prevention implantable 
cardioverter-defibrillators (ICDs) had been shown to improve survival 
in HF. In this melting pot of promising device therapies for HF, some 
conceived that the ideal device for HF and a wide QRS complex was 
a CRT pacemaker (CRT-P) whilst others favoured CRT-defibrillation 
(CRT-D). The effects of adding of CRT to an ICD were tested in the 
2003 MIRACLE-ICD trial,20 in which patients with HF undergoing 
CRT-D implantation were randomized to CRT-on or CRT-off. It 
showed that CRT-D led to an improvement in QoL and New York 
Heart Association (NYHA) class, but not walking distance.

Comparison of Medical Therapy, Pacing, and Defibrillation in 
Heart Failure (COMPANION)21 emerged amidst debates as to 
which device might be best for patients with HF. In a three-arm ran-
domized, controlled study, it compared CRT-P and CRT-D with 

optimum pharmacological therapy (OPT). Compared with OPT, 
both CRT-P and CRT-D reduced total mortality or any cause hospi-
talizations. The risk of total mortality or hospitalization for HF was 
reduced by both CRT-P (by 34%) and CRT-D (by 40%). The CRT-D 
reduced total mortality by 36% (P = 0.003) whilst a non-significant trend 
emerged for CRT-P (P = 0.059). The immediate interpretation of these 
findings was that CRT-D was indeed superior to CRT-P. Cardiac 
Resynchronization-Heart Failure (CARE-HF),22 which was undertaken 
in at the same time as COMPANION, showed that compared to 
OPT, CRT-P reduced total mortality or unplanned hospitalizations for 
major cardiovascular events, as well as total mortality alone after 29 
months. In addition, CRT-P improved QoL and LVEF, induced LV reverse 
remodelling, and reduced mitral regurgitation. By 2005, both 
COMPANION and CARE-HF had shown that CRT was an effective 
treatment for selected patients with moderate to severe HF (NYHA class 
III or IV). In the extended follow-up in CARE-HF, CRT-P was also asso-
ciated with a reduction in SCD in association with progressive LV reverse 
remodelling.

A benefit of CRT in mild HF had been suggested by randomized 
controlled trial of the CONTAK-CD device (CONTAK-CD)23 and 
MIRACLE-ICD II,24 in which CRT was shown to reverse LV remod-
elling across NYHA classes II to IV. In REsynchronization reVErses 
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Table 1 Landmark trials in CRT

Year Study Number Design Inclusion criteria Comparison Effect of CRT Ref

2001 MUSTIC-SR 67 Single-blind, 

cross-over 

RCT

NYHA III, LVEF < 35%, 

QRS ≥ 150 ms, 

LVEDD > 60 mm, 
6MWD < 450 m

CRT vs. VVI (no 

pacing indications)

CRT improved QoL, walking distance, 

peak VO2; reduced hospitalizations

14

2002 MUSTIC-AF 43 Single-blind, 
cross-over 

RCT

NYHA III, LVEF < 35%, 
RV-paced QRS ≥  
200 ms, LVEDD >  
60 mm, 6MWD <  
450 m

VVIR vs. BiV CRT improved 6MWD, peak VO2, 
QoL, and NYHA class; reduced 

hospitalizations (but no difference 

on intention-to-treat analysis)

64

PATH-CHF 42 Single-blind, 

cross-over 
RCT

NYHA II–IV, LVEF <  
35%, PR ≥ 150 ms, 
QRS > 120 ms

RV vs. LV vs. BiV CRT improved NYHA class, QoL, and 

walking distance

65

MIRACLE 453 Double-blind 

RCT

NYHA III–IV, LVEF <  
35%, QRS ≥ 130 ms, 
LVEDD > 55 mm

CRT-on vs. CRT-off CRT improved NYHA class, QoL, 

walking distance, LVEF, peak VO2, 
mitral regurgitation; reduced 

hospitalizations

16

2003 MIRACLE-ICD I 369 Double-blind 

RCT

NYHA III–IV, LVEF <  
35%, QRS ≥ 130 ms, 

LVEDD > 55 mm

CRT-D vs. ICD CRT improved NYHA class, QoL, and 

walking distance, and reduced 

hospitalization

19

CONTAK-CD 490 Double-blind, 

cross-over 

RCT

NYHA II–IV, LVEF <  
35%, QRS ≥ 120 ms, 

ICD indications

CRT-on vs. CRT-off CRT improved peak VO2 and walking 

distance, not NYHA or QoL; 

reduced LV volumes and improved 
LVEF; no effect on HF progression

23

COMPANION 1520 Unblinded RCT 

(1:2:2)

NYHA III–IV, LVEF <  
35%, QRS > 120 ms

OMT vs. CRT-P or 

CRT-D

CRT-D and CRT-P reduced composite 

of all-cause mortality and 
hospitalization

20

2004 MIRACLE-ICD 
II

186 Double-blind 
RCT

NYHA II, LVEF < 35%, 
QRS ≥ 130 ms, ICD 

indications

CRT-on vs. CRT-off CRT reduced LV volumes and LVEF 
and improved CCS; no effect on 

QoL, walking distance, or peak VO2

66

2005 CARE-HF 813 Unblinded RCT NYHA III–IV, LVEF <  
35%, QRS > 120 ms

CRT-P vs. OPT CRT reduced total mortality and HF 

hospitalizations

21

2006 HOBIPACE 30 Double-blind, 

cross-over 
RCT

Pacing indications, LVEF  

< 40%, LVEDD >  
60 mm

CRT-P vs. RV pacing CRT reduced LV volumes and 

improved QoL, LVEF, peak VO2

67

2007 ReThinQ 172 Double-blind 
RCT

NYHA III, LVEF < 35%, 
QRS < 130 ms, echo 

dyssynchrony

CRT-on vs. CRT-off 
in CRT-D 

recipients

CRT improved NYHA class, but not 
walking distance, LVEF, or QoL

30

2008 PROSPECT 498 Prospective, 

observational

NYHA II–IV, LVEF <  
35%, QRS > 130 ms, 

OMT

Echo dyssynchrony 

measures as 

predictor of CCS 
and LVRR

Echo dyssynchrony measures did not 

predict outcome after CRT

68

REVERSE 610 Double-blind 

RCT (2:1)

NYHA I–II, LVEF < 40%, 

QRS > 120 ms

CRT-on vs. CRT-off 

(ICD on)

CRT reduced HF hospitalization and 

improved LVEF and NYHA class; no 
effect on mortality

25

2009 MADIT-CRT 1820 Single-blind RCT NYHA I–II, LVEF < 30%, 
QRS > 130 ms

CRT-D vs. ICD CRT-D reduced HF events; no effect 
on mortality

27

2010 RAFT 1798 Double-blind 
RCT

NYHA II–III, LVEF <  
30%, QRS > 120 ms

CRT-D vs. ICD CRT reduced total mortality and HF 
hospitalization

28
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Remodeling in Systolic left vEntricular dysfunction (REVERSE),25,26 in 
which 610 patients in NYHA class I/II with primary prevention ICD 
indications were randomized to ‘CRT-on’ or ‘CRT-off’, CRT im-
proved LVEF and reduced HF hospitalizations. The early studies in 
mild HF culminated in the largest CRT trial, Multicenter Automatic 
Defibrillator Implantation Trial-Cardiac Resynchronization Therapy 
(MADIT-CRT).27 In this trial, 1820 patients in NYHA I–II, a LVEF  
< 30%, and a QRS > 130 ms were randomized to CRT-D or ICD. 
It showed that CRT-D reduced total mortality or HF events. 
Further supporting evidence for a benefit of CRT in mild HF was pro-
vided by Resynchronization–Defibrillation for Ambulatory Heart 
Failure trial (RAFT),28 which compared CRT-D to ICD in patients 
in NYHA class II or III. This showed that compared to ICD, CRT-D 
reduced the primary endpoint of total mortality or HF hospitaliza-
tion. These trials are summarized in Table 1.

QRS duration
The finding of mechanical dyssynchrony in patients with a QRS <  
120 ms, assessed echocardiographically, provided a rationale for ex-
tending CRT to this patient population. In Cardiac Resynchronization 
Therapy in Patients with Heart Failure and Narrow QRS (ReThinQ), 
which included HF patients with a LVEF < 35%, a QRS < 130 ms, and 
echocardiographic evidence of dyssynchrony, CRT improved NYHA 
class, but not walking distance, LVEF, or QoL.29 Evaluation of 
Resynchronization Therapy for Heart Failure (LESSER-EARTH) study 
was stopped prematurely after finding that CRT reduced walking dis-
tance, increased QRS duration, and increased HF hospitalizations.30

The definitive study, Echo-CRT,31 showed excess mortality from add-
ing CRT to ICD in patients with a QRS < 130 ms. This very important 
study clearly showed that CRT should not be used in patients with nor-
mal ventricular conduction, a view that was reflected in clinical guide-
lines. Crucially, it also confirmed that echocardiographic measures of 
dyssynchrony are not useful in selecting patients for CRT. The interplay 
between QRS duration, QRS morphology, and outcomes beyond a 
QRS > 120 ms is complex.

Cardiac resynchronization 
therapy-defibrillation vs. cardiac 
resynchronization therapy-pacing
Were it not for the cost of a CRT-D, which is typically three- to four-fold 
that of a CRT-P, debates of CRT-D vs. CRT-P would have been less 
heated. Proponents of CRT-P argued that CRT-P alone reduces the risk 
of SCD,32 whilst proponents of CRT-D argued that the residual risk of 
SCD after CRT requires a defibrillator. In a European registry of 1705 con-
secutive patients, CRT-D was superior to CRT-P over a follow-up of 2 
years,33 but the excess mortality in CRT-P recipients was due to causes 
other than SCD. In contrast, a nationwide study of 50 084 implantations 
undertaken in England between 2009 and 2017 showed that total mortal-
ity after CRT-D was lower than after CRT-P over a median follow-up of 
2.7 years (Figure 2). In the absence of RCTs specifically designed to com-
pare CRT-D and CRT-P, clinical guidelines34 show that large variations in 
the use of CRT-D and CRT-P exist. In this regard, CRT-P amounts to 15% 
of all CRT implants in the US and up to 48% in the UK.35 In this context, 
we should consider that the risk of SCD is governed by the underlying type 
of cardiomyopathy and the timing of implantation.36

In choosing between CRT-D and CRT-P, we should also be aware on 
the residual risk of SCD in HF, even after treatment with sacubritril/val-
sartan and sodium glucose co-transporter 2 inhibitors is still high, at 
2.7% per year. Moreover, the proportion of SCD vs. pump failure in 
HF may be increasing (Figure 3). Factors to consider when choosing be-
tween CRT-D and CRT-P are shown in Figure 4.

Response to cardiac resynchronization 
therapy
The concept of ‘non-responders’ is almost unique to the field of CRT. 
We know, however, that the response to any treatment is rarely 100%. 
In the field of medical therapy for HF, for example, the ‘responder’ rate 
compared to placebo in randomized, controlled trials, adopting a re-
duction by ≥1 NYHA classes as the definition of response, was 
24.9% for enalapril, 6% for bisoprolol, and 8% for spironolactone. 
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Table 1 Continued  

Year Study Number Design Inclusion criteria Comparison Effect of CRT Ref

2011 BLOCK-HF 691 Single-blind RCT NYHA I–III, AV block, 

LVEF < 50%

CRT vs. RV pacing CRT reduced composite of total 

mortality, HF event, or 15% increase 

in LVESVi

69

2013 Echo-CRT 809 Double-blind 

RCT

NYHA III–IV, LVEF <  
35%, QRS < 130 ms, 
echo dyssynchrony

CRT-on vs. CRT-off No effect on composite of total 

mortality or HF hospitalization; 
higher total mortality with CRT-on

32

LESSER-EARTH 85 Double-blind 

RCT

NYHA III–IV, LVEF ≤  
35%, QRS < 120 ms

CRT-D vs. ICD Stopped prematurely after recruiting 

85 patients: CRT reduced walking 
distance and increased QRS 

duration; trend towards increased 

HF hospitalizations

31

Study acronyms: BLOCK-HF, Biventricular vs. Right Ventricular Pacing in Heart Failure Patients with Atrioventricular Block; CARE-HF, Cardiac Resynchronization-Heart Failure; 
COMPANION, Comparison of Medical Therapy, Pacing, and Defibrillation in Heart Failure; CONTAK-CD, randomized controlled trial of the CONTAK-CD device; HOBIPACE, 
HomborgBiventricular Pacing Evaluation; LESSER-EARTH, Evaluation of Resynchronization Therapy for Heart Failure; MADIT-CRT, Multicenter Automatic Defibrillator Implantation 
Trial-Cardiac Resynchronization Therapy; MIRACLE-ICD, Multicentre InSync Randomized Clinical Evaluation; MUSTIC, Multisite Stimulation in Cardiomyopathies; PATH-CHF, 
Pacing Therapies for Congestive Heart Failure; PROSPECT, Predictors of Response to CRT; RAFT, Resynchronization–Defibrillation for Ambulatory Heart Failure trial; REVERSE, 
REsynchronization reVErses Remodeling in Systolic left vEntricular dysfunction trial; ReThinQ, Cardiac Resynchronization Therapy in Patients with Heart Failure and Narrow QRS. 
AV, atrioventricular; BiV, biventricular; CRT, cardiac resynchronization therapy; CRT-D, cardiac resynchronization therapy-defibrillation; CRT-P, cardiac resynchronization 
therapy-pacing; ICD, implantable cardioverter-defibrillator; LV, left ventricular; LVEF, left ventricular ejection fraction; LVEDD, left ventricular end-diastolic diameter; LVESVi, left 
ventricular end-systolic volume index; NYHA, New York Heart Association; OPT, optimum pharmacological therapy; QoL, quality of life; QRSd, QRS duration; RCT, randomized, 
controlled trial; RV, right ventricular; 6MWD, 6 minute walking distance; OMT, optimal medical therapy; CCS, clinical composite score; LVRR, left ventricular reverse remodeling.
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Table 2 Seminal outcome studies on conduction system pacing based cardiac resynchronization therapy

Study CRT modality Design and follow-up Outcomes

Deshmukh et al. 

Circulation, 2000

HBP-CRT Observational; FU of 23 

months.

Successful implantation in 12/18 patients with narrow QRS, AF, and heart failure. 

Improvement in LVEF (20% to 31%) and LVEDD 59–52 mm.

Barba-Pichardo 

et al. Europace, 

2013

HBP-CRT Observational; FU of 21 

months.

Successful implantation in 9/13 patients with failed BiV-CRT in whom also acute 

correction of LBBB with HBP was demonstrated. Echocardiographic and functional 

improvement were observed but LBBB correction threshold was high (3.7 V).

Lustgarten et al. 

Heart Rhythm, 
2015

HBP-CRT vs. 

BiV-CRT

Cross-over; FU of 12 months. Successful implantation in 21/29 CRT candidates albeit only 12 patients completed 

cross-over analysis. No difference in echocardiographic response and functional 
class between groups.

Huang et al.50 Can J 

Card, 2017
LBBAP-CRT Single case report; FU of 12 

months.
First report of LBBAP-CRT for heart failure treatment in a failed BiV-CRT case. LVEF 

increased to 62% from a baseline 32%, the LVEDD decreased from 76 to 42 mm.

Sharma et al. Heart 

Rhythm, 2018
HBP-CRT Observational, retrospective, 

multicentre; FU of 14 

months.

Largest HBP-CRT study to date, reporting very high success rate (95/106) in mixed 
population of primary HBP-CRT or after failed BiV-CRT, albeit only 34% had LBBB. 

QRS narrowing from 157 to 117 ms, echocardiographic (LVEF 30% to 43%), and 

functional class improvement were observed.

Huang et al. Heart, 
2019

HBP-CRT Observational, single centre; 
FU of 37 months.

Patients with typical LBBB and CRT indications, temporary LBBB correction in 72/74 
whilst successful implantation in 56/74. LVEF increased from baseline 32.4% to 

55.9%, and functional class significantly improved. Long-term LBBB correction 

threshold was 2.29 V at 0.5 ms.

Vijayaraman et al.48

Circ AE, 2019

HOT-CRT Observational, retrospective, 

multicentre; FU of 14 
months.

Successful implantation in 25/27 patients with incomplete LBBB/IVCD correction by 

HBP-CRT alone. Significant echocardiographic response and functional class 
improvement were observed. QRS narrowing to 120 ms was significant both from 

baseline (162 ms) and from HBP-CRT (151 ms).

Upadhyay et al.47

Heart Rhythm, 

2019

HBP-CRT vs. 

BiV-CRT

His-Sync. Randomized, 

multicentre trial; FU of 12 

months.

LBBB patients with CRT indications were recruited. Low rate of successful 

implantation in HBP-CRT arm (11/21, 52%) despite high LBBB corrective output 

allowed (up to 5 V at 1 ms); cross-over 46% from HBP to BVP and 26% from BVP to 
HBP. HBP-CRT was not superior to BiV-CRT with regard to LVEF improvement 

(9.1% vs. 5.23% or rate of echocardiographic response (76% vs. 53%).

Morina-Vazquez 

et al. Europace, 

2020

HBP-CRT Observational, prospective, 

single centre; FU of 1 

month.

Successful implantation with correction of LBBB in 36/48 patients with LBBB and CRT 

indications. Echocardiographic improvement observed in all patients, LV EF 

increased from 30% to 51% and septum to posterior wall delay decreased from 138 
to 41 ms.

Li et al. ESC Heart 

Fail, 2020
LBBAP-CRT vs. 

BiV-CRT
Prospective, multicentre, 

observational, matched 

BiV-CRT patients; FU of 6 

months.

LBBAP-CRT as a primary strategy or for failed BiV-CRT, implantation successful in 30/ 
37; only LBBB patients included. LVEF improved from 28.8% to 44.3%. LBBAP-CRT 

was superior to BiV-CRT: echocardiographic response: 88.9% vs. 66.7% and clinical 

response: 96.3% vs. 75.9%.

Vinther et al. JACC 

EP, 2021

HBP-CRT vs. 

BiV-CRT

His-Alternative. Randomized 

single-centre trial; FU of 6 
months.

HBP-CRT was successful in 19/26 patients with LBBB and CRT indications; cross-over 

28% from HBP to BVP and 4% from BVP to HBP. On-treatment analysis showed 
better echocardiographic response in patients who actually received HBP-CRT: 

LVEF (48% vs. 42% and LVESV (65 mL vs. 83 mL).

Vijayaraman et al. 

JACC EP, 2021

LBBAP-CRT Observational, prospective, 

multicentre; FU of X 

month.

Implantation successful in 277/325 CRT candidates. LBBB present in 39% and found as 

the strongest predictor of echocardiographic response (odds ratio 3.96). LVEF 

improved from 33% to 44%. Clinical and echocardiographic responses were 
observed in 72% and 73% of patients, respectively.

Jastrzębski et al. 
Heart Rhythm, 

2021

LOT-CRT Prospective, observational, 
multicentre; FU of 7.8 

months.

Successful LOT-CRT implantation in 91/112 CRT candidates with suboptimal 
response to LBBAP-CRT or BiV-CRT alone. LOT-CRT resulted in significantly 

greater narrowing of QRS complex 

from 182 ms at baseline to 144 ms than did 
BiV-CRT (170 ms); and LBBAP (162). LVEF improved 

From 27% to 37% and functional class improvement was noted in 76% of patients 

(2.9 vs. 1.9).
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Thus, non-responder rates were 53.3% for enalapril, 79% for bisopro-
lol, and 59% for spironolactone. We should also consider that patients 
who are symptomatic after optimal pharmacologic therapy (OT), par-
ticularly those in NYHA class II or IV, are essentially non-responders to 
OPT. In this context, there is increasing recognition that ‘response’, be 
it using symptoms or LV reverse remodelling, may be too simplistic. 
Gold et al.38 have used the term ‘disease stabilization’. In a recent joint 
position statement, Heart Failure Association, EHRA, and European 
Association of Cardiovascular Imaging have proposed that we adopt 
three categories in describing response to CRT: full remission or 
cure; partial remission; and disease progression (Figure 5).37

Multisite cardiac resynchronization 
therapy
Rather than targeting LV lead positions using physiological measures, 
such as imaging or Q-LV, some authors proposed that simultaneous 
LV stimulation from two coronary sinus veins may improve response 
to CRT.39 In the TRIPle Resynchronization in Paced Heart Failure 
Patients (TRIP-HF), 34 patients with slow permanent atrial fibrillation 
underwent CRT using 1 RV lead and 2 LV leads (3-V) or 1 RV lead 
and 1 LV lead (2-V).40 After 3 months of biventricular stimulation, 
the patients were randomly assigned to stimulation for 3 months 

with either 1 RV and 2 LV leads (3-V) or to conventional stimulation 
with 1 RV lead and 1 LV lead (2-V), then crossed over for another 3 
months to the alternate configuration. In analysis of available data 
from 26 patients, CRT using 2 trans-CS leads did not achieve a better 
synchronization nor improvements in QoL or walking distance, despite 
improving in LVEF and reversing LV remodelling. The subsequent 
Triple-Site versus Standard Cardiac Resynchronization Therapy 
Randomized Trial (TRUST CRT) also compared CRT using a single 
trans-CS lead with CRT using 2 trans-CS leads in 100 patients with 
HF and a LVEF ≤ 35%. After a median follow-up of 7.1 years, there 
was no survival benefit from Tri-V CRT. Standard care vs. 
TRIVEntricular pacing in Heart Failure (STRIVE-HF), in which 99 pa-
tients were randomized to 3-V or 2-V CRT, no group differences 
emerged in total mortality, LV reverse remodelling, or clinical compos-
ite scores after 6 months.41 These findings together with those showing 
a higher complication rate, longer procedure times, and lack of dedi-
cated pulse generators have led to abandonment of 3-V CRT.

Endocardial cardiac resynchronization 
therapy
In the context of trans-CS CRT, the haemodynamic response and long- 
term outcomes vary, even when LV leads are deployed in an ‘ideal’ 
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Table 2 Continued  

Study CRT modality Design and follow-up Outcomes

Jastrzebski et al.51

Eur Heart Jour, 

2022

LBBAP-CRT MELOS: prospective 

multicentre registry of 

LBBP including 
LBBAP-CRT; FU of 10.1 

months.

The study comprised 2533 patients; LBBAP-CRT was successful in 82.2% (572/696). 

Independent predictors of LBBAP lead implantation failure were related to CRT 

indications including: heart failure, broad baseline QRS, and left ventricular 
end-diastolic diameter. LVEF and LVEDD showed a favourable change after 

LBBAP-CRT: 31.5 ± 8.3% vs. 39.4 ± 11.2%, and 60 ± 8.2 mm vs. 57.4 ± 8.4 mm, 

respectively.

Vijayaraman et al. 

Heart Rhythm 

O2, 2022

LBBAP-CRT Observational, retrospective, 

multicentre; FU of 13 
months.

Largest LBBA-CRT study with non-LBBB patients. Successful implantation in 107/121 

RBBB patients. LVEF improved from 35% to 43%. Clinical and echocardiographic 
response was observed in 60% and 61% of patients, respectively. Female sex and 

reduction in QRS duration with LBBAP were predictive of echocardiographic 

response and super-response.

Chen et al. 

Europace, 2022

LBBAP-CRT vs. 

BiV-CRT

Prospective, multicentre, 

observational; FU of 12 
months.

Implantation successful in 49/50 CRT candidates with LBBB. Higher LVEF increase: 

18.5% vs. 12.9% and higher super-response rate (61.2% vs. 39.2%) was observed in 
LBBAP-CRT as compared to BiV-CRT.

Wang et al. J Am 

Coll Cardiol., 

2022

LBBAP-CRT vs. 
BiV-CRT

Prospective, randomized trial; 
FU of 6 months.

Successful LBBAP-CRT implantation in 22/24 CRT candidates with LBBB. Higher LVEF 
improvement after LBBAP-CRT: 49.4 ± 13.2% vs. 46.5 ± 9.4% and comparable 

functional class and QRS duration. Cross-over 10% from LBBP to BVP and 20% from 

BVP to LBBP.

Pujol-Lopez et al.52

JACC EP, 2022

LBBAP-CRT vs. 

BiV-CRT

LEVEL-AT trial. Prospective, 

randomized trial; FU of 6 
months.

Successful LBBAP-CRT implantation in 27/35 CRT candidates (LBBB present in 21). 

Both groups showed a similar change in left ventricular end-systolic volume and 
similar rates of mortality or heart failure hospitalizations.

Vijayaraman et al. 

JACC, 2023

LBBAP-CRT vs. 

BiV-CRT

Observational, retrospective, 

multicentre, case–control.

Largest LBBAP-CRT study to date. A total of 1778 patients were analysed comparing 

981 BiV-CRT vs. 797 LBBAP-CRT. The primary composite endpoint of time to 

death or heart failure hospitalization was significantly reduced to 98 with LBBAP 
compared to BVP 20.8% vs. 28%; hazard ratio 1.495. After LBBAP-CRT, LVEF 

improved from 27% to 41%.

AF, atrial fibrillation; BiV-CRT, biventricular pacing-cardiac resynchronization therapy; BVP, biventricular pacing; CRT, cardiac resynchronization therapy; FU, follow-up; HBP, His bundle 
pacing; HBP-CRT, His bundle pacing-cardiac resynchronization therapy; HOT-CRT, His-Optimized CRT; LBBAP, left bundle branch area pacing; LBBAP-CRT, left bundle branch area 
cardiac resynchronization therapy; LBBB, left bundle branch block; LBBP, left bundle branch pacing; LOT-CRT, left bundle branch pacing optimized CRT; LVEDD, left ventricle 
end-diastolic dimension; LVEF, left ventricular ejection fraction; LVESV, left ventricular end-systolic volume.
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positions. As conduction velocity in the endocardium is much faster 
than in the epicardium, some have proposed that endocardial pacing 
may be superior to coronary sinus pacing in CRT. Endocardial LV im-
plantation techniques involve LV lead deployment using ventricular 
trans-septal or atrial trans-septal42 approaches. Whereas animal ex-
periments have shown a superior haemodynamic response to endocar-
dial vs. epicardial LV pacing,43 this has not been consistently reproduced 
in humans. In the ALternate Site Cardiac ResYNChronization 
(ALSYNC) study of atrial trans-septal LV endocardial CRT, complica-
tions, mainly cerebrovascular events, were alarming.44 The WiSE 
CRT system, which consists of an ultrasound transmitter, was im-
planted on the anterior chest wall and connected to a generator and 
a wireless endocardial electrode.45 A recent international registry 
from 14 European centres of 90 patients has proved that system im-
plantation is feasible, although there are safety concerns.46 In clinical 
trials, the overall clinical response rate has been over 80%, and included 
non-responders to ‘conventional’ CRT. An important limitation of the 
system in its current form is its reliance on another device capable of 
delivering RV pacing, however, early clinical trials have suggested a re-
sponse rate over 80%, and these trials include patients who have failed 
CRT with epicardial coronary sinus leads.

Rational for conduction system 
pacing-cardiac resynchronization therapy
The paradigm of medicine is to heal what is broken and to restore 
physiology as close to the original state as possible. It is now evident 
that LBBB, a major cause of cardiac dyssynchronopathy, can be elegant-
ly and completely ‘repaired’ with His bundle pacing (HBP) or left bundle 
branch area pacing (LBBAP). The advantages of conduction system pa-
cing as well as the known shortcomings of BiV-CRT have attracted 

clinicians to the physiological pacing (as conduction system pacing is 
commonly labelled) and have led to is its adoption without evidence 
from large RCTs in pioneering centres.

Traditionally, CRT refers to the combination of left ventricular (LV) 
and RV pacing, i.e. BVP, that is synchronized with atrial activation. The 
BVP aims to restore the dyssynchronous ventricular electrical activa-
tion due to ventricular conduction delay or RV pacing. Nonetheless, 
BVP is a non-physiological pacing modality that restores ventricular syn-
chronization through the fusion of two wavefronts from LV epicardial 
pacing and RV endocardial pacing. Consequently, BVP produces only 
modest ventricular resynchronization with a relatively small reduction 
in QRS duration.

Moreover, to achieve optimal effect of BVP, a personalized pacing 
electrode positioning strategy might be required. Given that the ration-
ale of BVP aims is to resynchronize the LV, many studies showed that 
CRT response is best when the LV lead is positioned in the 
latest-activated region. However, anatomical limitations such as ab-
sence of suitable coronary veins and unavoidable phrenic nerve stimu-
lation can influence CRT response. Also, LV scarring might hinder an 
optimal CRT response as pacing inside or close to the scar might 
lead to inadequate resynchronization. Also, the natural electrical activa-
tion sequence of the ventricles has multiple breakthrough points and 
fast endocardial conduction. Therefore, BVP could never match the 
physiological ventricular activation pattern, as the pacing induced acti-
vation wavefronts bypass the rapid ventricular conduction system.

His bundle pacing-cardiac 
resynchronization therapy
In the 1970s, pacing in the bundle of His was demonstrated to normal-
ize the QRS complex in a subgroup of patients with LBBB. 
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Conceptually, HBP can lead to ventricular resynchronization in the 
presence of a proximal conduction block and if HBP recruits activation 
in both bundle branch restoring a normal physiological activation. 
Evidence for the presence of proximal conduction delay in LBBB was 
obtained by detailed intracardiac mapping of the LV septum in patients 
with LBBB.47 Complete conduction block was corrigible in 64% of the 
patients by pacing distally to the site of the block. Conversely, in the re-
maining 36% of the cases, they reported absence of conduction block 
and intact Purkinje activation. In this latter situation, HBP leads to in-
complete QRS correction due to more distal conduction disturbances. 
In these patients, therapy could be optimized by sequential HBP fol-
lowed by an additional coronary sinus lead in [His-Optimized CRT 
(HOT-CRT)] to maximize electrical resynchronization.48 The HBP 
seems to have the potential to be the most physiological pacing modal-
ity that preserves or restores electrical and mechanical synchrony by 
simultaneously activating both ventricles.

The HBP-CRT seems especially well-suited for two subsets of CRT 
candidates: patients with narrow QRS at baseline, including ablate and 
pace strategy, and proximal intrahisian LBBB.49

Data on HBP-CRT outcomes are very promising but based on just a 
couple of small studies, most of them summarized in Table 2. Briefly, it 
seems that the acute success rate of HBP-CRT is ∼50–70%, evidently 
lower than success rate of BiV-CRT. This is reflected by the high cross- 
over rate in randomized studies.53,54 Success rate reported by the ob-
servational studies is higher—probably due to the pre-selection of 
cases and underreporting of failures. With HBP-CRT, QRS narrowing 
is much higher, and echocardiographic response is at least comparable 
to BiV-CRT.55 Some of the limitations of this method are inherent—re-
sulting from the pathophysiology of dyssynchrony (conduction system 
lesion/problem distal to the HB) whilst some are related to the poten-
tially solvable technical aspects (inability to obtain HB capture with an 
acceptable output with the currently available tools). To address the 
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incomplete correction of conduction disturbance with HBP-CRT 
alone, a hybrid pacing approach that combines HBP and coronary ven-
ous pacing is explored. This CRT modality, known as His-Optimized CRT 
(HOT-CRT) results in incremental QRS narrowing over both BiV-CRT 
and HBP-CRT.

However, improvement of tools for easier positioning of the lead in 
the His bundle as well as methods for identifying patients that benefit 
from HBP might extend the scope of HBP-CRT.

Left bundle branch area pacing-cardiac 
resynchronization therapy
More recently, the procedural challenges associated with HBP 
opened the way for LBBAP.51 The feasibility and beneficial haemo-
dynamic effects of LV septal pacing by transvenous approach through 
the interventricular septum were first described by Mafi-Rad et al.56

Subsequently, based on this trans-septal approach, Huang et al.50

pioneered LBBAP in a patient in whom HBP failed to correct LBBB 
at the highest pacing output. The LBBAP seems to be more suited 
to restore conduction in left bundle branch than HBP as the pacing 
site is nearly always distal to the lesion in LBBB. Direct capturing 
the left bundle branch, manifesting electrocardiographically as an in-
complete RBBB with a relatively narrow QRS duration, preserves or 
restores mainly the physiological activation of the LV56 without the 
challenges as low sensing values or high thresholds as reported 
in HBP.57

The presence of baseline LBBB is a strong predictor of LBBAP-CRT 
outcome, indicating that the mechanism of clinical benefit is the same 
as with BiV-CRT (correction of LBBB induced dyssynchrony). Data on 
clinical outcomes of LBBAP-CRT are more robust than for HBP-CRT, 
based on several mid-sized to large, multicentre observation studies and 
several smaller studies including two randomized trials.52,58–61 Most of 
these studies are summarized in Table 2. Briefly, echocardiographic, elec-
trocardiographic, and clinical response, including functional class, 
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mortality, and heart failure hospitalization, seem superior to BiV-CRT. 
Large RCTs are needed however to provide definite answer. Acute suc-
cess rate of LBBAP-CRT is 80–95%, slightly lower than for BiV-CRT and 
lower than LBBAP success rate for bradyarrhythmia indications as shown 
by the MELOS study. This results from anatomical challenges in patients 
with HF (dilated atria and ventricles and rotation of the heart), fibrous 
septum and left septal conduction system. The LBBAP-CRT cannot cor-
rect widespread or very distal conduction disturbance typical for non- 
specific intraventricular conduction delay that is more often present in 
heart failure patients either alone or on the top of LBBB. For such patients, 
hybrid pacing known as Left bundle branch-OpTimized CRT (LOT-CRT) 
can be used to maximize response (Figure 6).

Electrocardiographic response of 
conduction system pacing-cardiac 
resynchronization therapy
For CSP-CRT assessment of electrocardiographic outcome plays a big-
ger role than for BiV-CRT. Perhaps the most practical biomarker of elec-
trical and mechanical synchrony is QRS narrowing that can be used for 
BiV-CRT optimization and even as a procedural goal and to maximize 
clinical benefit. For CSP-CRT, not only narrowing but QRS metrics nor-
malization can be the goal as V6 R-wave peak time (V6RWPT) during 
CSP corresponds to physiological values of V6RWPT during native con-
duction—Figure 7.62,63 Upper limit of normal V6RWPT values for native 
QRS is 50–60 ms, and this plus conduction system potential to QRS 
interval defines the normal values for paced QRS during CSP-CRT (i.e. 
100–110 ms for HBP and 80–90 ms for LBBAP-CRT). Potentially, paced 
V6RWPT can be used to precisely ‘gauge’ the degree of restoration of 
synchrony and provide a criterion for adding coronary venous lead for 
hybrid pacing [His-OpTimized/Left bundle branch-OpTimized CRT 
(HOT/LOT-CRT)] when V6RWPT remains non-physiological.64

Complications of conduction system 
pacing-cardiac resynchronization therapy
Complication rate of CSP-CRT seems similar to BiV-CRT although 
complication profile is different—especially for LBBAP-CRT that is 
based on the trans-septal LV septal pacing technique with the potential 
for septal damage (haematoma, fistula, acute coronary event, etc.). 
Moreover, septal perforation, especially late (seen in ∼0.05% cases) 
but also acute partial perforation might be related to the risk of system-
ic embolism. Long-term performance of deep septal leads is a remaining 
concern that must be addressed before wide adoption of this method.

Current practice of conduction 
system pacing-cardiac 
resynchronization therapy
Despite limited clinical evidence, both HBP and LBBAP seem already to 
play an important role in routine clinical practice as revealed by two recent 
European surveys.65,66 Both surveys indicated that CSP is predominantly 
used for patient with a bradycardia pacemaker indication and that LBBP 
is preferred by most operators over HBP. For patients with HF and 
LBBB most operators still reserve conduction system pacing for biventri-
cular implant failures, although there are a considerable number of opera-
tors who already use LBBP as first-line therapy for their CRT implantation.

Guidelines
CRT has established itself in pacing guidelines over the last two decades. 
A summary of the current indications for CRT according to the 2021 
ESC pacing guidelines is shown in Figure 8.34

His bundle pacing was first included in European guidelines in the 
2019 ESC guidelines on management of supra-ventricular tachycardia, 
where it was defined (along with CRT) as a class I, level of evidence 
C indication for a ‘pace and ablate’ strategy for treating patients with 
tachycardiomyopathy if the tachycardia cannot be controlled by abla-
tion or drugs, and a IIa, level of evidence C in patients with left ventricu-
lar dysfunction due to refractory recurrent multifocal atrial 
tachycardia.67 The 2021 ESC pacing guidelines34 expanded the indica-
tions of HBP to patients with atrioventricular block (AVB) and as rescue 
therapy for patients with failed CRT implantation (see Figure 2), without 
any first-line indication for HBP in lieu of CRT. The guidelines did not 
formulate any recommendations for LBBAP, due to paucity of data at 
that time (Figure 9).

As indicated by the supplementary tables in the appendix of the 2021 
ESC pacing guidelines,34 at the time of its writing, there were only four 
randomized controlled trials on HBP, which included a total of 99 pa-
tients with successful HBP implantation, and none on LBBAP or on 
HOT/LOT-CRT. This explains why these guidelines had indications 
for CSP, which may be currently considered to be very conservative. 
The indications would no doubt be different if the guidelines were to 
be re-written today, as studies on CSP have moved fast since then. In 
a recent EHRA survey,3 85% of the respondents believed that CSP 
would predominate over RV pacing for bradycardia indications and 
72% over biventricular pacing for CRT indications. In a recent 
European survey conducted on CSP implanters, the best indications 
were considered to be atrioventricular block in patients with a narrow 
QRS, failed CRT implantation, and pace and ablate.

Due to the uncertainty of long-term safety of HBP, the 2021 ESC pa-
cing guidelines recommend use of a backup ventricular lead with a class 
IIa, level of evidence C recommendation in selected situations [e.g. 
pacemaker-dependency, high-grade AVB, infranodal block, high pacing 
threshold, and planned atrioventricular junction (AVJ) ablation], or 
for sensing in case of issues with detection (e.g. risk of ventricular un-
dersensing or oversensing of atrial/His potentials). Backup leads are, 
however, most often not considered necessary with LBBAP.

Indications for CSP will no doubt evolve in the coming years with the 
growing evidence for its safety and efficacy. Economic factors are also 
likely to play a role, as CSP may reduce the need for more expensive 
CRT devices. The expansion of CSP not only depends upon evidence 
from studies conducted in selected centres but also in ensuring that 
CSP is properly performed in more widespread clinical practice. The 
2023 EHRA clinical consensus statement on CSP implantation68 forms 
a framework for performing the procedure safely and effectively. Lack 
of education and training are considered to be the greatest hurdle for 
adoption of CSP. Educational programmes, which may include 
simulator-based training, as well as evolution in leads and tools dedi-
cated to CSP implantation, will no doubt facilitate adoption of CSP in 
the future.

Future directions
One of the hot topics in CRT today is the emergence of CSP as shown 
by the recent large number of publications during the last decade and its 
adoption in clinical practice.66 For CSP, the technique most frequently 
used is the LBB area pacing, which is considered easier and with better 
chronic electrical parameters. However, we must recognize that the le-
vel of evidence for LBBAP is still low with small controlled randomized 
trials or observational studies. Before being implemented in the guide-
lines with a high level of recommendation, there is a definitive need of 
more randomized controlled clinical trials. Some trials are ongoing or 
will start soon in conventional indications for CRT such as the 
His-Sync II or Left versus Left trials comparing LBBAP and biventricular 
pacing. Interestingly, other RCTs are designed to evaluate LBBAP in pa-
tients with a low response rate to biventricular pacing such as patients 
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with RBBB but also the combination of CSP and LV pacing through the 
coronary sinus, or so called HOT-CRT.

For biventricular pacing, the recent data from the Adapt trial have 
shown that the rate of responders in selected patients with LBBB 
and normal AV interval with a rate of clinical response including im-
proved or stable patients is over 90% and so higher than expected. 
This might be an explanation of the non-significant difference in the 
adaptive CRT algorithm providing LV pacing only.69 However, identifi-
cation of patients in whom a high percentage of LV pacing only might be 
interesting to increase the rate of response as demonstrated with a sig-
nificant benefit with adaptive CRT algorithm in the Adapt response 
trial. Recent data of the planned interim analysis of the SOLVE-CRT 
trial presented during the Heart Rhythm Society 2023 congress did 
show the efficacy based of echocardiographic parameters and safety 
of endocardial pacing using the WISE system®. These interesting re-
sults have to be confirmed with the completion of the study to access 
the potential of endocardial pacing.

Finally, identification of responders before CRT implantation with a 
personalized approach is a very interesting challenge. Some promising 
results using artificial intelligence or digital twin models have to be con-
firmed by clinical trials and evaluation of outcomes from large 
databases.70
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