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ABSTRACT 

BRCA1/2 genes play a crucial role in repairing DNA double-strand breaks through 

homologous recombination. Their mutations represent a significant proportion of homologous 

recombination deficiency and are a reliable effective predictor of sensitivity of high-grade 

ovarian cancer (HGOC) to poly(ADP-ribose) polymerase inhibitors. However, their testing by 

next-generation sequencing is costly, time-consuming, and can be affected by various 

preanalytical factors. In this study, we present a deep learning classifier for BRCA mutational 

status prediction from HES-stained whole-slide images (WSI) of HGOC. We constituted the 

OvarIA cohort composed of 867 HGOC patients with known BRCA somatic mutational status 

coming from two different pathology departments. We first developed a tumor segmentation 

model according to dynamic sampling and then trained a visual representation encoder with 

momentum contrastive learning on the predicted tumor tiles. We finally trained a BRCA 

classifier on over a million tumor tiles in multiple-instance learning with an attention-based 

mechanism. The tumor segmentation model trained on 8 WSI obtained a dice score of 0.915 

and an intersection-over-union of 0.847 on a test set of 50 WSI while the BRCA classifier 

achieved the state-of-the-art AUC of 0.739 in 5-fold cross-validation and 0.681 on the testing 

set. An additional multiscale approach indicates that the relevant information for predicting 

BRCA mutations is more located in the tumor context than in the cell morphology. Our results 

suggest that BRCA somatic mutations have a discernible phenotypic effect which could be 

detected by deep learning and could be used as a pre-screening tool in the future.  
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INTRODUCTION 

Epithelial ovarian cancer (EOC) is a highly lethal gynecologic malignancy and a significant 

cause of female cancer-related deaths1. The most common histological subtype of EOC is 

high-grade serous (HGSOC). Because of their silent course, high-grade ovarian cancers 

(HGOC) are frequently diagnosed at an advanced stage and are of poor prognosis. The 

standard treatment for patients with diagnosed advanced ovarian cancer consists of 

cytoreductive surgery and a combination of paclitaxel and platinum-based chemotherapy2. 

Despite standard therapy, 70% of the patients relapse within the subsequent 3 years2. 

HGOC is characterized by defects in the DNA damage repair pathway known as homologous 

recombination. The BRCA1 and BRCA2 genes play a crucial role in repairing DNA double-

strand breaks through homologous recombination3. Mutations in these genes are found in 17-

25% of patients with HGSOC, the most common type of EOC4,5. In 2005, two studies 

demonstrated that in vitro, poly(ADP-ribose) polymerase inhibitors (PARPi) are effective at 

killing BRCA-deficient cancer cells, but have no effect on non-BRCA-deficient cancer cells. 

This phenomenon, known as synthetic lethality, first described by Hartwell6, occurs because 

PARPi inhibits the repair of DNA single-strand breaks through the base excision repair system. 

This mechanism leads to the accumulation of double-strand breaks that can be repaired by 

homologous recombination in BRCA-competent cells but not in BRCA-deficient cells, causing 

cell death. 

Germline and somatic BRCA1/2 mutations are known predictive markers of response to 

PARPi targeted therapy, both in relapse and first-line settings7–13. BRCA1/2 somatic 

mutational status analysis is thus essential for selecting appropriate treatment. 

Its characterization with next-generation sequencing (NGS) is widely available in developed 

countries, using DNA extracted from formalin-fixed paraffin-embedded (FFPE) tumor tissue 

from either archival or current tumor samples. However, NGS performed on FFPE tissue 

sections may be challenging, due to pre-analytical conditions or amount of cancer cells in the 

sample, which could affect molecular results14. Indeed, approximately 5% of FFPE NGS 
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analyses fail and must be repeated with no molecular results in 3% of cases15. Moreover, this 

analysis is quite expensive, time-consuming and not available or accessible to all patients. 

Additionally, the growing demand for personalized medicine has led to an increasing use of 

cancer molecular genetics platforms, which can further strain resources and increase costs. 

This potentially leads to delays in therapeutic management, as patients may have to wait for 

diagnostic results before they can receive the appropriate treatment. 

Digital pathology has enabled the acquisition of high-resolution images known as whole-slide 

images (WSI) for the application of computational techniques16. With the progress of computer 

vision and the development of convolutional neural networks (CNN), machine learning 

algorithms are able to extract information from hematoxylin-eosin-safran (HES)-stained WSI. 

It has the significant potential to improve the standard clinical process in pathology. 

In addition to computer-aided diagnosis, whose goal is to reproduce human tasks, such as the 

detection of lymph node metastases in breast cancer17,18, detection of mitosis19, or gastric 

cancer diagnosis20, artificial intelligence (AI) algorithms using WSI can predict patient survival 

and specific molecular features in the lung21, prostate22, brain23,24, colorectal25, 

gastrointestinal26, and breast cancer27,28.  

In this study, we present CNN classifiers for BRCA 1/2 mutational status prediction from HES-

stained HGOC WSI. As we assumed that the relevant information resides in the tumor, we 

developed a tumor segmentation model by using an innovative approach based on an efficient 

sampling strategy with a small annotated training dataset. Finally, we studied the impact of 

the resolution field on the final prediction through a multiscale approach. 

 

 

MATERIAL AND METHODS 

 

 

 

OvarIA BRCA cohort 
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The OvarIA cohort consists of two independent cohorts of patients diagnosed with HGOC from 

biopsy or surgery and who underwent tumor BRCA mutational status testing by NGS in 

Department of Medical Genetics at the University Hospital of Nantes and Rennes. NGS library 

preparation was performed with BRCA MASTR Dx Kit (Multiplicom Agilent Technologies) for 

Nantes patients and with AdvantaTM Solid Tumor NGS Library Prep Assay (Standard BioTools) 

for Rennes patients. The sequencing was performed with Illumina MiSeq for Nantes patients 

and Illumina NextSeq 500/550 for Rennes patients (Illumina, San Diego, California, US). The 

whole OvarIA cohort consists of 867 patients: 169 with BRCA mutation (BRCA-mut) and 698 

with no BRCA mutation (BRCA-wt). The first cohort included 551 patients (122 BRCA-mut and 

429 BRCA-wt) and the second cohort included 316 patients (47 BRCA-mut and 269 BRCA-

wt), respectively from the Pathological Departments of the University Hospital of Nantes and 

Rennes. All variants of uncertain significance (VUS) and uninterpretable results have been 

discarded. One FFPE block per patient was collected and HES-stained in each Pathological 

Department. All HES-stained slides were finally reviewed and characterized by two 

gynecopathologists in the Pathological Department of the University Hospital of Nantes. This 

study only included high-grade serous and high-grade endometrioid subtypes and excluded 

mucinous subtypes. In decreasing order, the samples concern peritoneum, ovary, fallopian 

tube, and metastases site (omentum, node, colon, rectum, ileum, lung, liver, uteri). The slides 

were anonymized and then digitized on the same scanner at 20x magnification (0.46 µm/pixel) 

using a NanoZoomer S60 Digital slide scanner (Hamamatsu, Japan) at the Micropicell 

platform (IRS-UN unit, Nantes). The WSI were saved in ndpi format and converted to tiff format 

using openslide29 and pyvips library.  

 

TCGA cohort  

The diagnostic slides from the cancer genome atlas (TCGA) were downloaded from the 

genomic data commons portal (https://portal.gdc.cancer.gov/) in svs format and constitute an 

external validation cohort. Any slide with tissue folds, blurred artifacts, or pen marks were 

excluded. A final dataset of 103 FFPE and H&E-stained samples of HGSOC with BRCA status 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

https://www.zotero.org/google-docs/?1LFF1R
https://portal.gdc.cancer.gov/


Accepted manuscript

available (21 BRCA-mut and 82 BRCA-wt) were retained, converted in tiff format, and 

downscaled to 20x magnification (0.5 µm/pixel). 

TUMOR SEGMENTATION 

Proposed pipeline 

During the study design, we hypothesized that the relevant information for predicting BRCA 

somatic mutations could be mostly found in the tumor tissue which we have defined as the 

carcinomatous cells with the exclusion of stroma. We thus trained an ovarian cancer 

segmentation model to predict the tumor pixels. During training, 8 HES-stained slides were 

randomly selected from the first cohort (e.g. Nantes) and then pixel-annotated by a first 

gynecopathologist. To assess the robustness of our algorithm, 50 HES-stained validation 

slides were randomly selected from both cohorts (e.g. Nantes and Rennes) in equal 

proportions and were then pixel-annotated by a second gynecopathologist. Because of the 

different HES-staining protocols, we applied the Vahadane stain normalization algorithm 

during preprocessing to match the color spectrum distribution of the two medical centers30. 

The validation was assessed using the dice coefficient (DC) and the intersection-over-union 

(IoU) score as evaluation metrics. 

Data annotations 

The 8 randomly selected training slides were annotated by a first gynecopathologist in less 

than 2 hours, using the opensource software QuPath (version 0.3.2)31. All the carcinomatous 

areas were delineated with the exclusion of necrosis. The polygonal annotations were then 

exported using the javascript object notation format, including X and Y coordinates 

corresponding to the annotated regions. These coordinates were then encoded into a binary 

tumor mask for strongly-supervised training. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

https://www.zotero.org/google-docs/?PpxVty
https://www.zotero.org/google-docs/?4BhWMf


Accepted manuscript

Training process 

Pre-processing techniques, such as tiling the region of interest into smaller patches, are often 

necessary when working with WSI due to their large size. One limitation of this approach is 

the necessity to predetermine certain hyperparameters, such as the size of the tile and the 

resolution level. This can significantly lengthen the pre-processing time as different 

combinations of these hyperparameters must be evaluated to determine the optimal 

combination. To address this issue, we used the Deepflash2, a python open-source library 

developed by Griebel et al.32 in order to implement a more dynamic training process. Instead 

of tiling the WSI into fixed tiles by using a sliding window approach, the slides are saved to 

zarr files, a file storage format for chunked, compressed, and N-dimensional arrays. This 

format allows a memory-efficient loading of the slides which are then randomly sampled during 

training according to a probability density function. Each region of the WSI is weighted, 

determining the probability of being sampled at each epoch. One advantage of this dynamic 

approach is to use flexible tile shape and scaling factor at runtime. Although this sampling 

method is in itself a data augmentation process, we used additional operations such as 

flipping, rotating, mirroring, and color changes to increase diversity during training. Powered 

by the Segmentation PyTorch models package, Deepflash2 allows the use of different state-

of-the-art architecture (U-Net33, UNet++34, LinkNet35, DeepLabv3+36) and encoder (ResNet37, 

Inception38, EfficientNet39, ResNeSt40) combinations. 

Hyperparameter optimization 

Hyperparameters have been set according to a grid search evaluated through 5-fold cross-

validation. The best score was obtained using 512 x 512 pixels tile size, a downscaling factor 

of 2, and a sampling weight of 1 for the predicted tumor pixels, 0.7 for ovarian non-tumor tissue 

determined by the subtraction of the tumor mask and the whole tissue mask determined by 

the Otsu’s method, and 0.1 for background regions (Figure 1). We used a U-Net architecture 

and an EfficientNet-B4 as an encoder to perform segmentation. We used a cross-entropy loss 

and a Ranger optimizer. We trained the model in mixed precision with a 10-3 weight decay. 
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Fifteen epochs with a batch size of 32 have been performed using the one-cycle policy with a 

10-3 max learning rate.

Post-processing 

In order to remove all the cutting artifacts localized in the tumor and over-predicted by the 

algorithm, we calculated the intersection of the predicted tumor mask with the tissue mask 

determined with Otsu’s method. 

Model assessment 

The performance of the models was assessed on a testing set of 50 WSI. As the task involved 

semantic segmentation and the tumor ratio within the images exhibited high variability, both 

the DC and the IoU were calculated. These metrics evaluate the similarity between the 

predicted binary mask (PM) and the ground truth (GT) delineated by the gynecopathologist. 

These metrics are defined as 

Code Latex : 

DC $=\frac{2 \times TP}{(TP+FP)+(TP+FN)}$ 

$IoU=\frac{TP}{(TP+FP+FN)}$ 

The true positives (TP) are the sum of all matching tumor pixels of the PM and the GT while 

the false positives (FP) and false negatives (FN) are the sum of tumor pixels that only appear 

in the PM or in the GT. We finally averaged the DC and the IoU over the 50 testing WSI. 
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BRCA CLASSIFICATION 

 

Proposed pipeline 

After segmentation, we trained a BRCA classifier by randomly splitting the OvarIA cohort into 

a development set (n=80%) and a testing set (n=20%). We trained five models using cross-

validation on the development set and tested each of them on the testing set. To determine 

the most optimal scale for predicting BRCA mutation, we performed three different training 

schemes relying on the multiple instance learning (MIL) paradigm, and using momentum 

contrast (MoCo). MoCo is an unsupervised learning technique that aims to learn useful 

representations from unlabeled data. It involves training a model by maximizing agreement 

between two differently augmented views of the same input tile. Additionally, MoCo 

incorporates a momentum-based moving average of the model’s parameters during training 

to stabilize and improve the learning of representations. 

 

Data pre-processing  

The WSI were first tiled into non-overlapping patches of 512 x 512 pixels at 20x magnification 

(0.46 µm/pixel), according to the tumor mask predicted by our segmentation algorithm. To 

optimize computation, a maximum random subset of 5000 tiles with at least 50% of their 

surface covered by the tumor mask was selected from each slide. The first 2000 tiles randomly 

selected in this subset were retained for the classification, while the following 3000 were used 

for learning MoCo representations. If the tumor-predicted mask consisted of less than 2000 

tiles, these tiles were all retained for classification and no tile was used to train MoCo 

representations. After tiling, 7 slides have been removed from the OvarIA dataset, because 

they contained no 512 x 512 pixels tiles with at least 50% of tumor area (Figure 2). This 

process generated 599 697 tumor tiles for self-supervised learning. However, because of their 

likely low impact during training, we decided to discard all slides with less than 200 predicted 

tumor tiles, (i.e. 85 slides) for a final total of 775 WSI and 1 040 149 tumor tiles used for 
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classification (details in Table 1). We used the MoCo repository available at 

(https://github.com/facebookresearch/moco) to train our model by randomly considering the 

following transformations: horizontal flip, grayscale, color jitter and gaussian blur. According 

to their popularity in feature extraction, we benchmarked different ResNet depths (18, 34, 50, 

and 101 layers). A first feature extraction has been conducted according to the imagenet 

parameters then a second after finetuning each model on their final layers. In both cases, the 

best performance was observed with the ResNet-50 which was thus chosen as an encoder 

and trained from scratch for 200 epochs on 4 GPU Nvidia RTX A4500 20 Go. We used the 

SGD optimizer with a momentum of 0.9, a weight decay of 1e-4 and a learning rate schedule 

with a cosine decay starting at 3e-2. 

 

Training process 

Due to the unbalanced dataset, we performed a stratified 5-fold cross-validation on the 

development set. As the impact of each tumor tile on prediction is unknown, we decided to 

use MIL technique with the attention-based model proposed by Ilse et al.41. After encoding, 

the feature vector of each tile is mapped to an attention score by a multi-layer perceptron. This 

attention score determines how much a given tile will contribute to the slide representation. 

The higher the score, the more the tile contributes to the final prediction. The slide 

representation is obtained by the sum of the vector of individual features for all tiles, weighted 

by the attention score. A second linear layer is then used to output the final prediction from 

the slide-level vector representation by minimizing a binary-weighted cross-entropy loss, 

according to the imbalanced classes.  

  

Evaluation criteria 

Several classification metrics such as area under the ROC Curve (AUC) but also precision, 

recall, and F1-score have been used to evaluate the model performance. Precision is the 

proportion of TP predictions among all positive predictions while recall is the proportion of TP 

predictions out of all positive instances. Their combination determines the F1-score which 
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calculates their harmonic mean. It is particularly beneficial in our case since the classes are 

imbalanced. All of these metrics were calculated by their mean over the five validation folds of 

the development set. Each of these five models was then applied to the remaining testing set 

and their classification metrics were also averaged. 

 

External validation cohort 

We performed an additional validation on an external dataset of EOC from TCGA. We selected 

103 high-quality FFPE and H&E-stained slides. We then performed the same preprocessing 

steps as before, for a total of 111 727 tumor tiles. Their representations were provided by 

MoCo and each of our five previous models trained in cross-validation were evaluated on this 

external dataset. The final result is the AUC and the standard deviation averaged over the five 

models. 

 

Optimal observation field 

To determine the most optimal observation field for predicting BRCA mutation, we conducted 

three additional approaches with different scaling. Baseline approach : a maximum of 2000 

tiles of 512 x 512 pixels were randomly sampled in each WSI. This first “high-level” approach 

provides more contextual information. Approach 2 : each of these tiles was divided into four 

tiles of 256 x 256 pixels (i.e maximum of 8000 tiles per WSI). Intuitively, this “low-level” 

approach brings more information in MIL, but less in the tumor spatial conformation. Approach 

3 : these four tiles were finally randomly reassembled into a new mixed tile of 512 x 512 pixels 

(i.e maximum of 2000 tiles per WSI) (Figure 3). This approach provides more information in 

MIL than the first approach, but with degraded information on the spatial configuration of the 

tumor. 

 

Computational configurations: 
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All analyses have been done under Python 3.7 using the Pytorch framework. The computation 

tasks were performed on an Intel Xeon Gold 6140 2.30 GHz processor with NVIDIA V100 

Tensor Core GPU 32Go and 32 Go memory RAM. We used CUDA V10.2.89 Toolkit. 

 

 

RESULTS 

 

Tumor segmentation 

 

The first step of this study was to develop a deep-learning model for the automatic 

segmentation of HGOC. We used 58 HES-stained WSI randomly selected from the OvarIA 

cohort and splitted into a training set of 8 WSI from the first center (e.g. Nantes) and a 

validation set composed of 50 WSI from the two centers (e.g. Nantes and Rennes) randomly 

sampled in equal proportion. For a better assessment of the real performance of the model, 

the training set and the validation set were annotated by two different gynecopathologists. The 

similarity between the PM and the GT was computed by averaging the DC and the IoU over 

the 50 WSI and no significant difference was observed between the 2 cohorts. The 

segmentation model finally achieved an overall DC of 0.915 (± 0.05) and an overall IoU of 

0.847 (± 0.079).  

 

BRCA mutation prediction 

 

After segmenting the tumor over the 860 slides, we discarded 85 slides with less than 200 

predicted tumor tiles. We then trained several BRCA classification models on the 775 

remaining slides following three sampling approaches. In order to assess the robustness of 

our model, we next validated the BRCA classifier on an external independent test set. We 

used 103 FFPE and H&E-stained slides from the TCGA cohort with 21 slides BRCA-mut and 

82 slides BRCA-wt. All the results are presented in Table 2. 
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In order to increase their interpretability and according to their better results, the baseline 

models trained in 5-fold cross-validation have been more precisely evaluated and achieved a 

mean precision of 0,714 (± 0.02), a mean recall of 0,731 (± 0.023) and a mean F1-score of 

0,722 (± 0.009) on the internal testing set. 

 

 

DISCUSSION 

 

BRCA1/2 mutations have been shown to be effective predictors of the sensitivity of HGOC to 

PARPi. Their identification is crucial for the selection of appropriate therapeutic options. 

Currently, somatic BRCA1/2 mutation testing is conducted using NGS on FFPE tissue 

samples, which can be challenging due to the poor quality of the DNA and its high level of 

fragmentation. Additionally, tumor samples are often highly heterogeneous and can be 

contaminated with DNA from normal tissue. Several studies have demonstrated the 

effectiveness of CNN-based models for predicting specific molecular features in various types 

of cancer, including lung21, prostate22, brain23,24, colorectal25, and gastrointestinal cancers26, 

as well as breast cancer27,28. These studies have shown that CNN-based models can 

accurately predict genomic alterations, such as mutations in specific genes, based on 

morphological features extracted from WSI.  

In this paper, we present a deep learning-based model for predicting BRCA1/2 mutation status 

using an innovative tumor segmentation method. To our knowledge, our model has achieved 

the best performance hitherto in predicting BRCA mutations in HGOC from WSI. Furthermore, 

it is also the first model that has undergone evaluation on an external validation cohort. 

 

Tumor segmentation is a classical task in computational pathology. It allows the identification 

of regions of interest useful for complementary classification tasks42. However, pixel-level 

segmentation requires precise annotations which are not always available. Indeed, annotation 
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is a costly and time-consuming task that requires a pathologist's expertise. Moreover, there 

are still few published annotation guidelines which leads to high inter-individual variability and 

bad interoperability of annotation protocols43. In their paper about ovarian cancer 

segmentation, Ho et al. have adopted a Deep Interactive Learning method to reduce the time 

of manual annotation44. They used a breast cancer segmentation model, pre-trained to 

segment high-grade invasive ductal carcinoma from triple-negative breast cancer images. 

They then finetuned it to segment HGSOC, thanks to the similarity of their morphological 

features. The training process is composed of multiple iterations of segmentation, assessment 

then correction of the prediction generated by the previous model. They thus initially predicted 

the HGSOC over 60 randomly selected WSI with their pre-trained breast cancer model and 

finally trained their own ovarian model after three iterations and the annotation of 25 WSI in 

3,5 hours. They then evaluated their model on 14 WSI and achieved an IoU of 0,74 for their 

best model. However, this approach ideally requires more than twenty WSI in training which 

may be difficult to obtain in rare diseases. Furthermore, this technique requires a pre-trained 

model on a tumor of more similar morphology.  

A key improvement of our method is the use of a dynamic training process which considerably 

reduces annotation and pre-processing time. Thanks to the Deepflash2 library intersection 

and efficient sampling, we were able to train a segmentation model with less than 2 hours of 

manual annotations on 8 WSI. Our model was then evaluated on 50 WSI and obtained an 

overall DC of 0.941 (± 0.05) and an IoU of 0.846 (± 0.079). A particularity of our segmentation 

model is that, despite the few areas of stroma in the tumor mask labeled by the pathologist in 

the training set, we observed that, for the large majority of WSI, only the tumor pixels were 

predicted and not the stroma, as shown in Figure 2B. In some cases, this could be explained 

by a higher contrast of the tumor than the stroma with the rest of the non-tumor tissue. The 

difference between tumor mask delineated by the second gynecopathologist for the testing 

set and predicted tumor mask, explains some DC<0.7. Indeed, it is sometimes difficult to 

exclude all the stromal tissue manually, especially for post-chemotherapy tumors or tumors 

with papillary or micropapillary architecture. This difference can however be reduced by post-

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

https://www.zotero.org/google-docs/?4UYs1p
https://www.zotero.org/google-docs/?XhAfp9


Accepted manuscript

processing techniques, such as prediction smoothing. Nevertheless, as we seek to predict the 

somatic mutation status of BRCA, the objective of this segmentation step was to extract the 

tumor pixels while excluding as many non-tumor pixels as possible. Another reason for the 

decrease of the DC is the localized artifacts within the tumors. These artifacts were bypassed 

by the gynecopathologist while they are systematically removed during the post-processing 

with the intersection of the predicted mask and the tissue mask obtained by Otsu’s method.  

 

Several studies have focused on the use of deep learning for predicting gene mutations from 

routine FFPE and H&E-stained histology slides. Coudray et al. showed that six mutated genes 

in lung adenocarcinoma can be predicted with an AUC ranging from 0.733 to 0.85621. Other 

studies have demonstrated an AUC of 0.71 for the prediction of SPOP mutations in prostate 

cancer images22, and AUC ranging from 0.71 to 0.89 for the prediction of CTNNB1, FMN2, 

TP53, and ZFX4 mutations in hepatocellular carcinoma45.  

To our knowledge, there are only two studies that have investigated the prediction of BRCA 

mutations in ovarian cancer44,46. Ho et al. recently conducted a study in which they aimed to 

predict BRCA mutations in HGSOC44. They included 609 HGSOC (119 BRCA-mut and 490 

BRCA-wt) and used a similar approach by first training a tumor segmentation model, and then 

training an additional classifier to predict BRCA mutations on the automatically extracted 

cancer patches. The authors performed an unbalanced sampling with a maximum of 1000 

tiles for non-mutated patients and 5000 tiles for mutated patients. They used a fixed tile size 

of 224 x 224 pixels and trained three BRCA classification models at various magnifications 

(5x, 10x, 20x). The slide-level score was then calculated by averaging all the patch scores of 

a WSI. They obtained an AUC ranging from 0.49 to 0.67 on the validation set and between 

0.40 and 0.43 on the testing set. Another study, conducted by Nero et al. also investigated the 

prediction of BRCA mutations in 664 ovarian cancer patients comprising 233 cases of somatic 

BRCA1/2 mutations46. In contrast to Ho et al. they did not focus on the tumor and tiled the 

whole tissue slide. Each patch was then embedded into a low-dimensional feature 

representation before being weighted by an attention branch. They finally achieved an AUC 
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of 0.7 on the training set and 0.55 on the testing set, improved at 0.59 by manually identifying 

areas of interest on a subset of 285 WSI.  

In our study, we combined both a tumor segmentation step and the use of an attention 

mechanism during classification. This allowed us to achieve the state-of-the-art AUC of 0.739 

(± 0.024) in 5-fold cross-validation, an AUC of 0.681 (± 0.014) over the internal testing set, 

and an AUC of 0.631 (± 0.03) over the TCGA dataset. Nevertheless, most of our patients were 

recruited before 2019 and only underwent BRCA1/2 mutation testing, which constitutes one 

limitation of our study. Indeed, BRCA1/2 mutations represent one of several causes of 

homologous recombination deficiency (HRD), which is characterized by genomic instability 

and also defines a target for PARPi. Tumors with similar morphological characteristics to those 

of BRCA-mutated tumors may also harbor mutations in other genes in the HRD pathway. It 

would be interesting to replicate this work on a cohort of tumors with HRD, as was done by 

Lazard et al. in breast cancer, where they achieved an AUC of 0.8647. They also developed 

an innovative visualization technique that allows for the automatic extraction of new 

morphological features related to HRD. 

In their paper, Ho et al. have also studied the impact of resolution by training a deep multi-

magnification network (DMMN). This model fuses morphological features from both high and 

low levels by the concatenation of patches at 20x, 10x, and 5x magnification. We decided to 

confirm this assumption by conducting three different approaches at the same resolution (20x 

magnification). The first approach consisted in tiling the tumor area in 512 x 512 pixels tiles 

while the majority of similar studies tile in 256 or 224 pixels. This approach reduces the total 

number of tiles but allows to get more contextual information about the tumor and its 

architecture. These tiles were then divided into four tiles of 256 x 256 pixels. This step brings 

four times more information during MIL, but reduces the contextual information, as the tiles 

are encoded independently from each other in the CNN. This approach led to lower AUC of 

0.721 (± 0.014) for 5-fold cross-validation, AUC of 0.654 (± 0.011) over the testing set and 

AUC of 0.624 (± 0.024) over TCGA dataset. Finally, we performed a last approach by randomly 

reassembling the four previous 256 x 256 pixels tumor tiles into a unique 512 x 512 pixels 
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mixed tumor tile. This approach brings as much information as the baseline, but reduces the 

tumor context by impairing its spatial architecture. This approach achieved the most 

disappointing results compared to the two others, with an AUC of 0.697 (± 0.016), for 5-fold 

cross-validation, AUC of 0.635 (± 0.015) over the testing set, and AUC of 0.619 (± 0.024) over 

TCGA dataset. This multiscale approach suggests that the relevant information for predicting 

BRCA mutations is preferentially located in the tumor context than in the cell morphology. 

It could be interesting to compare this multiscale approach with the use of vision transformer48. 

It is a model introduced in 2021 where the input image is split into fixed-size patches before 

being linearly embedded with their positional information and fed to a transformer encoder 

with a self-attention module. This module allows a global interpretation by capturing distant 

semantic relevances in an image while convolution is only focused on neighboring pixels. 

However, the first vision transformer usually required large datasets to achieve similar or better 

performance than CNN on various tasks. This is the reason why Guo et al. in their paper, used 

a swin Transformer to predict microsatellite instability and key biomarkers in colorectal cancer 

from H&E stained images49. It is a hierarchical transformer whose representations are 

computed with a shifted windows. This architecture allows them to achieve a state-of-the-art 

AUC of 0.9 for MSI prediction using the MCO dataset composed of 1065 patients. This 

achievement will probably pave the way for the use of vision transformers on small datasets 

in computation pathology. 

In conclusion, our results suggest that somatic mutations of BRCA have a phenotypic impact 

in HGOC. They also suggest that the relevant information for the prediction of BRCA 

mutational status seems to reside more in the tumor spatial conformation than in the cell 

morphology. It could also be interesting to investigate the phenotypic pattern of the tumor tiles 

with the highest probability of being BRCA mutated, according to the attention module in a 

future study. Moreover this work needs to be confirmed on an HGOC cohort with HRD. These 

AI-based models will probably be used more and more in the diagnostic routine to pre-screen 

tumors and optimize the preselection of patients for molecular determination. Even if this study 
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needs to be validated on a larger and multicenter cohort, it paves the way to clinical application 

with the future implementation of pre-screening tools for a more personalized medicine. 
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FIGURE LEGENDS 

Figure 1: Original HES slide (A). Tumor mask annotated by a pathologist in red (B). Sampling 

weighted mask as a combination of the tumor mask and the tissue mask (C). The tumor mask 
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in yellow has a sampling weight of 1 while the tissue mask in pink has a sampling weight of 

0.7 and 0.1 for the background. 

 

 

Figure 2: Original HES slide (A). Predicted tumor mask in purple (B). Tiling of the predicted 

mask: a maximum of 5000 tiles with more than 50% of their surface covered by the tumor 

mask are kept (in red). The green tiles include less than 50% tumor pixels and are therefore 

discarded (C). 

 

 

Figure 3: Overview of the multiscale approach. First, the tumor pixels are predicted by the 

ovarian cancer segmentation model. The predicted tumor masks are tiled into 512 x 512 pixels 

tiles. The resulting tiles are then separately divided into 4 tiles of 256 x 256 pixels and then 

randomly reassembled into a new mixed tile of 512 x 512 pixels (A). All of these datasets are 

then embedded into a low-dimensional space using a ResNet-50 as encoder, trained using 

the momentum contrast technique with N, the number of tiles per WSI (B). The embedded 

tiles are then scored through an attention mechanism and are finally fed to a decision module 

to predict BRCA mutation (C).    
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Dataset 1 Dataset 2 Dataset 3 

Source Nantes Rennes TCGA 

Number of tumor tiles for self-
supervised learning 331 998 267 699 none 

Number of tumor tiles for 
classification : 
BRCA-mut 
BRCA-wt 

129 041 
460 832 

53 508 
396 768 

20972 
90755 

Table 1: The number of tumor tiles used to learn MoCo representations and perform the 

classification according to the MIL paradigm. 
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5-fold cross-
validation Internal testing set TCGA 

AUC Sd AUC Sd AUC Sd 

Baseline 0,739 0.024 0,681 0,014 0,631 0,035 

Approach 2 0,721 0.014 0,654 0,011 0.624 0.024 

Approach 3 0,697 0.016 0,635 0,015 0.619 0.024 

Table 2: Summary of performance metrics. Mean and standard deviation (SD) are computed 

over the five test sets of the cross-validation, the internal testing set, and the TCGA dataset. 

AUC, area under the (receiver-operating characteristics) curve. The baseline approach relies 

on 512 x 512 pixels tiles. Approach 2 relies on the division of these tiles into 4 tiles of 256 x 

256 pixels. Approach 3 relies on the random reassembling of these 4 tiles into a new mixed 

tumor tile of 512 x 512 pixels. 
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